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Abstract Gradient-based one-shot neural architecture search (NAS) methods, such as Differentiable

Architecture Search (DARTS), have emerged as computationally feasible techniques to

explore large search spaces. However, DARTS still suffers from failure modes, such as

choosing architectures that prefer skip connections over learnable operations. In this work,

we propose that the use of a low-rank adaptation (LoRA) of the weights of the candidate

operations can address this failure mode without introducing new regularization terms or

significant changes to the DARTS search technique. The code for our work is available at

https://github.com/automl/LoRA-DARTS.

1 Introduction

Differentiable Architecture Search (DARTS) (Liu et al., 2019) is a gradient-based neural architecture

search (NAS) method that emerged as a viable solution to one of the biggest challenges in NAS – the

amount of compute required to effectively search a space of architectures. By training a supernet,
the sub-networks of which span the entire search space of architectures, and simultaneously

learning the strengths of the operations in it, DARTS sped up the search by orders of magnitude

compared to the reinforcement learning-based (Zoph and Le 2017; Baker et al. 2017; Pham et al.

2018; Zoph et al. 2018) or blackbox search-based methods (Swersky et al. 2013; Fujino et al. 2017;

Kandasamy et al. 2018; Liu et al. 2018; Real et al. 2019) which were prevalent at the time. The idea

of training a supernet that subsumes all the architectures in the search space has since gained

popularity, with several methods directly improving upon DARTS (Chen et al. 2021b; Dong and

Yang 2019) and others training the supernet and then performing blackbox search on it to discover

a pareto front of architectures for multiple objectives (Chen et al. 2021a; Cai et al. 2020). However,

DARTS is particularly prone to a significant failure mode: it often discovers architectures that are

dominated by skip connections. We show that using low-rank adaptation (LoRA) of the parametric

candidate operations in the supernet can mitigate this issue. Further, we apply the same method to

a weight-entangled DARTS space, following Sukthanker et al. (2023), and show that performance

does not deteriorate.

2 Preliminaries

2.1 DARTS Optimization Problem

DARTS defines a search space of possible architectures using a directed acyclic graph (DAG), where

each node represents a feature map, and each edge represents a possible operation (e.g., convolution,

pooling). It relaxes the choice of operations by representing each edge as a weighted sum of all

possible operations. If the candidate operations O are some function of the form 𝑜 (·) to be applied
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to a feature map 𝑥 , the continuous relaxation is achieved by considering a mixed operation 𝑜𝑖 𝑗 on

edge (𝑖, 𝑗) as follows:

𝑜𝑖 𝑗 (𝑥) =
∑︁
𝑜∈O

exp(𝛼 (𝑖, 𝑗 )
𝑜 )∑

𝑜′∈O exp(𝛼 (𝑖, 𝑗 )
𝑜′ )

𝑜 (𝑥),

where 𝛼 (𝑖, 𝑗 )
is a vector of dimension |O |, indicating the strength of each candidate operation, i.e.,

the architectural parameters.

The training process utilizes a bilevel optimization framework. The outer optimization level

targets the architectural parameters to minimize the validation loss, whereas the inner level

optimizes the network weights to minimize the training loss:

min

𝛼
L𝑣𝑎𝑙 (𝑤∗(𝛼), 𝛼) s.t. 𝑤∗(𝛼) = arg min

𝑤
L𝑡𝑟𝑎𝑖𝑛 (𝑤, 𝛼) (1)

Several works have pointed out flaws or failure modes in the DARTS method. RobustDARTS

(Zela et al., 2020) demonstrated that DARTS suffers from performance degradation due to running

into sharp local minima in architecture space, such that the final architecture discretization step

yields poor results. FairDARTS (Chu et al., 2020) argues that this failure mode occurs due to the

unfair advantage conferred upon non-parametric operations. Furthermore, OLES (Jiang et al., 2024)

corroborates the issue of overfitting by showing that even after removing skip-connections from

the search space, other operations still overfit during the training phase of DARTS.

2.2 LoRA - Low Rank Adaptation of Large Language Models

LoRA (Hu et al., 2021) is a solution that was introduced to make finetuning of large language models

(LLMs) more computationally feasible. The update for a pre-trained weight matrix𝑊0 ∈ R𝑑×𝑘
is

represented by a low-rank decomposition𝑊0 + Δ𝑊 =𝑊0 + 𝐵𝐴, where 𝐵 ∈ R𝑑×𝑟
, 𝐴 ∈ R𝑟×𝑘

, with

rank 𝑟 ≪ min(𝑑, 𝑘).𝑊0 is frozen and receives no gradient updates, while 𝐴 and 𝐵 contain trainable

parameters. Accordingly, the forward pass of a linear layer ℎ =𝑊0𝑥 becomes:

ℎ =𝑊0𝑥 + Δ𝑊𝑥 =𝑊0𝑥 + 𝐵𝐴𝑥 (2)

While LoRA is primarily used with linear layers in transformers, it can be used with convolu-

tional layers, too. Indeed, this is how we leverage LoRA in the convolutional DARTS search space.

2.3 Weight Entanglement

Several works, such as OFA (Cai et al., 2020) and AutoFormer (Chen et al., 2021a), have introduced

weight entanglement (WE) as an alternative to weight sharing (WS), which is more commonly

applied in gradient-based one-shot methods such as DARTS. WS shares the weight matrices of an

operation with an exponential number of subnetworks in the supernet that use that operation. WE

goes a step further by using a subset of the weights of an operation from a larger weight matrix for

another operation of the same kind. Consider, for example, two convolutions with kernel sizes 3

and 5. In the WS framework, they both have their own matrices of sizes 3 × 3 and 5 × 5. In the WE

framework, the smaller convolution uses a 3× 3 slice from the center of the larger 5× 5 convolution

matrix as its own weight. We follow Sukthanker et al. (2023) in implementing WE in the supernet

before applying DARTS to it.

3 Methodology

Several works (Liang et al. 2019; Zela et al. 2020) have introduced techniques to early-stop the

training of the supernet to avoid performance collapse. This trend is consistent with the assertion

of Jiang et al. (2024) that the domination of skip connections is a direct result of the parametric
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operations overfitting the training data. We adopt this perspective and tackle the problem of

overfitting on the training data using low-rank adaptation of the weights.

Our method requires two changes to be made to existing DARTS-based NAS strategies. First,

the supernet is modified to accommodate low-rank adaptation of weights, or LoRA modules, as
discussed in Section 3.1. Then, we warm-start the model for a few epochs before activating these

low-rank modules. More about this in Section 3.2.

3.1 Modifications to the Supernet

We rely on low-rank adaptation of the weights of the candidate operations in the supernet to avoid

overfitting the training dataset. In the supernet, candidate operations are designed with an option

to activate learnable low-rank modules at any point in the optimization loop. Until activated, these

modules function as standard operations with learnable parameters. In all our experiments, we set

the rank of these LoRA modules to 1 - the lowest possible value - and do not tune it in any fashion.

The memory overhead incurred by the LoRA parameters is negligible.

3.1.1 LoRA Layers for Weight-entangled Operations. Applying LoRA layers to weight-entangled

operations constitutes a special case. In the regular case, the candidate operations have their own

learnable weights and associated LoRA parameters. In the weight-entanglement case, however,

the candidate operations subsample their weights from the largest kernel/weight of the same kind.

Accordingly, in spaces with weight-entanglement, we use one LoRA layer with dimensions that

match the largest kernel of an operation.

3.2 Warm-starting the Supernet

To give the parametric operations a chance to learn meaningful representations first, we allow

them to train full rank weight updates for a fixed number of epochs (10, in our case). In this phase,

the architectural parameters are frozen and all the operations are assigned equal weight. After

warm-starting, the weight matrices of the candidate operations are frozen, and their respective

LoRA modules are activated, allowing them to learn the low rank weight updates instead.

4 Experiments

We begin in Section 4.1 by assessing the robustness of LoRA-DARTS to non-parametric operations

using the RobustDARTS search spaces. Then, in Section 4.2, we apply the method to the DARTS

search space. All experiments are repeated with 3 seeds.

4.1 Robust-DARTS Search Space

Robust-DARTS (Zela et al., 2020) introduced four simple search spaces which share the same macro

architecture as DARTS while choosing different sets of candidate operations at the cell level. These

search spaces, S1 - S4, were designed to showcase the failure modes of DARTS. Specifically, spaces

S2, S3 and S4 demonstrate the tendency of DARTS to choose non-parametric operations, such

as Skip-connections (in spaces S2 and S3) or even Noise operations (in space S4), over parametric

operations. For a fair comparison, we run DARTS as well as LoRA-DARTS on spaces S2 through S4

on the same code and hardware setup. The results, summarized in Table 1, show that LoRA-DARTS

is robust to the Noise operation, while being much less susceptible to picking skip connections

compared to DARTS.

4.2 DARTS Search Space

The DARTS search space includes 8 candidate operations in each of the two cell types: normal and
reduction. Out of these 8, 4 are non-parametric, including the None operation, which is excluded

when discretizing the supernet to determine the best architecture. To estimate the performance
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Space (operation) S2 (Skip connections) S3 (Skip connections) S4 (Noise)

Normal Cell Reduction Cell Normal Cell Reduction Cell Normal Cell Reduction Cell

DARTS 10.33 ± 1.24 5.66 ± 0.47 12.66 ± 0.94 7.33 ± 1.24 8.33 ± 1.70 0

LoRA-DARTS 6.66 ± 1.24 6.33 ± 0.471 9.66 ± 0.471 4.66 ± 1.69 0.66 ± 0.471 0

Table 1: Number of edges where non-parametric operations are the strongest in the supernet in Robust-

DARTS spaces S2, S3 and S4. Mean and standard deviation of three runs of each experiment.

Optimizer Weight Type Test Accuracy (%)

DARTS Weight Sharing 96.16 ± 0.26

DARTS Weight Entanglement 96.09 ± 0.09

LoRA-DARTS Weight Sharing 96.37 ± 0.06

LoRA-DARTS Weight Entanglement 96.21 ± 0.13

Table 2: Results of retraining the models from scratch. Mean and standard deviation across three runs.

of DARTS and LoRA-DARTS in its search phase, we query the NAS-Bench-301 surrogate (Zela

et al., 2022) predictor at the end of each training epoch. Doing so yields the predicted performance

of the dominant architecture at every epoch of supernet training. The dominant architecture is

obtained by selecting the candidate operations with the highest architectural weight on every edge

of the cells in the supernet (excluding the None operation), and discarding all but the two strongest

incoming edges of every node in them.

We run two sets of experiments. First, we run the original method as a baseline - the DARTS

optimizer is run on the DARTS search space, with classifying the CIFAR-10 dataset as the primary

task. Second, we run the LoRA-variant of the method by warm-starting it for 10 epochs and then

activating the LoRA layers for the remaining 90 epochs. In both cases, we run separate experiments

with the supernet using weight sharing (WS) and weight entanglement (WE). We chose to train the

supernet for 100 epochs (instead of 50, as prescribed by the authors of DARTS) to demonstrate the

stability of LoRA-DARTS when training longer. The results can be seen in Figure 1a. LoRA-DARTS

beats the DARTS baselines in weight-sharing implementation of the DARTS search space, while

being comparable in the weight entangled space. Note here that the weight entangled space does

not suffer the failure mode of collapsing to architectures dominated by skip connections.

Indeed, these are surrogate predictions. To verify our results, we rely on two methods. First, we

analyze the trajectory of the operations in the supernet during its training. Specifically, we count

the number of times skip connections are the strongest operation on the edges of the cells, since

DARTS is known for collapsing to architectures which are dominated by them. Then, we train from

scratch models of the architectures obtained after 50 epochs of training the supernet (since that is

how many epochs the supernet is trained in DARTS) and compare their performance. The results,

summarized in Figure 1b and Table 2, show that the architectures discovered by the LoRA-DARTS

(1) have fewer skip connections and (2) exhibit superior performance when trained from scratch.

We posit that the improved performance stems from the supernet no longer overfitting the

training set. This can be seen in the training loss curves of the supernet in Figure 2a. In all cases,

the LoRA variants have higher training loss than their baselines. Interestingly, the validation loss

of the LoRA methods does not suffer as large a gap compared to the baselines - see Figure 2b.

5 Conclusion

We introduce LoRA-DARTS, a method that avoids the common failure mode in DARTS where

the discovered architectures are dominated by skip connections. We find that despite running

the DARTS search for twice as long as recommended by Liu et al. (2019), LoRA-DARTS does not
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(a) Predicted test accuracy (b) Number of skip connections

Figure 1: (a) Quality (predicted accuracy) of the intermittent optimal architectures during training

with LoRA-DARTS compared to DARTS. (b) The reason is the much lower susceptibility to

the failure mode of preferring non-parameteric skip connections. Both plots show mean and

standard deviation of three runs.

(a) Train Loss (b) Validation Loss

Figure 2: Loss curves of supernet training (weight sharing)

collapse to this failure mode. In terms of limitations, while the memory overhead associated with

adding LoRA weights to the supernet is negligible, we find that the training time of the supernet

increases by a factor of 1.35 for WS and 1.17 for WE implementations, respectively. Future works

could explore pruning techniques to speed up supernet training.

6 Broader Impact Statement

Neural network training, particularly one-shot model training, is computationally expensive and

energy-hungry. LoRA-DARTS adds to these requirements by incorporating additional LoRA mod-

ules during training, which take (slightly) longer to train. However, these are one-time costs that

may amortize over the lifetime of a model because NAS enables finding models that make a better

trade-off between accuracy and efficiency, depending on the deployment scenario.

The ultimate goal of NAS research is to fully automate the design of neural network architectures,

which is a challenging task due to the vast (even unbounded) search space. By automating this

complex design process, NAS reduces the required technical know-how and engineering efforts

that would be required for architecture optimization, and making deep learning more accessible to a

broad range of users (democratization of AI). This increases the already vast impact of deep learning

on society - both good, such as advancements in medical imaging, and bad, such as adversarial

attacks. Nevertheless, full automation in NAS has not yet been achieved. For instance, as discussed

earlier, differentiable one-shot NAS techniques tend to be brittle and prone to failure modes. Our

LoRA-DARTS improves on this second aspect, as it provides a method to mitigate these failure

modes, and thereby provides one step further towards democratization of ML.
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A Appendix

A.1 Experiment Details

A.1.1 Architecture Search. We use the same set-up as Liu et al. (2019) for training the supernet, with one

exception - we train it for 100 epochs instead of 50. We use a batch size of 64 for both training and

validation sets. We use a 50%-50% split of the CIFAR-10 train data to get the training and validation

splits. The supernet consists of 8 cells stacked on top of each other, two of which are reduction
cells, which increase number of channels of the feature maps. The initial number of channels is 16.

The weights of the supernet are optimized using SGD with momentum of 0.9 and weight decay of

3 × 10
−4
. The learning rate begins at 0.025 and is annealed to 0 using cosine annealing (Loshchilov

and Hutter, 2017) without restarts.

A.1.2 Architecture Selection for Evaluation. To select the architecture to train from scratch, we run

the DARTS search, i.e., supernet training, three times. The genotype of the search with the lowest

validation error at the 50th epoch is chosen for retraining.

A.1.3 Architecture Evaluation. The selected architecture is trained for 600 epochs with a batch size of 96.

20 cells are now stacked to form the model, two of which are reduction cells. The number of initial

channels is increased from 16 to 36, and additional data augmentations such as cutout (DeVries

and Taylor, 2017), path dropout with a probability of 0.2, and auxiliary towers with weight 0.4 are

employed.

A.1.4 Hardware Details. All experiments were run on Nvidia GeForce RTX-2080 Ti GPUs. Each job

consumed 8 cores of a AMD EPYC 7502 32-Core processor. Retraining the models from scratch to

evaluate them used the same GPUs but 2 cores of Intel(R) Xeon(R) Silver 4114 Processor per job.

The time taken per experiment is given in Table 3.

A.1.5 Code. The code for running our experiments can be found at https://github.com/automl/
LoRA-DARTS.

Method Weight Type Time (GPU hours)

DARTS Weight sharing 14.4

DARTS Weight entanglement 12.9

LoRA-DARTS Weight sharing 19

LoRA-DARTS Weight entanglement 15.1

Table 3: Time taken by 1 run of different experiments

A.2 Skip Connections

For both weight sharing (WS) and weight entanglement (WE) implementations of DARTS, we find

that LoRA-DARTS chooses fewer skip connections on average as the search progresses. In the

case of weight sharing, the general trend that is observed in DARTS is that the number of skip

connections increases over the epochs. However, this is not the case with LoRA-DARTS, as seen in

Figure 3a and Figure 3b. Interestingly, in the latter case, the number of skip connections peaks at

around 28 epochs and then declines.

A.3 Loss Curves

As seen in Figure 5, for weight entanglement, there is a significant gap between the train and

validation losses of DARTS, but this gap is less pronounced in LoRA-DARTS.
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(a) Normal Cell (b) Reduction cell

Figure 3: Number of skip connections in DARTS and LoRA-DARTS (Weight Sharing). Mean and

standard deviation of three runs.

(a) Normal Cell (b) Reduction cell

Figure 4: Number of skip connections in DARTS and LoRA-DARTS (Weight Entanglement). Mean and

standard deviation of three runs.

A.4 Choice of Warm Epochs

In our work, we opted to warm-start the supernet with 10 epochs of training. To evaluate the

impact of varying the number of epochs, we also conducted experiments using 5 and 20 epochs. The

results are presented in Figure 6. Warm-starting with fewer epochs—5 and 10—yields comparable

performance. However, it is evident that using 20 epochs for the warm-start leads to a significantly

poorer performance trajectory. We posit that this is because the supernet begins to overfit the

training data at later epochs, which is prevented when LoRA layers are activated in earlier epochs.

See also Figure 7 for the train and validation losses of the supernet, which support this proposition.

A.5 Architectures Discovered
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(a) Train Loss (b) Validation Loss

Figure 5: Loss Curves of supernet training (WE). Mean and standard deviation of three runs.

Figure 6: Predicted accuracy of the intermittent optimal architectures during training with LoRA-

DARTS with 5, 10 and 20 epochs of warm-starting.

(a) Train Loss (b) Validation Loss

Figure 7: Train and validation loss of the supernet during training with LoRA-DARTS with 5, 10 and

20 epochs of warm-starting.
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(a) Normal cell (b) Reduction Cell

Figure 8: Architecture found by DARTS on weight shared space

(a) Normal cell (b) Reduction Cell

Figure 9: Architecture found by DARTS on weight entangled space

(a) Normal cell (b) Reduction Cell

Figure 10: Architecture found by LoRA-DARTS on weight shared space
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(a) Normal cell (b) Reduction Cell

Figure 11: Architecture found by LoRA-DARTS on weight entangled space
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