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Abstract
In machine translation (MT), when the source001
sentence includes a lexeme whose gender is002
not overtly marked, but whose target-language003
equivalent requires gender specification, the004
model must infer the appropriate gender from005
the context and/or external knowledge. Studies006
have shown that MT models exhibit biased be-007
haviour, relying on stereotypes even when they008
clash with contextual information. We posit009
that apart from confidently translating using010
the correct gender when it is evident from the011
input, models should also maintain uncertainty012
about the gender when it is ambiguous. Using013
recently proposed metrics of semantic uncer-014
tainty, we find that models with high translation015
and gender accuracy on unambiguous instances016
do not necessarily exhibit the expected level of017
uncertainty in ambiguous ones. Similarly, de-018
biasing has independent effects on ambiguous019
and unambiguous translation instances.1020

1 Introduction021

Language is inherently ambiguous, and meaning022

is often resolved through context. However, not023

all ambiguity is resolvable (van Deemter, 1998).024

When humans process language, they draw on lin-025

guistic, cognitive, and social biases to arrive at026

an interpretation (Cairns, 1973). While linguistic027

biases ease cognitive processing, some can also028

have harmful effects, such as reinforcing existing029

social inequalities (Beukeboom, 2013). NLP mod-030

els exhibit sensitivity to many of the human bi-031

ases (Echterhoff et al., 2024), and even exaggerate032

them (Dhamala et al., 2021), as well as introduce033

additional ones (Tjuatja et al., 2024). When the034

input is unresolvably ambiguous, favoring a single035

output necessarily relies on biases. Therefore, a036

well-designed model should refrain from making a037

single prediction, instead requesting clarification038

or generating multiple alternative outputs.039

1The code will be available at https://anonymous.
4open.science/r/uncertainty_bias_ambiguity-8A4C/

Figure 1: Probabilities for feminine and masculine de-
terminers in a Spanish translation of a sentence contain-
ing a noun that is either feminine (referred to as ’she’)
or ambiguous (’they’), by two existing models and the
ideal expected attribution of an unbiased model.

Most studies on decoding with language models 040

(LMs) for machine translation (MT) evaluate a sin- 041

gle prediction, usually generated with beam search, 042

per translation instance. Consequently, most stud- 043

ies on uncertainty quantification (UQ) use uncer- 044

tainty to predict the quality of the translation re- 045

covered by beam search (Fomicheva et al., 2020; 046

Cheng and Vlachos, 2024). Previous work on bias 047

in MT has focused on LM performance against 048

gold standard labels (Stanovsky et al., 2019), and 049

previous work on ambiguity in MT has likewise 050

focused on resolvable cases (Barua et al., 2024; 051

Martelli et al., 2025). Thus, most work on un- 052

certainty and ambiguity assumes that there is a 053

single correct translation per instance. However, 054

less attention has been given to ambiguous source 055

sentences, where the choice of the LM cannot be 056

guaranteed to be correct without additional context. 057

This may be seen as a form of aleatoric uncer- 058

tainty (Hora, 1996), uncertainty which is inherent 059

in the data and irreducible. According to Baan 060
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et al. (2024), the spread of probability mass in061

LMs represents both lack of confidence as well062

as variation in human generations. We adopt this063

line of thinking and examine whether LMs accu-064

rately and fairly represent the range of possible065

translations for ambiguous source sentences.066

In this work, we leverage distribution-level un-067

certainty metrics to evaluate cases where the model068

should not be certain about its predictions due to069

ambiguity in the input. Figure 1 shows two ver-070

sions of a sentence, with unambiguous (top) or am-071

biguous (bottom) gender of the noun ‘protester’,072

and the different probabilities assigned to the Span-073

ish translations of the determiner of this noun. An074

ideal model should assign a higher probability for075

the feminine determiner (‘la’) when the gender is076

disambiguated by the pronoun, and produce equal077

probabilities for masculine and feminine transla-078

tions when the gender is ambiguous. However,079

state-of-the-art MT models, including debiased080

ones, tend to produce more uniform probability081

distributions for unambiguous inputs, and less uni-082

form distributions for ambiguous ones. This indi-083

cates that the model probabilities are influenced by084

stereotypical associations between protesting and085

masculinity, causing the models to default to the086

masculine form even when no gender preference087

is warranted, and to select the feminine form with088

low confidence despite clear contextual cues.089

To study this systematically, we focus on trans-090

lating sentences from a language that does not mark091

gender in nouns and verbs (English) into languages092

that do (Spanish, French, Ukrainian, and Russian).093

We use the WINOMT dataset (Stanovsky et al.,094

2019), which includes stereotypical gender roles,095

and extend it with manual translations and auto-096

matic annotations of additional cognitive bias cues,097

such as implicit causality verbs. In some cases, the098

gender is resolvable from context, while in others099

it is not. We explore different variants of Semantic100

Uncertainty metrics (Cheng and Vlachos, 2024;101

Farquhar et al., 2024) to quantify the semantic di-102

versity of translation samples, finding that these103

metrics effectively capture the variation in gender104

caused by bias triggers. We validate the metrics105

against the established gender accuracy metric and106

account for the effects of translation accuracy. Our107

main findings are: 1) stereotypes and linguistic bi-108

ases influence gender translation, 2) the degree of109

bias corresponds to overall model translation accu-110

racy in unambiguous cases, 3) the degree of bias111

corresponds to translation accuracy at the instance112

level in ambiguous cases, 4) debiasing effects vary 113

depending on input ambiguity, translation accuracy, 114

and target language. 115

2 Related Work 116

Researchers have addressed various biases in MT, 117

including algorithmic bias (Vanmassenhove et al., 118

2021), as well as gender, number and formality 119

biases (Měchura, 2022). Gender stereotypes are 120

triggered not only by semantic content, but also 121

by speech mannerisms (Dawkins et al., 2024) and 122

person names (Saunders and Olsen, 2023). Ex- 123

isting solutions for gender translation in both un- 124

ambiguous (Robinson et al., 2024) and ambigu- 125

ous cases (Cho et al., 2019; Gonen and Webster, 126

2020; Vanmassenhove and Monti, 2021) rely on 127

tools or human annotation of gender, limiting their 128

generalisability to other types of ambiguities. For 129

example, Cho et al. (2019) explore unresolvable 130

ambiguity by generating multiple translations for a 131

sentence with an ambiguous pronoun, however, it 132

is restricted to specific sentence types. 133

In NLP and ML research, methods for distin- 134

guishing aleatoric and epistemic uncertainty have 135

been proposed (Hou et al., 2024), however they do 136

not distinguish between data randomness and data 137

ambiguity. Some work has made the link between 138

biases and uncertainty (Sicilia et al., 2024; Kuzucu 139

et al., 2025), as well as between ambiguity and 140

uncertainty (Kim, 2025; Cheng and Amiri, 2024), 141

however, these papers construe uncertainty as a 142

signal for poor performance and ambiguity as low 143

quality inputs, which differs from our definition of 144

ambiguity as an indispensable feature of language. 145

Work in Question Answering has found that the 146

best methods for detecting ambiguous inputs in- 147

volve quantifying repetition within sampled model 148

outputs (Cole et al., 2023), and using white-box 149

metrics such as entropy (Yang et al., 2025). 150

UQ in MT has been used as a proxy for Quality 151

Estimation (QE). For example, Fomicheva et al. 152

(2020) use MT model uncertainty to estimate trans- 153

lation quality without references, while Glushkova 154

et al. (2021) apply the same technique to the un- 155

certainty of the QE models themselves. Other ap- 156

proaches use UQ to identify difficult instances and 157

enhance training by applying curriculum learning 158

(Zhou et al., 2020), semantic augmentation (Wei 159

et al., 2020), balancing of multilingual training 160

data (Wu et al., 2021) or test-time adaptation (Zhan 161

et al., 2023). Wang et al. (2024b) examine zero- 162
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shot translation and distinguish between model un-163

certainty and data uncertainty, however their focus164

with regard to data uncertainty is on noisy, low-165

quality training data rather than inherent ambiguity.166

Cognitive science research has demonstrated that167

entropy-based uncertainty metrics are a suitable168

measure of ambiguity in human translations (Ban-169

galore et al., 2016), but this insight has yet to be170

applied in MT. To the best of our knowledge, no171

prior UQ-based approach in MT has explored am-172

biguity as a particular type of data uncertainty.173

3 Method174

We propose to quantify gender bias in Neural Ma-175

chine Translation (NMT) models by characterising176

how gender is assigned to nouns across the predic-177

tive distribution. To do so, we base our methods on178

recently proposed UQ metrics which are founded179

on the classic Shannon entropy but take into ac-180

count similarities between random Monte Carlo181

samples from the model. We first provide a brief182

overview of these UQ methods.183

Let Y be a random variable whose value is184

drawn from the predictive distribution of an NMT185

model p(y|x). Then entropy is defined as:186

H(Y) = E
y∼Y

[I(y)] ,187

where I is the surprisal of y. In the classic Shan-188

non entropy, I = − log p(y), but the UQ methods189

we consider vary in their definition of surprisal.190

Semantic Entropy (SE; Farquhar et al., 2024)191

identifies semantic equivalences between elements192

and clusters them together according to a textual193

entailment model, mapping each y to a cluster c.194

In our implementation we use a multilingual mDe-195

berta model (He et al., 2021) finetuned on the Nat-196

ural Language Inference (NLI) task by Laurer et al.197

(2022). Then, surprisal is the negative log proba-198

bility of an element being in c:199

ISE(y) = − log E
y′∼Y

1
[
y′ ∈ c

]
.200

Similarity-sensitive Shannon Entropy (S3E; Ri-201

cotta and Szeidl, 2006; Cheng and Vlachos, 2024)202

sets the surprisal of y to the negative log of its203

expected similarity with all other outputs:204

IS3E(y) = − logEy′∼Y
[
S(y, y′)

]
,205

where S is a similarity function satisfying206

S(y, y′) ∈ [0, 1] and S(y, y′) = 1 if y = y′. Fol-207

lowing Cheng and Vlachos (2024), we use cosine208

similarity between sentence embeddings of y and 209

y′ generated by a multilingual E5 text embedding 210

model (Wang et al., 2024a). 211

We also define Gender Entropy (GE), which is 212

calculated like SE but clusters elements based on 213

the gender class of the translated focus noun. To 214

determine the gender class, we use Spacy2 and py- 215

morphy2 (Korobov, 2015) morphological parsers. 216

SE, S3E, and GE must be approximated with 217

random sampling from p(·|x), which we perform 218

with ϵ-sampling (Hewitt et al., 2022), drawing 128 219

samples per source sentence. Further details about 220

these UQ methods are given in Appendix A. 221

Our gender bias metrics are based on surprisal 222

and entropy given by these UQ methods. The first 223

desideratum is that for source sentences with un- 224

ambiguous gender, an unbiased model should have 225

lower surprisal of a translation with correct gen- 226

der inflection compared to an incorrect inflection. 227

Therefore, unbiased models should minimise rela- 228

tive surprisal, defined as: 229

∆I =
I(ycorrect)− I(yincorrect)

1
2(I(ycorrect) + I(yincorrect)

. 230

The second desideratum is that the entropy of 231

unbiased models should not be affected by the pres- 232

ence of bias cues. Thus, we define normalised en- 233

tropy, which compares the H of a source sentence 234

x to the average entropy across its contrast set 235

Gx. Gx is a group of minimally different sentences 236

that are identical to x apart from the pronoun (e.g., 237

‘she’, ‘he’, ‘they’), including x itself. The three 238

sentences in Table 1 comprise a Gx. Formally: 239

norm-H(x) =
H(Yx)

1
|Gx|

∑
x′∈Gx

H(Yx′)
, 240

This formulation isolates variation in H(Yx) at- 241

tributable specifically to gender by holding all 242

other lexical, syntactic, and semantic content con- 243

stant across the contrast set. 244

The third desideratum is that models should 245

show higher uncertainty for an input which is am- 246

biguous with regard to gender, as compared to an 247

input which is unambiguous, disregarding all bi- 248

ases in the input. It should therefore minimise 249

relative entropy, defined as: 250

∆H =
H(Yunambiguous)−H(Yambiguous)

1
2

(
H(Yunambiguous) +H

(
Yambiguous

)) . 251

2https://spacy.io/
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Sentence Pronoun Stereotype Subject Recency IC
The mechanic called to inform someone that he had completed the repair. M M M N N
The mechanic called to inform someone that she had completed the repair. F M F N N
The mechanic called to inform someone that they had completed the repair. N M N N N

Table 1: WINOMT (Stanovsky et al., 2019) examples with additional annotations of bias cues.

4 Experimental setup252

To test our proposed bias metrics, an MT dataset253

containing information about gender ambiguity254

and stereotypes in the source sentences is required.255

We use WINOMT (Stanovsky et al., 2019), which256

includes annotations on minimal pairs of 1,584257

sentences with masculine, feminine or neutral258

pronouns referring back to stereotypical or anti-259

stereotypical gender roles. An example of three260

sentences from the dataset can be seen in Table 1.261

The gender of the focus noun ‘mechanic’ is un-262

ambiguous in the first two sentences based on the263

contextual information (Pronoun M & F), but re-264

mains ambiguous in the third on account of the265

neutral (N) pronoun. The Stereotype (column 3)266

that mechanics are more often men than women267

either contradicts (row 1) or aligns with (row 2) the268

disambiguating context (column 2).269

This dataset also contains other linguistic phe-270

nomena that were not explicitly annotated in its271

released version. Thus, we automatically annotate272

additional linguistic bias cues, namely subject, re-273

cency, implicit causality, and person names, using274

syntactic parses with Spacy2. We release the addi-275

tional annotations to the public for reproducibility.276

For the Subject bias, following the literature277

on human biases for coherence (Nieuwland and278

Van Berkum, 2006), we hypothesise that models279

may assume coreference between the subject of280

the main clause (often the focus noun) and the sub-281

ject of the complement clause (often the pronoun).282

In the example in Table 1 ‘the mechanic’ is the283

subject, therefore the Subject bias primes an inter-284

pretation in which the gender of the subject aligns285

with that of the subsequent pronoun (M in row 1,286

F in row 2). Furthermore, person names have been287

shown to have a strong effect on pronoun resolu-288

tion (Saunders and Olsen, 2023). To assess the289

impact of person names on gender translation, we290

augment the dataset with common feminine and291

masculine names matching the gender of the pro-292

noun, selected for their cross-linguistic familiarity293

(see Appendix B). As an example, when translat-294

ing into French, the second sentence from Table 1295

would read “The mechanic Anne called to inform296

someone that she had completed the repair." 297

Recency bias elicits the attribution of the gender 298

of the most recent noun phrase to the following 299

pronoun (Gautam et al., 2024). However, in our 300

example, the most recent noun phrase is ‘some- 301

one’, so the focus noun is unaffected. The implicit 302

causality (IC) bias induces an expectation in hu- 303

mans and LMs that when an IC verb is followed 304

by a causal connective, the following pronoun will 305

corefer with either the Subject or the Object of 306

the IC verb, depending on the causal inference (Ke- 307

mentchedjhieva et al., 2021). For instance, a clause 308

with the verb ‘call’, when followed by an expla- 309

nation starting with ‘because’, is expected to be 310

followed by a mention of the caller rather than the 311

callee. We use an IC verb corpus (Garnham et al., 312

2021) for the annotation and find that about 10% of 313

the dataset contains IC structures. The sentences in 314

Table 1 do not include a causal complement, hence 315

the IC bias does not apply. 316

Target Languages We selected target languages 317

that express gender through morphological mark- 318

ers on nouns and adjectives, and sometimes verbs, 319

namely Spanish, French, Ukrainian, and Russian. 320

The target languages vary in their representation 321

within NLP research. A relevant idiosyncrasy of 322

the Russian language is that for some nouns de- 323

scribing professions, even if a feminine version 324

exists, it may be considered derogatory in use (Ko- 325

mova, 2024). For example, ‘врач’ is the mascu- 326

line term for ‘doctor’, and the alternative femi- 327

nine ‘врачиха’ is considered rude, which leads to 328

‘врач’ being used even when the doctor is known 329

to be a woman. This results in constructions where 330

masculine nouns are paired with feminine verb 331

forms, or masculine markers are used throughout 332

the sentence. In order to account for this, we also 333

include a classification of professions which adhere 334

to such (lack of) gender marking into WINOMT, 335

using data from Komova (2024). 336

Human Translations WINOMT does not con- 337

tain target translations, thus the accuracy of MT 338

models cannot be directly evaluated. To overcome 339

this, we hired professional translators to translate a 340

set of 100 WINOMT sentences into French, Span- 341
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ish, Ukrainian and Russian. Each sentence is trans-342

lated twice, with the focus noun in feminine and343

masculine variants respectively. They also annotate344

the translations as Correct or Incorrect with regard345

to the gender translation in the given context. For346

instance, when translating the English sentence347

“The farmer bought a book from the writer and348

paid her" into French, where ‘writer’ is the focus349

noun, the feminine ‘l’auteure’ should be marked350

as Correct, while ‘l’auteur’ would be Incorrect.351

In ambiguous cases, i.e. if the pronoun in the352

above sentence was ‘they’, both gender transla-353

tions would be Correct. Appendix C provides the354

translation guidelines and details, and Appendix D355

discusses the quality of human annotations. We356

release the translations and correctness annotations357

to the public to enable further research.358

Models We experiment with two commonly used359

translation models, namely OPUS-MT (Tiedemann360

and Thottingal, 2020) and M2M100 (Fan et al.,361

2021). OPUS-MT models are NMT models trained362

on freely available parallel corpora. M2M100 is363

a many-to-many multilingual translation model,364

which directly translates between any pair of 100365

languages. To examine how effective debiasing is366

regarding the three desiderata stated in Section 3,367

we apply the hard-debiasing method from Iluz368

et al. (2024) on the OPUS-MT models, which have369

been shown to lower bias scores on the WINOMT370

dataset (Stanovsky et al., 2019) while maintain-371

ing translation quality. The hard-debiasing method372

neutralises the biased words in the representation373

space, so that neutral words are not associated with374

a specific gender (Bolukbasi et al., 2016). We375

adopt the most effective debiasing approach from376

Iluz et al. (2024), which applies debiasing to one-377

token profession words on the encoder side. See378

Appendix E for the performance of all models.379

5 Research questions380

Does Semantic Uncertainty Capture Gender381

Bias? To validate the application of UQ metrics382

for bias evaluation, we compare their scores with383

the established gender accuracy metric. Gender384

accuracy uses the morphological parsers described385

in Section 3 to determine the focus noun gender386

in translations. As it relies on gold-standard refer-387

ences, it is applicable only to unambiguous items388

and unsuitable for cases with multiple valid gender389

realisations. We therefore limit this experiment to390

unambiguous items. We rank all models accord-391

ing to their ∆I scores and compare this ranking to 392

that based on gender accuracy using Kendall’s τ 393

and Pearson’s r. In order to establish whether a 394

sampling-based metric is necessary, we also test 395

a simple ∆LogProb value, which compares the 396

Log Probabilities assigned to correct and incorrect 397

instances, as an alternative to ∆I . 398

What Biases do Models Exhibit via Uncer- 399

tainty? To evaluate model bias, we assess how 400

bias cues influence the diversity of gender markers 401

in translations. Specifically, we perform an analy- 402

sis of variance (ANOVA) to examine the effect of 403

bias cues (independent variables) on normalised en- 404

tropy measures norm-H (S3E), norm-H (SE), and 405

norm-H (GE) (dependent variables), using T-tests 406

for significance. This analysis incorporates linguis- 407

tic biases not previously explored in WINOMT. 408

What does Semantic Entropy Reveal about Bias 409

with Ambiguity? To evaluate model bias in am- 410

biguous settings, which has not yet been explored, 411

we compare models using their ∆H scores. To iso- 412

late the uncertainty caused by ambiguity from that 413

resulting from poorer model performance, we anal- 414

yse the relationship between the ∆H scores and the 415

translation quality measured by the COMET metric 416

(Rei et al., 2022). Since the WINOMT dataset does 417

not contain gold target translations, we use the 100 418

professionally annotated items described in Sec- 419

tion 4, and the WMT test sets which contain the 420

target languages (Callison-Burch et al., 2012; Bo- 421

jar et al., 2013, 2014; Koehn et al., 2023; Haddow 422

et al., 2024) for translation quality evaluation. 423

6 Results 424

This section presents the results of the bias evalua- 425

tion using semantic uncertainty metrics. 426

Lang. Model Gender Acc ∆Log prob ∆I (S3E) COMET

ES
OPUS-MT 67.95 0.00 -0.10 84.90
deb-OPUS-MT 68.13 0.00 -0.13 84.86
M2M100 70.77 0.00 -0.13 72.05

FR
OPUS-MT 64.27 0.01 -0.04 83.56
deb-OPUS-MT 64.79 0.01 -0.08 83.55
M2M100 61.66 0.01 -0.07 73.06

UK
OPUS-MT 45.34 0.00 -0.03 70.79
deb-OPUS-MT 46.12 0.00 -0.03 70.79
M2M100 47.76 0.00 -0.02 52.85

RU
OPUS-MT 48.57 0.00 0.00 79.37
deb-OPUS-MT 48.42 0.00 -0.03 79.36
M2M100 48.49 0.00 -0.03 58.62

Table 2: Gender Accuracy, ∆ Log Probability, and ∆I
(S3E) on Unambiguous instances, COMET scores on
WMT test sets (see Appendix E for details).
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Lang. Model Names Recency Implicit Causality Stereotype Subject Pronoun Default M Ambiguity
F M S F S M O F O M S F S M O F O M F M S F S M O F O M S O

es
OPUS-MT 0.41 0.41 -0.05 0.25 -0.19 0.24 -0.33 0.06 0.10 0.13 0.17 0.38 -0.21 0.24 -0.31 0.29 -0.13 N/A N/A -0.18
deb-OPUS-MT -0.05 0.30 -0.11 0.27 -0.20 0.16 -0.38 0.05 0.14 0.08 0.05 0.49 -0.14 0.39 -0.24 0.14 -0.21 N/A N/A -0.10
M2M100 0.14 0.33 -0.11 0.29 -0.42 0.28 -0.25 0.18 0.27 0.12 0.07 0.51 -0.04 0.52 -0.08 0.04 -0.35 N/A N/A -0.11

fr
OPUS-MT 0.54 0.42 0.16 0.05 -0.34 0.06 -0.24 0.43 0.45 0.26 0.21 0.16 -0.14 0.16 -0.17 0.20 -0.04 N/A N/A -0.29
deb-OPUS-MT 0.19 0.22 0.02 0.05 -0.25 0.17 -0.11 0.23 0.32 0.23 0.13 0.24 -0.03 0.31 -0.08 0.01 -0.14 N/A N/A -0.12
M2M100 -0.12 0.11 -0.23 0.50 0.09 0.49 0.03 -0.03 0.11 0.21 0.08 0.70 0.31 0.47 0.05 -0.08 -0.40 N/A N/A 0.06

uk
OPUS-MT -0.27 0.00 -0.11 0.26 -0.02 0.19 0.13 -0.11 0.17 0.03 -0.14 0.27 0.21 0.22 0.13 -0.11 -0.23 N/A N/A 0.06
deb-OPUS-MT -0.43 -0.06 -0.12 0.41 0.00 0.18 0.07 -0.24 0.01 0.01 -0.17 0.23 0.17 0.16 0.10 -0.11 -0.17 N/A N/A 0.09
M2M100 0.08 -0.04 -0.18 0.27 0.02 0.33 0.18 0.19 0.37 -0.03 -0.17 0.53 0.34 0.50 0.26 -0.30 -0.42 N/A N/A 0.11

ru
OPUS-MT 0.01 -0.28 -0.41 0.00 -0.12 0.08 -0.10 -0.19 -0.20 -0.41 -0.39 0.07 -0.03 0.14 0.03 -0.10 -0.24 -0.40 0.04 0.35
deb-OPUS-MT 0.23 -0.10 -0.17 0.05 0.03 0.05 -0.03 -0.10 -0.04 -0.11 -0.14 0.09 0.04 -0.13 0.03 -0.08 -0.13 -0.26 0.00 0.13
M2M100 -0.74 -0.16 -0.21 0.10 -0.04 -0.12 -0.25 0.12 0.12 -0.20 -0.18 0.06 -0.02 0.08 0.01 -0.07 -0.11 -0.20 -0.22 0.18

Table 3: ANOVA results: single effects of bias cues (Feminine, Masculine, Subject and Object) on norm-H
(S3E). Values correspond to effect coefficients (deviations from a reference group). Boldface indicates statistical
significance (p < 0.05). The sign of the values indicates whether the presence of the variable increases (positive) or
decreases (negative) the mean H of the group containing the given variable value. Reference group is N for all
columns except: ‘no name’ for Names, ‘no default’ for Default M, ‘unambiguous’ for Ambiguity.

Model Rankings According to Semantic Sur-427

prisal and Gender Accuracy Correlate. The428

results of the first experiment are presented in Ta-429

ble 2. We find that while ∆Log prob does not cor-430

relate with the gender accuracy ranking, ∆I (S3E)431

shows a statistically significant negative correla-432

tion with gender accuracy (Kendall’s τ = −0.58,433

Spearman’s ρ = −0.78; see Appendix K). We434

attribute the effectiveness of this metric in distin-435

guishing Correct from Incorrect gender translations436

to its ability to capture gender information beyond437

noun morphology, including verb inflections and438

agreement, through its embedding representations.439

The flexibility of S3E enables it to encode nuances440

that GE does not. For example, when translating441

a sentence with a feminine pronoun into Russian,442

OPUS-MT generates sentences with a masculine443

noun and a verb that is either feminine or mascu-444

line (e.g., “Перевозчик поблагодарила (fem)445

/ поблагодарил (masc)" “The courier thanked").446

This is reflected in a higher H score by S3E (0.65)447

than GE (0.00), as the variation in verb inflections448

is only captured by S3E.449

The strong negative correlation between ∆I450

(S3E) and gender accuracy thus validates the core451

component of our proposed metric for evaluating452

bias in machine translation.453

In addition, the ranking of models by their over-454

all performance, as indicated by COMET scores, is455

partially aligned with the rankings based on Gen-456

der Accuracy and ∆I for unambiguous instances.457

This suggests that in these instances, better per-458

forming models tend to be less biased (all rankings459

are listed in Appendix J).460

Semantic Entropy Scores Vary With Regard to 461

Bias Cues. The results of the second experiment 462

presented in Table 3 show that most bias cues in 463

the data have a significant effect on the variance 464

of norm-H (S3E), indicating that the tested mod- 465

els exhibit various social and linguistic biases.3 466

The results corroborate previous findings. The 467

high absolute coefficient values in the Names col- 468

umn indicate that person names have an effect on 469

gender translation even when a disambiguating 470

pronoun is present. This is in line with Saunders 471

and Olsen (2023), who have shown that both pro- 472

nouns and names induce gender bias and are often 473

not sufficient for full disambiguation. Secondly, 474

the fact that some Russian nouns have a default 475

masculine grammatical gender regardless of the 476

context (Komova, 2024) is reflected in significant 477

decrease in gender diversity for sentences contain- 478

ing such nouns (negative coefficients in the Default 479

M columns indicating lower norm-H). Thirdly, 480

we observe that masculine biases generally reduce 481

norm-H (negative coefficients in the M columns), 482

while feminine biases tend to increase it (positive 483

coefficients in the F columns). This suggests a 484

general default toward masculine translations in 485

models, with outputs becoming more similar un- 486

der masculine biases and more varied under fem- 487

inine ones. This finding aligns with Kuzucu et al. 488

3norm-H (S3E) shows the strongest sensitivity to bias
cues compared to norm-H (SE) and norm-H (GE). We also
experiment with unnormalised H scores, the results of which
are less comparable across metrics, bias types, and models.
The full results are presented in Appendix F. All trends ob-
served for norm-H (S3E) are also present in norm-H (SE) and
norm-H (GE), as well as for unnormalised H.
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(2025), who show that model uncertainty is typi-489

cally higher for minority groups.490

Translation Accuracy Affects the Bias–Entropy491

Relationship Differently Across Levels of Anal-492

ysis. Having validated the S3E metric in the493

first experiment, we investigate the results of ∆H494

(S3E) as a bias metric. Table 4 illustrates that495

some models (OPUS-MT-UK, deb-OPUS-MT-496

UK, M2M100-UK, OPUS-MT-RU, M2M100-RU)497

exhibit the desired negative ∆H. Surprisingly, this498

result suggests that when it comes to ambiguous in-499

stances, contrary to the unambiguous cases, the500

models which perform better on translation ac-501

curacy (namely models for Spanish and French)502

are not generally less gender biased (model rank-503

ings according to all metrics are available in Ap-504

pendix J). This finding mirrors the results in the505

Ambiguity column in Table 3, where norm-H in-506

creases for Ukrainian and Russian (positive coef-507

ficients), but not for Spanish and French. Higher508

norm-H for Ambiguous items (or negative ∆H) is509

expected for an unbiased model.510

Lang. Model Unamb Amb ∆H

ES
OPUS-MT 1.23 1.12 0.09
deb-OPUS-MT 0.97 0.89 0.08
M2M100 1.79 1.45 0.19

FR
OPUS-MT 1.79 1.43 0.20
deb-OPUS-MT 1.21 1.08 0.11
M2M100 3.22 2.78 0.14

UK
OPUS-MT 1.96 2.16 -0.10
deb-OPUS-MT 1.98 2.15 -0.09
M2M100 2.05 2.28 -0.11

RU
OPUS-MT 1.56 1.68 -0.08
deb-OPUS-MT 1.05 0.97 0.08
M2M100 1.83 2.29 -0.25

Table 4: Unambiguous and Ambiguous H (S3E)

In contrast, we observe the expected effect of de-511

biasing on the Spanish and French models (lower512

∆H for deb-OPUS-MT in Table 4), suggesting that513

models which perform better overall are more sus-514

ceptible to debiasing. The impact of debiasing is515

also reflected in Table 3, as the effects are mostly516

smaller (lower absolute values of coefficients) in517

debiased models compared to their non-debiased518

counterparts across languages, confirming that de-519

biasing is at least partially effective.520

In Figure 2, results are grouped by COMET score521

bins for a more fine-grained analysis at the instance522

level. For the models with negative ∆H (S3E)523

scores (Ukrainian and Russian), ∆H is typically524

most pronounced for the highest-accuracy transla- 525

tions (e.g. ambiguous scores for M2M100-RU in 526

Bin 3 are substantially higher than B1). Although 527

debiasing does not reduce the overall ∆H score 528

for Ukrainian (see Table 4), it results in the largest 529

improvement in the highest-quality translations: in 530

bin B3, ambiguous H scores for deb-OPUS-MT- 531

UK are notably higher than those of the original 532

model. This improvement is further supported by 533

a substantial 8.41% drop in masculine focus noun 534

inflections for Ukrainian, compared to 0.88–2.49% 535

for other languages. We hypothesise that this is 536

due to the limited training data in Ukrainian, which 537

may lead to a less stable model that performs worse 538

overall but is more responsive to debiasing in high- 539

quality outputs. The relationship between transla- 540

tion accuracy and bias under ambiguity appears to 541

differ depending on the level of analysis: between 542

models, higher accuracy does not imply lower bias 543

on ambiguous instances, whereas within models, 544

higher-accuracy instances tend to show lower bias. 545

Qualitative Analysis A qualitative analysis of 546

the example in Table 1, presented with correspond- 547

ing H values in Table 5, corroborates the quantita- 548

tive findings in Figure 2. When translating the sen- 549

tence in row 1, across all target languages, OPUS- 550

MT models consistently produce only the mascu- 551

line variants of the focus noun (‘El mecánico’, ‘Le 552

mécanicien’, ‘Механик’ and ‘Механiк’). In the 553

anti-stereotypical case (row 2), all languages ex- 554

cept Russian include both masculine and feminine 555

forms (‘La mecánica’, ‘La mécanicienne’ and ‘Ме- 556

ханiка’), indicating that these models are sensitive 557

to the masculine stereotype even when the referent 558

in the context is clearly feminine. For Russian, the 559

models fail to generate any feminine constructions, 560

even when the context is unambiguously feminine. 561

This difference is evident in the H (S3E) scores, 562

which are higher in row 2 than row 1 for the first 563

three languages. Moreover, in the ambiguous case 564

(row 3), all OPUS-MT models produce only mascu- 565

line nouns, regardless of language. Consequently, 566

H (S3E) scores are generally higher for the un- 567

ambiguous cases (mean of rows 1 and 2) than for 568

the ambiguous case (row 3), except for Russian, 569

where H remains low across all conditions. These 570

observations are consistent with expectations for 571

biased models: they default to stereotypical gender 572

realisations when the pronoun is ambiguous and 573

sometimes even when the context clearly suggests 574

an anti-stereotypical interpretation. 575
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Figure 2: Violin plots of binned COMET scores and H (S3E) on ambiguous and unambiguous inputs. Low, medium
and high COMET scores from left to right, evaluated with human translations, multi-reference for ambiguous items.

Sentence ES → deb FR → deb UK → deb RU → deb

The mechanic called to inform someone that he had completed the repair. 0.75 0.82 0.00 0.00 2.41 1.57 0.33 0.31
The mechanic called to inform someone that she had completed the repair. 1.64 1.85 0.53 0.56 2.75 2.05 0.00 0.00
The mechanic called to inform someone that they had completed the repair. 0.74 0.87 0.00 0.00 2.38 2.03 0.37 0.37

Table 5: WINOMT examples with H (S3E) values, for OPUS-MT (left) and deb-OPUS-MT (right) models.

The qualitative analysis also reveals interesting576

effects of debiasing. In the anti-stereotypical case577

in row 2, debiasing increases the number of fem-578

inine constructions generated in Spanish (from579

43/128 to 55/128, corresponding to a slight in-580

crease in H, as feminine forms remain a minority)581

and Ukrainian (from 72/128 to 128/128, reflected582

in a decrease in H). No notable changes are ob-583

served for French or Russian, consistent with stable584

H (S3E) scores. When it comes to the ambiguous585

pronoun (row 3), the debiased models continue to586

generate only masculine variants of ‘mechanic’ in587

Spanish, French and Russian, with H remaining588

largely unchanged. In contrast, all debiased model589

outputs in Ukrainian include a feminine transla-590

tion of the noun, corresponding to a decrease in H591

from OPUS-MT to debiased OPUS-MT in row 3.592

This pattern illustrates that when debiasing leads593

to overgeneration of feminine morphology in am-594

biguous contexts, our proposed metric flags this as595

increased bias (positive ∆H), indicating that such 596

changes are not deemed as improvements. 597

7 Conclusion 598

In this work, we apply distribution-level UQ to 599

evaluate bias in MT models. This method comple- 600

ments gender accuracy, particularly where gender 601

accuracy is inapplicable. Specifically, it captures 602

the more subtle manifestations of gender bias that 603

arise when models show a preference for one gen- 604

der in ambiguous contexts. Our overall contribu- 605

tion is the novel use of UQ as a bias metric in 606

MT, which 1) does not rely on gender references, 607

2) is general and captures multiple types of bias, 608

3) is validated by the established metric of gen- 609

der accuracy, and 4) provides new insights into 610

biased behavior in ambiguous contexts, a setting 611

not previously studied. Future work will extend the 612

proposed bias evaluation method to tasks beyond 613

translation. 614
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Limitations615

This study is limited to Romance and Slavic lan-616

guages, not including many other language fami-617

lies which mark gender and express stereotypes in618

diverse ways. While we tried to account for lan-619

guage differences by including different names for620

different target languages, accounting for specific621

masculine-only nouns in Russian, debiasing with622

language-specific vocabularies, etc., some linguis-623

tic idiosyncracies are still not accounted for, such624

as the fact that profession stereotypes are defined625

in English and may apply differently in different re-626

gions. Finally, our work is limited to two grammat-627

ical genders, and treats ‘they’ as a neutral pronoun628

that may refer to any gender, however we do not629

study the interpretation of the pronoun as referring630

to non-binary people specifically. Further direc-631

tions include applying UQ to ambiguity detection,632

which could enable more gender-inclusive transla-633

tions through morphological doubling, where both634

masculine and feminine morphemes are included635

for gender neutrality. Future work should address636

these directions.637

Ethics Statement638

The models used in this study, like all ML models,639

can be biased as well as make mistakes, including640

in gender attribution. Our contribution aims to641

specifically tackle masculine and feminine gender642

stereotypes via more stringent evaluation metrics,643

in order to avoid the perpetuation of gender bias.644
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A Further UQ discussion972

Farquhar et al. (2024) does not define a per-element973

surprisal; the original definition computes Shannon974

entropy over clusters. Y are mapped to clusters C,975

and SE is:976

HSE(C) = − E
c∼C

log p(c|x).977

Surprisal is thus defined for a cluster instead of an978

element, but it is easy to show that our per-element979

surprisal obtains equivalent entropy as the original980

definition.981

Cheng and Vlachos (2024) introduce a hyper-982

parameter α which is applied as an exponent to983

the similarity function. This is used to rescale S984

for more favorable performance on benchmarks.985

We tune α for the highest correlation between S3E986

and the entropy of the gender labels assigned to987

the nouns in question by the morphological parser.988

This way we aim for H (S3E) to capture gender989

variation, with higher values of H (S3E) indicating990

more diversity in the gender morphemes.991

We also experiment with alternative similarity992

metrics to cosine similarity, such as Euclidean Dis-993

tance, Chebyshev Distance, Manhattan Distance,994

Minkowski Distance, etc. but find no notable dif- 995

ferences and use the simplest option of Cosine 996

Similarity in the paper. 997

B Annotation of Names 998

Table 6 presents the names used for expanding the 999

WINOMT dataset to include common names for 1000

masculine and feminine genders in French, Span- 1001

ish, Ukrainian and Russian. 1002

Spanish French Ukrainian Russian
F Carla Anne Anna Anna
M Gabriel Victor Ivan Ivan

Table 6: The names used for extending the WINOMT
dataset for different target languages.

C Translation Guidelines and Translator 1003

Recruitment Details 1004

Professional translators were hired and paid £0.2 1005

per word as requested. The translation guidelines 1006

are as follows: 1007

Please translate the following sentences into 1008

[French/Spanish/Ukrainian/Russian]. Please pro- 1009

vide two translations for each sentence, with dif- 1010

ferent gender inflections for the highlighted noun 1011

—one masculine and one feminine. Please keep the 1012

pronoun true to the original to the extent that it is 1013

possible. Please use the translations that appear 1014

natural to you as a native speaker rather than using 1015

forms that are prescribed4. Please note whether 1016

both translations are acceptable in terms of the 1017

gender of the noun matching the contextual infor- 1018

mation, and if they are not, which one is the correct 1019

one: 1020

• The developer argued with the designer be- 1021

cause she did not like the design. 1022

• The undergraduate presented the administra- 1023

tor with a petition that they had organized. 1024

D Human Annotation Quality 1025

The annotations of Correct and Incorrect sentences 1026

by professional translators are compared to the 1027

gold standard gender annotations in the dataset, 1028

and across all four translators range between 93.17 1029

and 93.27 in Cohen’s κ scores, confirming that 1030

4This instruction was added due to inquiries by transla-
tors about the use of formal or dominant dialects as well as
language policy changes influencing how they might translate
some words.
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Model OPUS-MT deb-OPUS-MT M2M100
Dataset es fr uk ru es fr uk ru es fr uk ru
newstest2012 84.52 82.21 – – 84.47 82.22 – – 71.25 71.97 – –
newstest2013 85.28 83.45 – – 85.24 83.44 – – 72.84 72.57 – –
newstest2014 – 85.01 – 87.44 – 85.00 – 87.44 – 74.63 – 72.29
wmttest2023 – – 74.58 79.02 – – 74.58 79.02 – – 56.49 55.93
wmttest2024 – – 66.99 71.64 – – 67.00 71.63 – – 49.20 47.63

mean 84.90 83.56 70.79 79.37 84.86 83.55 70.79 79.36 72.05 73.06 52.85 58.62

Table 7: COMET scores on WMT test sets for the models used.

apart from some linguistic idiosyncrasies of each1031

language (e.g. ‘victim’ in Spanish is always femi-1032

nine and so regardless of the contextualising pro-1033

noun will take the same form), the annotators agree1034

on which sentences should be correctly translated1035

in which gender.1036

E Overall Model Performance1037

Table 7 presents the performance of the models1038

used in this study in terms of the COMET metric51039

(Rei et al., 2022) on WMT datasets which contain1040

the target languages (Callison-Burch et al., 2012;1041

Bojar et al., 2013, 2014; Koehn et al., 2023; Had-1042

dow et al., 2024). The models are run on a single1043

NVIDIA TU102 GPU.1044

5https://huggingface.co/Unbabel/
wmt22-comet-da
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Lang. Model Names Recency Implicit Causality Stereotype Subject Context Default M Ambiguity
F M S F S M O F O M S F S M O F O M F M S F S M O F O M S O

S3E

es
OPUS-MT 0.41 0.41 -0.05 0.25 -0.19 0.24 -0.33 0.06 0.10 0.13 0.17 0.38 -0.21 0.24 -0.31 0.29 -0.13 N/A N/A -0.18
deb-OPUS-MT -0.05 0.30 -0.11 0.27 -0.20 0.16 -0.38 0.05 0.14 0.08 0.05 0.49 -0.14 0.39 -0.24 0.14 -0.21 N/A N/A -0.10
M2M100 0.14 0.33 -0.11 0.29 -0.42 0.28 -0.25 0.18 0.27 0.12 0.07 0.51 -0.04 0.52 -0.08 0.04 -0.35 N/A N/A -0.11

fr
OPUS-MT 0.54 0.42 0.16 0.05 -0.34 0.06 -0.24 0.43 0.45 0.26 0.21 0.16 -0.14 0.16 -0.17 0.20 -0.04 N/A N/A -0.29
deb-OPUS-MT 0.19 0.22 0.02 0.05 -0.25 0.17 -0.11 0.23 0.32 0.23 0.13 0.24 -0.03 0.31 -0.08 0.01 -0.14 N/A N/A -0.12
M2M100 -0.12 0.11 -0.23 0.50 0.09 0.49 0.03 -0.03 0.11 0.21 0.08 0.70 0.31 0.47 0.05 -0.08 -0.40 N/A N/A 0.06

uk
OPUS-MT -0.27 0.00 -0.11 0.26 -0.02 0.19 0.13 -0.11 0.17 0.03 -0.14 0.27 0.21 0.22 0.13 -0.11 -0.23 N/A N/A 0.06
deb-OPUS-MT -0.43 -0.06 -0.12 0.41 0.00 0.18 0.07 -0.24 0.01 0.01 -0.17 0.23 0.17 0.16 0.10 -0.11 -0.17 N/A N/A 0.09
M2M100 0.08 -0.04 -0.18 0.27 0.02 0.33 0.18 0.19 0.37 -0.03 -0.17 0.53 0.34 0.50 0.26 -0.30 -0.42 N/A N/A 0.11

ru
OPUS-MT 0.01 -0.28 -0.41 0.00 -0.12 0.08 -0.10 -0.19 -0.20 -0.41 -0.39 0.07 -0.03 0.14 0.03 -0.10 -0.24 -0.40 0.04 0.35
deb-OPUS-MT 0.23 -0.10 -0.17 0.05 0.03 0.05 -0.03 -0.10 -0.04 -0.11 -0.14 0.09 0.04 -0.13 0.03 -0.08 -0.13 -0.26 0.00 0.13
M2M100 -0.74 -0.16 -0.21 0.10 -0.04 -0.12 -0.25 0.12 0.12 -0.20 -0.18 0.06 -0.02 0.08 0.01 -0.07 -0.11 -0.20 -0.22 0.18

SE

es
OPUS-MT -1.64 0.19 -0.08 0.13 -0.19 0.09 -0.29 -0.01 0.02 0.06 0.07 0.28 -0.12 0.17 -0.22 0.15 -0.08 N/A N/A -0.05
deb-OPUS-MT -0.06 0.27 0.13 -0.01 -0.07 0.00 -0.19 0.06 0.10 0.16 0.12 -0.01 -0.18 -0.01 -0.19 0.20 0.08 N/A N/A -0.20
M2M100 -1.71 0.23 -0.04 0.20 -0.29 0.17 -0.16 0.10 0.18 0.15 0.08 0.28 -0.06 0.25 -0.09 0.07 -0.16 N/A N/A -0.10

fr
OPUS-MT -1.59 0.19 0.00 0.09 -0.25 0.05 -0.17 0.23 0.25 0.15 0.11 0.11 -0.12 0.10 -0.15 0.14 -0.04 N/A N/A -0.09
deb-OPUS-MT -0.01 0.24 0.08 0.11 -0.17 0.04 -0.10 0.23 0.20 0.19 0.18 -0.06 -0.22 0.01 -0.15 0.18 0.03 N/A N/A -0.16
M2M100 -0.15 0.29 0.16 0.03 -0.05 0.02 -0.14 0.27 0.24 0.27 0.30 0.01 -0.14 0.01 -0.15 0.19 0.06 N/A N/A -0.22

uk
OPUS-MT -1.54 0.00 -0.12 0.21 -0.05 0.10 0.02 -0.09 0.05 0.01 -0.08 0.13 0.04 0.10 0.02 0.00 -0.14 N/A N/A 0.06
deb-OPUS-MT 0.09 0.12 -0.06 0.13 -0.07 0.08 0.01 -0.02 0.08 0.15 0.09 0.06 -0.11 -0.07 -0.10 0.13 0.06 N/A N/A 0.09
M2M100 -1.72 -0.04 -0.14 0.20 0.03 0.15 0.08 0.05 0.16 -0.02 -0.11 0.22 0.10 0.18 0.09 -0.09 -0.19 N/A N/A 0.09

ru
OPUS-MT -1.50 -0.17 -0.25 0.21 0.07 0.00 -0.02 -0.13 -0.18 -0.25 -0.28 0.03 -0.03 0.10 0.00 -0.06 -0.14 -0.32 -0.02 0.21
deb-OPUS-MT -0.06 0.04 0.01 0.11 0.05 0.00 -0.06 -0.22 -0.13 0.07 -0.01 -0.11 -0.15 -0.05 -0.11 0.09 0.07 -0.24 -0.12 0.03
M2M100 -1.57 -0.09 -0.14 0.11 0.10 0.04 -0.18 -0.01 0.00 -0.10 -0.10 0.00 -0.06 0.03 -0.01 -0.01 -0.07 -0.12 -0.18 0.11

GE

es
OPUS-MT 0.02 0.30 0.04 -0.17 0.16 -0.10 -0.14 0.11 0.15 0.17 0.12 0.19 -0.12 0.19 -0.20 0.15 -0.06 N/A N/A 0.17
deb-OPUS-MT -0.04 0.27 0.06 0.16 -0.10 0.15 -0.12 0.09 0.17 0.17 0.09 0.21 -0.09 0.24 -0.16 0.09 -0.06 N/A N/A -0.16
M2M100 -0.10 0.16 0.00 0.08 -0.10 0.09 -0.08 0.05 0.07 0.10 0.09 0.09 -0.08 0.08 -0.16 0.12 -0.01 N/A N/A -0.08

fr
OPUS-MT 0.01 0.20 0.05 0.12 -0.06 0.07 -0.11 0.09 0.13 0.12 0.08 0.09 -0.10 0.06 -0.19 0.15 0.03 N/A N/A -0.13
deb-OPUS-MT -0.05 0.18 0.04 -0.11 0.08 0.08 -0.11 0.05 0.12 0.12 0.06 0.11 -0.09 0.10 -0.17 0.11 0.01 N/A N/A -0.11
M2M100 -0.02 0.19 0.02 0.12 -0.10 0.09 -0.12 0.08 0.10 0.11 0.07 0.08 -0.11 0.04 -0.19 0.17 0.02 N/A N/A -0.11

uk
OPUS-MT -0.04 0.05 -0.04 0.07 -0.03 0.03 -0.07 0.06 0.06 0.02 0.02 0.02 -0.06 -0.11 -0.15 0.16 0.06 N/A N/A 0.01
deb-OPUS-MT -0.03 0.05 0.02 0.07 -0.03 0.00 -0.06 0.06 0.07 0.03 -0.03 -0.02 -0.05 -0.16 -0.17 0.17 0.14 N/A N/A 0.03
M2M100 -0.04 0.06 -0.04 0.09 -0.05 0.05 -0.06 0.07 0.08 0.01 0.01 0.03 -0.07 -0.07 -0.18 0.16 0.06 N/A N/A 0.01

ru
OPUS-MT -0.01 0.00 -0.03 -0.02 -0.01 0.00 -0.04 0.03 0.03 -0.04 -0.06 -0.01 -0.04 -0.11 -0.13 0.12 0.08 -0.04 0.00 -0.02
deb-OPUS-MT -0.02 -0.01 -0.02 -0.05 -0.05 -0.01 -0.02 0.01 0.02 -0.04 -0.05 -0.03 -0.04 -0.15 -0.15 0.13 0.12 -0.05 -0.01 -0.02
M2M100 0.02 0.07 0.02 -0.01 -0.06 -0.01 -0.07 0.09 0.07 0.02 0.04 -0.01 -0.06 -0.05 -0.11 0.10 0.06 -0.04 -0.03 0.04

Table 8: ANOVA results: single effects of bias cues (Feminine, Masculine, Subject and Object) on norm-H (S3E),
norm-H (SE) and norm-H (GE). Values correspond to effect coefficients (deviations from a reference group).
Boldface indicates statistical significance (p < 0.05). The sign of the values indicates whether the presence of the
variable increases (positive) or decreases (negative) the mean H of the group containing the given variable value.
Reference group is N for all columns except: ‘no name’ for Names, ‘no default’ for Default M, ‘unambiguous’ for
Ambiguity.

F ANOVA Results1045

Table 8 presents the ANOVA results for S3E, SE and1046

GE metrics. Table 9 presents the ANOVA results1047

without normalising the H values.1048
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Lang. Model Names Recency Implicit Causality Stereotype Subject Context Default M Ambiguity
F M S F S M O F O M S F S M O F O M F M S F S M O F O M S O

S3E

es
OPUS-MT 12.12 47.0 83.53 -2.45 20.67 -2.44 27.76 38.98 49.12 44.16 37.6 0.23 31.36 7.95 42.89 -22.44 14.64 N/A N/A -65.29
deb-OPUS-MT -2.35 36.52 79.64 -58.1 -7.06 18.24 -8.44 31.09 33.94 42.22 36.85 32.48 -1.86 34.19 6.06 48.72 -29.24 N/A N/A 14.06
M2M100 0.19 0.54 0.02 -0.28 0.38 -0.27 0.37 -0.26 0.18 0.25 0.25 0.17 0.31 -0.25 0.31 -0.29 0.31 N/A N/A -0.17

fr
OPUS-MT 0.12 0.41 0.06 0.32 -0.15 0.23 -0.17 0.18 0.25 0.23 0.14 0.26 -0.16 0.32 -0.19 0.16 -0.14 N/A N/A -0.24
deb-OPUS-MT -0.02 0.26 0.06 -0.16 0.23 -0.07 0.15 -0.1 0.12 0.21 0.18 0.08 0.21 -0.08 0.25 -0.12 0.05 N/A N/A -0.08
M2M100 -0.12 0.11 -0.23 0.06 0.5 0.09 0.49 0.03 -0.03 0.11 0.21 0.08 0.7 0.31 0.47 0.05 -0.08 N/A N/A -0.4

uk
OPUS-MT 0.12 0.22 0.03 0.16 -0.07 0.09 -0.11 0.15 0.18 0.14 0.1 0.09 -0.1 0.05 -0.1 0.16 -0.04 -0.09 -0.05 -0.12
deb-OPUS-MT 0.83 -10.2 24.93 -7.38 -19.32 18.37 -14.82 27.31 5.26 9.67 8.87 5.29 -15.13 23.85 -10.15 44.14 -26.98 1.7 -2.21 -0.34
M2M100 0.14 0.3 0.06 -0.18 0.2 -0.16 0.12 -0.13 0.19 0.19 0.16 0.15 0.1 -0.15 0.05 -0.17 0.22 -0.02 -0.1 -0.04

ru
OPUS-MT 15.38 4.07 52.95 -27.98 17.38 -24.19 20.45 11.79 12.51 12.13 13.6 -24.94 22.11 -28.52 41.31 -18.56 23.26 -0.79 -1.99 -28.53
deb-OPUS-MT 0.23 -0.1 -0.17 0.13 0.05 0.03 0.05 -0.03 -0.1 -0.04 -0.11 -0.14 0.09 0.04 0.13 0.03 -0.08 -0.13 -0.26 -0.0
M2M100 0.08 -0.07 -0.05 0.06 -0.02 -0.01 -0.02 -0.0 -0.06 -0.07 -0.05 -0.03 -0.01 0.0 -0.02 0.0 -0.01 -0.0 0.01 0.03

SE

es
OPUS-MT 12.12 47.0 83.53 -2.45 20.67 -2.44 27.76 38.98 49.12 44.16 37.6 0.23 31.36 7.95 42.89 -22.44 14.64 N/A N/A -65.29
deb-OPUS-MT -0.08 -0.06 -0.05 0.05 -0.01 0.0 -0.01 -0.0 -0.04 -0.05 -0.04 -0.03 -0.01 0.0 -0.01 0.01 -0.02 N/A N/A -0.01
M2M100 0.08 -0.07 -0.06 0.07 -0.01 -0.0 -0.02 -0.01 -0.05 -0.05 -0.04 -0.04 -0.01 0.0 -0.02 0.01 -0.02 N/A N/A -0.01

fr
OPUS-MT 16.01 47.22 80.76 -0.14 19.01 -8.69 26.55 31.41 35.76 33.4 31.98 -1.93 29.87 2.67 35.97 -15.81 17.83 N/A N/A -64.01
deb-OPUS-MT -0.07 -0.05 -0.04 0.04 -0.0 0.02 -0.01 0.0 -0.03 -0.04 -0.03 -0.03 -0.01 0.01 -0.01 0.01 -0.02 N/A N/A -0.01
M2M100 0.14 0.38 0.04 -0.21 0.35 -0.15 0.23 -0.17 0.15 0.2 0.19 0.13 0.23 -0.16 0.24 -0.19 0.19 N/A N/A -0.12

uk
OPUS-MT -0.01 -0.01 -0.01 -0.03 -0.02 0.0 0.0 -0.03 -0.03 -0.01 -0.01 -0.0 0.0 -0.01 0.01 -0.0 -0.0 0.02 0.03 0.01
deb-OPUS-MT 0.0 0.09 0.02 -0.05 0.01 -0.06 0.06 -0.04 0.12 0.16 0.08 0.04 0.04 -0.02 0.08 0.02 0.01 -0.06 -0.1 -0.03
M2M100 0.14 0.3 0.06 -0.18 0.2 -0.16 0.12 -0.13 0.19 0.19 0.16 0.15 0.1 -0.15 0.05 -0.17 0.22 -0.02 -0.1 -0.04

ru
OPUS-MT 15.38 4.07 52.95 -27.98 17.38 -24.19 20.45 11.79 12.51 12.13 13.6 -24.94 22.11 -28.52 41.31 -18.56 23.26 -0.79 -1.99 -28.53
deb-OPUS-MT 1.34 -3.62 46.99 -21.71 -33.31 16.73 -27.33 19.72 9.4 7.79 6.6 9.66 -28.51 22.12 -24.71 50.74 -26.37 15.86 -0.28 -0.68
M2M100 20.01 18.76 50.38 -34.59 -11.85 5.91 -16.63 13.63 14.94 15.4 14.21 15.2 -17.46 14.68 -15.4 30.42 -10.35 16.48 -0.74 -3.23

GE

es
OPUS-MT -0.0 -0.02 -0.01 -0.01 0.01 -0.01 0.0 -0.02 -0.02 -0.01 -0.01 -0.01 0.01 -0.0 0.01 -0.01 -0.0 N/A N/A 0.02
deb-OPUS-MT -2.35 36.52 79.64 -58.1 -7.06 18.24 -8.44 31.09 33.94 42.22 36.85 32.48 -1.86 34.19 6.06 48.72 -29.24 N/A N/A 14.06
M2M100 0.19 0.54 0.02 -0.28 0.38 -0.27 0.37 -0.26 0.18 0.25 0.25 0.17 0.31 -0.25 0.31 -0.29 0.31 N/A N/A -0.17

fr
OPUS-MT 0.06 -0.05 -0.04 0.01 0.02 -0.01 0.01 -0.04 -0.04 -0.03 -0.02 -0.0 0.01 -0.01 0.01 -0.02 -0.01 N/A N/A 0.04
deb-OPUS-MT -0.05 0.18 0.04 -0.11 0.08 -0.11 0.08 -0.11 0.05 0.12 0.12 0.06 0.11 -0.09 0.1 -0.17 0.11 N/A N/A 0.01
M2M100 0.14 0.38 0.04 -0.21 0.35 -0.15 0.23 -0.17 0.15 0.2 0.19 0.13 0.23 -0.16 0.24 -0.19 0.19 N/A N/A -0.12

uk
OPUS-MT 0.12 0.22 0.03 0.16 -0.07 0.09 -0.11 0.15 0.18 0.14 0.1 0.09 -0.1 0.05 -0.1 0.16 -0.04 -0.09 -0.05 -0.12
deb-OPUS-MT 0.0 0.09 0.02 -0.05 0.01 -0.06 0.06 -0.04 0.12 0.16 0.08 0.04 0.04 -0.02 0.08 0.02 0.01 -0.06 -0.1 -0.03
M2M100 0.14 0.3 0.06 -0.18 0.2 -0.16 0.12 -0.13 0.19 0.19 0.16 0.15 0.1 -0.15 0.05 -0.17 0.22 -0.02 -0.1 -0.04

ru
OPUS-MT 0.09 0.17 0.05 0.01 -0.11 0.05 -0.08 0.08 0.13 0.11 0.06 0.04 -0.08 -0.02 -0.06 0.14 -0.01 -0.08 -0.03 -0.11
deb-OPUS-MT -0.02 -0.01 -0.02 0.02 -0.05 -0.05 -0.01 -0.02 0.01 0.02 -0.04 -0.05 -0.03 -0.04 -0.15 -0.15 0.13 0.12 -0.05 -0.01
M2M100 0.15 0.29 0.08 -0.18 0.13 -0.1 0.09 -0.12 0.16 0.21 0.15 0.11 0.07 -0.13 0.08 -0.05 0.15 -0.08 -0.1 -0.02

Table 9: ANOVA results (no normalisation): single effects of bias cues (Feminine, Masculine, Subject and Object)
on H (S3E), H (SE) and H (GE). Values correspond to effect coefficients (deviations from a reference group).
Boldface indicates statistical significance (p < 0.05). The sign of the values indicates whether the presence of the
variable increases (positive) or decreases (negative) the mean H of the group containing the given variable value.
Reference group is N for all columns except: ‘no name’ for Names, ‘no default’ for Default M, ‘unambiguous’ for
Ambiguity.
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G Gender Accuracy1049

Table 10 presents more fine-grained results than1050

Table 2 with regard to gender accuracy, namely1051

splitting the results by subset of the dataset. The1052

results in the Ambiguous column are not meaning-1053

fully interpretable, as a single ground truth label1054

of gender cannot capture the true desired behavior1055

of the model, especially when the gold label for1056

ambiguous cases is mostly ‘neutral’, and neutral1057

is not commonly used as grammatical gender for1058

animate objects in the languages used in this study.1059

The case of Russian, where the performance in-1060

creases on the Ambiguous subset actually reflects1061

the model choosing the masculine forms, which1062

are tagged as ‘neutral’ by the morphological parser1063

due to the masculine form often being the default1064

choice for both genders, as discussed in Section 4.1065

Lang. Model All Pro Anti Unamb. Amb.

es
OPUS-MT 55.20 67.95 52.10 67.95 33.96

deb-OPUS-MT 55.69 68.13 52.95 68.13 34.39
M2M100 55.68 70.77 51.17 70.77 32.40

fr
OPUS-MT 52.05 64.27 46.55 64.27 37.25

deb-OPUS-MT 52.98 64.79 48.10 64.79 37.75
M2M100 50.95 61.66 47.57 61.66 34.84

uk
OPUS-MT 38.65 45.34 34.20 45.34 33.75

deb-OPUS-MT 38.95 46.12 34.15 46.12 33.74
M2M100 40.97 47.76 36.81 47.76 35.20

ru
OPUS-MT 39.50 48.57 33.27 48.57 33.24

deb-OPUS-MT 39.50 48.42 33.38 48.42 33.33
M2M100 41.01 48.49 36.81 48.49 33.81

Table 10: Comparison of Gender Accuracy Overall, in
Pro-/Anti-Stereotypical and Ambiguous Cases Across
Models, on WINOMT.

H Quality Estimation with Human1066

Translations1067

Table 11 presents the results of the models used in1068

this study on the 100 human-annotated instances.1069

For unambiguous cases we use a single reference,1070

whereas for ambiguous cases, we calculate perfor-1071

mance by taking the maximum COMET score of1072

both acceptable translations.1073

Lang. Model All Pro Anti Unamb. Amb.

es
OPUS-MT 81.35 85.80 83.37 84.55 75.14

deb-OPUS-MT 81.31 85.62 83.43 84.49 75.14
M2M100 79.56 84.44 81.29 82.82 73.25

fr
OPUS-MT 77.63 82.23 81.16 81.66 70.47

deb-OPUS-MT 77.69 82.41 80.88 81.60 70.73
M2M100 76.24 80.69 78.65 79.61 70.25

uk
OPUS-MT 80.56 85.57 82.73 84.10 73.69

deb-OPUS-MT 80.19 84.85 82.13 83.45 73.86
M2M100 81.27 85.89 84.09 84.96 74.10

ru
OPUS-MT 82.53 86.20 84.99 85.58 76.86

deb-OPUS-MT 82.76 86.46 85.27 85.85 77.02
M2M100 81.71 86.39 84.06 85.21 75.21

Table 11: Comparison of COMET Scores Overall, in
Pro-/Anti-Stereotypical and Ambiguous Cases Across
Models, on the 100 manually translated sentences.
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Language Model LogProb (Correct) LogProb (Incorrect) S3E I (Correct) S3E I (Incorrect) SE I (Correct) SE I (Incorrect) GE I (Correct) GE I (Incorrect)

ES
OPUS-MT -149.7 -149.78 7.83 8.88 0.3 0.35 0.33 0.3
deb-OPUS-MT -149.19 -149.01 8.08 9.16 0.29 0.31 0.35 0.33
M2M100 -226.61 -227.29 23.61 26.03 0.41 0.4 0.42 0.43

FR
OPUS-MT -197.1 -195.11 9.18 9.89 0.73 0.72 0.24 0.29
deb-OPUS-MT -196.98 -195.09 9.18 9.85 0.48 0.52 0.26 0.33
M2M100 -283.91 -281.71 186.42 194.52 0.49 0.4 0.43 0.48

UK
OPUS-MT -161.98 -161.14 147.6 152.15 0.6 0.54 0.22 0.22
OPUS-MT-debiased -161.46 -160.68 150.52 153.76 0.49 0.47 0.23 0.23
M2M100 -241.0 -241.49 204.72 211.9 0.28 0.24 0.23 0.25

RU
OPUS-MT -170.72 -170.9 32.14 33.15 0.38 0.43 0.08 0.19
deb-OPUS-MT -170.58 -170.75 32.31 33.27 0.32 0.37 0.06 0.17
M2M100 -220.25 -220.78 218.11 219.06 0.45 0.4 0.16 0.3

Table 12: Log Probability and Surprisal Measures across Models and Languages

COMET Unambiguous COMET All Gender Acc Delta S Delta H

deb-OPUS-MT-RU OPUS-MT-ES M2M100-ES M2M100-ES M2M100-RU
OPUS-MT-RU deb-OPUS-MT-ES deb-OPUS-MT-ES deb-OPUS-MT-ES M2M100-UK
M2M100-RU OPUS-MT-FR OPUS-MT-ES OPUS-MT-ES OPUS-MT-UK
M2M100-UK deb-OPUS-MT-FR deb-OPUS-MT-FR deb-OPUS-MT-FR deb-OPUS-MT-UK
OPUS-MT-ES OPUS-MT-RU OPUS-MT-FR M2M100-FR OPUS-MT-RU
deb-OPUS-MT-ES deb-OPUS-MT-RU M2M100-FR OPUS-MT-FR deb-OPUS-MT-RU
OPUS-MT-UK M2M100-FR OPUS-MT-RU deb-OPUS-MT-RU deb-OPUS-MT-ES
deb-OPUS-MT-UK M2M100-ES M2M100-RU M2M100-RU OPUS-MT-ES
OPUS-MT-ES OPUS-MT-UK deb-OPUS-MT-RU deb-OPUS-MT-UK deb-OPUS-MT-FR
OPUS-MT-FR deb-OPUS-MT-UK M2M100-UK OPUS-MT-UK M2M100-FR
deb-OPUS-MT-FR M2M100-RU deb-OPUS-MT-UK M2M100-UK M2M100-ES
M2M100-FR M2M100-UK OPUS-MT-UK OPUS-MT-RU OPUS-MT-FR

Table 13: Model rankings across five evaluation metrics.

I Log Probability and Surprisal Scores1074

Table 12 presents the Log probability and surprisal1075

scores, as well as their relative differences between1076

the Correct and Incorrect translations of the Unam-1077

biguous instances in WINOMT.1078

J Rankings by Different Metrics1079

Table 13 presents the rankings of models according1080

to various metrics employed in this study.1081

K Rank Correlation 1082

Table 14 presents the correlation scores between 1083

∆I and ∆ Log Probabilies on the one hand, and 1084

gender accuracy scores on the other. 1085

Correlation Metric Statistic p-value

Spearman

∆I (S3E) -0.78 0.00
∆I (SE) -0.37 0.24
∆I (GE) 0.27 0.00
∆Log prob 0.11 0.73

Kendall

∆I (S3E) -0.58 0.01
∆I (SE) -0.27 0.25
∆I (GE) 0.23 0.00
∆Log prob 0.09 0.74

Table 14: Spearman and Kendall correlations between
∆I under different uncertainty metrics and Log Prob-
abilities on the one hand, and gender accuracy on the
other. Statistically significant correlations (p < 0.05)
are in bold.
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Language Model
S3E SE GE

Unamb. Amb. ∆H Unamb. Amb. ∆H Unamb. Amb. ∆H

ES
OPUS-MT 1.23 1.12 0.09 0.33 0.22 0.33 0.21 0.13 0.38
deb-OPUS-MT 0.97 0.89 0.08 0.41 0.25 0.39 0.24 0.16 0.33
M2M100 1.79 1.45 0.19 0.46 0.17 0.63 0.25 0.09 0.64

FR
OPUS-MT 1.79 1.43 0.20 0.57 0.40 0.30 0.23 0.08 0.65
deb-OPUS-MT 1.21 1.08 0.11 0.64 0.50 0.22 0.23 0.09 0.61
M2M100 3.22 2.78 0.14 0.56 0.29 0.48 0.25 0.17 0.32

UK
OPUS-MT 1.96 2.16 -0.10 0.40 0.39 0.03 0.20 0.14 0.30
deb-OPUS-MT 1.98 2.15 -0.09 0.44 0.41 0.07 0.22 0.15 0.32
M2M100 2.05 2.28 -0.11 0.37 0.41 -0.11 0.18 0.16 0.11

RU
OPUS-MT 1.56 1.68 -0.08 0.38 0.32 0.16 0.12 0.03 0.75
deb-OPUS-MT 1.05 0.97 0.08 0.43 0.42 0.02 0.12 0.06 0.50
M2M100 1.83 2.29 -0.25 0.50 0.29 0.42 0.15 0.10 0.33

Table 15: H scores across models and languages, with relative differences (∆H) between unambiguous and
ambiguous conditions.

L Entropy Scores1086

Table 15 presents the H scores and their relative1087

differences between the unambiguous and ambigu-1088

ous settings for different UQ metrics used in this1089

study.1090
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