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Abstract

Large language models (LLMs) exhibit re-001
markable text-generation capabilities yet strug-002
gle with factual consistency in knowledge-003
intensive tasks. Existing fact-checking meth-004
ods based on the "Decompose-Then-Verify"005
paradigm improve factual reliability but face006
scalability issues due to two main limitations:007
(1) reliance on costly LLM API calls, and (2)008
quadratic complexity from pairwise verifica-009
tion of decomposed text segments. We present010
Light-FS, an efficient framework adopting a011
"Decompose-Embed-Interact" paradigm: (1)012
a small language model (SLM) based decom-013
poser extracts atomic propositions, (2) a spe-014
cialized Bi-Encoder module generates semantic015
embeddings, and (3) a multi-feature interaction016
module performs embedding-based verification.017
Our experiments show that Light-FS achieves018
14× faster decomposition than GPT-4o within019
a 3% F1-drop while delivering a 20× efficiency020
gain over NLI-based fact-checking models with021
comparable verification performance. Light-022
FS provides a scalable and efficient solution023
for evaluating the factuality of LLM-generated024
content.025

1 Introduction026

Large language models (LLMs) have demonstrated027

remarkable capabilities in text generation tasks028

(Mann et al., 2020; Li et al., 2024; Iqbal et al.,029

2024). However, ensuring the factual reliability030

of the generated content remains a critical chal-031

lenge. Recent studies (Ji et al., 2023; Bang et al.,032

2023; Sadasivan et al., 2023) indicate that LLMs033

frequently generate hallucinated content, including034

incorrect dates, numerical errors, and fabricated re-035

lationships, which can mislead decision-making036

and exacerbate misinformation spread. Conse-037

quently, automated factuality verification for LLM-038

generated content has become a critical research039

problem in NLP (Panchendrarajan and Zubiaga,040

2024; Si et al., 2024; Atanasova, 2024).041

Existing fact-checking methods predominantly 042

adopt the "Decompose-Then-Verify" paradigm, 043

where generated text is decomposed into atomic 044

factual claims and verified against a reference 045

source (Zhang and Bansal, 2021; Chern et al., 2023; 046

Zhao et al., 2023). FactScore (Min et al., 2023), a 047

representative approach, employs LLMs for atomic 048

fact decomposition and then verifies each fact us- 049

ing either a LLM or a Natural Language Inference 050

(NLI) model. While this paradigm enhances verifi- 051

cation granularity, its reliance on costly API calls 052

and quadratic complexity in pairwise fact verifica- 053

tion makes it impractical for large-scale applica- 054

tions. 055

To address these efficiency bottlenecks, we 056

present Light-FS (Light-FactScore), an API-free 057

and computationally efficient fact-checking frame- 058

work that implements a novel "Decompose- 059

Embed-Interaction" paradigm. Light-FS achieves 060

efficiency-accuracy balance through three key in- 061

novations: 062

First, we adopt a sentence-level decomposition 063

strategy using a supervised fine-tuned small lan- 064

guage model (SLM). Compared to conventional 065

paragraph-level LLM decomposition (Min et al., 066

2023), this strategy reduces inference latency by 067

15× while mitigating long-context hallucination 068

risks. Second, we introduce a specialized Bi- 069

Encoder architecture that improves the representa- 070

tion quality of atomic fact embeddings. Unlike NLI 071

models, which require premise-hypothesis pairs for 072

verification, our approach encodes the premise and 073

hypothesis independently, eliminating the need for 074

pairwise comparisons. This architecture reduces 075

computational complexity from O(K2) to O(K), 076

achieving 20× speedup over conventional NLI ver- 077

ification. Third, we design a multi-feature inter- 078

action module that strengthens embedding interac- 079

tions. By integrating pairwise interaction features, 080

discrepancy features, and global similarity features, 081

this module enables embedding-based verification 082
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to achieve accuracy comparable to NLI models083

while maintaining computational efficiency.084

Our contributions can be summarized as:085

• We introduce Light-FS, a novel computation-086

ally efficient fact-checking framework that087

resolves quadratic complexity bottlenecks088

through our "Decompose-Embed-Interaction"089

paradigm.090

• We propose a sentence-level atomic fact de-091

composition strategy using a SLM, achieving092

15× speedup over LLM-based decomposition093

while maintaining minimal F1 performance094

degradation.095

• We design an efficient fact verification mecha-096

nism composed of a specialized Bi-Encoder097

and a multi-feature interaction module, achiev-098

ing NLI-level verification performance while099

improving computational efficiency by 20×.100

2 Related Works101

2.1 Hallucinations in LLMs102

Hallucinations in LLMs, where models generate103

non-factual content such as temporal inconsisten-104

cies, numerical errors, or fabricated relationships,105

present significant challenges to their reliability,106

particularly in knowledge-intensive tasks (Huang107

et al., 2023). Current strategies to mitigate hal-108

lucinations include training-phase interventions109

(e.g., curated datasets and knowledge distillation)110

(Gekhman et al., 2024; Abbas et al., 2023; Mc-111

Donald et al., 2024; Huang et al., 2022), retrieval-112

augmented generation (RAG) approaches that in-113

tegrate external knowledge during inference (Ram114

et al., 2023; Gao et al., 2022; Lewis et al., 2020),115

and post-hoc verification methods to assess factual116

consistency after text generation (Manakul et al.,117

2023; Dhuliawala et al., 2023; Maynez et al., 2020).118

The development of standardized evaluation bench-119

marks, like TruthfulQA (Lin et al., 2021), REAL-120

TIMEQA (Kasai et al., 2024) and HaluEval (Li121

et al., 2023), has further enabled systematic mea-122

surement of hallucination patterns across different123

models.124

2.2 Factuality Evaluation125

Fact verification methods are primarily catego-126

rized into Factual Hallucination Detection and127

Faithfulness Hallucination Detection (Huang et al.,128

2023). Both methods fundamentally rely on com- 129

paring the generated content with reference ma- 130

terial. However, direct document-level compar- 131

isons often fail to pinpoint specific factual incon- 132

sistencies when applied to long-text scenarios. The 133

"Decompose-Then-Verify" paradigm, as demon- 134

strated by FactScore (Min et al., 2023), overcomes 135

this limitation by breaking the text into atomic fac- 136

tual claims for more granular verification. While 137

this approach improves precision and interpretabil- 138

ity, it introduces significant computational chal- 139

lenges, particularly due to the reliance on itera- 140

tive LLM API calls for atomic fact decomposition 141

and the quadratic complexity of pairwise verifi- 142

cation. Even when replacing LLMs with smaller 143

NLI models like DeBERTa (He et al., 2020), these 144

bottlenecks persist, making the "Decompose-Then- 145

Verify" methodology impractical for large-scale 146

evaluations. 147

3 Light-FS 148

Light-FS follows a three-stage "Decompose- 149

Embed-Interact" paradigm, consisting of three core 150

components: Decomposer, Embedder, and Multi- 151

Feature Interaction Module (MFIM). Figure 1 il- 152

lustrates the overall architecture of Light-FS. The 153

workflow of Light-FS consists of three stages: (1) 154

Atomic Fact Decomposition. The Decomposer ex- 155

tracts atomic facts from both generated content and 156

reference material at the sentence level, ensuring 157

each fact is independent, self-contained, and se- 158

mantically complete. (2) Embedding Generation. 159

The Embedder, based on a Bi-Encoder architecture, 160

converts atomic facts into vector representations. 161

(3) Fact Verification via MFIM. The MFIM com- 162

putes the fact score between generated content and 163

reference material based on multi-feature interac- 164

tion. 165

The following sections detail the three core com- 166

ponents of Light-FS, and its detailed implementa- 167

tion is provided in Appendix A. 168

3.1 Decomposer 169

The Decomposer extracts discrete and self- 170

contained atomic facts from the textual content. 171

This decomposition process requires strong reason- 172

ing capabilities, typically best handled by LLMs. 173

We employ a supervised fine-tuned SLM to balance 174

efficiency and reasoning capability, significantly 175

reducing computational costs. However, when ap- 176

plied to long-text decomposition, SLMs may gener- 177
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Figure 1: Overview of the Light-FS framework for fact verification. The system follows a three-stage process:
Decompose, Embed, and Interact. In the Decompose stage, the LLM-generated text and the corresponding
reference text from Wikipedia are processed using a small language model decomposer. In the Embed stage, these
atomic facts are encoded using a Bi-Encoder, with the use of PMA and Pool to capture different embedding features.
In the Interact stage, the embeddings undergo multi-feature interactions through cosine similarity and feature-based
processing, producing fact scores to assess the factuality of the content.

ate hallucinated, inaccurate, or incomplete atomic178

facts, which can compromise the accuracy of sub-179

sequent verification processes. To mitigate this, we180

adopt a sentence-level decomposition strategy in-181

stead of a passage-level to minimize factual distor-182

tions. Additionally, embedding-based approaches183

alone may struggle to capture fine-grained seman-184

tic nuances in long-text scenarios. We apply atomic185

fact decomposition to both generated content and186

reference material, ensuring greater scalability and187

improved fact verification.188

We first segment the input text (both generated189

content and reference material) into sentences us-190

ing Stanza (Qi et al., 2020), denoted as T =191

{t1, t2, ..., tn}, where each ti represents the i-th192

sentence. Each sentence ti is individually pro-193

cessed by the SLM to extract atomic facts, re-194

sulting in a fact set Ai = {a1, a2, ..., am}, where195

aj represents the j-th atomic fact from sentence196

ti. The complete atomic fact set is constructed as197

A =
⋃n

i=1Ai.198

By adopting sentence-level decomposition, we199

reduce the factual complexity per inference step,200

minimize hallucination risks, and enhance fact de- 201

composition accuracy. 202

3.2 Embedder 203

The Embedder converts atomic facts into vector 204

representations for efficient fact verification. Tra- 205

ditional BERT-based embedding models typically 206

use either the [CLS] token or mean pooling for 207

sentence embeddings (Reimers, 2019). However, 208

such methods often fail to capture fine-grained se- 209

mantic nuances, critical for factuality evaluation. 210

We adopt a Pooling-based Multi-Head Attention 211

(PMA) mechanism to enhance embedding quality, 212

inspired by (Liao et al., 2024; Lee et al., 2019), 213

following the BERT encoder. 214

Given an atomic fact set F = {s1, s2, ..., sn}, 215

each fact si is tokenized and encoded using 216

BERT, resulting in token embeddings Ti = 217

{t1, t2, ..., tlen}, where tj is a d-dimensional vector. 218

The PMA module then aggregates token embed- 219

dings to produce a multi-view sentence embedding: 220

h = LN(MHA(q, Ti, Ti) + q), hagg
i = LN(h+ FFN(h)) 221
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Where LN denotes Layer Normalization,222

MHA(Q,K, V ) is the Multi-Head Attention mech-223

anism, q is a learnable query vector, dynamically224

aggregating token-level information. To capture225

diverse aspects of sentence semantics, hagg
i con-226

sists of two embeddings, each representing differ-227

ent aspects of sentence meaning. This design re-228

tains richer contextual information than traditional229

pooling-based methods.230

Moreover, to leverage BERT’s global semantic231

representation, we extract a global embedding gi232

from either the [CLS] token ti[CLS] or the mean-233

pooled token embeddings mean(Ti), depending234

on the model’s training configuration.235

The final sentence representation Hi is formed236

by stacking both the attention-based and global237

embeddings:238

Hi = Stack(hagg
i , gi) ∈ R3×d239

This multi-view embedding strategy enriches240

atomic fact representations, providing stronger fac-241

tual verification signals.242

3.3 MFIM243

The Multi-Feature Interaction Module (MFIM)244

computes a fact score between reference and gen-245

erated atomic fact embeddings. Given embeddings246

Hr (reference material) and Hg (generated con-247

tent), we define three interaction features:248

Pairwise Interaction Feature (P ): P models249

the direct semantic alignment between reference250

and generated facts, explicitly capturing their fac-251

tual overlap. This feature helps detect minor fac-252

tual distortions, such as incorrect dates, numerical253

discrepancies, or entity mismatches, by compar-254

ing their semantic representations. As the primary255

factual alignment signal, P enables the model to256

detect cases where the generated fact is directly257

entailed by or contradicts the reference fact.258

P = MLPP (Concat(Hr[0], Hg[0])) ∈ R259

Discrepancy Feature (D): D models fine-260

grained factual differences, simulating premise-261

hypothesis entailment in NLI tasks. Errors in gen-262

erated content sometimes arise from introducing263

extraneous information rather than direct contradic-264

tion. To quantify this, D computes the directional265

difference between the reference fact and the gen-266

erated fact, detecting cases where the generated267

content includes unsupported details that alter fac-268

tual accuracy. Unlike direct contradiction detection,269

this feature ensures the model penalizes factual ad- 270

ditions while allowing omissions as long as the 271

retained information remains correct. 272

D = MLPD(Hr[1]−Hg[1]) ∈ R 273

Global Similarity Feature (S): S quantifies 274

overall semantic alignment between reference 275

and generated embeddings using cosine similar- 276

ity. While pairwise and discrepancy features focus 277

on local fact-level alignment, factual consistency 278

also depends on global semantic coherence. Co- 279

sine similarity provides a robust measure of overall 280

contextual consistency, ensuring that the generated 281

content is lexically and semantically aligned with 282

the reference material. 283

S =
Hr[2] ·Hg[2]

||Hr[2]|| · ||Hg[2]||
284

The final fact score is computed via a fusion net- 285

work. This fusion mechanism enables the model to 286

jointly leverage direct semantic alignment, informa- 287

tion asymmetry, and global contextual consistency, 288

ensuring a more comprehensive factuality assess- 289

ment. 290

FactScore = Sigmoid(MLPfusion(P,D, S)) 291

3.4 Computational Complexity Analysis 292

In this section, we theoretically analyze the compu- 293

tational efficiency of the Light-FS framework. We 294

divide the analysis into two main components: De- 295

composer (responsible for atomic fact extraction) 296

and Checker (responsible for embedding and fact 297

verification). 298

3.4.1 Decomposer Complexity Analysis 299

Light-FS utilizes a supervised fine-tuned SLM to 300

perform atomic fact decomposition at the sentence 301

level. Sentence segmentation is computationally 302

lightweight, and its cost can be ignored. In contrast, 303

fact decomposition is the primary computational 304

bottleneck, as each sentence must be processed by 305

the decomposer. 306

Given that the input sequence of T tokens par- 307

titioned into N sentences, language models em- 308

ploying self-attention mechanisms (Vaswani, 2017) 309

incur quadratic computational complexity O(T 2). 310

Light-FS addresses this challenge through sentence- 311

level decomposition. By constraining attention 312

computations to individual sentences with average 313

length t̄ = T
N ≪ T , the aggregated complexity re- 314

duces to O(Nt̄2). This design drastically reduces 315
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global attention costs by restricting attention com-316

putations to shorter text segments, making Light-317

FS substantially more efficient than conventional318

passage-level LLM processing.319

3.4.2 Checker Complexity Analysis320

The Checker module consists of the Embedder and321

the MFIM. Its complexity is influenced by the fol-322

lowing factors: embedding computation and fact323

verification computation. To facilitate analysis, we324

assume both the generated content and the refer-325

ence material contain K atomic facts, and the ref-326

erence content is segmented into S chunks, where327

N̄ denotes the average number of atomic facts per328

chunk.329

Embedding Computation. Light-FS employs a330

Bi-Encoder structure, enabling independent encod-331

ing of atomic facts before interaction. Assuming332

that the computational complexity of the BERT-333

based embedding model is O(D), the embedding334

process involves encoding 2K atomic facts (from335

both the generated and reference content), resulting336

in a total embedding complexity of O(2KD).337

Fact Verification Computation. The MFIM338

performs pairwise interaction between atomic fact339

embeddings. Unlike NLI models, which re-340

quire cross-encoding each premise-hypothesis pair,341

Light-FS utilizes a more efficient MLP-based com-342

parison. Given that each generated atomic fact is343

compared with all K reference atomic facts, the344

verification complexity is O(K2M), where M rep-345

resents the computational complexity of MLP.346

Thus, the overall complexity of the Checker347

is O(2KD + K2M). For a standard NLI-based348

model, each atomic fact in the generated content is349

compared against S chunks of the reference con-350

tent. Assuming the NLI model has a O(D) com-351

plexity per comparison, the total complexity can be352

expressed as O(KSD). Rewriting S in terms of353

N̄ (the average number of atomic facts per chunk),354

we obtain O(K
2

N̄
D).355

The above analysis highlights a key difference:356

while NLI models require quadratic complexity in357

D (transformer-based cross-encoding), Light-FS358

shifts the quadratic term to M , which corresponds359

to the MLP computation. Since MLPs are signifi-360

cantly more efficient than transformer-based mod-361

els, Light-FS substantially reduces computational362

overhead.363

4 Experiments 364

To systematically evaluate the effectiveness of the 365

Light-FS framework, we conduct experiments in 366

four key dimensions: (1) Decomposition Capa- 367

bility Evaluation: Compare different models in 368

atomic fact decomposition to identify the most 369

suitable decomposer. (2) Fact Verification Per- 370

formance Assessment: Assess the effectiveness 371

of Checker (consisting of Embedder and MFIM) 372

against traditional NLI models. Then, assess the 373

overall performance of Light-FS, incorporating 374

both the decomposer and checker. (3) Compu- 375

tational Efficiency Analysis: Measure inference 376

speed in decomposition and fact verification. (4) 377

Ablation Study: Analyze the impact of core com- 378

ponents, including Pooling-based Multi-Head At- 379

tention and Multi-Feature Interaction Module. 380

All open-source LLMs used in the experiments 381

are Q4_K_M quantized, executed with llama.cpp1. 382

For long-context fact verification, LLM-based ap- 383

proaches are provided with the full reference con- 384

tent as the premise input. Cross-Encoder models 385

receive premise inputs in chunks (500-character 386

length with 100-character overlap). Bi-Encoder- 387

based approaches, including ours, are fed atomic 388

facts as premise inputs. In all cases, the hypothesis 389

input consists of atomic facts. 390

4.1 Datasets 391

wiki-en-sentences: A large-scale factuality detec- 392

tion dataset constructed from 500,000 Wikipedia 393

sentences selected from wikipedia-en-sentences2. 394

We prompt a LLM to generate both positive and 395

negative samples. Our Light-FS is trained on it. 396

wiki-bio-hallucination (Manakul et al., 2023): 397

A dataset for evaluating hallucinations in LLM- 398

generated biographies, containing 238 Wikipedia 399

biography articles. We expanded this dataset 400

with both synthetic and real data to enhance its 401

applicability in factuality verification. Synthetic 402

data consists of controlled factual hallucinations 403

generated by GPT-4o (Hurst et al., 2024), while 404

real data includes biographies produced by four 405

closed-source models, GPT-3.5-Turbo, GPT-4o, 406

Claude-3.5-Haiku, Claude-3.5-Sonnet, and four 407

open-source models, Llama-2-7b, Llama-2-13b 408

(Touvron et al., 2023), Qwen2-7B (Bai et al., 2023), 409

Qwen2.5-0.5B (Yang et al., 2024). 410

1https://github.com/ggerganov/llama.cpp
2https://huggingface.co/datasets/

sentence-transformers/wikipedia-en-sentences
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factscore-dataset (Min et al., 2023): A subset411

of the FactScore (Min et al., 2023) dataset focusing412

on ChatGPT-generated Wikipedia biographies. We413

select 105 samples that have matching reference414

content in the wiki_bio dataset 3(Lebret et al., 2016)415

to benchmark factuality verification models.416

Due to the high cost of manual annotation, both417

wiki-bio-hallucination and factscore-dataset were418

annotated using GPT-4o for atomic fact decompo-419

sition and factuality labeling to ensure consistency.420

The prompts used for generation and annotation421

are provided in the appendix A.3.422

4.2 Decomposition Capability Evaluation423

We evaluate the decomposition performance of424

GPT-4o with several open-source models, Qwen2-425

7B, Qwen2.5-0.5B and Flan-T5 (Chung et al.,426

2022), on the wiki-bio-hallucination dataset. The427

evaluation metrics include Precision (correctly ex-428

tracted facts), Recall (alignment with GPT-4o’s429

decomposition), and F1 score. GPT-4o, as the stan-430

dard reference, performs passage-level decomposi-431

tion using few-shot prompting, while open-source432

models undergo supervised fine-tuning and are433

evaluated under the same conditions. A Qwen2-7B434

model serves as the evaluator.435

Table 1: Performance comparison of different decom-
posers at various decomposition granularities.

Model Granularity F1 Precision Recall

GPT-4o Passage 0.9910 0.9830 0.9991
Qwen2-7B Sentence 0.9797 0.9799 0.9795
Qwen2-7B Passage 0.9703 0.9875 0.9536
Qwen2.5-0.5B Sentence 0.9676 0.9628 0.9725
Flan-T5 Sentence 0.9486 0.9512 0.9460
Qwen2.5-0.5B Passage 0.8837 0.8920 0.8754

As shown in Table 1, GPT-4o demonstrates436

strong performance in passage-level decompo-437

sition. Sentence-level decomposition generally438

yields higher recall than passage-level decompo-439

sition across models. Among open-source mod-440

els, Qwen2-7B performs strongly at the sentence441

level, but its passage-level recall declines, suggest-442

ing long-text decomposition may introduce fac-443

tual inconsistencies, especially in smaller models.444

Qwen2.5-0.5B performs comparably to Qwen2-7B445

at the sentence level, while Flan-T5 lags slightly.446

Considering both accuracy and computational effi-447

ciency, Qwen2.5-0.5B (Sentence) is selected as the448

3https://huggingface.co/datasets/michaelauli/
wiki_bio

Decomposer for Light-FS, as it achieves a strong 449

balance between decomposition quality and infer- 450

ence speed, making it a practical choice for large- 451

scale fact verification. 452

4.3 Fact Verification Performance Assessment 453

In this section, we validate the fact verification abil- 454

ity of Light-FS through two experiments. The first 455

experiment focuses on assessing the effectiveness 456

of the Checker. The second experiment evaluates 457

the full Light-FS framework, incorporating both 458

the Decomposer and Checker. 459

4.3.1 Experiment on Checker 460

To evaluate the performance of the Checker, we 461

conducted comparison experiments with several 462

baselines, including Qwen2-7B, two NLI mod- 463

els4, DeBERTa-v3-base-mnli-fever-anli5 and nli- 464

deberta-v3-base6 and two Bi-Encoder models, 465

BERTScore (Zhang et al., 2019) and BGE-en-base- 466

v1.5 (Xiao et al., 2023). The experiment is con- 467

ducted across four datasets, with evaluation metrics 468

including Accuracy, F1, Recall, and Precision. 469

As shown in Table 2, Light-FS consistently 470

outperforms other non-LLM models across most 471

datasets, excelling in both accuracy and F1 score. 472

Due to targeted training, Light-FS achieves the 473

highest performance on the wiki-en-sentences 474

dataset, demonstrating superior fine-grained fact 475

verification. On the wiki-bio-hallucination (syn- 476

thesis) dataset, Qwen2-7B leads in accuracy, but 477

Light-FS outperforms NLI models by capturing 478

subtle differences in the generated text. Bi-Encoder 479

models show high recall but lack precision, indi- 480

cating limitations in handling fine-grained factual 481

discrepancies. For the more challenging wiki-bio- 482

hallucination (GPT-4o), all models show a perfor- 483

mance drop due to the diverse and summary-based 484

nature of the content. Despite this, Light-FS main- 485

tains competitiveness, outperforming DeBERTa- 486

v3-base-mnli-fever-anli in both precision and recall. 487

On the factscore-dataset, Light-FS achieves high 488

accuracy and recall, surpassing Bi-Encoder base- 489

lines and matching or exceeding NLI models. Even 490

our mini model (23M parameters), much smaller 491

than the base model (109M parameters), shows 492

4We followed (Jiang et al., 2024) setup by ignoring the
neutral label and using only entailment and contradiction as
the basis for fact verification.

5https://huggingface.co/MoritzLaurer/
DeBERTa-v3-base-mnli-fever-anli

6https://huggingface.co/cross-encoder/
nli-deberta-v3-base
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Table 2: Performance comparison of various models across different datasets, where wiki-bio-hallucination (synthe-
sis) consists of LLM-generated biographies with controlled factual hallucinations, while wiki-bio-hallucination
(GPT-4o) contains real-world hallucinations from GPT-4o-generated biographies. The table presents accuracy
(Acc), F1 score, recall (Recall), and precision (Prec) for different models, including random, LLM-based models,
Cross-Encoders, Bi-Encoders, and our proposed method. The best results are marked in bold, and the second-best
results are underlined. L stands for LLM, X stands for Cross-Encoder, and B stands for Bi-Encoder.

Types Models
wiki-en-sentences wiki-bio-hallucination

(synthesis)
wiki-bio-hallucination

(GPT-4o) factscore-dataset

Acc F1 Recall Prec Acc F1 Recall Prec Acc F1 Recall Prec Acc F1 Recall Prec

Random 0.5023 0.5062 0.5002 0.5123 0.5058 0.5753 0.5135 0.6541 0.5028 0.5166 0.4962 0.5388 0.5036 0.4005 0.4834 0.3418

L Qwen2-7B 0.8891 0.9014 0.9933 0.8250 0.9239 0.9442 0.9875 0.9046 0.8297 0.8581 0.9615 0.7747 0.8058 0.7745 0.9724 0.6435

X
DeBERTa-v3-base-
mnli-fever-anli

0.8249 0.8535 1.0000 0.7444 0.7770 0.8528 0.9914 0.7483 0.5519 0.7038 0.9943 0.5447 0.6367 0.6441 0.9586 0.4850

nli-deberta-v3-base 0.8556 0.8758 0.9983 0.7801 0.8199 0.8718 0.9394 0.8134 0.6118 0.7283 0.9719 0.5824 0.7252 0.6861 0.8757 0.5641

B

BERTScore 0.5100 0.6755 1.0000 0.5100 0.6519 0.7893 1.0000 0.6519 0.5354 0.6974 1.0000 0.5354 0.3430 0.5108 1.0000 0.3430

BGE-en-base-v1.5 0.5753 0.7060 0.9996 0.5457 0.6519 0.7893 1.0000 0.6519 0.5383 0.6988 1.0000 0.5370 0.3482 0.5127 1.0000 0.3448

Ours 0.9444 0.9476 0.9841 0.9136 0.8638 0.8965 0.9051 0.8881 0.6423 0.7043 0.7954 0.6319 0.6949 0.6434 0.8025 0.5370

Ours (mini) 0.9054 0.9132 0.9761 0.8580 0.7920 0.8447 0.8675 0.8230 0.6146 0.6889 0.7971 0.6066 0.6551 0.6099 0.7859 0.4982

competitive results across all datasets, demonstrat-493

ing that a significant parameter reduction does not494

come at the large sacrifice of performance.495

4.3.2 Experiment on Overall Framework496

Table 3: Performance of different Decomposers and
Checkers on the wiki-bio-hallucination dataset. Spear-
man/Pearson Correlation Coefficient and Coefficient
of Variation are used as metrics. For detailed fact score
distributions, refer to the Figures 2 in the appendix.

Decomposer Checker Spearman Pearson CV

GPT-4o

Qwen2-7B 0.9762 0.9972 0.4679
DeBERTa-v3-base-
mnli-fever-anli

0.9286 0.9776 0.1590

nli-deberta-v3-base 0.9762 0.9901 0.2846
BGE-en-base-v1.5 0.3095 0.4608 0.0063
Ours 0.9524 0.9749 0.2151

Ours
Qwen2-7B 0.9762 0.9910 0.4242
Ours 0.9762 0.9581 0.2378
Ours(mini) 0.9762 0.9523 0.2235

In this section, we evaluate the performance of497

the full Light-FS framework to assess its reliability498

in factual verification. The experiment is conducted499

on the wiki-bio-hallucination dataset, which con-500

tains generated content from 8 mainstream closed-501

source and open-source models. We compute the502

average fact score for the content generated by503

each model using different combinations of decom-504

posers and checkers. These scores are then com-505

pared against GPT-4o’s ground truth annotations,506

with Spearman and Pearson correlation coeffi-507

cients used to assess alignment and the Coefficient508

of Variation to measure discriminative power.509

As shown in Table 3, our full Light-FS frame- 510

work maintains a high correlation with GPT-4o, 511

demonstrating its reliability as an independent fact- 512

checking system. Compared to NLI models, Light- 513

FS achieves similar Spearman and Pearson corre- 514

lations but exhibits a higher CV than DeBERTa- 515

v3-base-mnli-fever-anli, indicating better differen- 516

tiation capability in assessing factual inconsisten- 517

cies. In contrast, Bi-Encoder models struggle with 518

fine-grained fact distinctions, leading to low corre- 519

lation and poor score variability. Importantly, when 520

replacing the GPT-4o decomposer with ours, the 521

performance of Qwen2-7B checker consistency re- 522

mains high, further validating our Decomposer’s 523

effectiveness. The joint use of our Decomposer and 524

Checker ensures stable and robust performance, 525

maintaining high accuracy, efficient computation, 526

and strong differentiation in factual verification 527

tasks. Notably, our mini model retains competitive 528

performance despite its significantly smaller size. 529

4.4 Computational Efficiency Analysis 530

In this section, we evaluate the efficiency of 531

both the Decomposer and Checker in Light-FS. 532

The experiment is conducted on the wiki-bio- 533

hallucination dataset, which contains generated 534

content from 8 mainstream closed-source and open- 535

source models. 536

As shown in Table 4, Qwen2.5-0.5B(Ours) 537

demonstrates an impressive efficiency advantage. 538

The total decomposition time consists of two com- 539

ponents: Shared Decomposition Time, which is 540

required by all methods to process the generated 541

content, and Additional Decomposition Time, 542
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Table 4: Decomposition time. Shared Decomposition
Time refers to the time to decompose the generated
content. Additional Decomposition Time refers to the
time spent on decomposing the reference text.

Model Shared Decomposition
Time(seconds)

Additional Decomposition
Time(seconds)

GPT-4o (API) 10285.64 1215.22
Qwen2-7B 15950.54 1839.49

Qwen2.5-0.5B
(Ours) 665.29 148.71

Table 5: Fact verification time. Embedding Time refers
to the time spent on embedding the atomic facts. Com-
putation Time refers to the time spent on fact verifica-
tion. Total Time is the sum of embedding and computa-
tion time for the complete verification process.

Model Embedding
Time (seconds)

Computation
Time (seconds)

Total Time
(seconds)

GPT-4o (API) - 56680.48 56680.48
Qwen2-7B - 3401.82 3401.82
nli-deberta-v3-base - 346.76 346.76
Ours 17.33 0.33 17.66
Ours(mini) 3.01 0.32 3.33

which accounts for the extra time needed to de-543

compose the reference text (i.e., Wikipedia) and544

is specific to our method. Our model achieves545

a 14× speedup over GPT-4o and a 22× speedup546

over Qwen2-7B in total decomposition time. Ad-547

ditionally, the additional decomposition time only548

constitutes 10-20% of the total decomposition time,549

and this proportion further decreases as the volume550

of generated content increases. This efficiency gain551

is primarily attributed to sentence-level decomposi-552

tion strategy and the use of a smaller model, which553

significantly reduces computational overhead. Im-554

portantly, this improvement does not come at the555

cost of quality, as the F1 score remains within556

2.34% of GPT-4o.557

As shown in Table 5, our Checker shows a re-558

markable advantage in computation time in the fact559

verification phase. Compared to the pairwise infer-560

ence of NLI models, our base version completes561

the task in only 17.66 seconds (a 20x speedup),562

and the mini version achieves 3.33 seconds (a 104x563

speedup). This efficiency is largely due to our Bi-564

Encoder architecture, which enables individual pro-565

cessing of embeddings for generated and reference566

facts, minimizing redundant computation. In con-567

trast, Cross-Encoder models perform inferences568

for each fact pair, leading to significantly higher569

computational complexity.570

4.5 Ablation Studies 571

Since decomposition is an integral part of our ap- 572

proach, this ablation study focuses solely on the 573

Checker module, specifically the effects of the 574

PMA and the MFIM. 575

Table 6: Ablation study results comparing different
configurations for fact verification across two datasets.

wiki-en-sentences wiki-bio-hallucination
(synthesis)

Acc F1 Acc F1

Light-FS 0.9444 0.9476 0.8638 0.8965

-PMA+Pool 0.8835 0.8962 0.7791 0.8499
-MFIM+Cosine 0.8111 0.8269 0.7482 0.8353
-PMA-MFIM
+Pool+Cosine

0.5753 0.7060 0.6519 0.7893

As shown in Table 6, replacing PMA with global 576

pooling methods resulted in a significant drop in 577

accuracy and F1 score, highlighting the importance 578

of PMA in capturing fine-grained semantic differ- 579

ences. Replacing the MFIM with cosine similarity 580

caused a notable decline in performance, partic- 581

ularly in precision, emphasizing the necessity of 582

multi-feature interaction for effective fact verifica- 583

tion. Finally, removing both PMA and MFIM led 584

to a dramatic performance drop, confirming the es- 585

sential role of these components in ensuring robust 586

fact verification. 587

5 Conclusion 588

This paper proposes Light-FS, an API-free, com- 589

putationally efficient framework for evaluating 590

the factuality of generated content. By adopt- 591

ing a "Decompose-Embed-Interact" three-stage 592

paradigm, Light-FS significantly improves com- 593

putational efficiency while maintaining high ver- 594

ification accuracy. Specifically, we replace the 595

traditional passage-level LLM processing with 596

a sentence-level SLM decomposition strategy, 597

achieving a 14x speedup in atomic fact decom- 598

position. Additionally, Light-FS integrates a Bi- 599

Encoder architecture with a multi-feature interac- 600

tion mechanism, enhancing efficiency and achiev- 601

ing a 20x acceleration over conventional NLI mod- 602

els. Ablation studies further confirm the impor- 603

tance of the Pooling-based Multi-head Attention 604

and Multi-Feature Interaction modules in improv- 605

ing fact verification performance. In the future, we 606

plan to optimize Light-FS further to improve its 607

generality and scalability. 608
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Limitations609

Despite the excellent performance of the Light-FS610

framework in fact verification tasks, the following611

limitations remain:612

Domain Adaptability: Light-FS was trained on613

Wikipedia data, which may limit its applicability to614

other domains like news, law, or scientific papers.615

Adapting to different data distributions may require616

additional fine-tuning or training.617

Inference Limitations: Light-FS uses a Bi-618

Encoder-based approach that is suitable for surface-619

level fact matching. It may struggle with complex620

reasoning tasks, such as causal or temporal rela-621

tionships, where Cross-Encoder models perform622

better due to their interactive encoding.623

Dependency on Reference Quality: The effec-624

tiveness of Light-FS depends on the accuracy and625

authority of the reference texts. Light-FS may mis-626

judge generated content if the reference material is627

outdated or erroneous.628

Extra Computational Cost: The need for de-629

composing both reference and generated texts in-630

creases computational costs, particularly in large-631

scale or real-time verification scenarios. Optimiz-632

ing caching and retrieval mechanisms could ad-633

dress this issue.634
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Appendix833

A Implementation Details834

Our experiments are conducted on a system run-835

ning Ubuntu 22.04, equipped with an NVIDIA836

RTX 4090 GPU, an Intel 13th Gen Core i7-13700K837

CPU, 64GB RAM, and software dependencies, in-838

cluding CUDA 11.8, PyTorch 2.4.0 and Transform-839

ers 4.45.2.840

A.1 Decomposer Training Settings841

Our Decomposer is based on Qwen/Qwen2.5-0.5B-842

Instruct7 as the foundation model. The base model843

undergoes full-parameter supervised fine-tuning us-844

ing the llama-factory framework8, with a learning845

rate of 2.0e-5, batch size of 4, and trained for 3846

epochs.847

The training data is sourced from michae-848

lauli/wiki_bio9, from which 5,000 samples are ran-849

domly selected as the foundational dataset. The850

Wiki paragraphs are first split into sentences using851

Stanza, and each sentence is then decomposed by852

GPT-4o to generate the training set. The prompt853

used for decomposition is as follows using few-shot854

prompt 3.855

A.2 Checker Training Settings856

We conduct joint training of the embedder and857

multi-feature interaction module. The embedder858

is responsible for generating high-quality sentence859

embeddings. For this purpose, we utilize the BERT860

model bge-base-en-v1.510. Additionally, to en-861

hance embedding efficiency, we provide a mini862

7https://huggingface.co/Qwen/Qwen2.5-0.
5B-Instruct

8https://github.com/hiyouga/LLaMA-Factory
9https://huggingface.co/datasets/michaelauli/

wiki_bio
10https://huggingface.co/BAAI/bge-base-en-v1.5

version using the BERT model all-MiniLM-L6- 863

v211. The multi-feature interaction module then 864

computes factuality scores based on these embed- 865

dings. 866

We employ two loss functions: triplet loss and 867

binary cross-entropy (BCE) loss. The objective 868

of Triplet Loss is to optimize fact scores through 869

supervised learning of triplets, ensuring that the 870

factual score of the anchor sentence is higher when 871

paired with a highly factual positive sentence while 872

being lower when paired with an unrelated negative 873

sample. 874

Ltriplet = max(0, α+ Factscore(Ha, Hn) 875

− Factscore(Ha, Hp)) (1) 876

where α denotes the margin, set to 0.5. Ha, Hp, 877

and Hn represent the embeddings of the anchor, 878

positive, and negative samples, respectively, with 879

factual scores computed via the multi-feature inter- 880

action module. 881

Simultaneously, BCELoss is employed for su- 882

pervised training. The Factscore output by the 883

multi-feature interaction module is a value between 884

[0, 1], indicating the degree of alignment between 885

the generated content g and the reference content 886

c. The objective is to minimize the difference be- 887

tween the predicted score and the ground truth label 888

y ∈ {0, 1}. 889

Lbce = − 1

N

N∑
i=1

[yi · log(Factscorei) 890

+ (1− yi) · log(1− Factscorei)] (2) 891

The overall joint training objective function is 892

formulated as the sum of Triplet Loss and BCE 893

Loss: 894

L = Ltriplet + Lbce 895

During training, the parameters of the BERT 896

model are frozen, and only the PMA module 897

within the embedder and the multi-feature inter- 898

action module are updated. The training process 899

uses a learning rate of 5e-5, a batch size of 32, and 900

runs for 8 epochs. 901

The dataset is derived from wikipedia-en- 902

sentences12, selecting the top 500,000 Wikipedia 903

sentences. Triplet data is generated using the 904

11https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

12https://huggingface.co/datasets/
sentence-transformers/wikipedia-en-sentences

11
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Figure 2: Fact score distribution for different Decomposer + Checker combinations across eight generative models.
The x-axis represents the models producing the generated content, while the y-axis shows the corresponding fact
scores. Light-FS (Ours+Ours) and its mini variant (Ours+Ours(mini)) maintain strong Spearman and Pearson
correlations with GPT-4o’s ground truth annotations, ensuring consistent ranking of factual consistency across
models. Although Light-FS exhibits lower score variance compared to Qwen2-7b and nli-deberta-v3-base, its
ranking of model factuality remains aligned with GPT-4o, demonstrating its reliability as an efficient fact verification
framework.

Qwen2-7B model with prompts. The final training905

set consists of 2,749,030 triplets, with 50,000 pairs906

allocated for validation and testing, respectively.907

The prompt used is as follows: 4, 5, 6, 7.908

A.3 Experiment Datasets Annotation909

We used GPT-4o for decomposition and annotation910

of the datasets employed in the experiments, with911

the following prompt used for annotation: 8, 9,912

10. Meanwhile, the prompt used for LLM in fact913

verification is shown in 11.914
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Figure 3: Few-shot prompt used for sentence-level atomic fact decomposition.

Sentence-level Atomic Fact Decomposition Prompt

Decompose the following sentences into atom facts if possible, response only the decomposition.
Rely solely on the provided text.
Do not infer or assume additional information.
Do not include any additional information.
Just be faithful to the text.
Examples:

Input: Elisha Brown (25 May 1717 - 20 April 1802) served as Deputy Governor of Rhode Island
from 1770 to 1772.
Output: Elisha Brown was born on 25 May 1717. Elisha Brown died on 20 April 1802. Elisha
Brown served as Deputy Governor of Rhode Island from 1770 to 1772.

Input: George Bovell is currently a professional swimmer and intends to compete in a record fifth
Olympiad. Bovell is also respected for his voluntary giving back initiatives such as "The World
Swim Against Malaria and Drowning" in Uganda, 2013, with his friend, Ugandan swimmer Max
Kanyarezi.
Output: George Bovell is currently a professional swimmer. George Bovell intends to compete in
a record fifth Olympiad. George Bovell is respected for his voluntary giving back initiatives such
as "The World Swim Against Malaria and Drowning" in Uganda, 2013. George Bovell did this
with his friend, Ugandan swimmer Max Kanyarezi.

Input: He now hosts the breakfast slot on 98FM.
Output: He now hosts the breakfast slot on 98FM.

Now expand this biographical statement with the same accuracy and style, ensuring the facts
remain unchanged and no additional information is inferred.

Input: {sentence}
Output:
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Figure 4: Zero-shot prompt used for non-factual sentence.

Non-factual Sentence Generation Prompt

## type: type_info
type_dict = {

"time": "Time content: Covers time, dates, periods, etc., related to when events occur.",
"number": "Number content: Includes data, ratios, percentages, etc.",
"entity": "Entity content: Involves specific entities such as names of people, places, organiza-

tions, etc.",
"event": "Event content: Describes specific events, activities, actions, etc.",

}

Modify the input sentence by changing only the {type} content to make the sentence factually
incorrect.
{type_info}
Ensure that the sentence structure and meaning remain consistent, but the facts related to the
{type} content should be altered.
Do not add any new words or use contrasting phrases like ’however’ or ’but’.
Just replace the original {type} content with a different, incorrect value.
And provide only the modified sentence as a response.
The sentence is: {sentence}
Your answer:

Figure 5: Zero-shot prompt used for similar sentence.

Similar Sentence Generation Prompt

Please take the following sentence and rewrite it using various of expressions, but keep the factual
information the same.
Do not add any additional information that is not already mentioned in the original sentence.
And provide only the modified sentence as a response.
The sentence is: {sentence}
Your answer:
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Figure 6: Few-shot prompt used for sentence with extra information.

Sentence with Extra Information Generation Prompt

Given the following sentence, generate a new sentence by adding extra, relevant information, but
not too long.
For example:
1. Sentence: Adja Yunkers received a Guggenheim Fellowship.
Answer: Adja Yunkers received a Guggenheim Fellowship in 1956.

2. Sentence: Adja Yunkers was a printmaker.
Answer: Adja Yunkers was an American printmaker.

3. Sentence: Admiral William J. Flanagan, Jr. was born in 1943.
Answer: Admiral William J. Flanagan, Jr. was born in April 3, 1943 in New York City.

4. Sentence: Albert Einstein was awarded the Nobel Prize in Physics in 1921.
Answer: Albert Einstein was awarded the Nobel Prize in Physics in 1921 for his work on the
photoelectric effect.

Instructions:
- You may add relevant details such as dates, locations, specific achievements, or additional
background information.
- The added details should enrich the meaning of the original sentence, providing more context
without overwhelming it.
- Ensure that the sentence remains clear and concise.

Now, consider the following sentence:
Sentence: {sentence}
Your answer (please provide only the modified sentence):
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Figure 7: Few-shot prompt used for sentence with missing information.

Sentence with Missing Information Generation Prompt

Given the following sentence, generate a new sentence by removing some information.
Ensure the remaining information is still accurate and the core meaning is preserved.

For example:
1. Sentence: Adja Yunkers received a Guggenheim Fellowship in 1956.
Answer: "Adja Yunkers received a Guggenheim Fellowship.

2. Sentence: Adja Yunkers was an American printmaker.
Answer: Adja Yunkers was a printmaker.

3. Sentence: Admiral William J. Flanagan, Jr. was born on April 3, 1943, in New York City.
Answer: Admiral Flanagan was born in 1943 in New York.

4. Sentence: Albert Einstein was awarded the Nobel Prize in Physics in 1921 for his work on the
photoelectric effect.
Answer: Albert Einstein was awarded the Nobel Prize in Physics in 1921.

Instructions:
- You may remove specific details such as dates, places, etc.
- Be sure that the modified sentence remains factually correct and conveys the main idea.

Now, consider the following sentence:
Sentence: {sentence}
Your answer (please provide only the modified sentence):

Figure 8: Zero-shot prompt used for wiki-bio-hallucination (synthesis).

Wiki-bio-hallucination (synthesis) Generation Prompt

cata = ["time", "number", "event", "entity"]

Based solely on the provided Wikipedia text, write a description of the topic in no more than 60
words.
Use the information mentioned in the text but include two factual inaccuracies about {cata} if
possible.
Do not alter the main entity (the individual) being described.
Ensure the errors are plausible but intentionally deviate from the provided text.
Wikipedia Text: {text}
Response only the description:
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Figure 9: Zero-shot prompt used for wiki-bio-hallucination (LLM).

Wiki-bio-hallucination (LLM) Generation Prompt

Write an introduction (within 400 words) in a Wikipedia style about {name}.
Provide only the generated introduction.

Figure 10: Few-shot prompt used for passage-level atomic fact decomposition.

Passage-level Atomic Fact Decomposition Prompt

Decompose the following sentences into atom facts, response only the decompositions:
Sentence: Tim Finchem (born August 24, 1947) is an American businessman and former Commis-
sioner of the PGA Tour...... He was inducted into the World Golf Hall of Fame in 2017.
Answer: ["Tim Finchem was born on August 24, 1947.",...,"Tim Finchem was inducted into the
World Golf Hall of Fame in 2017."]
Sentence: John Russell Reynolds (1820–1876) was an English lawyer, judge, and author...... He
also wrote a biography of the poet John Keats (1848).
Answer: ["John Russell Reynolds was born in 1820.",...,"John Russell Reynolds wrote a biography
of John Keats in 1848."]
Sentence: {sentence}
Answer:

Figure 11: Prompt used for fact verification.

Fact Verification Prompt

Giving a claim and a paragraph, determine if the claim is supported by the paragraph:

Paragraph: {paragraph}

Claim: {claim}

Answer (just yes or no):
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