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DIVERSE HITS IN DE NOVO MOLECULE DESIGN: A
DIVERSITY-BASED COMPARISON OF GOAL-DIRECTED
GENERATORS

Philipp Renz Sohvi Luukkonen Günter Klambauer

ABSTRACT

Goal-directed molecular generators have been proposed as a solution to discover
novel drug candidates, but often are prone to ”mode collapse”, which is when they
only generate a limited number of similar compounds. The need to generate a di-
verse set of desired molecules to increase the success chances of drug discovery
projects has been identified as a central problem by the research community. How-
ever, common benchmarks often lack adequate diversity metrics and overlook the
impact of the search budget on model performance. We rectify these two short-
comings, by a) offering a diversity-based evaluation of goal-directed generative
models using the principled #Circles metric, and b) evaluating the models under
constraints of the number of calls to the scoring functions or the available compute
time. Notably, our findings highlight the superior performance of SMILES-based
auto-regressive models over graph-based/genetic algorithm counterparts in gener-
ating diverse sets of desired compounds.

1 INTRODUCTION

0.0 0.2 0.4 0.6 0.8 1.0
Descriptor 1

0.0

0.2

0.4

0.6

0.8

1.0

De
sc

rip
to

r 2

IntDiv=0.52, #Circles=96
IntDiv=0.82, #Circles=8

Figure 1: Internal diversity fails to capture the
coverage of chemical space and can be optimized
by a few clusters of compounds. #Circles accu-
rately captures the coverage of the space based
on a relevant distance threshold.

De novo molecule design enables the explo-
ration of the vast chemical space. Goal-
directed de novo drug design (DNDD) focuses
on the generation of molecules possessing spe-
cific properties such as efficacy, toxicity, and
drug-likeness (Schneider, 2013), by exploring
the vast space of drug-like compounds (esti-
mated to contain up to 1060 molecules) (Wal-
ters, 2019). This is achieved through the gen-
eration of novel molecular structures, guided
by on-the-fly feedback from a scoring func-
tion(s) to incorporate desired properties in a
goal-directed generation. Recent years have
seen a surge in interest in the field and a range
of new methods has been proposed, especially
deep learning-based ones (Sanchez-Lengeling &
Aspuru-Guzik, 2018; Elton et al., 2019; Luukko-
nen et al., 2023; Fromer & Coley, 2023).

Goal-directed generation and the diversity of
generated molecules. Goal-directed DNDD
methods usually rely on machine learning-
based quantitative structure-property relation-
ship (QSPR) models as scoring functions, which
are frequently trained with limited data. As a
consequence, these models often yield imper-
fect approximations and biased outcomes (Renz
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et al., 2019). The errors stemming from QSPR models are propagated to molecule generation, intro-
ducing a layer of uncertainty that persists throughout the downstream stages of the drug discovery
process. Thus, it is crucial to be able to generate a diverse set of high-scoring molecules to increase
the chances of finding a successful molecule(s) (Martin, 2001; Seneci, 2002; Angeli & Gaviraghi,
2002; Gorse, 2006; Benhenda, 2017). Furthermore, generating a diverse set of compounds might
help create molecules outside the patented chemical space (Shimizu et al., 2023). Unfortunately,
many proposed generative models are prone to ”mode collapse”, where they only generate a small
number of similar compounds. This issue has been addressed with various approaches aiming to
improve the diversity of the generated molecules (Rupakheti et al., 2015; Liu et al., 2019; Chen
et al., 2020; Blaschke et al., 2020; Bengio et al., 2021; Pereira et al., 2021; Bjerrum et al., 2023).

Previous comparison studies used insufficient diversity metrics. Well-known DNDD bench-
marking platforms and leaderboards, such as GuacaMol (Brown et al., 2019) and MOSES
(Polykovskiy et al., 2020), include some classic diversity metrics: uniqueness and/or internal di-
versity, in the case of non-goal-directed compound generation. But to our knowledge, there has not
been a systematic benchmark study of the capacity of different goal-based generative models to gen-
erate a diverse set of high-scoring molecules. Moreover, these traditional metrics exhibit significant
limitations in characterizing well the chemical space represented by a set of compounds (Waldman
et al., 2000; Xie et al., 2023). For example, Figure 1 shows how the arguably most commonly used
diversity metric, internal diversity, fails to capture coverage of chemical space. Even more rudimen-
tal metrics, such as the fraction of unique compounds and unique Bemis-Murcko scaffolds (Bemis
& Murcko, 1996) are also not well-suited as they can be optimized by generating many highly sim-
ilar compounds, differing only in single atoms or bonds. Recently several diversity metrics based
on sphere exclusion algorithm (Willett, 2001) have been proposed to quantify the chemical space
coverage: SEDiv by Thomas et al. (2021) and #Circles by Xie et al. (2023). These metrics were
shown to align well with chemical intuition regarding the chemical diversity of known libraries, and
shown to be highly correlated to coverage of biological functionalities.

Generative models should be evaluated and compared under a fixed computational budget.
Practically relevant measures are the overall compute time or the number of scoring function eval-
uations. The latter is of special importance as increasing the number of evaluation calls can lead to
overfitting to biased QSPR models and decrease the quality of the generated molecules over time.
Moreover, given reported failure modes (Renz et al., 2019) when using machine learning-based scor-
ing functions the field has shown interest in replacing them with more costly physics-based methods,
such as docking (Thomas et al., 2021; Guo et al., 2021; Goel et al., 2021; Elend et al., 2022). Sam-
ple efficient methods are important for successful applications of such expensive scoring functions.
On the other end of the spectrum, compute-efficient generators are needed for replacing large-scale
virtual screening campaigns using less costly scoring functions. Gao et al. (2022) tested the sample
efficiency of a range of generative models given a constraint on the number of scoring function calls,
but no studies exist that focus the diversity of the generated compounds under such constraints.

Contributions. In this work, we address the two shortcomings of previous comparisons, a) the
insufficient diversity metrics and b) the generation without limitations on the computational budget.
We systematically benchmark the performance of established generative algorithms at generating
diverse high-scoring molecules, referred to as diverse hits. The evaluation is conducted within the
framework of goal-directed optimization, in which the algorithms operate under the constraint of
a limited number of scoring function calls or one of limited time, giving more emphasis to the
computational cost of the generator. We utilize the #Circles diversity metric as a key performance
indicator, providing a comprehensive assessment of the efficiency of generative models in real-world
scenarios.

2 BENCHMARK SETUP

2.1 MOLECULAR DIVERSITY

In this study, we adopt the diversity metric, #Circles, proposed by Xie et al. (2023), which aims to
maximize the number of high-scoring compounds that are sufficiently distinct to potentially exhibit
different bioactivity profiles. Given a scoring function s(m) that assigns a score to a molecule m, the
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generative models are tasked with generating a set of high-scoring molecules G, where all molecules
surpass a score threshold S, s(m) ≥ S for all m ∈ G. The algorithm’s final performance is evaluated
based on the diversity of these high-scoring compounds according to the #Circles metric,

µ(G;D) = max
C∈P(G)

|C| s.t. ∀x ̸= y ∈ C : d(x, y) ≥ D,

where P denotes the power set, d(x, y) represents the distance between compounds x and y, and D
is a distance threshold. This metric, referred to as the number of diverse hits, signifies the size of the
largest subset of G such that all compounds have pairwise distances greater than D.

In this study, we use the Tanimoto distance between Morgan fingerprints (radius=2, size=2048),
and a distance threshold of D = 0.7, as it aligns well with the sharp drop in the probability of
similar bioactivities beyond this value (Jasial et al., 2016; Sayle, 2019; Landrum). Although exact
computation of this metric is NP-complete, we can efficiently approximate it using the MaxMin
algorithm (Sayle, 2019).

2.2 SCORING FUNCTIONS

Bioactivity prediction models. We evaluate the methods on three well-established molecule
bioactivity optimization tasks: the JNK3 and GSK3β tasks studied in (Li et al., 2018), and the
DRD2 task introduced in (Blaschke et al., 2020). Each task is based on a data set of compounds
and associated binary bioactivity labels for the respective targets. We partition the data into training
and testing sets using a random 75/25% split. For each task, we train a Random Forest classifier
(Breiman, 2001) on Morgan fingerprints (radius=2, size=2048) (Rogers & Hahn, 2010). Table A1
provides details about the datasets and the performance of the predictive models. All scoring func-
tions exhibit robust predictive performance, as indicated by their ROCAUC and Average Precision
(AP) values.

During optimization, we use the RF classifier’s probabilistic output for a compound being active,
pRF(s), as a scoring function. Whereas when predicting if a compound is a hit, we adopt a score
threshold of S = 0.5 as this results in high precision values, while still maintaining acceptable recall.
A higher score threshold would result in higher precision but might result in biasing the generator
towards recovering active compounds from the training set (Renz et al., 2019), and discarding many
potentially active compounds. Further details on the QSAR models are given in Section A.1.

Property filters. Generative models often generate compounds with very high molecular weights
(MW) or water-octanol partition coefficients (logP) and may contain idiosyncratic substructures,
rendering them impractical for drug discovery projects (Renz et al., 2019; Thomas et al., 2022b).
This poses a challenge to model evaluations, as these compounds would likely be discarded in real-
world applications. To address this issue, inspired by (Thomas et al., 2022b), we incorporate lenient
property constraints into the scoring functions. We determined quantile-based lower and upper
bounds for both MW and logP, ensuring that 99% of the compounds within the GuacaMol dataset
(Brown et al., 2019) fall within these limits. Additionally, to avoid compounds with idiosyncratic
substructures, we calculate the fraction of unobserved fingerprint bits unobserved in the reference
set for each compound in a calibration set. We determine an upper bound for this fraction such
that 99% of the calibration set falls below the bound. Further details on these filters are given in
Section A.2. The scores of compounds violating any of these filters are set to zero.

Diversity filter. We equip all tested models with the diversity filter (DF) proposed by Blaschke
et al. (2020) to enable generation of diverse compounds. This filter assigns zero scores to compounds
that are within a distance threshold DDF = 0.7 to previously found compounds surpassing the score
threshold S. This ensures that the optimization process does not get stuck in local optima, but
instead explores new regions of the chemical space. Preliminary experiments have shown that the DF
improves performance of generative algorithms originally designed for single molecule optimization
and allows for a meaningful inclusion of those algorithms in our benchmark. A more detailed
description of the DF is given in Section A.3

The final scoring function is the product of the bioactivity prediction model, the property filters, and
the diversity filter.
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2.3 COMPUTE CONSTRAINTS

We evaluate the performance of the generators to create diverse hits under two computational con-
straint settings: (a) Sample limit, we limit the number of scoring function evaluations to 10K as
proposed in (Gao et al., 2022), and (b) Time limit, we limit the time available to the algorithms to
600 seconds. All algorithms are executed using 8 cores of an AMD Ryzen Threadripper 1920X and
a single NVidia RTX 2080 GPU.

2.4 GENERATIVE MODELS

We utilize our benchmark setup to assess the following 12 methods. The methods were chosen based
on their performance in previous benchmarks (Brown et al., 2019; Gao et al., 2022) and to ensure
that a range of methodically different approaches is included.

We test six LSTM-based auto-regressive models operating on SMILES: LSTM-HC (Segler et al.,
2018) optimizing with a hill-climb algorithm, LSTM-PPO (Neil et al., 2018) optimizing with the
PPO algorithm, Reinvent (Olivecrona et al., 2017) optimizing with a modified REINFORCE al-
gorithm, and three extensions of Reinvent: AugmentedHC (mixture of Reinvent and hill-climb)
(Thomas et al., 2022a), AugMemory (Guo & Schwaller, 2023), and BestAgentReminder (BAR)
method (Atance et al., 2022). We also test three genetic algorithms making use of mutations of dif-
ferent molecular representations: GraphGA (Jensen, 2019) operating molecular graphs, SmilesGA
(Yoshikawa et al., 2018) operating on SMILES, and Stoned (Nigam et al., 2021) operating on SELF-
IES. We further test three models that generate molecules via sequential graph edits: Mars (Xie
et al., 2021), Mimosa (Fu et al., 2022), and GFlowNet/GFlowNetDF (Bengio et al., 2021), which
is tested with and without the DF as it supports diverse generation by default. Further details about
these methods and the choice to exclude others are discussed in B.

We compare the tested methods against two virtual screening baselines using the GuacaMol dataset
(Brown et al., 2019) as a library. The first variant, VS Random, scans the library in random order,
scoring each compound using the respective scoring function. For the second variant VS MaxMin
we first use the MaxMin algorithm (Sayle, 2019) to sort the library. By doing so we ensure that the
algorithm first screens the most diverse compounds in the library.

2.5 OPTIMIZATION

We carried out a hyperparameter search to find the best settings for each combination of generative
algorithm, scoring function, and computational constraint. Employing a random search with 15 trials
for each combination, we explored various hyperparameter ranges, and the selected hyperparameters
are detailed in Table C1. We executed five independent runs, each initialized with a distinct random
seed.

Throughout the optimization process, we tracked all generated compounds, their corresponding
scores, and the time of generation. The recording of all scored compounds is essential when consid-
ering search efficiency, ensuring that no potentially valuable compounds are needlessly discarded.
This is especially important when using a diversity filter, as the search steers away from already
discovered solutions, as they are not accessible by sampling the final model.

3 RESULTS AND DISCUSSION

In this work, we benchmarked the capacity of a wide range of goal-directed molecular generators to
design diverse hits under two computational constraint settings for three protein targets. The main
results in terms of the number of diverse hits under the sample and time constraints are shown in
Figure 2 and discussed here. Extended results with additional metrics are given in Section D.

Large differences in performance between models and optimization tasks. Above all, we ob-
serve in Figure 2 a significant difference in the capacity to produce diverse hits between the different
algorithms: the number of diverse hits ranges from several compounds for Mars (worst) to several
hundred compounds for AugMemory (best) in the sample constrained setting. We also see that the
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Figure 2: Number of diverse hits found for each optimization task under the given compute con-
straints. The results span multiple orders of magnitude and the order of the generator (avg. rank)
depends on the constraint type. SMILES-based LSTM models perform best in generating diverse
hits. Error bars show the range of the results.

performance is highly task-dependent: most approaches find ∼ 10× more diverse hits for GSK3β
than DRD2, with the biggest differences showing for the GFlowNet generators.

SMILES-based LSTM models perform best in generating diverse hits. Generally, the top
ranks are dominated by auto-regressive SMILES-based models. In the sample limit setting, Aug-
Memory performs the best. It uses experience replay with selective purge and data augmentation
allowing it to outperform its parent model Reinvent. Similarly, the AugmentedHC model can also
outperform its parent models Reinvent and LSTM-HC as shown in the original paper (Thomas et al.,
2022a). LSTM-HC attains the third rank and can outperform Reinvent, which is in contrast to re-
sults in single compound optimization tasks (Gao et al., 2022). Also, the BAR model slightly out-
performs its base model Reinvent. Whereas LSTM-PPO performs relatively poorly compared to the
other SMILES-based models. The increase in performance of the extensions compared to parent
methods, comes with a significant computational cost as under the time limit both LSTM-HC and
Reinvent outperform their extensions.

Limited number of diverse hits with graph-based and genetic algorithms. The graph-based
algorithms generally occupy the lower ranks in this comparison. GraphGA is the only graph-based
model that outperforms the virtual screening baselines. SmilesGA and Stoned both perform poorly
in this comparison, which is in contrast to the single compound optimization task under the same
sample constraint studied in (Gao et al., 2022). We also found Mars and GFlowNet to perform
poorly in this comparison, although performing well in previous studies (Bengio et al., 2021; Xie
et al., 2023; 2021). We think that this is because in these studies these models were trained using up
to 1M scoring function evaluations. Our results, however, are in line with the findings of Gao et al.
(2022) who found that these models perform poorly when the sample budget is limited.

4 CONCLUSION

In this work, we presented a diversity-based comparison of goal-directed molecule generators under
computational constraints that amends two shortcomings of previous benchmarks: the use of insuf-
ficient diversity metrics and the generation without limitations on the computational budget. Under
computational constraints, either in compute time or in the number scoring function calls, SMILES-
based auto-regressive models are able to generate a large number of diverse hits, while graph-based
models exhibit limited success.

We found that model performance often does not translate between different optimization dimen-
sions like single/diverse molecule generation, or time/sample constraints. The large differences
between the ability of different models to generate diverse hits emphasize the importance of careful
model selection based on relevant computational constraints and diversity metrics.
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A SCORING FUNCTION DETAILS

A.1 DATASETS AND PREDICTIVE MODELS

We test the generative models using three established optimization tasks: the JNK3 and GSK3β
tasks used in (Li et al., 2018; Jin et al., 2020; Xie et al., 2023), and the DRD2 task introduced in
(Blaschke et al., 2020). All three tasks are based on datasets of compounds with associated binary
bioactivity labels. The label indicates whether a compound is active or inactive against the respective
target. The data is partitioned into training and testing sets using a 75/25% split. For each dataset, we
train a Random Forest classifier (Breiman, 2001) using the implementation provided by scikit-learn
(Pedregosa et al., 2011). The classifier is trained on ECFP4 fingerprints (Rogers & Hahn, 2010)
of size 2048 as implemented in (Landrum, 2006). The predicted probability of a compound being
active serves as the foundation for the scoring function and will be augmented by the property and
diversity filters.

Table A1: Performance Metrics for JNK3, GSK3β and DRD2 activity prediction models. The table
shows the ROCAUC, Average Precision (AP), Precision, and Recall at a 0.5 threshold, average
scores of train and test actives, the number of samples, and the number of diverse train actives at a
0.7 distance threshold.

Target ROCAUC AP Prec@0.5 Rec@0.5 Prec@0.9 Rec@0.9 #Samples #Actives@0.70

JNK3 0.96 0.86 0.97 0.62 0.98 0.21 50390 220
GSK3 0.98 0.93 0.98 0.72 0.99 0.32 52802 643
DRD2 1.00 0.91 0.89 0.79 0.97 0.30 102981 229

Table A1 shows the classification performance of the predictive models on the respective test sets.
We evaluated the classification performance for the classifiers using the Area under the Receiver
Operating Characteristic Curve (ROCAUC) and Average Precision (AP) metrics, which show good
performance for all three datasets. We also report the Precision and Recall at the score threshold,
S = 0.5, used in the molecule optimization tasks. Table A1 also shows the number of diverse
training actives at a distance threshold, D = 0.7, giving an indication of at least how many diverse
actives the generative models should be able to find.

We establish a score threshold of S = 0.5 for the optimization tasks. Precision values are high at
this threshold, indicating that compounds scoring above this mark are very likely to be true actives.
At the same time, the recall values are not excessively low, indicating that not too many true actives
are rejected. Increasing the score threshold to a higher value like 0.9 would result in marginally
higher precision values but drastically reduced recall, and would result in discarding many poten-
tially active compounds. Furthermore using a high score threshold biases the optimization process
towards recovering active compounds in the training set (Renz et al., 2019).

A.2 PROPERTY FILTERS

Generative models have been observed to frequently produce compounds that feature atypical sub-
structures or yield compounds with exceptionally high molecular weight (MW) or water-octanol
partition coefficients (logP) values (Renz et al., 2019; Thomas et al., 2022b). To enable a mean-
ingful comparison we constrain the optimization objective to ensure that the generated molecules
have properties within the range of those in a reference set. We use the ChEMBL subset provided
in GuacaMol(Brown et al., 2019) as a reference set. In line with (Thomas et al., 2022b), we use rel-
atively lenient property constraints to ensure that the optimization objective is not overly restrictive
but ensures that compounds with strongly atypical properties are not rewarded. For the molecular
weight (MW) and water-octanol partition coefficient (logP), we determine two-sided quantile-based
lower and upper bounds, ensuring that 99% of the compounds in the ChEMBL dataset fall within
these limits. For MW this results in a permissible range of [157, 761] Da, and for logP this range is
[−2.0, 8.3].
We adopt the methodology outlined by Thomas et al. (2022b) to address the challenge of uncommon
substructures. We first partition the reference set into a training set and a calibration set, compris-
ing 1.3M and 300K compounds, respectively. Then, we compute the unfolded ECFP4 fingerprints
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(Rogers & Hahn, 2010) for all compounds within the training set, and determine the set of all occur-
ring hash values. This gives a reference of substructures typically found in drug-like molecules. We
then compute the fingerprints for each compound in the calibration set and calculate the proportion
of substructures absent in the training set. We determine a threshold for this proportion such that
99% of the compounds in the calibration set fall below it, which evaluates to 0.08.

A.3 DIVERSITY FILTER

Most generative models have been designed to find single top-scoring compounds and are not in-
centivized to find diverse solutions. Given the complexity of the optimization objective, it is hard
to directly optimize it. The diversity filter (DF) proposed in (Blaschke et al., 2020) closely reflects
the optimization objective and can be easily incorporated into generative models, by incorporating
it into the used scoring function.

The DF is initialized using an empty list M . Whenever a compound c is generated, it is compared
with all compounds in M . If its distance to any compound in M is less than DDF the compound
does not pass the diversity filter and its DF-score is set to zero. If a compound passes the diversity
filter, its DF-score is set to one. If a compound passes the diversity filter and s(c) > sDF it is added
to M . This procedure is summarized in Algorithm 1.

For the experiments in this study, we set DDF = 0.7 and sDF = 0.5. We do not make explicit use of
the bucket mechanism proposed in (Blaschke et al., 2020). Instead, we set the bucket size to one, as
this resulted in quicker reorientation and faster exploration in preliminary experiments.

Algorithm 1: Computation of DF-score
Input : Generated compound c, score of compound s(c), Filter list M , DF score threshold

sDF, DF distance threshold DDF
Output: DF score sDF, Updated filter list M

1 passes← True ; // Initialize pass status to True
2 for each compound m in M do
3 if distance(c,m) < DDF then
4 passes← False ; // Set pass status to False
5 break

6 if passes and s(c) > S then
7 Add c to M ; // Add compound to filter list

8 return passes, M

B GENERATIVE MODEL DETAILS

The tested models include a range of auto-regressive models operating on SMILES strings
(Weininger, 1988). LSTM-HC (Segler et al., 2018) uses a hill-climb algorithm for fine-tuning a
pre-trained LSTM model. Reinvent (Olivecrona et al., 2017) optimizes a recurrent neural network
using the REINFORCE algorithm (Williams, 1992) combined with prior regularization. Augment-
edHC (Thomas et al., 2022a) forms a hybrid between the Reinvent and LSTM-HC models, by only
using the Reinvent loss of the k top-scoring compounds to update the model. AugMemory (Guo
& Schwaller, 2023) extends Reinvent, adding experience replay and data augmentation to increase
sample efficiency. It makes use of selective memory purge to make experience replay compatible
with the diversity filter described below. The BestAgentReminder (BAR) method (Atance et al.,
2022) also extends the Reinvent algorithm, by keeping track of the best agent found so far and in-
tersperses samples from the best agent with samples from the current model to stabilize training.
LSTM-PPO (Neil et al., 2018) makes use of the popular PPO reinforcement learning algorithm to
tune the model (Schulman et al., 2017).

We test three genetic algorithms making use of mutations of different molecular representations.
GraphGA (Jensen, 2019) is a graph-based genetic algorithm that operates on the graph representa-
tion of molecules, and has shown competitive performance in previous benchmarks (Brown et al.,
2019; Gao et al., 2022). SmilesGA (Yoshikawa et al., 2018) generates novel molecules by encoding
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SMILES strings (Weininger, 1988) into production rules of a context-free grammar and randomly
inserting mutations into these rules. Stoned (Nigam et al., 2021) generates molecules by introducing
point mutations into the SELFIES (Krenn et al., 2020) representation of molecules.

We further test a range of models that generate molecules via sequential graph edits. Mars (Xie
et al., 2021) makes use of Markov chain Monte Carlo sampling to generate molecules and achieved
the best performance in a previous diverse optimization evaluation (Xie et al., 2023). Mimosa (Fu
et al., 2022) also operates on the graph representation of molecules and evolves molecules by ap-
plying a sequence of graph edits. GFlowNet (Bengio et al., 2021) similarly sequentially builds
molecules by graph edits but uses a specialized learning objective to enable diverse candidate gen-
eration.

While a range of strategies to promote diversity has been suggested (Pereira et al., 2021; Bjerrum
et al., 2023; Blaschke et al., 2020; Liu et al., 2019; Xie et al., 2023; Chen et al., 2020), the diversity
filter proposed in (Blaschke et al., 2020) is emerging as a standard approach employed in many
studies (Guo & Schwaller, 2023; Thomas et al., 2022b;a; Bjerrum et al., 2023) as it is a natural
solution in line with our optimization objective, and is easy to combine with different generative
models. Therefore we focus on the use of the DF for inducing diversity into the generated molecules.
As GFlowNet is designed for diverse optimization we test it both with and without the diversity filter.

We do not test some other methods designed for diverse optimization, as they are conceptually
similar to prior regularization used in Reinvent and its derivatives. We provide a detailed discussion
in Section B.1.

B.1 CHOICE OF TESTED ALGORITHMS

We did not test the following algorithms that have been reported to help improve the diversity of
generated molecules. We did not include double-loop reinforcement learning (Bjerrum et al., 2023)
as it is conceptually very similar to the Augmented Memory algorithm (Guo & Schwaller, 2023).
Both algorithms use augmented versions of previously generated compounds to update the genera-
tive model multiple times.

We did not test the exploration approaches taken in (Pereira et al., 2021; Liu et al., 2019) as they
are conceptually similar to the prior regularization approaches that are used in Reinvent (Olivecrona
et al., 2017) and its descendants Augmented Hill-Climb (Thomas et al., 2022a) and Augmented
Memory (Guo & Schwaller, 2023). We also did not include the the method proposed in (Rupakheti
et al., 2015) in our experiments, as it is similar to the genetic algorithm equipped with the diversity
filter.

Active learning methods have been shown to be effective in increasing the sample efficiency in
optimization tasks (Graff et al., 2021; Tripp et al.). Testing these methods is beyond the scope of this
study, as implementation and tuning is non-trivial. However, learning a fast proxy scoring function
effectively reduces the cost of scoring molecules. Therefore the time constraint experiments give
an indication of the performance of active learning methods. In principle, all the methods tested in
this study can be combined with active learning methods, and pose an interesting avenue for future
research.

C HYPERPARAMETER OPTIMIZATION

For each generative model, we performed hyperparameter optimization to identify the best per-
forming hyperparameters for each combination of a generative algorithm, scoring function and the
used compute constraint. For each combination we performed 15 runs with independently sampled
hyperparameters. The hyperparameter distributions used for the random search and the selected
parameters are given in Table C1.

In principle, the performance of the Reinvent derivatives AugmentedHC, AugmentedMem, and BAR
could match that of Reinvent, when selecting the right hyperparameters. However, in this compar-
ison, we restricted the parameter ranges to ensure non-trivial differences between the algorithms.
This allows us to analyze the impact of the modifications in this setting.
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Table C1: Hyperparameter ranges for the tested optimizers. We executed a random search using
the distributions specified in this table. The selected hyperparameters for the respective constraint
settings and targets are shown in the last six columns.

Limit Samples Time

Optimizer Parameter Search Space DRD2 GSK3β JNK3 DRD2 GSK3β JNK3

AugHC batch size RandInt(128, 512) 482 305 510 440 487 321
learning rate LogUniform(10−4, 10−3) 3.55e−4 2.89e−4 3.39e−4 2.24e−4 2.65e−4 1.90e−4
sigma Uniform(100.0, 500.0) 432.90 412.21 468.84 201.75 358.36 183.90
topk Uniform(0.15, 0.35) 0.16 0.17 0.17 0.20 0.24 0.17

AugMemory augmentation rounds RandInt(1, 7) 6 6 2 4 1 1
batch size RandInt(32, 128) 110 126 41 114 125 91
learning rate LogUniform(10−4, 10−3) 1.56e−4 1.25e−4 2.00e−4 1.61e−4 7.55e−4 3.90e−4
replay buffer size RandInt(32, 128) 107 82 111 111 74 61
sigma Uniform(100.0, 500.0) 409.80 369.46 332.04 493.91 490.70 261.11

BestAgentReminder alpha Uniform(0.3, 0.7) 0.67 0.42 0.34 0.45 0.42 0.53
batch size RandInt(16, 256) 95 221 177 111 221 179
learning rate LogUniform(10−4, 10−3) 2.07e−4 2.58e−4 8.64e−4 3.12e−4 2.58e−4 1.25e−4
sigma Uniform(100.0, 500.0) 430.72 370.18 476.31 160.91 370.18 493.97

GA mutation rate LogUniform(10−3, 10−1) 3.96e−3 2.13e−3 1.86e−2 1.97e−2 4.91e−3 1.86e−2
offspring size RandInt(50, 500) 160 426 230 245 130 230
population size RandInt(50, 500) 217 397 409 444 496 409

Gflownet learning rate LogUniform(10−5, 10−3) 5.98e−5 1.72e−4 3.52e−4 1.17e−5 1.72e−4 3.33e−5
momentum Uniform(0.5, 0.9) 0.72 0.72 0.68 0.82 0.72 0.70
sampling tau Uniform(0.8, 0.99) 0.87 0.96 0.83 0.97 0.96 0.93

GflownetDF learning rate LogUniform(10−5, 10−3) 8.25e−4 9.30e−4 1.37e−4 8.25e−4 3.75e−5 2.71e−5
momentum Uniform(0.5, 0.9) 0.83 0.78 0.60 0.83 0.77 0.57
sampling tau Uniform(0.8, 0.99) 0.98 0.83 0.91 0.98 0.81 0.98

LSTM-HC mols to sample RandInt(8, 2048) 174 245 463 1695 859 1503
optimize n epochs RandInt(1, 6) 4 1 1 1 1 1

LSTM-PPO batch size RandInt(64, 1024) 508 179 401 948 508 401
clip param Uniform(0.1, 0.6) 0.11 0.19 0.41 0.12 0.22 0.41
entropy weight Uniform(0.01, 1.0) 0.49 0.48 0.25 0.16 0.14 0.25
episode size RandInt(64, 4096) 2277 1913 1121 2661 1932 1121
kl div weight RandInt(1, 10) 5 3 6 2 3 6

Mars batch size RandInt(64, 512) 434 418 129 434 86 129
n layers RandInt(1, 4) 1 3 2 1 1 2
num mols RandInt(32, 512) 248 83 371 248 239 371

Mimosa lamb Uniform(0.1, 10.0) 7.07 5.84 2.03 7.07 5.84 1.73
population size RandInt(50, 200) 150 199 87 150 199 85
train epoch RandInt(1, 10) 2 2 9 2 2 8

Reinvent batch size RandInt(256, 512) 260 288 417 462 454 464
experience replay RandInt(0, 64) 49 34 54 38 12 50
learning rate LogUniform(10−5, 10−2) 1.00e−3 1.56e−3 3.25e−4 2.65e−4 2.24e−3 2.15e−4
sigma Uniform(100.0, 600.0) 582.10 540.86 296.22 357.38 244.20 283.52

SmilesGA gene size RandInt(100, 600) 370 590 361 370 374 361
n mutations RandInt(100, 300) 214 165 176 214 253 176
population size RandInt(50, 200) 101 169 111 101 89 111

Stoned generation size RandInt(50, 1000) 461 872 980 461 872 980
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Table D1: Performance for the tested methods under a sample limit. Performance is given by the
number of diverse hits (DivHits), novel diverse hits (NDivHits), and internal diversity (IntDiv). The
internal diversity is calculated on the discovered hits.

DRD2 GSK3β JNK3

DivHits NDivHits IntDiv DivHits NDivHits IntDiv DivHits NDivHits IntDiv

AugMemory 81±19% 9±75% 0.76±0.01 636±6% 507±12% 0.82±0.00 176±11% 104±13% 0.77±0.00

AugmentedHC 66±11% 3±44% 0.77±0.01 674±11% 533±11% 0.84±0.00 111±27% 63±41% 0.79±0.01

LSTM-HC 62±16% 8±37% 0.76±0.01 456±9% 231±16% 0.84±0.01 103±13% 36±17% 0.78±0.00

BAR 49±11% 1±56% 0.77±0.02 361±8% 156±11% 0.85±0.00 69±20% 20±19% 0.79±0.00

Reinvent 41±25% 3±53% 0.74±0.02 198±18% 135±24% 0.81±0.01 35±11% 6±68% 0.75±0.01

GraphGA 21±31% 7±55% 0.75±0.04 115±14% 78±15% 0.84±0.00 24±37% 10±61% 0.79±0.01

VSRandom 21±12% 0±0% 0.82±0.01 93±6% 7±12% 0.87±0.00 15±13% 0±0% 0.83±0.01

LSTM-PPO 14±32% 0±0% 0.81±0.02 108±9% 16±26% 0.87±0.00 13±18% 1±71% 0.81±0.02

VSMaxMin 19±0% 0±0% 0.88±0.00 68±0% 8±0% 0.89±0.00 9±0% 0±0% 0.88±0.00

Mimosa 6±47% 0±224% 0.80±0.06 23±33% 8±62% 0.84±0.02 8±37% 3±49% 0.78±0.07

Mars 3±62% 0±224% 0.39±0.26 39±45% 36±49% 0.81±0.02 4±64% 2±84% 0.61±0.09

SmilesGA 3±80% 0±224% 0.64±0.36 27±12% 14±26% 0.85±0.01 4±83% 2±87% 0.58±0.34

GflownetDF 0±224% 0±224% 0.00±0.00 77±60% 73±61% 0.81±0.00 0±224% 0±224% 0.00±0.00

Stoned 3±41% 0±0% 0.62±0.15 13±19% 1±64% 0.79±0.06 4±37% 0±224% 0.56±0.15

Gflownet 1±122% 0±0% 0.15±0.33 67±75% 64±77% 0.81±0.01 0±0% 0±0% 0.00±0.00

Table D2: Performance for the tested methods under a time limit. Performance is given by the
number of diverse hits (DivHits), novel diverse hits (NDivHits), and internal diversity (IntDiv). The
internal diversity is calculated on the discovered hits.

DRD2 GSK3β JNK3

DivHits NDivHits IntDiv DivHits NDivHits IntDiv DivHits NDivHits IntDiv

LSTM-HC 544±7% 154±15% 0.80±0.00 2620±7% 2045±8% 0.84±0.00 708±13% 487±13% 0.81±0.00

AugmentedHC 214±31% 50±42% 0.80±0.01 2543±9% 2251±10% 0.85±0.00 433±14% 291±15% 0.81±0.00

Reinvent 221±5% 48±16% 0.79±0.01 1315±4% 1100±5% 0.84±0.00 318±11% 184±17% 0.79±0.01

BAR 126±4% 7±30% 0.80±0.01 1469±6% 1022±10% 0.85±0.00 252±7% 132±15% 0.80±0.01

VSMaxMin 155±0% 0±0% 0.83±0.00 643±0% 88±0% 0.87±0.00 131±0% 3±0% 0.83±0.00

AugMemory 82±11% 7±44% 0.75±0.01 753±9% 615±12% 0.82±0.01 163±26% 77±33% 0.78±0.01

GraphGA 102±27% 50±21% 0.78±0.01 774±10% 699±11% 0.85±0.00 111±56% 70±68% 0.80±0.01

VSRandom 134±3% 0±0% 0.82±0.00 540±2% 86±4% 0.87±0.00 125±4% 4±12% 0.83±0.00

LSTM-PPO 39±18% 0±0% 0.81±0.01 308±25% 69±48% 0.87±0.00 30±28% 2±130% 0.82±0.00

Mimosa 5±34% 0±0% 0.82±0.04 26±33% 8±68% 0.84±0.02 6±50% 1±71% 0.74±0.09

SmilesGA 4±35% 0±224% 0.76±0.11 17±17% 8±33% 0.84±0.04 4±59% 2±82% 0.42±0.40

Stoned 3±34% 0±0% 0.54±0.30 15±18% 1±96% 0.76±0.06 4±50% 0±224% 0.61±0.17

Gflownet 0±224% 0±224% 0.00±0.00 112±70% 108±73% 0.80±0.01 0±224% 0±224% 0.00±0.00

GflownetDF 0±137% 0±224% 0.00±0.00 87±53% 84±51% 0.81±0.01 0±224% 0±224% 0.00±0.00

Mars 2±100% 0±0% 0.37±0.34 15±36% 10±45% 0.75±0.03 2±122% 0±224% 0.19±0.19

D EXTENDED RESULTS

D.1 ADDITIONAL METRICS

Tables D1 and D2 give extended results for both constraints settings, including the number of novel
diverse hits and internal diversity of the found hits. The novel diverse hits are calculated as follows:
First, we take the hits found by the generative model and from these remove all compounds that have
a distance of less than 0.7 to any active compound in the training set. Then we calculate the #Circles
metric on this reduced set. While the number of novel diverse hits is in general highly correlated
with the number of diverse hits, the virtual screening methods generate relatively few novel diverse
hits. This is because the virtual screening methods are biased toward finding compounds that are
similar to the training set, which can be seen in similar distributions of the molecular properties of
the generated molecules and the training set

Figure D1 shows the correlation between different diversity metrics, namely the number of hits,
diverse hits, the number of novel diverse hits, and the internal diversity of the hits. We can see that
the number of diverse hits is strongly correlated with the number of novel diverse hits. The internal
diversity is only weakly correlated with these metrics. This means internal diversity values reported
in previous studies are not a good indicator of the number of diverse (novel) hits found.
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Figure D1: Correlation between different diversity metrics. The number of diverse hits is correlated
with the number of novel diverse hits. The internal diversity is only weakly correlated with the other
metrics.
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Figure D2: Number of diverse hits found by the tested methods over the number of scoring function
evaluations.

D.2 OPTIMIZATION CURVES

Figures D2 and D3 show the number of diverse hits found by the tested methods over the num-
ber of scoring function evaluations and the time elapsed. Most methods show no sign of satu-
rating performance within the chosen limits. This shows that the comparison of the methods is
only meaningful under standardized computing constraints. The method ranking remains somewhat
constant throughout the optimization. Only single curves, like LSTM-HC on DRD2 in the sample-
constrained setting, show a significant increase in performance towards the end of the optimization.
Similarly, this holds for AugmentedHC in the time-constrained setting.

D.3 MOLECULAR PROPERTY DISTRIBUTIONS

In this section, we show distributions of the molecular weight (MW), the water-octanol partition co-
efficient (logP), the fraction of de-novo ECFP4 bits, the synthetic accessibility (SA), the quantitative
estimate of drug-likeness (QED), and the length of the SMILES strings of the generated molecules.
Figure D4 shows the distributions for the sample constrained setting, and Figure D5 shows the dis-
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Figure D3: Number of diverse hits found by the tested methods over the elapsed time.

tributions for the time-constrained setting. For the properties used in the property filter, also show
the used thresholds.
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Figure D4: Distributions of the molecular properties of the generated molecules for the sample-
constrained setting. The dashed lines indicate the thresholds used in the property filter.
Results are aggregated over the three optimization tasks.
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Figure D5: Distributions of the molecular properties of the generated molecules for the time-
constrained setting. The dashed lines indicate the thresholds used in the property filter.
Results are aggregated over the three optimization tasks.
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