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Abstract

Large language models (LLMs) exhibit re-
markable text-generation capabilities yet strug-
gle with factual consistency in knowledge-
intensive tasks. Existing fact-checking meth-
ods based on the "Decompose-Then-Verify"
paradigm improve factual reliability but face
scalability issues due to two main limitations:
(1) reliance on costly LLM API calls, and (2)
quadratic complexity from pairwise verifica-
tion of decomposed text segments. We present
Light-FS, an efficient framework adopting a
"Decompose-Embed-Interact” paradigm: (1)
a small language model (SLM) based decom-
poser extracts atomic propositions, (2) a spe-
cialized Bi-Encoder module generates semantic
embeddings, and (3) a multi-feature interaction
module performs embedding-based verification.
Our experiments show that Light-FS achieves
14 x faster decomposition than GPT-40 within
a 3% F1-drop while delivering a 20x efficiency
gain over NLI-based fact-checking models with
comparable verification performance. Light-
FS provides a scalable and efficient solution
for evaluating the factuality of LLM-generated
content.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in text generation tasks
(Mann et al., 2020; Li et al., 2024; Igbal et al.,
2024). However, ensuring the factual reliability
of the generated content remains a critical chal-
lenge. Recent studies (Ji et al., 2023; Bang et al.,
2023; Sadasivan et al., 2023) indicate that LLMs
frequently generate hallucinated content, including
incorrect dates, numerical errors, and fabricated re-
lationships, which can mislead decision-making
and exacerbate misinformation spread. Conse-
quently, automated factuality verification for LLM-
generated content has become a critical research
problem in NLP (Panchendrarajan and Zubiaga,
2024; Si et al., 2024; Atanasova, 2024).

Existing fact-checking methods predominantly
adopt the "Decompose-Then-Verify" paradigm,
where generated text is decomposed into atomic
factual claims and verified against a reference
source (Zhang and Bansal, 2021; Chern et al., 2023;
Zhao et al., 2023). FactScore (Min et al., 2023), a
representative approach, employs LL.Ms for atomic
fact decomposition and then verifies each fact us-
ing either a LLM or a Natural Language Inference
(NLI) model. While this paradigm enhances verifi-
cation granularity, its reliance on costly API calls
and quadratic complexity in pairwise fact verifica-
tion makes it impractical for large-scale applica-
tions.

To address these efficiency bottlenecks, we
present Light-FS (Light-FactScore), an API-free
and computationally efficient fact-checking frame-
work that implements a novel "Decompose-
Embed-Interaction" paradigm. Light-FS achieves
efficiency-accuracy balance through three key in-
novations:

First, we adopt a sentence-level decomposition
strategy using a supervised fine-tuned small lan-
guage model (SLM). Compared to conventional
paragraph-level LLM decomposition (Min et al.,
2023), this strategy reduces inference latency by
15x while mitigating long-context hallucination
risks. Second, we introduce a specialized Bi-
Encoder architecture that improves the representa-
tion quality of atomic fact embeddings. Unlike NLI
models, which require premise-hypothesis pairs for
verification, our approach encodes the premise and
hypothesis independently, eliminating the need for
pairwise comparisons. This architecture reduces
computational complexity from O(K?) to O(K),
achieving 20 x speedup over conventional NLI ver-
ification. Third, we design a multi-feature inter-
action module that strengthens embedding interac-
tions. By integrating pairwise interaction features,
discrepancy features, and global similarity features,
this module enables embedding-based verification



to achieve accuracy comparable to NLI models
while maintaining computational efficiency.
Our contributions can be summarized as:

* We introduce Light-FS, a novel computation-
ally efficient fact-checking framework that
resolves quadratic complexity bottlenecks
through our "Decompose-Embed-Interaction”
paradigm.

* We propose a sentence-level atomic fact de-
composition strategy using a SLM, achieving
15x% speedup over LLM-based decomposition
while maintaining minimal F1 performance
degradation.

* We design an efficient fact verification mecha-
nism composed of a specialized Bi-Encoder
and a multi-feature interaction module, achiev-
ing NLI-level verification performance while
improving computational efficiency by 20x.

2 Related Works

2.1 Hallucinations in LLMs

Hallucinations in LLMs, where models generate
non-factual content such as temporal inconsisten-
cies, numerical errors, or fabricated relationships,
present significant challenges to their reliability,
particularly in knowledge-intensive tasks (Huang
et al., 2023). Current strategies to mitigate hal-
lucinations include training-phase interventions
(e.g., curated datasets and knowledge distillation)
(Gekhman et al., 2024; Abbas et al., 2023; Mc-
Donald et al., 2024; Huang et al., 2022), retrieval-
augmented generation (RAG) approaches that in-
tegrate external knowledge during inference (Ram
et al., 2023; Gao et al., 2022; Lewis et al., 2020),
and post-hoc verification methods to assess factual
consistency after text generation (Manakul et al.,
2023; Dhuliawala et al., 2023; Maynez et al., 2020).
The development of standardized evaluation bench-
marks, like Truthful QA (Lin et al., 2021), REAL-
TIMEQA (Kasai et al., 2024) and HaluEval (Li
et al., 2023), has further enabled systematic mea-
surement of hallucination patterns across different
models.

2.2 Factuality Evaluation

Fact verification methods are primarily catego-
rized into Factual Hallucination Detection and
Faithfulness Hallucination Detection (Huang et al.,

2023). Both methods fundamentally rely on com-
paring the generated content with reference ma-
terial. However, direct document-level compar-
isons often fail to pinpoint specific factual incon-
sistencies when applied to long-text scenarios. The
"Decompose-Then-Verify" paradigm, as demon-
strated by FactScore (Min et al., 2023), overcomes
this limitation by breaking the text into atomic fac-
tual claims for more granular verification. While
this approach improves precision and interpretabil-
ity, it introduces significant computational chal-
lenges, particularly due to the reliance on itera-
tive LLM API calls for atomic fact decomposition
and the quadratic complexity of pairwise verifi-
cation. Even when replacing LLMs with smaller
NLI models like DeBERTa (He et al., 2020), these
bottlenecks persist, making the "Decompose-Then-
Verify" methodology impractical for large-scale
evaluations.

3 Light-FS

Light-FS follows a three-stage "Decompose-
Embed-Interact” paradigm, consisting of three core
components: Decomposer, Embedder, and Multi-
Feature Interaction Module (MFIM). Figure 1 il-
lustrates the overall architecture of Light-FS. The
workflow of Light-FS consists of three stages: (1)
Atomic Fact Decomposition. The Decomposer ex-
tracts atomic facts from both generated content and
reference material at the sentence level, ensuring
each fact is independent, self-contained, and se-
mantically complete. (2) Embedding Generation.
The Embedder, based on a Bi-Encoder architecture,
converts atomic facts into vector representations.
(3) Fact Verification via MFIM. The MFIM com-
putes the fact score between generated content and
reference material based on multi-feature interac-
tion.

The following sections detail the three core com-
ponents of Light-FS, and its detailed implementa-
tion is provided in Appendix A.

3.1 Decomposer

The Decomposer extracts discrete and self-
contained atomic facts from the textual content.
This decomposition process requires strong reason-
ing capabilities, typically best handled by LLMs.
We employ a supervised fine-tuned SLM to balance
efficiency and reasoning capability, significantly
reducing computational costs. However, when ap-
plied to long-text decomposition, SLMs may gener-
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Figure 1: Overview of the Light-FS framework for fact verification. The system follows a three-stage process:
Decompose, Embed, and Interact. In the Decompose stage, the LLM-generated text and the corresponding
reference text from Wikipedia are processed using a small language model decomposer. In the Embed stage, these
atomic facts are encoded using a Bi-Encoder, with the use of PMA and Pool to capture different embedding features.
In the Interact stage, the embeddings undergo multi-feature interactions through cosine similarity and feature-based
processing, producing fact scores to assess the factuality of the content.

ate hallucinated, inaccurate, or incomplete atomic
facts, which can compromise the accuracy of sub-
sequent verification processes. To mitigate this, we
adopt a sentence-level decomposition strategy in-
stead of a passage-level to minimize factual distor-
tions. Additionally, embedding-based approaches
alone may struggle to capture fine-grained seman-
tic nuances in long-text scenarios. We apply atomic
fact decomposition to both generated content and
reference material, ensuring greater scalability and
improved fact verification.

We first segment the input text (both generated
content and reference material) into sentences us-
ing Stanza (Qi et al., 2020), denoted as T' =
{t1,t9,...,tn}, where each t; represents the i-th
sentence. Each sentence ¢; is individually pro-
cessed by the SLM to extract atomic facts, re-
sulting in a fact set A; = {a1, ag, ..., an, }, where
a; represents the j-th atomic fact from sentence
t;. The complete atomic fact set is constructed as
A=UL Ai

By adopting sentence-level decomposition, we
reduce the factual complexity per inference step,

minimize hallucination risks, and enhance fact de-
composition accuracy.

3.2 Embedder

The Embedder converts atomic facts into vector
representations for efficient fact verification. Tra-
ditional BERT-based embedding models typically
use either the [CLS] token or mean pooling for
sentence embeddings (Reimers, 2019). However,
such methods often fail to capture fine-grained se-
mantic nuances, critical for factuality evaluation.
We adopt a Pooling-based Multi-Head Attention
(PMA) mechanism to enhance embedding quality,
inspired by (Liao et al., 2024; Lee et al., 2019),
following the BERT encoder.

Given an atomic fact set ' = {s1, S2, ..., Sn},
each fact s; is tokenized and encoded using
BERT, resulting in token embeddings 7; =
{t1,t2, ..., tien }, Where ¢, is a d-dimensional vector.
The PMA module then aggregates token embed-
dings to produce a multi-view sentence embedding:

h = LN(MHA(q, T3, T3) + ), h#* = LN(h + FEN(h))



Where LN denotes Layer Normalization,
MHA(Q, K, V') is the Multi-Head Attention mech-
anism, ¢ is a learnable query vector, dynamically
aggregating token-level information. To capture
diverse aspects of sentence semantics, h?gg con-
sists of two embeddings, each representing differ-
ent aspects of sentence meaning. This design re-
tains richer contextual information than traditional
pooling-based methods.

Moreover, to leverage BERT’s global semantic
representation, we extract a global embedding g;
from either the [CLS] token ¢;[CLS] or the mean-
pooled token embeddings mean(T;), depending
on the model’s training configuration.

The final sentence representation H; is formed
by stacking both the attention-based and global
embeddings:

H; = Stack(hi®¢, g;) € R34

This multi-view embedding strategy enriches
atomic fact representations, providing stronger fac-
tual verification signals.

3.3 MFIM

The Multi-Feature Interaction Module (MFIM)
computes a fact score between reference and gen-
erated atomic fact embeddings. Given embeddings
H, (reference material) and H, (generated con-
tent), we define three interaction features:
Pairwise Interaction Feature (P): P models
the direct semantic alignment between reference
and generated facts, explicitly capturing their fac-
tual overlap. This feature helps detect minor fac-
tual distortions, such as incorrect dates, numerical
discrepancies, or entity mismatches, by compar-
ing their semantic representations. As the primary
factual alignment signal, P enables the model to
detect cases where the generated fact is directly
entailed by or contradicts the reference fact.

P = MLPp(Concat(H,[0], H,4[0])) € R

Discrepancy Feature (D): D models fine-
grained factual differences, simulating premise-
hypothesis entailment in NLI tasks. Errors in gen-
erated content sometimes arise from introducing
extraneous information rather than direct contradic-
tion. To quantify this, D computes the directional
difference between the reference fact and the gen-
erated fact, detecting cases where the generated
content includes unsupported details that alter fac-
tual accuracy. Unlike direct contradiction detection,

this feature ensures the model penalizes factual ad-
ditions while allowing omissions as long as the
retained information remains correct.

D =MLPp(H,[1] — Hy[1]) € R

Global Similarity Feature (S): S quantifies
overall semantic alignment between reference
and generated embeddings using cosine similar-
ity. While pairwise and discrepancy features focus
on local fact-level alignment, factual consistency
also depends on global semantic coherence. Co-
sine similarity provides a robust measure of overall
contextual consistency, ensuring that the generated
content is lexically and semantically aligned with
the reference material.

H,[2] - H,[2]

T AT RIAC]

The final fact score is computed via a fusion net-
work. This fusion mechanism enables the model to
jointly leverage direct semantic alignment, informa-
tion asymmetry, and global contextual consistency,
ensuring a more comprehensive factuality assess-
ment.

FactScore = Sigmoid(MLPsysion (P, D, S))

3.4 Computational Complexity Analysis

In this section, we theoretically analyze the compu-
tational efficiency of the Light-FS framework. We
divide the analysis into two main components: De-
composer (responsible for atomic fact extraction)
and Checker (responsible for embedding and fact
verification).

3.4.1 Decomposer Complexity Analysis

Light-FS utilizes a supervised fine-tuned SLM to
perform atomic fact decomposition at the sentence
level. Sentence segmentation is computationally
lightweight, and its cost can be ignored. In contrast,
fact decomposition is the primary computational
bottleneck, as each sentence must be processed by
the decomposer.

Given that the input sequence of 1" tokens par-
titioned into N sentences, language models em-
ploying self-attention mechanisms (Vaswani, 2017)
incur quadratic computational complexity O(72).
Light-FS addresses this challenge through sentence-
level decomposition. By constraining attention
computations to individual sentences with average
length ¢ = % < T, the aggregated complexity re-
duces to O(NN#?). This design drastically reduces



global attention costs by restricting attention com-
putations to shorter text segments, making Light-
FS substantially more efficient than conventional
passage-level LLM processing.

3.4.2 Checker Complexity Analysis

The Checker module consists of the Embedder and
the MFIM. Its complexity is influenced by the fol-
lowing factors: embedding computation and fact
verification computation. To facilitate analysis, we
assume both the generated content and the refer-
ence material contain K atomic facts, and the ref-
erence content is segmented into .S chunks, where
N denotes the average number of atomic facts per
chunk.

Embedding Computation. Light-FS employs a
Bi-Encoder structure, enabling independent encod-
ing of atomic facts before interaction. Assuming
that the computational complexity of the BERT-
based embedding model is O(D), the embedding
process involves encoding 2K atomic facts (from
both the generated and reference content), resulting
in a total embedding complexity of O(2K D).

Fact Verification Computation. The MFIM
performs pairwise interaction between atomic fact
embeddings. Unlike NLI models, which re-
quire cross-encoding each premise-hypothesis pair,
Light-FS utilizes a more efficient MLP-based com-
parison. Given that each generated atomic fact is
compared with all K reference atomic facts, the
verification complexity is O(K2M ), where M rep-
resents the computational complexity of MLP.

Thus, the overall complexity of the Checker
is O(2KD + K2*M). For a standard NLI-based
model, each atomic fact in the generated content is
compared against S chunks of the reference con-
tent. Assuming the NLI model has a O(D) com-
plexity per comparison, the total complexity can be
expressed as O(K SD). Rewriting S in terms of
N (the average number of atomic facts per chunk),
we obtain O(%D).

The above analysis highlights a key difference:
while NLI models require quadratic complexity in
D (transformer-based cross-encoding), Light-FS
shifts the quadratic term to M, which corresponds
to the MLP computation. Since MLPs are signifi-
cantly more efficient than transformer-based mod-
els, Light-FS substantially reduces computational
overhead.

4 Experiments

To systematically evaluate the effectiveness of the
Light-FS framework, we conduct experiments in
four key dimensions: (1) Decomposition Capa-
bility Evaluation: Compare different models in
atomic fact decomposition to identify the most
suitable decomposer. (2) Fact Verification Per-
formance Assessment: Assess the effectiveness
of Checker (consisting of Embedder and MFIM)
against traditional NLI models. Then, assess the
overall performance of Light-FS, incorporating
both the decomposer and checker. (3) Compu-
tational Efficiency Analysis: Measure inference
speed in decomposition and fact verification. (4)
Ablation Study: Analyze the impact of core com-
ponents, including Pooling-based Multi-Head At-
tention and Multi-Feature Interaction Module.

All open-source LLMs used in the experiments
are Q4_K_M quantized, executed with llama.cpp'.
For long-context fact verification, LLM-based ap-
proaches are provided with the full reference con-
tent as the premise input. Cross-Encoder models
receive premise inputs in chunks (500-character
length with 100-character overlap). Bi-Encoder-
based approaches, including ours, are fed atomic
facts as premise inputs. In all cases, the hypothesis
input consists of atomic facts.

4.1 Datasets

wiki-en-sentences: A large-scale factuality detec-
tion dataset constructed from 500,000 Wikipedia
sentences selected from wikipedia-en-sentences?.
We prompt a LLM to generate both positive and
negative samples. Our Light-FS is trained on it.

wiki-bio-hallucination (Manakul et al., 2023):
A dataset for evaluating hallucinations in LLM-
generated biographies, containing 238 Wikipedia
biography articles. = We expanded this dataset
with both synthetic and real data to enhance its
applicability in factuality verification. Synthetic
data consists of controlled factual hallucinations
generated by GPT-4o0 (Hurst et al., 2024), while
real data includes biographies produced by four
closed-source models, GPT-3.5-Turbo, GPT-4o0,
Claude-3.5-Haiku, Claude-3.5-Sonnet, and four
open-source models, Llama-2-7b, Llama-2-13b
(Touvron et al., 2023), Qwen2-7B (Bai et al., 2023),
Qwen2.5-0.5B (Yang et al., 2024).

"https://github.com/ggerganov/11lama.cpp
2https: //huggingface.co/datasets/
sentence-transformers/wikipedia-en-sentences
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factscore-dataset (Min et al., 2023): A subset
of the FactScore (Min et al., 2023) dataset focusing
on ChatGPT-generated Wikipedia biographies. We
select 105 samples that have matching reference
content in the wiki_bio dataset 3(Lebret etal.,2016)
to benchmark factuality verification models.

Due to the high cost of manual annotation, both
wiki-bio-hallucination and factscore-dataset were
annotated using GPT-4o for atomic fact decompo-
sition and factuality labeling to ensure consistency.
The prompts used for generation and annotation
are provided in the appendix A.3.

4.2 Decomposition Capability Evaluation

We evaluate the decomposition performance of
GPT-40 with several open-source models, Qwen2-
7B, Qwen2.5-0.5B and Flan-T5 (Chung et al.,
2022), on the wiki-bio-hallucination dataset. The
evaluation metrics include Precision (correctly ex-
tracted facts), Recall (alignment with GPT-40’s
decomposition), and F1 score. GPT-40, as the stan-
dard reference, performs passage-level decomposi-
tion using few-shot prompting, while open-source
models undergo supervised fine-tuning and are
evaluated under the same conditions. A Qwen2-7B
model serves as the evaluator.

Table 1: Performance comparison of different decom-
posers at various decomposition granularities.

Model Granularity F1 Precision  Recall
GPT-40 Passage  0.9910 0.9830  0.9991
Qwen2-7B Sentence  0.9797  0.9799  0.9795
Qwen2-7B Passage ~ 0.9703  0.9875  0.9536
Qwen2.5-0.5B  Sentence  0.9676  0.9628  0.9725
Flan-T5 Sentence  0.9486  0.9512  0.9460
Qwen2.5-0.5B Passage 0.8837  0.8920 0.8754

As shown in Table 1, GPT-40 demonstrates
strong performance in passage-level decompo-
sition. Sentence-level decomposition generally
yields higher recall than passage-level decompo-
sition across models. Among open-source mod-
els, Qwen2-7B performs strongly at the sentence
level, but its passage-level recall declines, suggest-
ing long-text decomposition may introduce fac-
tual inconsistencies, especially in smaller models.
Qwen2.5-0.5B performs comparably to Qwen2-7B
at the sentence level, while Flan-T5 lags slightly.
Considering both accuracy and computational effi-
ciency, Qwen2.5-0.5B (Sentence) is selected as the

3h'ctps ://huggingface.co/datasets/michaelauli/
wiki_bio

Decomposer for Light-FS, as it achieves a strong
balance between decomposition quality and infer-
ence speed, making it a practical choice for large-
scale fact verification.

4.3 Fact Verification Performance Assessment

In this section, we validate the fact verification abil-
ity of Light-FS through two experiments. The first
experiment focuses on assessing the effectiveness
of the Checker. The second experiment evaluates
the full Light-FS framework, incorporating both
the Decomposer and Checker.

4.3.1 Experiment on Checker

To evaluate the performance of the Checker, we
conducted comparison experiments with several
baselines, including Qwen2-7B, two NLI mod-
els*, DeBERTa-v3-base-mnli-fever-anli® and nli-
deberta-v3-base® and two Bi-Encoder models,
BERTScore (Zhang et al., 2019) and BGE-en-base-
v1.5 (Xiao et al., 2023). The experiment is con-
ducted across four datasets, with evaluation metrics
including Accuracy, F1, Recall, and Precision.
As shown in Table 2, Light-FS consistently
outperforms other non-LLM models across most
datasets, excelling in both accuracy and F1 score.
Due to targeted training, Light-FS achieves the
highest performance on the wiki-en-sentences
dataset, demonstrating superior fine-grained fact
verification. On the wiki-bio-hallucination (syn-
thesis) dataset, Qwen2-7B leads in accuracy, but
Light-FS outperforms NLI models by capturing
subtle differences in the generated text. Bi-Encoder
models show high recall but lack precision, indi-
cating limitations in handling fine-grained factual
discrepancies. For the more challenging wiki-bio-
hallucination (GPT-40), all models show a perfor-
mance drop due to the diverse and summary-based
nature of the content. Despite this, Light-FS main-
tains competitiveness, outperforming DeBERTa-
v3-base-mnli-fever-anli in both precision and recall.
On the factscore-dataset, Light-FS achieves high
accuracy and recall, surpassing Bi-Encoder base-
lines and matching or exceeding NLI models. Even
our mini model (23M parameters), much smaller
than the base model (109M parameters), shows

*We followed (Jiang et al., 2024) setup by ignoring the
neutral label and using only entailment and contradiction as
the basis for fact verification.

5https: //huggingface.co/MoritzLaurer/
DeBERTa-v3-base-mnli-fever-anli

6https: //huggingface.co/cross-encoder/
nli-deberta-v3-base
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Table 2: Performance comparison of various models across different datasets, where wiki-bio-hallucination (synthe-
sis) consists of LLM-generated biographies with controlled factual hallucinations, while wiki-bio-hallucination
(GPT-40) contains real-world hallucinations from GPT-40-generated biographies. The table presents accuracy
(Acc), F1 score, recall (Recall), and precision (Prec) for different models, including random, LLM-based models,
Cross-Encoders, Bi-Encoders, and our proposed method. The best results are marked in bold, and the second-best
results are underlined. L stands for LLM, X stands for Cross-Encoder, and B stands for Bi-Encoder.

wiki-bio-hallucination

wiki-en-sentences

wiki-bio-hallucination factscore-dataset

Types Models (synthesis) (GPT-40)
Acc F1 Recall  Prec Acc F1 Recall  Prec Acc F1 Recall  Prec Acc F1 Recall  Prec
Random 0.5023 0.5062 0.5002 0.5123 0.5058 0.5753 0.5135 0.6541 0.5028 0.5166 0.4962 0.5388 0.5036 0.4005 0.4834 0.3418
L  Qwen2-7B 0.8891 0.9014 0.9933 0.8250 0.9239 0.9442 0.9875 0.9046 0.8297 0.8581 0.9615 0.7747 0.8058 0.7745 0.9724 0.6435
DeBTERTa_VS»base_ 0.8249 0.8535 1.0000 0.7444 0.7770 0.8528 0.9914 0.7483 0.5519 0.7038 0.9943 0.5447 0.6367 0.6441 0.9586 0.4850
X mnli-fever-anli
nli-deberta-v3-base 0.8556 0.8758 0.9983 0.7801 0.8199 0.8718 0.9394 0.8134 0.6118 0.7283 0.9719 0.5824 0.7252 0.6861 0.8757 0.5641
BERTScore 0.5100 0.6755 1.0000 0.5100 0.6519 0.7893 1.0000 0.6519 0.5354 0.6974 1.0000 0.5354 0.3430 0.5108 1.0000 0.3430
B BGE-en-base-v1.5 0.5753 0.7060 0.9996 0.5457 0.6519 0.7893 1.0000 0.6519 0.5383 0.6988 1.0000 0.5370 0.3482 0.5127 1.0000 0.3448
Ours 0.9444 0.9476 0.9841 0.9136 0.8638 0.8965 0.9051 0.8881 0.6423 0.7043 0.7954 0.6319 0.6949 0.6434 0.8025 0.5370
Ours (mini) 0.9054 0.9132 0.9761 0.8580 0.7920 0.8447 0.8675 0.8230 0.6146 0.6889 0.7971 0.6066 0.6551 0.6099 0.7859 0.4982

competitive results across all datasets, demonstrat-
ing that a significant parameter reduction does not
come at the large sacrifice of performance.

4.3.2 Experiment on Overall Framework

Table 3: Performance of different Decomposers and
Checkers on the wiki-bio-hallucination dataset. Spear-
man/Pearson Correlation Coefficient and Coefficient
of Variation are used as metrics. For detailed fact score
distributions, refer to the Figures 2 in the appendix.

Decomposer  Checker Spearman Pearson  CV
Qwen2-7B 0.9762 0.9972  0.4679
DeBERTa-v3-base- 9705 0.9776  0.1500

GPT-40 mnli-fever-anli
nli-deberta-v3-base 0.9762 0.9901 0.2846
BGE-en-base-v1.5 0.3095 0.4608 0.0063
Ours 0.9524 0.9749 0.2151
Qwen2-7B 0.9762 0.9910 0.4242
Ours Ours 0.9762 0.9581 0.2378
Ours(mini) 0.9762 0.9523  0.2235

In this section, we evaluate the performance of
the full Light-FS framework to assess its reliability
in factual verification. The experiment is conducted
on the wiki-bio-hallucination dataset, which con-
tains generated content from 8 mainstream closed-
source and open-source models. We compute the
average fact score for the content generated by
each model using different combinations of decom-
posers and checkers. These scores are then com-
pared against GPT-40’s ground truth annotations,
with Spearman and Pearson correlation coeffi-
cients used to assess alignment and the Coefficient
of Variation to measure discriminative power.

As shown in Table 3, our full Light-FS frame-
work maintains a high correlation with GPT-4o,
demonstrating its reliability as an independent fact-
checking system. Compared to NLI models, Light-
FS achieves similar Spearman and Pearson corre-
lations but exhibits a higher CV than DeBERTa-
v3-base-mnli-fever-anli, indicating better differen-
tiation capability in assessing factual inconsisten-
cies. In contrast, Bi-Encoder models struggle with
fine-grained fact distinctions, leading to low corre-
lation and poor score variability. Importantly, when
replacing the GPT-40 decomposer with ours, the
performance of Qwen2-7B checker consistency re-
mains high, further validating our Decomposer’s
effectiveness. The joint use of our Decomposer and
Checker ensures stable and robust performance,
maintaining high accuracy, efficient computation,
and strong differentiation in factual verification
tasks. Notably, our mini model retains competitive
performance despite its significantly smaller size.

4.4 Computational Efficiency Analysis

In this section, we evaluate the efficiency of
both the Decomposer and Checker in Light-FS.
The experiment is conducted on the wiki-bio-
hallucination dataset, which contains generated
content from 8 mainstream closed-source and open-
source models.

As shown in Table 4, Qwen2.5-0.5B(Ours)
demonstrates an impressive efficiency advantage.
The total decomposition time consists of two com-
ponents: Shared Decomposition Time, which is
required by all methods to process the generated
content, and Additional Decomposition Time,



Table 4: Decomposition time. Shared Decomposition
Time refers to the time to decompose the generated
content. Additional Decomposition Time refers to the
time spent on decomposing the reference text.

Shared Decomposition Additional Decomposition

Model Time(seconds) Time(seconds)
GPT-40 (API) 10285.64 1215.22
Qwen2-7B 15950.54 1839.49
Qwen2.5-0.58 665.29 148.71
(Ours)

Table 5: Fact verification time. Embedding Time refers
to the time spent on embedding the atomic facts. Com-
putation Time refers to the time spent on fact verifica-
tion. Total Time is the sum of embedding and computa-
tion time for the complete verification process.

Model Embedding Computation  Total Time
Time (seconds) Time (seconds) (seconds)
GPT-40 (API) 56680.48 56680.48
Qwen2-7B 3401.82 3401.82
nli-deberta-v3-base - 346.76 346.76
Ours 17.33 0.33 17.66
Ours(mini) 3.01 0.32 3.33

which accounts for the extra time needed to de-
compose the reference text (i.e., Wikipedia) and
is specific to our method. Our model achieves
a 14x speedup over GPT-40 and a 22x speedup
over Qwen2-7B in total decomposition time. Ad-
ditionally, the additional decomposition time only
constitutes 10-20% of the total decomposition time,
and this proportion further decreases as the volume
of generated content increases. This efficiency gain
is primarily attributed to sentence-level decomposi-
tion strategy and the use of a smaller model, which
significantly reduces computational overhead. Im-
portantly, this improvement does not come at the
cost of quality, as the F1 score remains within
2.34% of GPT-4o.

As shown in Table 5, our Checker shows a re-
markable advantage in computation time in the fact
verification phase. Compared to the pairwise infer-
ence of NLI models, our base version completes
the task in only 17.66 seconds (a 20x speedup),
and the mini version achieves 3.33 seconds (a 104x
speedup). This efficiency is largely due to our Bi-
Encoder architecture, which enables individual pro-
cessing of embeddings for generated and reference
facts, minimizing redundant computation. In con-
trast, Cross-Encoder models perform inferences
for each fact pair, leading to significantly higher
computational complexity.

4.5 Ablation Studies

Since decomposition is an integral part of our ap-
proach, this ablation study focuses solely on the
Checker module, specifically the effects of the
PMA and the MFIM.

Table 6: Ablation study results comparing different
configurations for fact verification across two datasets.

e wiki-bio-hallucination
wiki-en-sentences

(synthesis)

Acc F1 Acc F1

Light-FS 0.9444 09476  0.8638 0.8965
-PMA+Pool 0.8835  0.8962  0.7791 0.8499
-MFIM+Cosine 0.8111  0.8269  0.7482 0.8353
PMA-MFIM = 5753 07060 06519 0.7893

+Pool+Cosine

As shown in Table 6, replacing PMA with global
pooling methods resulted in a significant drop in
accuracy and F1 score, highlighting the importance
of PMA in capturing fine-grained semantic differ-
ences. Replacing the MFIM with cosine similarity
caused a notable decline in performance, partic-
ularly in precision, emphasizing the necessity of
multi-feature interaction for effective fact verifica-
tion. Finally, removing both PMA and MFIM led
to a dramatic performance drop, confirming the es-
sential role of these components in ensuring robust
fact verification.

5 Conclusion

This paper proposes Light-FS, an API-free, com-
putationally efficient framework for evaluating
the factuality of generated content. By adopt-
ing a "Decompose-Embed-Interact” three-stage
paradigm, Light-FS significantly improves com-
putational efficiency while maintaining high ver-
ification accuracy. Specifically, we replace the
traditional passage-level LLM processing with
a sentence-level SLM decomposition strategy,
achieving a 14x speedup in atomic fact decom-
position. Additionally, Light-FS integrates a Bi-
Encoder architecture with a multi-feature interac-
tion mechanism, enhancing efficiency and achiev-
ing a 20x acceleration over conventional NLI mod-
els. Ablation studies further confirm the impor-
tance of the Pooling-based Multi-head Attention
and Multi-Feature Interaction modules in improv-
ing fact verification performance. In the future, we
plan to optimize Light-FS further to improve its
generality and scalability.



Limitations

Despite the excellent performance of the Light-FS
framework in fact verification tasks, the following
limitations remain:

Domain Adaptability: Light-FS was trained on
Wikipedia data, which may limit its applicability to
other domains like news, law, or scientific papers.
Adapting to different data distributions may require
additional fine-tuning or training.

Inference Limitations: Light-FS uses a Bi-
Encoder-based approach that is suitable for surface-
level fact matching. It may struggle with complex
reasoning tasks, such as causal or temporal rela-
tionships, where Cross-Encoder models perform
better due to their interactive encoding.

Dependency on Reference Quality: The effec-
tiveness of Light-FS depends on the accuracy and
authority of the reference texts. Light-FS may mis-
judge generated content if the reference material is
outdated or erroneous.

Extra Computational Cost: The need for de-
composing both reference and generated texts in-
creases computational costs, particularly in large-
scale or real-time verification scenarios. Optimiz-
ing caching and retrieval mechanisms could ad-
dress this issue.
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Appendix

A Implementation Details

Our experiments are conducted on a system run-
ning Ubuntu 22.04, equipped with an NVIDIA
RTX 4090 GPU, an Intel 13th Gen Core 17-13700K
CPU, 64GB RAM, and software dependencies, in-
cluding CUDA 11.8, PyTorch 2.4.0 and Transform-
ers 4.45.2.

A.1 Decomposer Training Settings

Our Decomposer is based on Qwen/Qwen2.5-0.5B-
Instruct’ as the foundation model. The base model
undergoes full-parameter supervised fine-tuning us-
ing the llama-factory framework®, with a learning
rate of 2.0e-5, batch size of 4, and trained for 3
epochs.

The training data is sourced from michae-
lauli/wiki_bio?, from which 5,000 samples are ran-
domly selected as the foundational dataset. The
Wiki paragraphs are first split into sentences using
Stanza, and each sentence is then decomposed by
GPT-40 to generate the training set. The prompt
used for decomposition is as follows using few-shot
prompt 3.

A.2 Checker Training Settings

We conduct joint training of the embedder and
multi-feature interaction module. The embedder
is responsible for generating high-quality sentence
embeddings. For this purpose, we utilize the BERT
model bge-base-en-v1.5'°. Additionally, to en-
hance embedding efficiency, we provide a mini

7https://huggingface.co/Qwen/Qwenz.5—0.
5B-Instruct
8https://github.com/hiyouga/LLaMA-Factory
’https://huggingface.co/datasets/michaelauli/
wiki_bio
Ohttps://huggingface.co/BAAI/bge-base-en-v1.5
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version using the BERT model all-MiniLM-L6-
v2!!. The multi-feature interaction module then
computes factuality scores based on these embed-
dings.

We employ two loss functions: triplet loss and
binary cross-entropy (BCE) loss. The objective
of Triplet Loss is to optimize fact scores through
supervised learning of triplets, ensuring that the
factual score of the anchor sentence is higher when
paired with a highly factual positive sentence while
being lower when paired with an unrelated negative
sample.

Liriptet = max(0, o + Factscore(Ho, Hy,)

— Factscore(H,, Hp)) (1)

where « denotes the margin, set to 0.5. H,, H,
and H, represent the embeddings of the anchor,
positive, and negative samples, respectively, with
factual scores computed via the multi-feature inter-
action module.

Simultaneously, BCELoss is employed for su-
pervised training. The Factscore output by the
multi-feature interaction module is a value between
[0, 1], indicating the degree of alignment between
the generated content g and the reference content
c. The objective is to minimize the difference be-
tween the predicted score and the ground truth label

y € {0,1}.

1
Libce = N yi - log(Factscore;)

=1

+ (1 — y;) - log(1 — Factscore; )]

N
[
@

The overall joint training objective function is
formulated as the sum of Triplet Loss and BCE
Loss:

L= ['triplet + ﬁbce

During training, the parameters of the BERT
model are frozen, and only the PMA module
within the embedder and the multi-feature inter-
action module are updated. The training process
uses a learning rate of 5e-5, a batch size of 32, and
runs for 8 epochs.

The dataset is derived from wikipedia-en-
sentences'?, selecting the top 500,000 Wikipedia
sentences. Triplet data is generated using the

11https://huggingface.co/sentence—transformers/
all-MiniLM-L6-v2

12https://huggingface.co/datasets/
sentence-transformers/wikipedia-en-sentences
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Figure 2: Fact score distribution for different Decomposer + Checker combinations across eight generative models.
The x-axis represents the models producing the generated content, while the y-axis shows the corresponding fact
scores. Light-FS (Ours+Ours) and its mini variant (Ours+Ours(mini)) maintain strong Spearman and Pearson
correlations with GPT-40’s ground truth annotations, ensuring consistent ranking of factual consistency across
models. Although Light-FS exhibits lower score variance compared to Qwen2-7b and nli-deberta-v3-base, its
ranking of model factuality remains aligned with GPT-40, demonstrating its reliability as an efficient fact verification
framework.

Qwen2-7B model with prompts. The final training
set consists of 2,749,030 triplets, with 50,000 pairs
allocated for validation and testing, respectively.
The prompt used is as follows: 4, 5, 6, 7.

A.3 Experiment Datasets Annotation

We used GPT-40 for decomposition and annotation
of the datasets employed in the experiments, with
the following prompt used for annotation: 8, 9,
10. Meanwhile, the prompt used for LLM in fact
verification is shown in 11.
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Figure 3: Few-shot prompt used for sentence-level atomic fact decomposition.

Sentence-level Atomic Fact Decomposition Prompt

Decompose the following sentences into atom facts if possible, response only the decomposition.
Rely solely on the provided text.

Do not infer or assume additional information.

Do not include any additional information.

Just be faithful to the text.

Examples:

Input: Elisha Brown (25 May 1717 - 20 April 1802) served as Deputy Governor of Rhode Island
from 1770 to 1772.

Output: Elisha Brown was born on 25 May 1717. Elisha Brown died on 20 April 1802. Elisha
Brown served as Deputy Governor of Rhode Island from 1770 to 1772.

Input: George Bovell is currently a professional swimmer and intends to compete in a record fifth
Olympiad. Bovell is also respected for his voluntary giving back initiatives such as "The World
Swim Against Malaria and Drowning" in Uganda, 2013, with his friend, Ugandan swimmer Max
Kanyarezi.

Output: George Bovell is currently a professional swimmer. George Bovell intends to compete in
a record fifth Olympiad. George Bovell is respected for his voluntary giving back initiatives such
as "The World Swim Against Malaria and Drowning" in Uganda, 2013. George Bovell did this
with his friend, Ugandan swimmer Max Kanyarezi.

Input: He now hosts the breakfast slot on 98FM.
Output: He now hosts the breakfast slot on 98FM.

Now expand this biographical statement with the same accuracy and style, ensuring the facts
remain unchanged and no additional information is inferred.

Input: {sentence}
Output:

13




Figure 4: Zero-shot prompt used for non-factual sentence.

Non-factual Sentence Generation Prompt

## type: type_info
type_dict = {
"time": "Time content: Covers time, dates, periods, etc., related to when events occur.",
"number": "Number content: Includes data, ratios, percentages, etc.",
"entity": "Entity content: Involves specific entities such as names of people, places, organiza-
tions, etc.",
"event": "Event content: Describes specific events, activities, actions, etc.",

Modify the input sentence by changing only the {type} content to make the sentence factually
incorrect.

{type_info}

Ensure that the sentence structure and meaning remain consistent, but the facts related to the
{type} content should be altered.

Do not add any new words or use contrasting phrases like "however’ or "but’.

Just replace the original {type} content with a different, incorrect value.

And provide only the modified sentence as a response.

The sentence is: {sentence}

Your answer:

Figure 5: Zero-shot prompt used for similar sentence.

Similar Sentence Generation Prompt

Please take the following sentence and rewrite it using various of expressions, but keep the factual
information the same.

Do not add any additional information that is not already mentioned in the original sentence.
And provide only the modified sentence as a response.

The sentence is: {sentence}

Your answer:
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Figure 6: Few-shot prompt used for sentence with extra information.

Sentence with Extra Information Generation Prompt

Given the following sentence, generate a new sentence by adding extra, relevant information, but
not too long.

For example:

1. Sentence: Adja Yunkers received a Guggenheim Fellowship.

Answer: Adja Yunkers received a Guggenheim Fellowship in 1956.

2. Sentence: Adja Yunkers was a printmaker.
Answer: Adja Yunkers was an American printmaker.

3. Sentence: Admiral William J. Flanagan, Jr. was born in 1943.
Answer: Admiral William J. Flanagan, Jr. was born in April 3, 1943 in New York City.

4. Sentence: Albert Einstein was awarded the Nobel Prize in Physics in 1921.
Answer: Albert Einstein was awarded the Nobel Prize in Physics in 1921 for his work on the
photoelectric effect.

Instructions:

- You may add relevant details such as dates, locations, specific achievements, or additional
background information.

- The added details should enrich the meaning of the original sentence, providing more context
without overwhelming it.

- Ensure that the sentence remains clear and concise.

Now, consider the following sentence:
Sentence: {sentence}
Your answer (please provide only the modified sentence):
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Figure 7: Few-shot prompt used for sentence with missing information.

Sentence with Missing Information Generation Prompt

Given the following sentence, generate a new sentence by removing some information.
Ensure the remaining information is still accurate and the core meaning is preserved.

For example:
1. Sentence: Adja Yunkers received a Guggenheim Fellowship in 1956.
Answer: "Adja Yunkers received a Guggenheim Fellowship.

2. Sentence: Adja Yunkers was an American printmaker.
Answer: Adja Yunkers was a printmaker.

3. Sentence: Admiral William J. Flanagan, Jr. was born on April 3, 1943, in New York City.
Answer: Admiral Flanagan was born in 1943 in New York.

4. Sentence: Albert Einstein was awarded the Nobel Prize in Physics in 1921 for his work on the
photoelectric effect.
Answer: Albert Einstein was awarded the Nobel Prize in Physics in 1921.

Instructions:
- You may remove specific details such as dates, places, etc.
- Be sure that the modified sentence remains factually correct and conveys the main idea.

Now, consider the following sentence:
Sentence: {sentence}
Your answer (please provide only the modified sentence):

Figure 8: Zero-shot prompt used for wiki-bio-hallucination (synthesis).

Wiki-bio-hallucination (synthesis) Generation Prompt

non "non non

cata = ["time", "number", "event", "entity"]

Based solely on the provided Wikipedia text, write a description of the topic in no more than 60
words.

Use the information mentioned in the text but include two factual inaccuracies about {cata} if
possible.

Do not alter the main entity (the individual) being described.

Ensure the errors are plausible but intentionally deviate from the provided text.

Wikipedia Text: {text}

Response only the description:
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Figure 9: Zero-shot prompt used for wiki-bio-hallucination (LLM).

Wiki-bio-hallucination (LLM) Generation Prompt

Write an introduction (within 400 words) in a Wikipedia style about {name}.
Provide only the generated introduction.

Figure 10: Few-shot prompt used for passage-level atomic fact decomposition.

Passage-level Atomic Fact Decomposition Prompt

Decompose the following sentences into atom facts, response only the decompositions:
Sentence: Tim Finchem (born August 24, 1947) is an American businessman and former Commis-
sioner of the PGA Tour...... He was inducted into the World Golf Hall of Fame in 2017.

Answer: ["Tim Finchem was born on August 24, 1947.",...,"Tim Finchem was inducted into the
World Golf Hall of Fame in 2017."]

Sentence: John Russell Reynolds (1820—-1876) was an English lawyer, judge, and author...... He
also wrote a biography of the poet John Keats (1848).

Answer: ["John Russell Reynolds was born in 1820.",...,"John Russell Reynolds wrote a biography
of John Keats in 1848."]

Sentence: {sentence}

Answer:

Figure 11: Prompt used for fact verification.
Giving a claim and a paragraph, determine if the claim is supported by the paragraph:
Paragraph: {paragraph}
Claim: {claim}

Answer (just yes or no):
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