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ABSTRACT

One of the most common approaches for self-supervised representation learning
is defining pre-text tasks to learn data representations. Existing works determine
pre-text tasks in a “task-agnostic” way, without considering the forthcoming
downstream tasks. This offers an advantage of broad applicability across tasks, but
can also lead to a mismatch between task objectives, potentially degrading perfor-
mance on downstream tasks. In this paper, we introduce TST-LLM, a framework
that effectively reduces this mismatch when the natural language-based description
of the downstream task is given without any ground-truth labels. TST-LLM
instructs the LLM to use the downstream task’s description and meta-information
of data to discover features relevant to the target task. These discovered features
are then treated as ground-truth labels to define “target-specific” pre-text tasks.
TST-LLM consistently outperforms contemporary baselines, such as STUNT and
LFR, with win ratios of 95% and 81%, when applied to 22 benchmark tabular
datasets, including binary and multi-class classification, and regression tasks.

1 INTRODUCTION

Obtaining unlabeled data for machine learning is typically more scalable and cheaper than gathering
labeled data in real-world applications. Self-supervised representation learning, which was proposed
to extract useful information from unlabeled data, enhances the performance of downstream tasks by
obtaining superior representations (Chen et al., 2020; Oord et al., 2018; Tschannen et al., 2019). A
common approach for self-supervised representation learning is utilizing a pre-text task based on
the type or characteristics of the data, and then learning representations by optimizing the objective
of the pre-text task (instead of the downstream task) (Assran et al., 2022; Kim et al., 2018; Zhang
et al., 2017). For example, in computer vision domain, such a pre-text task can be defined to
estimate the degree of rotation applied to an image (Gidaris et al., 2018). Other works have defined
augmentations that do not deform the contents of images, such as horizontal flips or color jittering,
to learn representations that are invariant to these modifications (Grill et al., 2020; Han et al., 2020;
Zbontar et al., 2021).

These pre-text task-based methods have also been extended to tabular data – specifically, efforts have
been made to adapt pre-text tasks that were previously limited to images and text. Common tasks for
tabular data include corrupting or masking data and then reconstructing the original sample from the
representation (Yoon et al., 2020; Wu et al., 2024), or designing augmentations suited to tabular data
to perform contrastive learning tasks (Bahri et al., 2022; Somepalli et al., 2022). The inductive bias
provided by the pre-text tasks plays a role in preemptively removing spurious correlations or noisy
information within tabular data.

Despite the success of using pre-text tasks in tabular learning, a fundamental limitation remains in
the task mismatch between the pre-text tasks optimized by representation learning and the actual
downstream tasks (Sui et al., 2024). This is because the pre-text tasks in representation learning
are determined in a “task-agnostic” way that are oblivious to the forthcoming downstream tasks.
Task-agnostic definitions offer the advantage of broad applicability across tasks, but also potentially
risks including noisy irrelevant information or eliminating critical information for the downstream
task. For instance, using additive Gaussian noise or affine transformations as augmentations in
tabular data with high variable correlation can create unrealistic samples and simultaneously lose
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correlation information (Sui et al., 2024; Hajiramezanali et al., 2022). Such fallacies impair the
performance of the downstream task.

Our study seeks to address the issue of the task-objective mismatch by defining pre-text tasks in
a task-specific rather than task-agnostic manner using the natural-language based description of the
downstream task. The description includes the task objective (e.g., “Does this person earn more than
50,000 dollars per year?”) and the answer candidates (e.g., “Yes” or “No”). Using this information,
we propose, TST-LLM (Task-specific Self-supervised Tabular learning with LLMs), which aims to
improve representation learning via LLM-discovered features without incorporating any ground-truth
labels or label statistics. By leveraging the prior knowledge of the LLM, we explore the relationship
between the task and data features from their natural language-based descriptions. This process aims
to determine which combinations or transformations of original data features can yield meaningful
information for solving the task. Then, the new features created through the LLM’s prior knowledge
are used to generate the ground-truth labels for the pre-text tasks that train the representation. For
example, in the task of predicting whether a person earns more than 50,000 dollars, newly discovered
features such as “age * working hours”, based on prior knowledge, are likely to have a
higher correlation with the label. Learning with these features provides additional task-relevant
information, such as the importance of original features to the task and the correlation between them.

TST-LLM consists of two main stages. In the first stage, target task’s textual description,
meta-information of data (e.g., feature names and descriptions), and text-serialized unlabeled data
are used to construct prompts. Then, they are fed into an LLM to extract new task-relevant features.
This process is repeated, while previously extracted features are excluded at the next iteration to
ensure the diversity of feature synthesis. In the second stage, the discovered features are considered
as ground-truth labels to define pre-text tasks. We use supervised contrastive learning (Khosla et al.,
2020) to perform multi-task learning for each label, learning useful representations. Additionally, we
introduce a process for selecting a diverse feature set from the discovered features that are distinctly
aligned with both the original data and each other for computational efficiency.

A key advantage of TST-LLM is its simplicity; it can be applied to any problem as long as a task
description and feature descriptions are defined in natural language. We demonstrate that the features
discovered by the LLM are meaningful and relevant to the actual target task. Our model consistently
outperforms contemporary baselines, such as STUNT and LFR, with win ratios of 95% and 81%,
when applied to 22 benchmark tabular datasets including binary and multi-class classification, and
regression tasks.

2 RELATED WORK

Self-supervised representation learning for tabular data. New advancements in self-supervised
representation learning enable the discovery of meaningful representations from unlabeled data
across wide modalities, from images (Caron et al., 2020; Wen et al., 2022; Wu et al., 2018) to
texts (Gao et al., 2021; Kenton & Toutanova, 2019; Radford et al., 2019), audio (Mittal et al., 2022;
Owens & Efros, 2018), and most recently to tabular data (Balestriero et al., 2023; Gharibshah &
Zhu, 2022). One of the common ways of self-supervised learning is to define a pre-text task on
an unlabeled dataset to facilitate learning. According to the literature (Gharibshah & Zhu, 2022),
pre-text tasks for tabular data can be broadly classified into three types. The first category, invariance
learning, involves defining a positive view of a given sample and learning the representation invariance
between them. The positive view of the sample can be created using weak augmentations that do not
distort the original content (Bahri et al., 2022; Somepalli et al., 2022) or by selecting samples with
similar characteristics from the training data (Nam et al., 2023b). The second category, predictive
learning, includes methodologies that generate explicit labels from the dataset and train the model
to predict these labels. For example, masking or corrupting data and then using the original data for
reconstruction as a label (Wu et al., 2024; Yoon et al., 2020). Some studies also proposed pre-text tasks
on various publicly available benchmark datasets or synthetic datasets and then performing transfer
learning for downstream tasks (Hollmann et al., 2023; Wang & Sun, 2022). The last category includes
a hybrid approach combining invariance and predictive learning (Ucar et al., 2021; Zhu et al., 2023).

All of the above methods define pre-text tasks in a task-agnostic manner, which can lead to inconsis-
tencies with the actual objectives of the downstream tasks that can ultimately hinder performance.
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(b) Task-specific representation learning

Figure 1: Illustration of TST-LLM. (a) It utilizes downstream task description and meta-information
of the data to discover relevant features to the task. (b) Subsequently, the discovered features are
treated as ground-truth labels to perform task-specific representation learning. After training, the
projection heads are removed, and the representations from the encoder are used.

Our study proposes a method to effectively reduce this inconsistency by generating task-specific
pre-text tasks using the description of the downstream task.

Tabular learning with large language model. LLMs can be applied to various domains by lever-
aging their prior knowledge and generalizability to handle unseen tasks (Anil et al., 2023; OpenAI,
2023). Recent research has explored serializing tabular data into natural language-based text to solve
tabular tasks (Dinh et al., 2022; Hegselmann et al., 2023; Wang et al., 2023). Task description and
meta-information of the tabular data, such as feature names and descriptions, guide the LLM on which
features to focus on in order to solve the problem. Especially, the rich prior knowledge of LLMs boosts
performance in few-shot settings, where labeled data is scarce (Hegselmann et al., 2023). Previous
works (Dinh et al., 2022; Hegselmann et al., 2023; Nam et al., 2023a) broadly cover the case of in-
context learning-based prompt engineering without further training of the LLM, and the case of apply-
ing parameter-efficient fine-tuning techniques like (IA)3 (Liu et al., 2022) or LoRA (Hu et al., 2021).

Our method leverages the prior knowledge and reasoning ability of LLMs to aim for task-specific
pre-text task generation through the downstream task description and the meta-information of data.
We only use prompt engineering, enabling operation with limited access to LLMs, similar to an API.

3 METHOD

Problem formulation. An unlabeled tabular dataset with d-dimensional input features D =
{xi}Ni=1 is given where xi ∈ Rd. A downstream task description in natural language, Etask, and the
names and short descriptions of each feature, Ename = {ejname}dj=1 and Edesc = {ejdesc}dj=1, are also
provided. The model aims to train an encoder f that extracts informative data representations to
tackle the downstream task in an unsupervised setting, i.e., no ground-truth labels are provided. The
downstream tasks can be binary or multi-class classification and regression.

Figure 1 illustrates the entire process of our model. TST-LLM utilizes downstream task description
and meta information to define pre-text tasks that aligns with the downstream task objectives, and
performs representation learning via these tasks. Initially, the model passes the task description Etask
along with meta-information of data Ename and Edesc to the LLM to generate potentially relevant
features through combinations or transformations of original features (Section 3.1). These generated
features are set as target labels for the pre-text tasks, which are then used to train the encoder through
multi-task contrastive learning (Section 3.2). Details of each stage are described below.

3.1 LLM-GUIDED FEATURE DISCOVERY WITH TASK DESCRIPTION

The model generates data-related features from task description and meta information utilizing the
prior knowledge and reasoning abilities of an LLM. Feature discovery process involves running
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You are a data engineer. Given the task description and the list of features and data examples, you are
making a new column for the data which is informative to solve the task.

Task: [Downstream Task Description]
Features: [Feature Descriptions]
Examples: [Serialized Examples]

Given a type of operations below, generate 5 new columns which are the most informative to solve the
task using operations. Refer to the examples when generating features. Only use features listed in the
feature description. Note that multiple operations can be nested to generate a new column.

The possible type of operations is as follows:.
[Operation Descriptions]

You also have some new example features generated with these modules.
Example Features:
Index | Feature_name | Feature_desc
[Features From Previous Trial]

You must write new feature that is different from all above examples features with respect to both
names and descriptions.

Format of response for 5 new columns:
—
Thought 1: Any reasons why the following new feature would be helpful for the task
New feature 1: Type of operation | New_column_name | One line pseudo code for generating columns
...
Thought 5: ...
New feature 5: ...
—

Figure 2: Prompt for feature discovery. Text in blue corresponds to data description summary
part, red text to operation instruction, teal text to diversity enforcement, and brown text to response
instruction part.

multiple LLM inferences. The designed prompt consists of four main components: data description
summary, operation instruction, diversity enforcement, and response instruction (see Figure 2 and
Appendix A.2 for the example prompt).

Data description summary. This component provides a basic data description for feature discovery
(see blue part in Figure 2). It includes the downstream task’s description Etask (e.g., “Does this person
earn more than 50,000 dollars per year? Yes or no?”) as well as feature names and descriptions Ename,
Edesc (e.g., “hours-per-week": “the hours an individual has reported to work per week"). Similar to
other works (Hegselmann et al., 2023), we serialize the sample data as in-context demonstration,
giving hints on the scale and format of the data. Given the data x, serialization is applied as:

Serialize(x, Ename) = “ e1name is x1. · · · edname is xd.”, (1)

where the superscript represents the vector’s index value.

Operation instruction. This component guides the LLM on possible operations for feature
discovery (see red part in Figure 2). It encourages the LLM to search only for feasibly-generated
features, preventing erroneous behaviors (e.g., generating features that cannot be created from original
data features or establishing ambiguous feature definitions). The operations used are as follows:

• Transformations: Transform the feature value with one of the following operators: absolute,
logarithm, square root, sigmoid, or frequency.

• Numerical Operations: Conduct arithmetic operations from multiple numerical features.

• Categorical Operations: Combine two categorical features to generate a new feature.
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• Mixed-type Operations: Combine categorical and numerical features to generate a new one.
For example, the model can discretize a numerical feature into a categorical one, allowing for
categorical operations between the two features.

Diversity enforcement. Instead of concluding feature discovery with a single query, we aggregate
features from multiple queries to find useful features. However, we also want to avoid the model from
discovering duplicate features over multiple trials. To ensure diverse search, we provide additional
instructions to prevent the LLM from selecting features identified in previous attempts (see teal part
in Figure 2). We include descriptions via one-line pseudo-code, along with feature names, to prevent
the LLM from simply renaming and selecting the same features. This component is integrated in all
iterations except for the initial iteration.

Response instruction. This component includes instructions on how the LLM should format its
response (see brown part in Figure 2). The format includes the type of operation, the feature’s
name, and a one-line pseudo-code necessary to regenerate the feature (e.g., “Numerical Operations |
capital_diff | Subtract capital-loss from capital-gain to get the net capital difference”). Setting the
response format facilitates easier parsing later on and also gives further evidence on each feature
discovery, explaining why the particular feature was selected upon response.

The output text from the LLM prompt is parsed to generate the discovered feature. The generation
process is automatically carried out using the LLM, which uses one-line pseudo-code and data to
generate function code for producing the feature. The prompt used for automated generation is in
the Appendix A.4.

3.2 REPRESENTATION LEARNING WITH DISCOVERED FEATURES

The discovered features are semantically related to the target downstream task based on LLM’s prior
knowledge. We considered these features as ground-truth labels ŷ to define a pre-text task aligned
with the target downstream task. Although TST-LLM is agnostic to the choice of learning methods1,
we adopt supervised contrastive learning for its generalizability to downstream tasks (Graf et al.,
2021; Khosla et al., 2020). We define the projected representation of sample xi as zi = g(f(xi)),
where f is the encoder and g is the projection head. According to the literature (Khosla et al., 2020),
given a batched set of Nb samples with a pseudo label B = {xi, ŷi}Nb

i=1, the supervised contrastive
loss with a temperature τ is defined as below. For numerical features among the discovered features,
we transformed them into discrete features using 1-dimensional k-means clustering with k = 10.

LSCL = − 1

|B|
∑
i∈B

∑
j∈B,j 6=i

1ŷi=ŷj
log

exp(zi · zj/τ)∑
k∈B 1i6=k exp(zi · zk/τ)

(2)

In our framework, multiple features are discovered, and correspondingly, multiple labels are available
for supervised contrastive learning. We utilize a multi-task learning approach to train the encoder, by
defining a projection head for each ground-truth label and simultaneously training the models via
supervised contrastive learning for each label. Specifically, given a set of M discovered features,
Ŷ = {ŷ1, ŷ2, . . . , ŷM}, we define a set of projection heads G = {g1, g2, . . . , gM}. Subsequently, the
encoder f optimizes the following loss:

LSCL-multi =
1

|M |

M∑
m=1

Lm
SCL, (3)

where each Lm
SCL is a supervised contrastive loss computed with the respective projection head gm

for the corresponding label set ŷm.

Feature selection with minimum redundancy. Multi-task learning on all features generated by the
LLM can be computationally heavy. Not all features are informative, and those that closely correlate
with original features tend to limit their value as pre-texts. Furthermore, high correlation among the
generated features could diminish the benefits of multi-task learning. To address this, we eliminate
features that do not contribute meaningful information and carefully choose a diverse set of features
with minimal redundancy, thereby reducing computation costs. (see Algorithm 1 in Appendix C.1).

1See the Appendix E for the comparison with alternative learning methods (including reconstruction).
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First, we define uninformative features as those with the lowest entropy values in the distribution.
For example, if a feature is predominantly assigned to only one class across all samples (i.e., low
entropy), the amount of information that can be learned from this feature is also limited. After
calculating the entropy of each discovered feature, those with an entropy below a specific threshold
(i.e., tent) are eliminated. The filtering threshold tent is set to 0.7, taking into account the entropy
distribution of the entire feature set.

For the remaining features, the model selects a feature set that minimizes redundancy. The initial
choice is the feature with the smallest correlation to the original data. The remaining features are
then selected among the ones with the smallest correlation with the original data, including the
previously added features. This process is repeated until a predetermined number of features, M ,
are selected. Cramer’s V value (Cramér, 1999) is used to measure the correlation after discretizing
all numerical features in the same manner as ŷ. This approach ensures that the selected features have
low correlation with the original data while maintaining diversity among the discovered features,
enabling efficient multi-task learning (see Table 1 for an analysis of feature diversity). Refer to the
Appendix G for example features generated and selected by our method.

4 EXPERIMENT

We evaluate TST-LLM across multiple tabular datasets with various downstream tasks. Through our
experiments, we discuss which components of the model contributed to performance enhancements
and how our model operates. Due to space constraints, full results, computational cost analysis,
results with alternative learning objectives, and additional analyses can be found in the Appendix.

4.1 PERFORMANCE EVALUATION

Datasets. Our study used a total of 22 datasets to ensure a diverse range of downstream tasks in
terms of size and complexity including Adult (Asuncion & Newman, 2007), Balance-scale (Siegler,
1994), Bank (Moro et al., 2014), Blood (Yeh et al., 2009), Car (Kadra et al., 2021), Communities (Red-
mond, 2009), Credit-g (Kadra et al., 2021), Diabetes (Smith et al., 1988), Eucalyptus (Bulloch et al.,
1991), Forest-fires (Cortez & Morais, 2008), Heart (fedesoriano, 2021), Junglechess (van Rijn & Vis,
2014), Myocardial (Golovenkin et al., 2020), Tic-tac-toe (Aha, 1991), Vehicle (Mowforth & Shep-
herd), Bike (Fanaee-T, 2013), Crab (Sidhu, 2021), Housing (Pace & Barry, 1997), Insurance (Datta,
2020), Wine (Cortez & Reis, 2009), Sequence-type, and Solution-mix. Descriptive statistics and task
descriptions for each dataset are available in the Appendix A.1 and B. Among them, 15 datasets were
used for classification problems and 7 for regression problems; Two datasets—Sequence-type and
Solution-mix—are synthetic, ensuring they are not included in the LLM’s pre-training corpus.

Baselines. Our model was compared to seven baselines, all of which were trained under the same
unsupervised setting as our experimental setup. (1) Raw Data: Uses the data as-is for the downstream
task without any representation learning; (2) AutoEncoder (Baldi, 2012): Utilizes a pre-text objective
that projects data into embeddings and reconstructs the original data; (3) SimSiam (Chen & He,
2021): Trains to minimize the embedding distance between a sample and its augmented version using
a siamese network structure; (4) SCARF (Bahri et al., 2022): Employs self-supervised contrastive
learning to train augmentation-invariant embeddings. Augmentations involve corrupting some
columns of a sample by drawing from their marginal distributions; (5) STAB (Hajiramezanali et al.,
2022): Similar to SimSiam but performs augmentation-free representation learning through stochastic
regularization; (6) STUNT (Nam et al., 2023b): Creates self-generated tasks based on clustering to
facilitate learning through meta-learning; (7) LFR (Sui et al., 2024): Iteratively learns the target of a
pre-text task and the encoder using a random data projector. Implementation details for all baselines
followed the original works, except that the encoder architecture was standardized. Detailed settings
can be found in the Appendix C.2.

Implementation details. TST-LLM currently employs GPT-3.5 as the LLM backbone for feature
discovery but it can be combined with other LLMs. During LLM generation, the temperature was
set to 0.5 and the top-p value was set to the API’s default of 1. The discovery process generated
five features per trial, with the number of trials set at 40. The number of serialized samples included
in the prompt was set to a maximum of 20, as allowed by the prompt limit. The number of selected
features M was set to 20. Effects of hyper-parameter M are discussed in the section 4.3 and an
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(a) Evaluation with linear model.
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(b) Evaluation with non-parametric classifier.

Figure 3: Win matrices comparing self-supervised tabular learning methods against each other with
(a) linear model and (b) non-parametric classifier. Self-supervised tabular learning methods are
aligned on the x-axis and the y-axis while the numbers represent the winning ratio of the x-axis model
against the y-axis model. Full results are reported in the Appendix H.

analysis of the number of trials is presented in the Appendix F. The structure of the encoder was
consistent with the baselines, configured as a 2-layer MLP with 1024 dimensions, and the projection
head consisted of a single linear layer. Training utilized the Adam optimizer with a learning rate
of 1e-4, a batch size of 128, and 1000 training iterations. For information on computing resources
and computational complexity, refer to the Appendix D.

Evaluation. After training, we fixed the learned embeddings, and the evaluation is performed
with two downstream task classifiers: (1) Linear model: This can be either logistic regression for
classification tasks or linear regression for regression tasks. This method assesses how linearly
separable the classes are in the embedding; (2) Non-parametric classifier: This involves fitting a
weighted k-NN module to the downstream classification task. We run evaluations with two different
settings: k =3 and 5. This method evaluates how well the embeddings form coherent local clusters.
For performance metrics, AUROC is used for classification tasks (one-versus-all for multi-class
settings), and RMSE for regression tasks. Experiments were run with 3 different random seeds, and
the average values were reported.

To facilitate straightforward comparison across datasets, we adopted a win matrix from existing
literature (Bahri et al., 2022). The win matrix calculates the ratio over the number of times each
method i outperforms another method j across the datasets, excluding ties:

W [i, j] =

∑
k∈Datasets I[Performance(i, k) > Performance(j, k)]∑
k∈Datasets I[Performance(i, k) 6= Performance(j, k)]

, (4)

where Performance(i, k) denotes the performance of method i on dataset k.

Results. Figure 3 compares the performance of self-supervised baselines and TST-LLM against
each other using win matrices. For all baselines, the average win ratio is 84% for the linear model
and 65% for the non-parametric classifier, demonstrating TST-LLM’s superiority; This gives a
strong evidence that task-specific pre-text tasks lead to the latent representations that readily form
decision boundaries for the target downstream task in the case of the linear model. At the same time,
evaluations with a non-parametric classifier indicate that our pre-text tasks effectively extract and
utilize information from existing features to enable clustering.

4.2 ABLATION STUDY

We conducted an ablation study to evaluate the contribution of each component in our model. We
assessed two primary components: discovering features from the downstream task’s description and
training the encoder with multi-task contrastive learning. We defined the following ablations by
removing or modifying each component: (1) Top-1 selection: Only the top-1 feature, which has
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(a) Linear model results.
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(b) Non-parametric classifier results.
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Figure 4: Win matrices comparing our full model and its ablations against each other with (a) linear
model and (b) non-parametric classifier. The numbers represent the winning ratio.

the least redundancy with the original data among the discovered features, is used; (2) Random-1
selection: Same as Top-1 selection, a single head is used for training, yet the label used for supervised
contrastive learning is randomly changed to one of the discovered features in each iteration; (3)
Random feature discovery: Instead of using the LLM for feature discovery, we expand features
using operations commonly employed in traditional feature engineering work (Zhang et al., 2023),
and then randomly select M features. Representation learning is subsequently conducted with
these selected features, identical to our original model’s approach; (4) Without learning: Instead
of performing representation learning, features discovered through feature discovery are directly
concatenated with the original data and used as is; (5) Without feature selection: All discovered
features are used in representation learning without undergoing the feature selection process.

Figure 4 shows the degree of performance degradation in each ablation study. We find that every
ablation led to a negative effect on performance, underscoring the contribution of all tested compo-
nents. Specifically, using multiple features for multi-task learning, rather than relying on a single
feature (i.e., Top-1 selection) or alternating features for single-task learning (i.e., Random-1 selection),
provided an ensemble effect that enhanced performance. Even without training, merely concatenating
features that are relevant to the actual label facilitated the formation of effective local clusters with the
non-parametric classifier. By conducting training with a pre-text task, TST-LLM could further obtain
embeddings that are linearly separable among the labels. In addition, selecting features does not
significantly differ in performance from using all features without feature selection, which suggests
that our selection strategy leads to efficient learning (see Table 1 for comparison on computational
complexity of using all features).

4.3 ANALYSIS & DISCUSSION

How informative are the discovered features for the downstream task? When training
TST-LLM, we utilize the features that have been identified through the LLM. To see how well these
pre-text tasks align with actual downstream tasks, we computed the average increase ratio of mutual
information between the discovered features and downstream task’s labels compared to the original
features. The ratio is computed as a percentage for each dataset. According to Figure 5a, for most
datasets, the discovered features show a stronger correlation with the labels than the original data.
This suggests that our pre-text tasks are more closely aligned with the actual downstream tasks,
than the models trained solely on the original data. We also observed that datasets with a higher
increase ratio also demonstrated a greater performance improvement in our model compared to the
Raw Data model (Spearman correlation 0.52). When evaluating our model compared to the raw
data model over datasets with positive and negative increase ratios, the positive set showed a 25.8%
greater improvement in performance (average 8.1% increase in the positive set vs. 5.6% increase
in the negative set). Although some datasets showed a decrease in average mutual information, most
of them exhibited a high standard deviation in mutual information (see Appendix H.5 for full results),
where multi-task learning using a variety of features could be helpful.

How diverse are the features used for our pre-text task? We applied two strategies to ensure
the diversity of discovered features coming from the LLM and pre-text tasks for representation
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Figure 5: (a) Average increase ratio of mutual information between the discovered features and
ground-truth labels compared to the original features. The ratio is reported as a percentage for each
dataset; (b) Hyper-parameter analysis on the number of selected features M . Average decrease ratios
from our model’s settings (i.e., M = 20) across both classification and regression tasks are reported.

learning. One strategy involved adding a diversity enforcement component within the LLM’s prompt
to avoid selecting the previously selected features, and the other aimed to minimize redundancy
among selected features. To verify the effectiveness of these methodologies on feature diversity, we
conducted additional experiments. We defined three ablation scenarios: (1) No diversity enforcement
& No selection strategy: using features without applying the two strategies; (2) No selection strategy:
using the diversity enforcement component but not conducting feature selection; (3) With entropy-
based filtering: applying only entropy-based filtering as the selection strategy.

We compared each ablation using three evaluation metrics. The first metric is Cramer’s V
value (Cramér, 1999) between features, where a higher value indicates a greater number of highly
correlated features, implying lower diversity. The second metric is the percentage change in perfor-
mance across all datasets compared to the proposed full model. The final metric is the time cost ratio
for running the model. According to the results in Table 1, models with lower diversity are inefficient
both in terms of performance and time cost.

Table 1: Ablation study results on feature diversity. Feature diversity is evaluated using the average
Cramer’s V value across features, with the standard deviation noted. Performance change is computed
as an averaged change ratio in percentage across all datasets compared to the proposed full model.

Ablation for feature diversity Cramer’s V Performance change (%) Time cost ratio

No diversity enforcement & No selection strategy 0.24±0.11 -0.17±0.24 5.62
No selection strategy 0.13±0.06 -0.50±0.38 4.84
With entropy-based filtering 0.09±0.05 -0.05±0.15 2.78

Full model 0.07±0.03 0.00±0.00 1.00

Does hyper-parameter M affect the performance? TST-LLM has a hyper-parameter, M , which
represents the number of features discovered for the pre-text task. To investigate the impact of M on
performance, we conducted experiments using M = 10, 20, 30, and all features (i.e., M = all) for
the pretext task. The results, presented in Figure 5b, include the average decrease ratio in performance
from our model’s settings across all classification and regression datasets. The performance of
TST-LLM is insensitive to M when M is set bigger than 10, allowing for flexibility in choosing the
number of features to optimize computational efficiency. Based on our findings, we selected M = 20,
which delivered the best performance without imposing a computational burden.

5 CONCLUSION

We introduced TST-LLM, a representation learning method that creates pre-text tasks that are tailored
to downstream task objectives using an LLM. TST-LLM leverages the prior knowledge and reasoning
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abilities of the LLM to determine how to combine original data features into informative features
based on natural language descriptions of downstream tasks and feature descriptions. The combined
features, after undergoing a feature selection process to minimize redundancy, serve as ground-
truth labels for the pre-text tasks in representation learning. Extensive analysis confirms that our
methodology can identify diverse and task-aligned features, and as a result consistently achieves
outstanding performance across various downstream tasks.

Future work and broader impact. Our method relies on LLM for feature discovery, which may
not yield optimal results for tasks that the LLM is unfamiliar with. To mitigate this, one could
consider optimizing alongside traditional self-supervised representation learning objectives in the
tabular domain, such as reconstruction or contrastive learning. Alternatively, one could consider
calibrating the discovered features through human feedback. In terms of the impact, TST-LLM
facilitates easy learning through task-aligned pre-text tasks with the desired downstream task
objective, when these goals can be articulated through text. This adaptability renders it suitable for
a variety of real-world scenarios, such as in the healthcare and financial sectors. We believe this
work provides a new perspective on the integration of LLMs into the tabular learning domain.
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APPENDIX

A FULL PROMPT EXAMPLES

A.1 TASK DESCRIPTION FOR EACH DATASET

This section presents the downstream task descriptions corresponding to the dataset used for eval-
uation. TST-LLM uses these text descriptions to perform task-relevant feature discovery. Each
description is defined by referencing the dataset’s original source or previous works (Hegselmann
et al., 2023; Han et al., 2024). For classification tasks, answer class candidates were provided.

Table 2: Downstream task’s description of each dataset used for feature discovery.

Data Downstream task’s description

Adult Does this person earn more than 50000 dollars per year? Yes or no?
Balance-scale Which direction does the balance scale tip to? Right, left, or balanced?
Bank Does this client subscribe to a term deposit? Yes or no?
Blood Did the person donate blood? Yes or no?
Car How would you rate the decision to buy this car?

Unacceptable, acceptable, good or very good?
Communities How high will the rate of violent crimes per 100K population be in this area.

Low, medium, or high?
Credit-g Does this person receive a credit? Yes or no?
Diabetes Does this patient have diabetes? Yes or no?
Eucalyptus How good is this Eucalyptus species for soil conservation

in the specified location? None, low, average, good, or best?
Forest-fires Estimate the burned area of forest fires from given information.
Heart Does the coronary angiography of this patient show a heart disease? Yes or no?
Junglechess Which player wins this two pieces endgame of Jungle Chess? Black, white or draw?
Myocardial Does the myocardial infarction complications data of this patient show

chronic heart failure? Yes or no?
Tic-tac-toe Will the first player (player x) win the game? Positive or negative?
Vehicle What kind of vehicle is the given silhouette information about? Bus, opel, saab, or van?
Bike Estimate the count of total rental bikes from given information.
Crab Estimate the age of the crab from given information.
Housing Estimate the house price from given information.
Insurance Estimate the individual medical cost of this patient billed by health insurance.
Wine Estimate the wine quality on a scale from 0 to 10 from given information.
Sequence-type What is the type of following sequence? Arithmetic, geometric, fibonacci, or collatz?
Solution-mix Given the volumes and concentrations of four solutions,

calculate the percent concentration of the mixed solution after mixing them.
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A.2 FULL PROMPT EXAMPLE FOR FEATURE DISCOVERY

The following is an example of a prompt used for feature discovery on the Adult dataset. For the
initial query in the LLM, a prompt without a diversity enforcement component, as shown in Figure 6,
was used as there is no information from previous iterations. For subsequent iterations, a prompt with
a diversity enforcement component in Figure 7 was used.

You are a data engineer. Given the task description and the list of features and data examples, you are
making a new column for the data which is informative to solve the task.

Task: Does this person earn more than 50000 dollars per year? Yes or no?
Features:
- age: the age of an individual (numerical variable within range [17, 90])
...
- native-country: country of origin for an individual (categorical variable with categories [United-States,
Poland, ..., Holand-Netherlands])

Examples:
age is 49. workclass is Private. fnlwgt is 123807. education is HS-grad. educational-num is 9.
marital-status is Separated. occupation is Adm-clerical. relationship is Unmarried. race is Black. gender
is Female. capital-gain is 0. capital-loss is 0. hours-per-week is 40. native-country is United-States.
...
age is 52. workclass is Private. fnlwgt is 208302. education is HS-grad. educational-num is 9.
marital-status is Married-civ-spouse. occupation is Sales. relationship is Husband. race is White.
gender is Male. capital-gain is 0. capital-loss is 0. hours-per-week is 36. native-country is United-States.

Given a type of operations below, generate 5 new columns which are the most informative to
solve the task using operations. Refer to the examples when generating features. Only use features
listed in the feature description. Note that multiple operations can be nested to generate a new column.

The possible type of operations is as follows:
- Transformations: Numerical features only. Transform the feature value with one of the following
operators:
absolute, logarithm, square root, sigmoid, or frequency (i.e., frequency of feature in the data).
- Numerical Operations: Numerical features only. Conduct arithmetic operation from multiple columns.
- Mixed-type Operations: Combine categorical feature and numerical feature to generate a new one.
- Categorical Operations: Combine two categorical features to generate a new feature. For example, you
can infer a condition to make a binary feature, indicating whether it follows the condition.

Format of response for 5 new columns:
—
Thought 1: [Any reasons based on examples above why the following new feature would be helpful for
the task]
New feature 1: [Type of operation] | New_column_name | One line detailed pseudo code for generating
columns
...
Thought 5: ...
New feature 5: ...
—

Answer:
—
Thought 1:

Figure 6: Full prompt example for feature discovery in the Adult dataset (initial query without
diversity enforcement).
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You are a data engineer. Given the task description and the list of features and data examples, you are
making a new column for the data which is informative to solve the task.

Task: Does this person earn more than 50000 dollars per year? Yes or no?
Features:
- age: the age of an individual (numerical variable within range [17, 90])
...

Examples:
age is 49. workclass is Private. fnlwgt is 123807. education is HS-grad. educational-num is 9.
marital-status is Separated. occupation is Adm-clerical. relationship is Unmarried. race is Black. gender
is Female. capital-gain is 0. capital-loss is 0. hours-per-week is 40. native-country is United-States.
...

Given a type of operations below, generate 5 new columns which are the most informative to
solve the task using operations. Refer to the examples when generating features. Only use features
listed in the feature description. Note that multiple operations can be nested to generate a new column.

The possible type of operations is as follows:
- Transformations: Numerical features only. Transform the feature value with one of the following
operators:
absolute, logarithm, square root, sigmoid, or frequency (i.e., frequency of feature in the data).
- Numerical Operations: Numerical features only. Conduct arithmetic operation from multiple columns.
- Mixed-type Operations: Combine categorical feature and numerical feature to generate a new one.
- Categorical Operations: Combine two categorical features to generate a new feature. For example, you
can infer a condition to make a binary feature, indicating whether it follows the condition.

You also have some new example features generated with these modules.

Example Features:
Index | Feature_name | Feature_desc
1 | workclass_gender | Combine workclass and gender to see if certain workclasses have gender-specific
income differences
2 | education_marital | Combine education and marital-status to see if higher education levels are
correlated with higher income levels
3 | hours_per_week_squared | Square the hours-per-week column to see if there is a non-linear
relationship with income
4 | age_log | Take the logarithm of age to normalize the distribution
5 | capital_net | Subtract capital-loss from capital-gain

You must write new feature that is different from all above examples features with respect to
both names and descriptions.

Format of response for 5 new columns:
—
Thought 1: [Any reasons based on examples above why the following new feature would be helpful for
the task]
New feature 1: [Type of operation] | New_column_name | One line detailed pseudo code for generating
columns
...
Thought 5: ...
New feature 5: ...
—

Answer:
—
Thought 1:

Figure 7: Full prompt example for feature discovery in the Adult dataset (subsequent query with
diversity enforcement). Text colored blue represents the diversity enforcement component.
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A.3 EXAMPLE GENERATION RESULT FROM FEATURE DISCOVERY PROMPT

Figure 8 is an example of the outcome when a prompt for feature discovery is input into the LLM. A
rationale and a simple description for the implementation of each new feature are generated.

Thought 1: Based on the examples, we can see that capital-gain and capital-loss could be
important factors in determining if a person earns more than 50000 dollars per year. People
with higher capital gains are more likely to earn more.

New feature 1: Categorical Operations | HighEducation | If education is higher than
HS-grad, set HighEducation to 1, else 0.

Thought 2: The occupation of an individual can also be indicative of their income
level.

New feature 2: Categorical Operations | HighIncomeOccupation | If the occupation
is Exec-managerial or Prof-specialty, set HighIncomeOccupation to 1, else 0.

Thought 3: The capital gain and capital loss could be combined to create a net cap-
ital feature.

New feature 3: Numerical Operations | NetCapital | NetCapital = capital-gain - capital-loss

Thought 4: The combination of age and hours-per-week could provide insights into
the individual’s work ethic and experience.

New feature 4: Numerical Operations | WorkEthic | WorkEthic = age * hours-per-
week

Thought 5: The combination of marital status and relationship could indicate the in-
dividual’s family situation, which might affect their income.

New feature 5: Mixed-type Operations | FamilyStatus | If marital-status is Married-
civ-spouse and relationship is Husband or Wife, set FamilyStatus to 1, else 0.

Figure 8: Example generation result by LLM from feature discovery prompt in the Adult dataset.
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A.4 FULL PROMPT EXAMPLE FOR PARSING FEATURES

Figure 9 shows the prompt used to create converter code for generating actual features based on the
new feature descriptions provided by the LLM during the feature discovery process. This prompt is
input into the LLM to extract Python-based conversion code for use.

Provide me a python code for function, given description below.

Function name: column_appender
Input: Dataframe df_input
Input Features:
- age: the age of an individual (numerical variable within range [17, 90])
...

Output: Dataframe df_output.

Function description: Create a new dataframe df_output. Each column in df_output
contains new columns which are made based on the column description below. Be sure that
the function code well matches with its feature type (i.e., numerical, categorical), and follows
the below guidelines.

Code guidelines (Format - Type | New column name | One line pseudo code):
- Generate each column with one line code.
- If there is no sufficient information to generate code, ignore the corresponding column.
- Make sure that the resulting type column is either string (for categorical) or numeric (for
continuous).

Column description:
New feature 1: Categorical Operations | HighEducation | If education is higher than HS-grad,
set HighEducation to 1, else 0.

New feature 2: Categorical Operations | HighIncomeOccupation | If the occupation
is Exec-managerial or Prof-specialty, set HighIncomeOccupation to 1, else 0.

New feature 3: Numerical Operations | NetCapital | NetCapital = capital-gain - capital-loss

New feature 4: Numerical Operations | WorkEthic | WorkEthic = age * hours-per-
week

New feature 5: Mixed-type Operations | FamilyStatus | If marital-status is Married-
civ-spouse and relationship is Husband or Wife, set FamilyStatus to 1, else 0.

Figure 9: Full prompt example for parsing features in the Adult datsaet.
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A.5 EXAMPLE GENERATION RESULT FOR PARSING FEATURES PROMPT

Figure 10 is an example of the LLM’s output for the parsing features prompt. It provides a Python
code function for creating the discovered feature.

<start>
def column_appender(df_input):

df_output = df_input.copy()
df_output[’HighEducation’] = df_output[’education’].apply(lambda x: 1 if x !=
’HS-grad’ else 0)
df_output[’HighIncomeOccupation’] = df_output[’occupation’].apply(lambda x: 1 if x
in [’Exec-managerial’, ’Prof-specialty’] else 0)
df_output[’NetCapital’] = df_output[’capital-gain’] - df_output[’capital-loss’]
df_output[’WorkEthic’] = df_output[’age’] * df_output[’hours-per-week’]
df_output[’FamilyStatus’] = df_output.apply(lambda x: 1 if (x[’marital-status’] ==
’Married-civ-spouse’ and x[’relationship’] in [’Husband’, ’Wife’]) else 0, axis=1)
return df_output

<end>

Figure 10: Example generation results for parsing features prompt in the Adult dataset.
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B DATASET DETAILS

In our work, we use a total of 22 datasets. Each dataset is assigned to either a binary, multi-class
classification, or regression task. The datasets were selected considering the size, variety, and types
of features. Basic information of each dataset are shown in Table 3 below. Task objectives of entire
datasets are listed in Appendix A.

Table 3: Basic information of datasets used for evaluation.

Data # of samples # of features (Categorical/Numerical) Task

Adult 48842 14 (7/7) Binary classification
Balance-scale 625 4 (0/4) Multi-class classification
Bank 45211 16 (8/8) Binary classification
Blood 748 4 (0/4) Binary classification
Car 1728 6 (5/1) Multi-class classification
Communities 1994 103 (1/102) Multi-class classification
Credit-g 1000 20 (12/8) Binary classification
Diabetes 768 8 (0/8) Binary classification
Eucalyptus 736 19 (5/14) Multi-class classification
Forest-fires 517 12 (2/10) Regression
Heart 918 11 (4/7) Binary classification
Junglechess 44819 6 (0/6) Multi-class classification
Myocardial 1700 111 (94/17) Binary classification
Tic-tac-toe 958 9 (9/0) Binary-classification
Vehicle 846 18 (0/18) Multi-class classification
Bike 17379 12 (3/9) Regression
Crab 3893 8 (1/7) Regression
Housing 20640 9 (1/8) Regression
Insurance 1338 6 (3/3) Regression
Wine 6497 12 (1/11) Regression
Sequence-type 250 5 (0/5) Multi-class classification
Solution-mix 300 8 (0/8) Regression
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C IMPLEMENTATION DETAILS

C.1 TST-LLM DETAILS

This section provides additional implementation details of our model. In the feature discovery process
of TST-LLM, we use the GPT-3.5 model as the LLM backbone. Meta-information such as feature
names and descriptions were included in the prompt. For categorical features, a list of categories
for each feature was added, and for numerical features, the min-max value statistics were included.
During LLM generation, the temperature was set to 0.5 and the top-p value was set to the API’s default
of 1. The discovery process generated five features per trial, with the number of trials set at 40. The
number of serialized samples included in the prompt was set to a maximum of 20, as allowed by the
prompt limit. When the number of features in a dataset exceeded 100 (e.g., communities, myocardial),
and the prompt limit was reached, we resolved this by selecting a random 10 columns per query.
Over 40 trials, we ensured that all features were used at least once in the feature discovery process.

After the LLM completed feature discovery, a feature set satisfying the minimum redundancy
between the original data was selected for representation learning. The number of selected features
M was set to 20. Refer to Algorithm 1 below for the feature selection algorithm. The encoder
structure for representation learning was consistent with the baselines, configured as a 2-layer MLP
with 1024 dimensions. The projection head consisted of a single linear layer, projecting 1024 to
128 dimensions. Training utilized the Adam optimizer with a learning rate of 1e-4, a batch size of
128, and 1000 training iterations.

Algorithm 1: Algorithm for feature selection with minimum redundancy.

Input :Initial feature set Ŷinit, number of features to select M , original dataset D.
Output :Selected feature set Ŷ

1 Ŷ ← ∅
2 Ŷfiltered ← {ŷ | Entropy(ŷ) ≥ tent, ŷ ∈ Ŷinit} ; // Filter low entropy features

3 while |Ŷ| < M do
4 Φ← ∅
5 for ŷ ∈ Ŷfiltered do
6 φy ← max(CramersV(D, ŷ)) ; // Compute redundancy of the feature
7 Φ← Φ ∪ {(φy, ŷ)}
8 end

/* Select features with minimum redundancy */

9 Ŷselected ← {ŷ | φy = minφy (Φ), (φy, ŷ) ∈ Φ}
10 Ŷfiltered ← Ŷfiltered − Ŷselected

11 D ← D ∪ Ŷselected

12 Ŷ ← Ŷ ∪ Ŷselected

13 end
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C.2 BASELINE DETAILS

This section describes the implementation details of the baselines. While the implementation of
the baselines followed the original works of the respective papers, the encoder used to extract
representations was configured uniformly for a fair comparison (i.e., a 2-layer MLP with 1024 hidden
dimensions). Different decoder and projector networks were used according to each methodology.

For Autoencoder baseline, the decoder was the same 2-layer MLP with 1024 hidden dimensions as
the encoder. For Siamese network-based methodologies (e.g., SimSiam, SCARF, STAB), a 2-layer
MLP with 256 hidden dimensions was used as the projector, and for SimSiam, the predictor consisted
of a single linear layer. STUNT, which uses prototype-based learning, does not have a separate
decoder. For LFR, a single linear layer predictor and a 2-layer ReLU network with 256 hidden
dimensions were used as the random data projector.

For all baselines, we referred to the following links for the implementation23.

2https://github.com/layer6ai-labs/lfr
3https://github.com/jaehyun513/STUNT
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D COMPUTATIONAL COMPLEXITY

In this section, we compare the computational time required for model training. The comparison
was conducted on the Adult dataset using a single A100 GPU. For our model, the computation time
includes the entire process of feature discovery and selection from the LLM, as well as training.
Table 4 reports the total time spent for each method. We found that our model has a computational
time complexity comparable to other baselines.

Table 4: Computational time complexity analysis of self-supervised representation learning methods.
The total time spent (in seconds) and the ratio compared to our model are reported for each method.

Model Time spent (second) Time spent (ratio)

Autoencoder 520.4 1.08
SimSiam 350.7 0.73
SCARF 479.6 1.00
STAB 208.7 0.43
STUNT 608.8 1.27
LFR 470.3 0.98

TST-LLM 481.2 1.00
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E LEARNING WITH OTHER OBJECTIVES

In our framework, we utilize supervised contrastive learning to integrate information from LLM-
discovered features into embeddings, although it is not the only available approach. Therefore, in
this section, we compare the performance of our framework using different loss objectives with a
linear model. Figure 11 compares the performance of self-supervised baselines and TST-LLM against
each other using win matrices, while our framework uses different training objectives including
supervised contrastive learning (Figure 11a), CLIP (Radford et al., 2021) (Figure 11b), reconstruction
(Figure 11c), and cross-entropy (Figure 11d). Our framework consistently outperforms other self-
supervised baselines, irrespective of the training objectives used.
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(a) Supervised Contrastive Learning
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(b) CLIP
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(c) Reconstruction
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(d) Cross-Entropy

Figure 11: Win matrices comparing self-supervised tabular learning methods against each other,
while our framework uses different training objectives including (a) Supervised Contrastive Learning,
(b) CLIP, (c) Reconstruction, and (d) Cross-Entropy. Self-supervised tabular learning methods are
aligned on the x-axis and the y-axis while the numbers represent the winning ratio of the x-axis model
against the y-axis model. Full results are in the Appendix H.7.
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F IMPACT OF THE NUMBER OF TRIALS IN FEATURE DISCOVERY

In this section, we analyze the impact of the number of trials on downstream task performance when
performing feature discovery through an LLM. In our current model setting, five new features are
discovered per trial, and a total of 40 trials are made to obtain the feature set. Figure 12 below
measures the performance change ratio compared to the current model as the number of trials is
varied to 5, 10, 20, and 30. The results indicate that with 10 or more trials, stable performance is
achieved across multiple tasks.
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Figure 12: Effect of the number of trials in feature discovery on the performance of downstream tasks.
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G QUALITATIVE ANALYSIS

To verify whether the features discovered by the LLM align with the task definition, we selected and
examined the top three discovered features for each dataset using our selection strategy (see Table 5).
We observed that the discovered features somewhat intuitively align with the downstream task.

Table 5: Top-3 discovered features from our selection strategy for each dataset.

Data Top-3 discovered features

Adult age * hours-per-week, educational-num / age, educational-num * age

Balance-scale
abs(left-weight - right-weight),
abs(left-weight + left-distance - right-weight - right distance),
(left-weight - left-distance)**2 - (right-weight - right-distance)**2

Bank duration * campaign, balance * duration, duration / day

Blood (Recency ** 0.5) * Frequency / Time, 1 / (1 + np.exp(Recency - Time)), (Time - Recency) / Frequency

Car

maint.map({’low’: 1, ’medium’: 2, ’high’: 3, ’very high’: 4}) + doors.map({’5more’: 5, ’4’: 4, ’3’: 3, ’2’: 2}),
buying.map({’high’:3, ’low’:1, ’medium’:2, ’very high’:4}) + maint.map({’high’:3, ’low’:1, ’medium’:2, ’very high’:4})
+ doors.map({’5more’:4, ’4’:3, ’2’:1, ’3’:2}) + persons.map({’more’:4, ’2’:1, ’4’:3})
+ lug_boot.map({’med’:2, ’big’:3, ’small’:1}) + safety.map({’med’:2, ’low’:1, ’high’:3}),
(maint + safety) / 2

Communities PctEmplManu * HousVacant, MedRentPctHousInc * pctWWage, agePct12t21 * NumInShelters

Credit-g duration / age, age * duration, age / duration

Diabetes Glucose / Age, Pregnancies * DiabetesPedigreeFunction,
DiabetesPedigreeFunction.map(DiabetesPedigreeFunction.value_counts())

Eucalyptus (Surv + Vig) * Ht, Stem_Fm - Brnch_Fm, Crown_Fm - Brnch_Fm

Forest-fires temp * RH, wind * temp, FFMC + DMC + DC + ISI

Heart Age.corr(MaxHR), RestingBP * MaxHR, abs(RestingBP - MaxHR)

Junglechess
(white_piece0_file * white_piece0_rank) / (black_piece0_file * black_piece0_rank),
white_piece0_file * white_piece0_rank,
groupby([’white_piece0_file’, ’white_piece0_rank’, ’black_piece0_file’, ’black_piece0_rank)[’white_piece0_file’].transform(’count’)

Myocardial log(AST_BLOOD), L_BLOOD * ROE, L_BLOOD.value_counts()[L_BLOOD].values

Tic-tac-toe
apply(lambda x: (x[’top-left-square’] == ’x’) + (x[’middle-middle-square’] == ’x’) + (x[’bottom-right-square’] == ’x’)),
apply(lambda x: (x[’bottom-left-square’] == ’o’) + (x[’bottom-middle-square’] == ’o’) + (x[’bottom-right-square’] == ’o’)),
apply(lambda x: [x[’top-left-square’], x[’top-right-square’], x[’bottom-left-square’], x[’bottom-right-square’]].count(’o’)),

Vehicle
COMPACTNESS / CIRCULARITY,
SCALED_RADIUS_OF_GYRATION / RADIUS_RATIO,
PR.AXIS_RECTANGULARITY / CIRCULARITY

Bike abs(temp - hum), abs(temp - atemp), hr * mnth
Crab Shell Weight / (Weight - Shucked Weight - Viscera Weight), Shucked Weight / Viscera Weight, Weight.value_counts()

Housing population / households, total_bedrooms / households, median_income / population
Insurance age * bmi, abs(age - bmi), age / (children + 1)

Wine sulphates - volatile acidity, citric acid / residual sugar, fixed acidity + alcohol

Sequence-type
Number2 / Number1 - Number3 / Number2,
[’Number1’, ’Number2’, ’Number3’, ’Number4’, ’Number5’].sum(axis=1) % 2,
(Number2 / Number1 + Number3 / Number2 + Number4 / Number3 + Number5 / Number4).cumsum()

Solution-mix

Solution_1_volume * Solution_1_concentration + Solution_2_volume * Solution_2_concentration + Solution_3_volume
* Solution_3_concentration + Solution_4_volume * Solution_4_concentration,
abs(Solution_1_concentration - Solution_2_concentration) + abs(Solution_2_concentration - Solution_3_concentration)
+ abs(Solution_3_concentration - Solution_4_concentration),
np.log((Solution_1_concentration + Solution_2_concentration + Solution_3_concentration + Solution_4_concentration)
/ (Solution_1_volume + Solution_2_volume + Solution_3_volume + Solution_4_volume))
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H FULL RESULTS

In this section, we present full results of our experiments.

H.1 EVALUATION WITH LINEAR MODEL

Table 6: Evaluation results of self-supervised models on linear model, showing (a) AUC across 15
datasets for classification and (b) RMSE across 7 datasets for regression. Best performances are
bolded, and our framework’s performances, when second-best, are underlined.

(a) Classification (AUC)

Dataset Raw Data AutoEncoder SimSiam SCARF STAB STUNT LFR Ours

Adult 90.75±0.17 91.07±0.20 89.01±0.24 90.90±0.17 90.55±0.24 91.06±0.20 91.29±0.19 91.32±0.12
Balance-scale 97.24±1.11 99.58±0.37 99.37±0.46 99.44±0.39 97.66±1.46 93.10±2.50 99.28±0.39 99.51±0.33
Bank 90.48±0.18 91.14±0.07 87.32±0.16 91.73±0.04 90.06±0.24 91.10±0.38 91.65±0.17 92.08±0.18
Blood 75.15±3.21 74.98±3.52 75.18±4.42 73.92±4.04 74.75±3.24 74.39±4.83 73.88±3.11 74.85±2.89
Car 98.95±0.30 99.60±0.23 97.95±0.42 99.50±0.31 99.25±0.43 97.96±0.28 99.91±0.04 99.73±0.18
Communities 84.31±1.23 83.01±0.74 83.56±0.85 83.86±1.51 84.39±0.70 85.09±1.15 81.45±1.12 85.25±0.67
Credit-g 77.89±6.44 77.60±5.26 77.69±6.27 77.12±5.46 77.26±3.18 75.94±4.51 75.04±6.32 78.38±4.85
Diabetes 83.07±4.74 81.64±6.16 82.73±5.58 81.96±5.97 80.38±5.22 82.21±3.04 81.43±7.38 82.56±5.12
Eucalyptus 91.64±1.10 90.85±1.33 90.50±1.80 90.44±1.23 89.66±1.97 85.61±1.51 89.85±0.64 91.34±0.99
Heart 93.10±2.12 92.79±1.60 93.07±2.33 93.15±1.58 93.15±2.52 92.38±2.70 92.60±2.16 93.45±1.60
Junglechess 80.61±0.33 89.89±0.49 86.92±0.70 88.45±0.70 92.10±0.47 91.62±0.44 92.93±0.42 93.43±0.31
Myocardial 61.20±5.13 60.90±4.97 66.11±4.05 60.43±3.35 59.29±3.86 63.27±4.35 62.06±3.38 63.64±3.08
Sequence-type 92.11±2.03 96.37±0.75 96.34±1.17 97.36±0.91 97.16±1.48 92.40±1.15 97.41±0.63 96.44±1.01
Tic-tac-toe 99.31±0.60 99.84±0.08 98.28±1.35 99.00±0.67 95.93±1.87 94.07±3.14 99.80±0.15 99.52±0.51
Vehicle 94.82±0.50 96.16±0.83 92.37±1.39 96.02±0.52 95.32±0.49 93.55±1.07 96.32±0.38 96.22±0.28

(b) Regression (RMSE)

Dataset Raw Data AutoEncoder SimSiam SCARF

Bike 142.36±1.58 126.90±1.02 121.59±1.59 111.67±2.08
Crab 2.21±0.05 2.12±0.03 2.12±0.04 2.12±0.03
Forest-fires 75.07±35.28 81.21±29.08 82.01±27.45 82.87±28.15
Housing 69132.79±489.67 58155.43±619.72 59159.48±62.79 56941.63±519.79
Insurance 5930.14±273.29 4641.78±220.29 4666.29±252.95 4657.87±174.01
Solution-mix 0.07±0.00 0.03±0.00 0.03±0.00 0.03±0.00
Wine 0.73±0.01 0.69±0.00 0.69±0.00 0.69±0.01

Dataset STAB STUNT LFR Ours

Bike 126.42±1.91 115.98±2.18 121.02±2.43 111.46±1.72
Crab 2.15±0.02 2.13±0.04 2.16±0.02 2.13±0.03
Forest-fires 80.13±30.24 77.57±32.56 83.84±26.81 83.19±22.47
Housing 60071.46±297.95 56151.34±352.44 58064.28±312.73 56069.83±406.99
Insurance 4787.10±170.53 5099.03±337.72 4833.99±293.63 4578.14±149.83
Solution-mix 0.03±0.00 0.07±0.00 0.02±0.00 0.02±0.01
Wine 0.71±0.00 0.67±0.00 0.69±0.01 0.67±0.00
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H.2 EVALUATION WITH NON-PARAMETRIC CLASSIFIER

Table 7: Evaluation results of self-supervised models on Non-parametric classifier with (a) 3 and (b)
5 clusters, showing AUC across 16 datasets for classification. Best performances are bolded, and our
framework’s performances, when second-best, are underlined.

(a) 3 Clusters

Dataset Raw Data AutoEncoder SimSiam SCARF STAB STUNT LFR Ours

Adult 82.31±0.18 81.53±0.16 80.51±0.41 81.90±0.09 82.21±0.24 82.20±0.30 82.28±0.29 81.90±0.46
Balance-scale 79.47±2.44 78.40±1.60 82.67±1.85 78.67±0.46 79.73±3.23 79.20±1.60 78.13±2.44 79.73±0.46
Bank 89.09±0.14 89.19±0.03 88.41±0.25 88.85±0.13 89.11±0.04 88.96±0.11 89.16±0.11 89.36±0.26
Blood 72.44±4.44 71.33±3.46 71.33±4.67 69.78±5.00 71.33±4.67 74.67±3.71 72.00±4.16 74.33±3.06
Car 87.09±2.09 86.42±2.37 77.17±1.16 79.00±0.73 82.01±1.59 82.85±1.97 79.77±2.08 89.40±2.73
Communities 63.07±2.25 62.32±2.43 58.23±1.61 61.99±1.63 61.57±0.95 62.24±1.04 62.91±0.90 62.16±2.39
Credit-g 73.00±1.50 73.33±0.76 69.00±4.44 71.83±3.33 72.00±3.04 71.67±4.65 71.50±1.00 71.83±1.76
Diabetes 73.16±4.96 72.94±6.57 69.91±7.30 70.78±3.95 74.24±1.35 74.03±4.06 72.51±4.12 72.73±4.90
Eucalyptus 59.23±3.19 53.60±3.96 57.88±2.73 52.03±4.05 56.08±4.22 52.25±2.06 58.23±2.06 60.59±5.12
Heart 84.60±1.66 84.96±1.91 84.42±1.13 85.33±0.54 85.51±1.75 85.05±2.57 84.60±2.45 84.70±1.09
Junglechess 75.08±0.54 74.35±0.27 77.40±0.14 72.34±0.22 74.84±0.64 73.65±0.47 73.87±0.38 75.35±0.52
Myocardial 74.40±5.63 73.91±2.51 73.43±2.93 75.12±1.11 73.43±1.11 71.01±3.32 74.64±4.35 72.22±2.74
Sequence-type 90.00±2.00 91.33±1.15 86.00±3.46 93.33±1.15 90.67±2.31 92.00±2.00 93.33±2.31 91.33±2.31
Tic-tac-toe 91.15±0.52 82.29±0.90 85.07±2.41 72.40±2.71 84.90±1.56 96.70±1.59 77.95±2.46 93.92±1.59
Vehicle 69.80±2.96 75.10±3.55 59.80±2.96 68.82±5.23 68.80±1.80 67.59±3.67 74.31±4.34 74.51±2.65

(b) 5 Clusters

Dataset Raw Data AutoEncoder SimSiam SCARF STAB STUNT LFR Ours

Adult 83.17±0.19 82.48±0.12 81.47±0.31 82.60±0.11 83.17±0.11 82.93±0.35 83.15±0.37 83.22±0.32
Balance-scale 82.40±2.88 82.40±2.12 86.67±0.46 83.20±2.40 81.60±3.20 85.07±2.81 81.33±3.33 81.33±0.92
Bank 89.40±0.32 89.48±0.14 88.85±0.22 89.13±0.16 89.54±0.04 89.37±0.26 89.47±0.27 89.25±0.06
Blood 74.67±4.16 74.44±4.07 73.56±4.73 74.44±2.78 74.67±2.91 74.22±4.34 72.89±3.67 73.78±4.07
Car 89.69±0.83 84.90±1.01 78.13±1.77 85.07±1.64 88.54±2.53 88.54±2.67 84.78±1.92 93.77±2.29
Communities 65.58±1.16 64.55±1.24 61.32±0.14 63.16±1.57 63.41±1.96 65.25±1.67 64.91±1.15 65.58±1.43
Credit-g 72.33±2.57 74.83±0.29 71.17±4.54 73.50±3.61 71.83±2.93 71.33±1.15 71.67±1.53 73.17±3.88
Diabetes 73.38±3.25 72.51±4.32 73.38±5.15 73.16±2.46 72.94±3.33 74.03±3.62 73.38±3.90 71.65±5.52
Eucalyptus 59.46±4.87 54.95±3.96 58.33±2.56 53.60±3.47 54.28±5.46 52.70±3.10 58.33±3.96 63.16±3.10
Heart 85.69±1.91 86.23±0.31 85.69±1.57 86.41±1.44 84.96±0.63 85.69±0.83 86.59±1.66 84.06±1.37
Junglechess 75.20±0.42 75.28±0.40 78.93±0.57 74.04±0.54 76.09±0.61 75.57±0.33 75.23±0.52 75.80±0.43
Myocardial 75.60±2.74 75.85±1.82 73.91±0.72 76.33±1.11 76.57±1.82 74.40±2.54 76.09±2.90 76.12±2.33
Sequence-type 91.33±3.06 91.33±1.15 86.00±5.29 93.33±2.31 90.00±3.46 90.00±4.00 93.33±2.31 92.67±3.06
Tic-tac-toe 94.10±0.80 84.38±1.80 87.33±1.97 77.26±2.46 90.45±2.87 97.74±0.60 82.12±1.08 95.31±1.88
Vehicle 72.75±1.70 75.49±0.90 60.39±0.34 70.39±3.59 72.75±0.34 71.57±2.23 74.71±3.11 76.47±3.53
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H.3 ABLATION STUDY WITH LINEAR MODEL

Table 8: Evaluation results of ablation studies on linear model, showing (a) AUC across 15 datasets
for classification and (b) RMSE across 7 datasets for regression. Best performances are bolded, and
our framework’s performances, when second-best, are underlined.

(a) Classification (AUC)

Dataset Top-1 selection Random-1 selection Random feature discovery Without learning Without feature selection Ours

Adult 91.27±0.11 91.27±0.13 91.38±0.11 91.65±0.54 91.36±0.13 91.32±0.12
Balance-scale 99.46±0.37 99.53±0.29 99.54±0.26 99.96±0.07 99.64±0.26 99.51±0.33
Bank 92.10±0.12 91.96±0.20 91.99±0.24 89.83±0.65 91.91±0.19 92.08±0.18
Blood 74.72±2.85 74.89±2.83 74.85±2.85 73.12±4.94 75.26±2.67 74.85±2.89
Car 99.65±0.22 99.48±0.40 99.68±0.16 98.05±1.75 99.81±0.08 99.73±0.18
Communities 85.37±1.28 84.74±0.44 85.36±0.73 84.19±1.46 85.59±1.28 85.25±0.67
Credit-g 78.23±5.14 77.97±5.89 77.53±5.48 74.48±4.54 78.43±4.46 78.38±4.85
Diabetes 82.20±5.36 82.23±5.19 82.60±4.81 84.33±3.89 82.19±5.20 82.56±5.12
Eucalyptus 91.16±0.84 90.92±1.26 91.15±0.89 88.94±0.80 91.41±1.13 91.34±0.99
Heart 93.56±1.44 93.46±1.28 93.25±1.47 92.50±1.63 93.47±1.48 93.45±1.60
Junglechess 93.37±0.28 92.07±0.29 93.37±0.21 93.57±1.54 93.43±0.39 93.43±0.31
Myocardial 62.10±2.45 63.05±1.51 62.46±2.78 63.98±2.70 62.23±3.70 63.64±3.08
Sequence-type 96.58±0.90 96.80±1.02 96.45±1.01 83.33±28.87 96.47±1.10 96.44±1.01
Tic-tac-toe 99.58±0.23 99.24±0.42 98.95±0.53 99.95±0.06 99.47±0.33 99.52±0.51
Vehicle 95.95±0.51 95.94±0.47 96.00±0.56 94.69±0.30 96.08±0.53 96.22±0.28

(b) Regression (RMSE)

Dataset Top-1 selection Random-1 selection Random feature discovery Without learning Without feature selection Ours

Bike 112.70±1.83 111.27±1.83 111.09±1.75 740.74±657.86 111.68±2.18 111.46±1.72
Crab 2.12±0.03 2.12±0.01 2.13±0.02 6.94±6.20 2.13±0.02 2.13±0.03
Forest-fires 81.61±22.83 81.41±23.53 83.55±23.47 87.11±32.62 86.03±24.27 83.19±22.47
Housing 56162.70±247.14 56231.24±334.36 55984.82±323.18 65521.90±9492.64 55864.26±90.89 56069.83±406.99
Insurance 4630.87±139.19 4567.01±116.92 4587.91±118.33 5880.78±1411.86 4582.00±179.75 4578.14±149.83
Solution-mix 0.02±0.01 0.02±0.00 0.02±0.00 0.01±0.00 0.02±0.00 0.02±0.01
Wine 0.68±0.00 0.68±0.00 0.68±0.00 0.90±0.26 0.68±0.01 0.67±0.00
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H.4 ABLATION STUDY WITH NON-PARAMETRIC CLASSIFIER

Table 9: Evaluation results of ablation studies on non-parametric classifier with (a) 3 and (b) 5
clusters across 16 datasets for classification. Best performances are bolded, and our framework’s
performances, when second-best, are underlined.

(a) 3 Clusters

Dataset Top-1 selection Random-1 selection Random feature discovery Without learning Without feature selection Ours

Adult 81.87±0.41 82.11±0.08 82.64±0.36 83.07±0.23 83.04±0.21 81.90±0.46
Balance-scale 73.07±5.45 79.20±1.39 80.00±1.60 86.13±0.46 80.27±0.92 79.73±0.46
Bank 89.08±0.05 89.04±0.10 88.91±0.36 88.76±0.29 88.71±0.19 89.36±0.26
Blood 71.33±1.76 72.44±5.05 73.33±3.06 76.00±2.00 72.67±3.53 74.33±3.06
Car 82.56±9.62 89.02±2.37 82.66±6.95 81.79±5.69 83.82±3.33 89.40±2.73
Communities 63.32±2.27 64.24±2.04 62.74±0.29 63.24±1.24 64.75±1.16 62.16±2.39
Credit-g 70.00±2.60 71.33±2.57 72.33±1.76 72.00±5.63 71.00±2.65 71.83±1.76
Diabetes 72.94±5.52 72.29±4.32 71.94±4.92 73.38±5.15 72.94±6.14 72.73±4.90
Eucalyptus 56.53±3.96 59.68±2.73 58.11±1.17 56.53±2.81 62.39±4.50 60.59±5.12
Heart 85.69±1.75 84.24±2.72 84.05±1.57 86.78±0.83 84.06±2.57 84.70±1.09
Junglechess 75.46±1.21 75.45±0.75 74.91±0.63 75.76±2.05 74.15±0.52 75.35±0.52
Myocardial 75.12±4.25 73.19±3.32 73.67±0.84 72.46±4.35 74.15±2.33 72.22±2.74
Sequence-type 90.00±3.46 89.33±2.31 91.33±2.31 73.33±29.14 92.00±3.46 91.33±2.31
Tic-tac-toe 90.80±1.20 91.49±1.50 81.25±5.29 91.15±12.18 95.49±1.31 93.92±1.59
Vehicle 71.76±5.79 70.59±5.79 72.75±4.42 74.12±0.59 70.78±1.48 74.51±2.65

(b) 5 Clusters

Dataset Top-1 selection Random-1 selection Random feature discovery Without learning Without feature selection Ours

Adult 82.64±0.15 82.90±0.13 83.43±0.35 84.03±0.11 83.83±0.22 83.22±0.32
Balance-scale 81.33±3.23 82.93±2.44 82.93±1.22 86.13±2.44 81.07±2.01 81.33±0.92
Bank 89.51±0.16 89.37±0.13 89.21±0.20 89.41±0.18 89.25±0.08 89.25±0.06
Blood 73.78±2.14 75.33±3.06 73.56±3.79 76.00±3.06 72.67±2.91 73.78±4.07
Car 88.82±6.79 91.04±2.00 88.54±3.47 83.62±5.43 89.69±0.60 93.77±2.29
Communities 65.41±1.15 65.33±1.43 64.41±1.25 64.24±1.13 64.83±2.03 65.58±1.43
Credit-g 73.17±1.04 73.33±2.36 73.00±2.60 71.33±5.53 71.67±3.62 73.17±3.88
Diabetes 73.59±5.67 73.59±3.33 74.24±4.92 72.29±4.61 73.16±4.70 71.65±5.52
Eucalyptus 58.56±7.29 59.46±5.41 56.76±4.11 58.11±3.76 62.39±6.39 63.16±3.10
Heart 85.69±1.91 85.14±1.66 87.14±1.13 85.87±0.54 84.24±1.44 84.06±1.37
Junglechess 76.51±1.35 75.30±0.31 75.73±0.60 76.94±1.88 75.05±0.41 75.80±0.43
Myocardial 75.85±1.67 73.91±0.72 75.36±1.92 75.36±2.90 75.60±1.11 76.12±2.33
Sequence-type 91.33±4.16 91.33±4.16 90.67±4.62 73.33±29.48 92.00±4.00 92.67±3.06
Tic-tac-toe 94.62±0.60 92.53±2.10 86.98±5.02 91.15±11.30 93.92±1.59 95.31±1.88
Vehicle 72.75±2.78 73.14±3.02 74.51±1.36 70.59±4.08 73.33±1.80 76.47±3.53
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H.5 INFORMATIVENESS OF DISCOVERED FEATURES

Table 10: Analysis of the informativeness of features discovered via LLM. The average mutual
information (MI) between features and the downstream task’s labels is reported for each dataset. The
increase ratio in MI when using discovered features compared to original features is also reported,
along with standard deviations.

Data Average MI in original features Average MI in discovered features Increase ratio (%)

Tic-tac-toe 0.010 0.076 646.6±1535.1
Solution-mix 0.064 0.386 507.3±1348.2
Balance-scale 0.082 0.178 117.3±299.0
Wine 0.055 0.100 81.2±112.3
Bank 0.013 0.022 65.8±172.0
Blood 0.031 0.045 44.6±95.2
Sequence-type 0.345 0.459 32.9±86.9
Forest-fires 0.019 0.025 32.2±131.3
Bike 0.103 0.132 27.9±155.0
Car 0.036 0.041 14.2±157.5
Credit-g 0.009 0.009 8.8±136.5
Insurance 0.364 0.395 8.4±127.7
Communities 0.089 0.095 7.1±85.2
Vehicle 0.212 0.226 6.8±56.5
Adult 0.031 0.032 5.3±123.1
Junglechess 0.049 0.051 4.8±73.8
Myocardial 0.007 0.007 3.1±95.5
Diabetes 0.043 0.045 3.0±71.9
Heart 0.067 0.063 -5.1±81.5
Eucalyptus 0.177 0.158 -10.9±86.9
Crab 0.350 0.254 -27.5±43.7
Housing 0.154 0.102 -34.0±72.2
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H.6 HYPERPARAMETER ANALYSIS ON M

Table 11: Evaluation results with various hyperparameter M on linear model, showing (a) AUC
across 15 datasets for classification and (b) RMSE across 7 datasets for regression. Best performances
are bolded.

(a) Classification (AUC)

Dataset M = 10 M = 20 M = 30 M = All

Adult 91.33±0.16 91.32±0.12 91.31±0.14 91.27±0.16
Balance-scale 99.50±0.36 99.51±0.33 99.57±0.31 99.62±0.28
Bank 92.05±0.23 92.08±0.18 92.01±0.24 91.84±0.06
Blood 74.95±2.95 74.85±2.89 74.95±2.80 74.72±3.04
Car 99.77±0.13 99.73±0.18 99.80±0.13 99.78±0.14
Communities 85.30±1.28 85.25±0.67 85.70±0.88 85.25±0.89
Credit-g 79.07±5.94 78.38±4.85 78.66±5.36 78.08±4.92
Diabetes 81.86±5.34 82.56±5.12 81.99±5.31 82.02±4.71
Eucalyptus 91.58±0.81 91.34±0.99 91.49±0.88 91.74±0.45
Heart 93.69±1.26 93.45±1.60 93.52±1.58 93.42±1.49
Junglechess 93.29±0.29 93.43±0.31 93.64±0.36 93.45±0.33
Myocardial 61.72±2.65 63.64±3.08 61.95±3.44 61.77±2.43
Sequence-type 96.50±0.92 96.44±1.01 96.69±0.97 96.61±0.91
Tic-tac-toe 99.67±0.36 99.52±0.51 99.59±0.41 99.45±0.56
Vehicle 96.08±0.46 96.22±0.28 96.12±0.52 96.15±0.52

(b) Regression (RMSE)

Dataset M = 10 M = 20 M = 30 M = All

Bike 112.57±1.73 111.46±1.72 110.71±2.62 111.09±1.29
Crab 2.13±0.02 2.13±0.03 2.13±0.01 2.14±0.03
Forest-fires 83.33±23.21 83.19±22.47 82.17±22.78 81.14±23.21
Housing 56266.21±248.64 56069.83±406.99 56047.02±125.19 56056.16±240.30
Insurance 4622.89±173.26 4578.14±149.83 4615.54±160.49 4614.74±196.02
Solution-mix 0.02±0.00 0.02±0.01 0.02±0.00 0.02±0.00
Wine 0.68±0.01 0.67±0.00 0.68±0.00 0.68±0.00
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H.7 LEARNING WITH OTHER OBJECTIVES

Table 12: Evaluation results with various loss objectives on linear model, showing (a) AUC across
15 datasets for classification and (b) RMSE across 7 datasets for regression. Best performances are
bolded.

(a) Classification (AUC)

Dataset Supervised Contrastive Learning CLIP Reconstruction Cross-entropy

Adult 91.32±0.12 91.29±0.12 91.36±0.13 91.26±0.13
Balance-scale 99.51±0.33 99.51±0.22 99.65±0.27 99.57±0.32
Bank 92.08±0.18 92.06±0.15 91.95±0.28 92.19±0.23
Blood 74.85±2.89 74.54±3.17 74.78±2.56 74.96±2.98
Car 99.73±0.18 99.74±0.17 99.79±0.18 99.77±0.11
Communities 85.25±0.67 85.53±0.42 85.33±0.64 85.33±0.66
Credit-g 78.38±4.85 78.20±5.74 78.07±5.23 78.31±5.36
Diabetes 82.56±5.12 81.60±5.45 82.33±5.27 81.59±5.47
Eucalyptus 91.34±0.99 91.45±1.20 91.47±1.03 91.42±0.96
Heart 93.45±1.60 93.44±1.45 93.40±1.47 93.40±1.64
Junglechess 93.43±0.31 92.70±0.08 93.08±0.42 93.05±0.29
Myocardial 63.64±3.08 62.13±3.40 60.66±3.00 61.26±2.60
Sequence-type 96.44±1.01 96.63±0.77 96.41±1.05 96.31±0.78
Tic-tac-toe 99.52±0.51 99.49±0.32 99.47±0.25 99.39±0.42
Vehicle 96.22±0.28 96.12±0.57 96.15±0.48 96.05±0.58

(b) Regression (RMSE)

Dataset Supervised Contrastive Learning CLIP Reconstruction Cross-entropy

Bike 111.46±1.72 112.66±2.16 112.56±2.08 112.87±2.16
Crab 2.13±0.03 2.12±0.02 2.12±0.03 2.12±0.02
Forest-fires 83.19±22.47 87.95±24.07 82.04±22.03 82.45±22.59
Housing 56069.83±406.99 55967.38±301.06 56048.85±31.92 56381.03±248.59
Insurance 4578.14±149.83 4615.23±201.58 4644.91±122.84 4572.54±159.84
Solution-mix 0.02±0.01 0.02±0.00 0.02±0.00 0.02±0.00
Wine 0.67±0.00 0.68±0.00 0.68±0.00 0.67±0.00
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H.8 IMPACT OF THE NUMBER OF LLM TRIALS

Table 13: Evaluation results with various numbers of trials on linear model, showing (a) AUC across
15 datasets for classification and (b) RMSE across 7 datasets for regression. Best performances are
bolded.

(a) Classification (AUC)

Number of Trials 5 10 20 30 40

Adult 91.32±0.14 91.31±0.09 91.32±0.08 91.29±0.08 91.32±0.12
Balance-scale 99.67±0.20 99.66±0.22 99.58±0.30 99.53±0.33 99.51±0.33
Bank 91.98±0.15 92.06±0.38 91.91±0.29 91.96±0.22 92.08±0.18
Blood 74.81±2.84 74.94±2.99 75.14±2.98 74.84±2.90 74.85±2.89
Car 99.56±0.24 99.57±0.24 99.73±0.13 99.75±0.14 99.73±0.18
Communities 85.27±0.52 85.13±0.64 85.01±0.95 85.18±0.79 85.25±0.67
Credit-g 77.55±4.74 78.21±5.70 78.77±4.80 78.60±5.35 78.38±4.85
Diabetes 82.07±5.48 81.94±5.38 81.76±5.16 81.71±5.54 82.56±5.12
Eucalyptus 91.12±0.99 91.56±0.68 91.71±0.71 91.32±1.01 91.34±0.99
Heart 93.69±1.37 93.98±1.57 93.52±1.29 93.55±1.27 93.45±1.60
Junglechess 93.45±0.28 93.70±0.40 93.48±0.32 93.60±0.39 93.43±0.31
Myocardial 61.15±3.08 61.67±2.08 64.05±2.48 64.03±2.35 63.64±3.08
Sequence-type 96.50±0.73 96.30±1.03 96.66±1.09 96.50±0.71 96.44±1.01
Tic-tac-toe 99.73±0.18 99.63±0.22 99.52±0.54 99.34±0.39 99.52±0.51
Vehicle 96.17±0.44 95.96±0.37 96.04±0.29 96.07±0.49 96.22±0.28

(b) Regression (RMSE)

Number of Trials 5 10 20 30 40

Bike 111.39±2.14 111.60±2.09 111.10±1.76 112.38±2.43 111.46±1.72
Crab 2.13±0.02 2.13±0.02 2.13±0.03 2.12±0.02 2.13±0.03
Forest-fires 82.46±22.67 81.84±22.78 81.56±23.50 81.75±21.90 83.19±22.47
Housing 55959.59±258.33 56001.28±136.26 56124.43±103.62 56134.17±310.96 56069.83±406.99
Insurance 4612.62±200.13 4618.29±179.43 4576.85±156.01 4598.24±186.34 4578.14±149.83
Solution-mix 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.01
Wine 0.68±0.00 0.68±0.01 0.68±0.00 0.68±0.00 0.67±0.00
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