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Abstract

Transformers have shown impressive capabilities across various tasks, but their
performance on compositional problems remains a topic of debate. In this work,
we investigate the mechanisms of how transformers behave on unseen composi-
tional tasks. We discover that the parameter initialization scale plays a critical role
in determining whether the model learns inferential (reasoning-based) solutions,
which capture the underlying compositional primitives, or symmetric (memory-
based) solutions, which simply memorize mappings without understanding the
compositional structure. By analyzing the information flow and vector represen-
tations within the model, we reveal the distinct mechanisms underlying these so-
lution types. We further find that inferential (reasoning-based) solutions exhibit
low complexity bias, which we hypothesize is a key factor enabling them to learn
individual mappings for single anchors. We validate our conclusions on various
real-world datasets. Our findings provide valuable insights into the role of initial-
ization scale in tuning the reasoning and memorizing ability and we propose the
initialization rate γ to be a convenient tunable hyper-parameter in common deep
learning frameworks, where 1/dγin is the standard deviation of parameters of the
layer with din input neurons.

1 Introduction

Large-scale transformers (Vaswani et al., 2017) demonstrate unprecedented capabilities (Achiam
et al., 2023; Brown et al., 2020; Choi et al., 2021; Teubner et al., 2023), even noted as “sparks
of AGI" (Bubeck et al., 2023). However, their performance on compositional tasks, which are
considered a key property of human cognition (Marcus, 2003; Smolensky et al., 2022), has long been
the subject of intense debate, especially in terms of the out-of-distribution (OOD) generalization
ability. This raises critical open questions about how to faithfully interpret transformers’ capabilities
on compositional tasks. Can transformers learn the underlying compositional primitives within the
data, or do they merely learn input-output mappings? When transformers produce incorrect outputs
on compositional tasks, do their responses follow any discernible patterns or logic?

In this work, we use anchor functions (Zhang et al., 2024), a framework for creating controlled
synthetic data, to investigate how transformers generalize to unseen compositional tasks. In our
setup, each sequence contains an anchor pair, a key item, and noise items unrelated to the output
(right side of Fig. 1(a)). The single anchors are specific tokens (i.e., 1, 2, 3, 4), each corresponding
to a particular arithmetic operation (left side of Fig. 1(a)). A composite function is defined as the
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sequential application of two single anchor functions, i.e., the corresponding arithmetic operation,
to a key item. For example, given a key item x and an anchor pair (1, 2), the composite function
would output (x + 5) + 1, i.e., x + 6. As shown in the middle part of Fig. 1(a), during training, 14
out of the 16 possible anchor pairs are assigned inferential (reasoning-based) mappings, meaning
the target output is consistent with the result of applying the composite function. One pair (3, 4) is
assigned a non-inferential (memory-based) mapping, where the target output deviates from the result
of the composite function. The remaining pair (4, 3) is held out as an unseen task. After training,
there are three possible solutions the model could learn for the unseen pair (4, 3): a symmetric
solution matching the non-inferential seen pair (3, 4) (Mechanism 1 in Fig. 1(b)), an inferential
solution (Mechanism 2 in Fig. 1(b)), or other non-inferential solutions. The central question we aim
to answer is: which of these three types of solutions will the model learn for the unseen anchor pair
(4, 3)?

Figure 1: Experimental setup and possible solutions and mechanisms for the unseen anchor pair (4,
3). (a) Data generation: Left: The single anchors (i.e., 1, 2, 3, 4) correspond to specific arithmetic
operations. Middle: During training, 14 out of the 16 possible anchor pairs are assigned inferential
mappings, one pair (3, 4) is assigned a non-inferential mapping, and the remaining pair (4, 3) is
held out as an unseen task (does not appear in the training). Right: The input sequences comprise
an anchor pair, a key item preceding the anchor pair, and noise items unrelated to the target. The
question mark indicates the output for the unseen anchor pair (4, 3), which depends on the learned
solution. (b) Two potential mechanisms for the unseen anchor pair (4, 3): learning the symmetric
structure (Mechanism 1) or composing the inferred single anchor mappings (Mechanism 2).

Based on the above setup, we find that the model exhibits two distinct phases of solutions depending
on the parameter initialization scale with different model depths. With small initialization scales,
the model tends to learn inferential solutions on the unseen anchor pair (4, 3). In contrast, with
larger initialization scales, the model is more likely to learn symmetric solutions on anchor pair (4,
3) that simply match the output of its symmetric anchor pair (3, 4). These findings suggest that the
initialization scale plays a crucial role in determining the type of solution learned by the model.

To gain insights into the mechanisms underlying these different solution types, we analyze the infor-
mation flow and vector representations within the model. We find that symmetric solutions directly
combine anchor information without capturing the underlying compositional primitives, while infer-
ential solutions learn individual mappings for each single anchor and compose them to generate the
final output. We hypothesize that the model’s ability to learn compositional primitives is influenced
by its complexity, determined by the initialization scale. Inferential solutions exhibit low complexity,
with weights condensing in a few directions and input tokens arranged according to their numerical
value in the embedding space, while symmetric solutions show no obvious condensation and lack
clear structural features, indicating higher complexity.

Our work highlights the crucial role of initialization scale in shaping the solutions learned by trans-
formers on compositional tasks, enabling them to better capture compositional structures and gener-
alize to unseen tasks. Furthermore, adapting the initialization scale to the specific task type could
be promising: larger scales for memorization tasks such as text memorization, and smaller scales
for reasoning tasks such as code generation. Unless otherwise specified, our main text primarily fo-
cuses on a single-head attention model to facilitate a clearer understanding of the underlying mech-
anisms. We further extend our experiments to GPT-2 (Radford et al., 2019), and verify that the
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insights drawn from the single-head model remain valid for more complex architectures on various
real-world datasets.

With the support of the theoretical works and extensive experiments, we propose the initialization
rate γ to be a convenient tunable hyper-parameter in common deep learning frameworks, where
1/dγin is the standard deviation of parameters of the layer with din input neurons.

2 Related Work

Challenges of transformers in compositional tasks. Recent advancements in large language mod-
els (LLMs) have showcased remarkable capabilities, often surpassing human performance (Fu et al.,
2022; Wei et al., 2022). However, despite their impressive performance on single-step reasoning
tasks (Srivastava et al., 2022), transformers struggle with multi-step compositional tasks and OOD
generalization (Csordás et al., 2021, 2022; Dziri et al., 2024; Hupkes et al., 2018; Lepori et al., 2023;
Okawa et al., 2023; Yun et al., 2022). Ramesh et al. (Ramesh et al., 2023) show that transformers
trained to directly compose capabilities struggle to generalize to OOD tasks with a synthetic task.
Liu et al. (Liu et al., 2022) suggest that shallow transformers learn shortcuts during training, leading
to poor OOD generalization. Numerous studies have explored various approaches to address these
limitations, such as encouraging explicit reasoning step generation within a single generation (Wei
et al., 2022), leveraging LLMs to generate reasoning steps iteratively (Creswell et al., 2022; Creswell
and Shanahan, 2022). Despite these efforts, achieving complete mastery in compositional tasks re-
mains a significant challenge for vanilla transformers. A series of works studies the internal mecha-
nisms of language models and improves the capabilities of language models (Wang et al., 2024a,b,
2023; Cao et al., 2024). In order to clearly study the behaviors and internal mechanisms of language
models, Zhang et al. Zhang et al. (2024) introduced anchor functions as benchmark functions for
investigating transformer behavior. Our work builds on the anchor function setting to explore how
different initialization scales affect model solutions and mechanisms.

Parameter initialization of neural networks. The parameter initialization of the network is impor-
tant to determine the final fitting result of the network (Arora et al., 2019; Chizat and Bach, 2018;
Zhang et al., 2019; E et al., 2020; Jacot et al., 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden,
2018; Sirignano and Spiliopoulos, 2020; Williams et al., 2019). Luo et al. (Luo et al., 2021), Zhou et
al. (Zhou et al., 2022) mainly identify the linear regime and the condensed regime for two-layer and
three-layer wide ReLU NNs, respectively. A series of works suggests that the condensed networks
are often accompanied by good generalization ability of the model (Zhang et al., 2022; Zhang and
Xu, 2023; Zhang et al., 2023; Zhang and Xu, 2024). A line of works links the grokking phenomenon
with the improvement of reasoning ability (Power et al., 2022; Wang et al., 2024; Gopalani et al.,
2024) and points out that the initialization scale has an important influence on the occurrence of
grokking (Liu et al., 2022). Recent studies also investigate the impact of initialization on the train-
ing process of LLMs (Huang et al., 2020; Liu et al., 2020; Trockman and Kolter, 2023; Wang et al.,
2024; Zhang et al., 2019; Zhu et al., 2021). These works primarily focus on how the initialization
scale affects the stability of the training process and plays a crucial role in ensuring smooth and
effective training of LLMs. In our work, we find that initialization scales can significantly influence
a model’s ability to memorize and infer data on the compositional task, highlighting the profound
impact of initialization on the final performance and underlying mechanisms of the trained models.

3 Definitions

We introduce a set of key definitions that will be used throughout the paper. For detailed explanations
and illustrative examples to better understand these definitions, please refer to Appendix B.

3.1 Two-anchor composite function

A two-anchor composite function f(X) : Rn → R is defined as

f(x1, . . . , xn) = g (g(xi−1;xi);xi+1) , where xi, xi+1 ∈ A. (1)

Here, the input sequence X = (x1, . . . , xn) comprises n tokens. An anchor set A =
{a1, a2, . . . , aJ} is designated, with each token ak ∈ A corresponds to a function g(x; ak). In
each X , one and only one pair of two consecutive elements belong to A, such as xi, xi+1 ∈ A.
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We refer to the token immediately preceding the anchor pair as the key item. To simplify notation,
we denote the two-anchor composite function as f(xi−1;xi, xi+1) to emphasize the anchor pair
(xi, xi+1) and key item xi−1.

In this work, we set the anchor set A = {1, 2, 3, 4}. Each anchor token corresponds to a specific
function:

g(x; 1) = x+ 5, g(x; 2) = x+ 1, g(x; 3) = x− 2, g(x; 4) = x− 8. (2)

3.2 Data Generation

In this work, we construct the input dataset using four anchors (i.e., 1, 2, 3, 4) and items sampled
from 20-99. Each sequence includes an anchor pair, a key item (the item immediately preceding the
anchor pair), and noise items. The noise items are unrelated to the target. The four anchors form 16
anchor pairs, and we select a subset or all of these pairs to construct the training dataset based on
the task requirements.

By default, the target is the output of the input data processed by the two-anchor composite function,
i.e., the inferential mapping defined below. We divide the training data and test data based on the
value of the key item. The specific division method can be found in Appendix C.

3.3 Mapping Type of an anchor pair

For an anchor pair (a1, a2), the type of its mapping M(a1,a2)(·) can be classified as follows.

Inferential mapping. The designated target mapping of an anchor pair (a1, a2) is consistent with the
two-anchor composite function, i.e., M(a1,a2)(x) = f(x; a1, a2). This type of solutions exemplifies
the reasoning ability of models.

Non-inferential mapping. The designated target mapping of an anchor pair (a1, a2) is inconsistent
with the two-anchor composite function, i.e., M(a1,a2)(x) ̸= f(x; a1, a2).

Symmetric mapping. The designated target mapping of an anchor pair (a1, a2) is consistent with
the mapping of its symmetric anchor pair (a2, a1), i.e., M(a1,a2)(x) = M(a2,a1)(x).

We refer to a model as an inferential (non-inferential, symmetric) solution on an anchor pair if it
tends to output the mapping corresponding to the inferential (non-inferential, symmetric) mapping
for the studied pair.

3.4 Generalization

The division of the dataset naturally leads to the following two concepts of generalization:

Generalization on data. Generalization on data relies on the test set (defined in Appendix C). In
this test data, all anchor pairs (i.e., the task) are seen in the training set.

Generalization on task. Generalization on task depends on the unseen anchors, i.e., anchors that
do not appear in the training set, with a designated target mapping.

3.5 Model Architecture and Basic Experimental Setups

To enable a more focused analysis of the underlying mechanisms, the following sections will only
introduce the architecture of the single-head attention model.

The input sequence is represented as a one-hot vector X in. The word embedding Xem and the input
to the first transformer block X(1) is calculated as:

Xem = X inW em, X(1) = Xem +Xpos, (3)

where Xpos is a trainable positional vector. For the l-th layer, the Q,K, V are defined as:

Q(l) = X(l)WQ(l), K(l) = X(l)WK(l), V (l) = X(l)WV (l). (4)

The attention matrix Attn(l) and its subsequent output Xqkv(l) for the l-th layer is computed as:

Attn(l) = softmax

(
Q(l)K(l)T

√
dk

)
(with mask), Xqkv(l) = Attn(l)V (l). (5)
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The output of the l-th attention layer is obtained as:

Xao(l) = LN(X(l) +Xqkv(l)W attn,l), X(l+1) := Xdo(l) = LN(FNN(Xao(l)) +Xao(l)), (6)

where “LN” refers to Layer Normalization and “FN” represents a Fully Connected Network. The
final output is obtained by projecting the output of the last layer Xdo(L) using a linear projection
layer, followed by a softmax operation and argmax to obtain the predicted token.

For the basic experimental setups, we use cross-entropy loss on the last token of the sequence and
optimize the model using Adam with weight decay. The specific hyperparameters and training
details are provided in Appendix A.

4 Two Phases of Solutions for Composite Functions

In this section, we investigate the mechanisms of how a transformer learns the compositional tasks,
especially on the OOD tasks.

Experimental Setup. For the 16 anchor pairs, the anchor pair (4, 3) is held out as an unseen
pair during the training, while pair (3, 4) is assigned as non-inferential mapping, i.e., we set the
designated target mapping M(3,4)(x) = x − 6 (the inferential mapping is x − 10), seen in the
training set. The other 14 anchor pairs are set as inferential mappings seen in the training set. Three
possible solutions for pair (4, 3) may be learned after enough training: i) inferential solution based
on the 14 anchor pairs with inferential mapping, ii) symmetric solution based on the anchor pair (3,
4), iii) other non-inferential solutions. See illustration in Fig. 1(b).

Figure 2: (a,b) Phase diagram of generalization performance on the unseen anchor (4, 3). (a) The
model’s test accuracy based on the symmetric mapping. (b) The model’s test accuracy based on
the inferential mapping. The abscissa represents the initialization rate γ, which corresponds to the
standard deviation (1/din)

γ of a normal distribution with a mean of 0 used for parameter initializa-
tion. The ordinate represents the depth of the transformer model. The shadow zones indicate the test
accuracy on seen anchors is less than 90%. (c) Comparison of accuracy on the unseen anchor (4, 3)
for both the inferential and symmetric solutions across different initialization rates γ on GPT-2. The
error bars represent the standard deviation across 4-time runs.

An important and interesting question is: which solution is learned for unseen pair (4, 3)? Exper-
iments show that different initialization scales lead to different solutions for the unseen pair (4, 3)
with different model depths. Fig. 2(a) shows the phase diagram assuming the symmetric mapping
(M(4,3)(x) = x−6) as ground truth, with initialization scale on the abscissa and model depth on the
ordinate. A large initialization scale (small γ) leads to the symmetric solution, indicated by yellow
zones with nearly 100% accuracy. Fig. 2(b) assumes the inferential mapping (M(4,3)(x) = x− 10)
as ground truth, showing that a small initialization scale (large γ) favors the inferential solution.
Larger initialization scales with deep models result in poor generalization even on seen anchors
(shadow zone). This pattern was consistent across trials: for each random seed, models with differ-
ent initializations and depths were trained using 9 learning rates (uniformly sampled in [1 × 10−4,
3×10−4]), and the highest accuracy for each of the two mappings was selected from these rates. The
highest accuracies were then averaged over 3 random seeds. We conclude that small initializations
favor the inferential solution, while large (but not very large) initializations favor the symmetric
solution.
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To validate the generality of these findings, we extend our experiments to the multi-head GPT-2
model. As shown in Fig. 2(c), the model exhibits similar generalization performance trends on the
unseen pair (4, 3) across different initialization rates γ. The range of γ variation is smaller in this
setup, likely due to the difference in model parameter scale between the GPT-2 and the transformer
models used in the previous experiments.

We also find that increasing the learning rate and weight decay coefficient within a certain range
is helpful for the transformer to learn the inferential solution on the unseen anchor. Please refer to
Appendix E for experimental phenomena and detailed discussion.

5 Mechanisms of Models in Two Phases

In this section, we analyze mechanisms underlying different learning solutions including: i) informa-
tion flow via attention matrix; ii) information representation in vector space; iii) model complexity
from different perspectives. The key message is as follows. A model with small initialization needs
to gradually increase its capacity by enlarging the parameter scale, therefore, to use the least op-
timization cost to fit the training data, the model only needs to learn four single anchor functions
to obtain inferential mappings. As the initialization scale increases, the model tends to learn ten
mappings, treating symmetric anchor pairs as equivalent, and memorizes the mapping between each
anchor-key item pair and its corresponding output. When the initialization becomes even larger, the
model forgoes learning general patterns and instead merely memorizes the output associated with
each individual data point. This causes the model to lose generalization ability, even on the anchors
it has encountered during training.

5.1 Information Transmission and Fusion Mechanisms

In this section, we study the information transmission and fusion mechanisms occurring in the atten-
tion matrix through information flow analysis. As shown in Fig. 3 (a,c), we present the information
flow of two-layer networks corresponding to the two solutions. We use the same input sequence to
test the output with the key item 99 and the unseen anchor pair (4, 3). The thickness of the line con-
necting the j-th token in Layer l and the k-th token in Layer l+1 represents the value of the attention
matrix Attn(l) at position (k, j). For ease of observation, we manually annotate the information flow
that significantly contributes to the output of the last token using different colors.

Figure 3: (a, c) Information flow in the two-layer networks of symmetric and inferential solutions.
The input sequence shown in the figure represents the test sample, with key items and anchor po-
sitions annotated. For each layer’s attention matrix, we illustrate the mechanisms of information
transmission and fusion through the information flow. The thickness of the line represents the corre-
sponding value in the attention matrix Attn(l). We use different colors to mark the key item and the
two single anchors, and highlight the attention connections that significantly contribute to the final
output. The final output sequence represents the model’s output. (a) Symmetric solution. (c) Infer-
ential solution. (b) T-SNE visualization of vectors Xao(1) of 10,000 input sequences with different
anchor-key item pairs. Symmetric anchor pairs have similar colors in different shades.

For symmetric solutions, we find that the model’s attention mechanism plays a key role in enabling
the learning of consistent mappings for symmetric anchor pairs. In the first layer of the network,
the attention mechanism combines the information of the two anchors and moves it to the last token
of the sequence. This allows the model to learn identical embeddings for symmetric anchor pairs,
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such as (3, 4) and (4, 3), as illustrated in Fig. 3(a). In the second layer, the information of the key
item is broadcast to the last token and combined with the anchor information obtained from the first
layer by the residual connection. This enables the model to produce the final output based on the
combined information from the anchors and the key item.

To verify the symmetric nature of the learned representations after the first-layer attention, we visu-
alize the vectors Xao(1) of 10,000 input sequences with different anchor-key item pairs using t-SNE.
Fig. 3(b) shows that symmetric anchor pairs are clustered together in the Xao(1) vector space, con-
firming that the model learns to map them to similar representations.

For inferential solutions, the information transmission mechanism is different. As shown in Fig. 3(c),
in the first layer, the key item information is moved to the positions of the two single anchors,
and each anchor is combined with the key item information separately. This allows the model
to learn individual mappings for each single anchor. In the second layer, the anchor tokens (now
containing the combined information from the anchors and the key item) are moved to the last token
and combined to produce the final output. This combination mechanism enables the model to learn
inferential solutions on the composite anchors.

5.2 Divergence in Fused Vector Representations across Two Phases

To further investigate the mechanistic differences between symmetric and inferential solutions, we
examine the divergence in vector representations after the fusion of anchor pair and key item infor-
mation in both types of solutions. Specifically, we examine the cosine similarity between the output
vectors of the second attention layer’s last token (i.e., the last token of Xao(2)) for different anchor-
key item combinations. We denote these output vectors as v(x; a1, a2), where x is the key item and
(a1, a2) is the anchor pair of the input sequence2.

As illustrated in Fig. 4(a, b), the heatmaps display the cosine similarity between output vectors for
various anchor-key item pairs. Both the abscissa and ordinate represent key item values ranging from
30 to 40. The lower and upper triangles of the heatmap correspond to the cosine similarity matrices
between v(x1; 3, 3) and v(x2; 2, 2), and between v(x1; 1, 2) and v(x2; 1, 3), respectively, where x1

and x2 are the corresponding key item values on the axes. The red boxes highlight positions where
the inferential targets are the same, for example, the red highlight in the first column in Fig. 4(a)
indicates f(36; 3, 3) = f(30; 2, 2), where f(·; ·, ·) is defined in Equation (1).

Figure 4: Cosine similarity heatmaps for vector representations in different solutions. Each axis rep-
resents a selected anchor pair (labeled on the axis), with the value on the coordinate axis representing
the value of the key item.The color indicates the cosine similarity between specific vectors defined in
each subplot. Red boxes highlight positions where the target outputs obtained by the anchors on the
abscissa and ordinate are the same for the corresponding key items. (a, b) Cosine similarity between
the output vectors of the second attention layer’s last token (the last token of Xao(2)) for different
anchor-key item pairs in (a) inferential and (b) symmetric solutions. (c) Cosine similarity between
the rows of the second layer Value matrix (V (2)) corresponding to the first anchor’s position across
different anchor-key item pairs for inferential solutions.

For inferential solutions, if two anchor-key pairs (x1; a1, a2) and (x2; b1, b2) have the same output,
i.e., f(x1; a1, a2) = f(x2; b1, b2), then their fused vectors v(x1; a1, a2) and v(x2; b1, b2) are nearly

2For simplicity, we assume that the position of the anchor-key item combination and other items do not
significantly affect the output vector.
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parallel. In contrast, for symmetric solutions, the pairwise similarity between vectors v(x; a1, a2)
is always low even for those with the same output. This suggests that the last FNN layer of the
symmetric solution memorizes all possible projections from Xao(2) to the decoder layer output.
Conversely, the last FNN of the inferential solution only needs to learn fewer projections, as the
same output is represented by similar vectors in the Xao(2) space.

Learning inferential solutions relies on the model’s ability to infer the operation of each individual
anchor. To verify the alignment between the single anchor operations in the inferential mechanism
and the defined single-anchor function g(·; ·) in Equation (2), we investigate the vector representa-
tions after the fusion of the first single anchor and the key item. We focus on the vector representation
of the second layer Value matrix V (2) at the position of the first single anchor, denoted as u(x; a1),
with key item x and first anchor a1. Similar to Fig. 4(a, b), the red boxes highlight the positions
where the targets obtained by the single anchors a1 and a2 on the abscissa and ordinate are the same
for the corresponding key items x1 and x2, i.e., g(x1; a1) = g(x2; a2). As shown in Fig. 4(c), the
information fusion of single anchors and key items and the explicitly defined single anchor opera-
tions align well. This provides stronger evidence for the model’s ability to learn the mapping of each
single anchor.

5.3 Model Complexity: A Key Factor in Phase Transitions

Large initialization scales endow models with high complexity, allowing them to fit training data
with minor parameter changes, as seen in FNNs in the linear regime (e.g., Neural tangent kernel) (Ja-
cot et al., 2018; Luo et al., 2021). Conversely, models with small initialization scales start with low
complexity and gradually increase it during training. In small initialization FNNs, the input weights
of different neurons often cluster along a few isolated orientations, which is referred to as condensa-
tions (Zhou et al., 2021; Zhang et al., 2021, 2022). This phenomenon of parameter condensation is
closely related to the model’s complexity and its ability to learn the underlying structure of the data.
To better understand the mechanisms behind inferential and symmetric solutions, we investigate the
degree of parameter condensation.

Figure 5: (a, b) Cosine similarity of neurons in the WQ(1) matrix. The abscissa and ordinate both
represent neuron index. (a) Inferential solution with small initialization. (b) Symmetric solution
with large initialization. (c, d) Visualization of the embedding space using t-SNE for different ini-
tialization scales. (c) Inferential solution with small initialization. The embedded tokens seem to
form arithmetic sequences with common differences of 3 (red arrow) and 4 (blue arrow) along the
two directions. (d) Symmetric solution with large initialization. Please refer to Appendix D for more
detailed experimental results under different model depths and initialization rates γ.

Condensation. We examine the condensation of matrix WQ(1). The similarity between the i-th
and the j-th neurons input weight is calculated by cosine similarity, i.e., WQ(1)[i,:]·WQ(1)[j,:]

||WQ(1)[i,:]||2||WQ(1)[j,:]||2
.

As shown in Fig. 5, for the inferential solution (Fig. 5(a)), the neuron weights condense in a few
directions, suggesting low complexity within the model. In contrast, for the symmetric solution
(Fig. 5(b)), there is no obvious condensation of neuron parameters, indicating high complexity
within the model.

However, even with small initialization, not all parameters exhibit significant condensation. For
the word embedding matrix W em, to distinguish the meanings of different tokens, different neuron
weights have different directions, i.e., neurons do not condense. Nevertheless, the parameter matrix
still exhibits a clear tendency towards low complexity.
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Structural Features of the Word Embedding Matrix. To gain further insights into the learning
mechanisms of inferential solutions, we analyze the structure of the model’s embedding matrix. We
visualize the embedding space using t-SNE. As shown in Fig. 5(c,d), for small initialization scales
(Fig. 5(c)), we observe a clear ordinal structure in the embedding space, with the embeddings of
the input tokens arranged according to their numerical value. This also suggests a low-complexity
tendency in the word embedding matrix, requiring the model to capture the relative ordinal relation-
ships between different tokens. However, this ordinal structure is not present for large initialization
scales (Fig. 5(d)).

It is worth noting that the relative ordinal relationship in the inferential solution is not a simple
numerical magnitude relationship of the corresponding tokens. We observe that this ordinal relation-
ship may originate from the definition of the four single anchors, where the differences between the
operations of any two single anchors can be obtained by the addition of the basic elements 3 and 4.
This arrangement is consistent with the numbers being ordered with intervals of 3 (red arrow) and
4 (blue arrow) from two directions in the embedding space. To further verify the low complexity
bias of the word embedding matrix, we visualize the eigenvalues of the covariance matrix of the
embedding vectors and its evolution process, the results are shown in Appendix D.3.

6 Further Verification on Realistic Tasks

We validated the performance of models with different initialization scales and weight decay set-
tings across a series of compositional and reasoning tasks. Below, we introduce each task and the
corresponding results. Please refer to the Appendix F for a detailed introduction of each dataset.

Compositional tasks: SCAN and COGS. For the SCAN dataset (Lake and Baroni, 2018), we
selected the “Generalizing composition across primitive commands" task, where the “turn left" com-
mand only appears in single-command mappings and is trained alongside other composite com-
mands. We assess the model’s generalization ability on composite commands that include the
“turn left" command. For the COGS dataset (Kim and Linzen, 2020), we evaluate the model’s in-
distribution and out-of-distribution generalization performance after training on the same training
set.

Figure 6: Performance comparison of models with different initialization scales and weight decay
coefficients on compositional tasks. (a) For the SCAN task, we assess the generalization ability on
composite commands that include the “turn left" command. (b, c) For the COGS task, we evaluate
(b) in-distribution and (c) out-of-distribution generalization after training on the same dataset. Small
initialization and large weight decay (blue) consistently outperform large initialization and small
weight decay (orange) across different tasks and data scales. The parameters are initialized following
a zero-mean normal distribution with a standard deviation of d−γ

in .

As shown in Fig. 6, we display the generalization performance of models with different initialization
scales and weight decay coefficients across various data sizes. Small initialization and large weight
decay consistently outperform large initialization and small weight decay across different task types
and data scales. Notably, in the COGS task, even when the in-distribution generalization of both set-
tings (with 20k training data) reaches over 99%, the difference in out-of-distribution generalization
remains significant.

Reasoning tasks: PrOntoQA. PrOntoQA (Saparov and He, 2023) is a synthetic multi-step reason-
ing dataset where each data point assigns hierarchical relationships among objects and requires the
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model to determine whether a multi-step reasoning chain is correct. Fig. 7 illustrates the conver-
gence rates and generalization errors3 with respect to data scale for models with large initialization
(and small weight decay, Fig. 7(a)) and small initialization (and large weight decay, Fig. 7(b)). An
interesting phenomenon is observed for models with large initialization (small weight decay): as the
data size increases, the convergence rate first decreases and then increases. When the data size is
small, the model tends to fit the data through memorization. Therefore, as the data size increases,
the training difficulty increases (i.e., the training speed slows down), and the model’s generaliza-
tion ability is poor. As the data size grows further, the model, constrained by its complexity, can
no longer memorize all the data and thus shifts to fitting the data through reasoning. This leads
to an increase in fitting speed and results in better generalization. In contrast, models with small

Figure 7: Performance comparison of models with different initialization scales and weight decay
coefficients on PrOntoQA. (a) Convergence steps and test accuracy for large initialization (γ = 0.5)
and small weight decay (WD = 0.01). (b) Convergence steps and test accuracy for small initial-
ization (γ = 0.7) and large weight decay (WD = 0.1). Models with large initialization initially
struggle with memorization before improving as data size increases, whereas small initialization
models maintain faster convergence and better generalization. The parameters are initialized follow-
ing a zero-mean normal distribution with a standard deviation of d−γ

in .

initialization (large weight decay) inherently prefer to fit the data through reasoning, leading to
faster convergence and better generalization at the same data scale compared to models with large
initialization (small weight decay).

7 Discussion

Conclusion. In this work, we investigate the influence of parameter initialization scale on the so-
lutions learned by transformers for compositional tasks. We discover a phase diagram of model
solutions, where small initialization scales lead to inferential solutions that capture the underlying
compositional primitives, while larger initialization scales result in symmetric solutions that memo-
rize mappings. To explain these findings, we analyze the information flow and vector representations
within the model, revealing distinct mechanisms for inferential and symmetric solutions. Inferential
solutions exhibit low complexity and learn individual mappings for single anchors, while symmet-
ric solutions directly combine anchor information without learning the compositional structure. We
further extend our experiments to GPT-2, and verify that the insights remain valid for more complex
architectures on various real-world datasets.

Limitation and Future Work. The key limitation of our work is that the experiments and analyses
are based on synthetic data, which may not fully capture the complexities of real-world datasets and
tasks. Although some of our conclusions have also been validated in models like GPT-2, further
verification on a wider range of models is necessary. Going forward, we plan to extend our investi-
gation to real-world datasets and tasks, to bridge the gap between our theoretical understanding and
practical application. This could involve leveraging Mixture of Experts (MoEs) to design networks
with different initialization scales for different expert models.

3During testing, we only evaluate the model’s accuracy in judging hierarchical relationships. Thus, the
model’s random guessing accuracy is 50%.
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A Experimental Setups

For Fig. 2(a,b), Fig. 3, Fig. 4, Fig. 5, Fig. 10, Fig. 11, Fig. 12 and Fig. 13, we train the transformer
model on a dataset of 900,000 samples, with each input sequence having a length of 9 tokens. The
key items in the input sequences are randomly sampled from the range 20-99. The model architec-
ture consists of a varying number of layers, a single attention head, an embedding dimension of 400,
a feedforward dimension of 1200, and key and value dimensions of 200 each. The model parame-
ters are initialized using a normal distribution with a mean of 0 and a standard deviation of (1/din)γ ,
where din is the input dimension of the parameter and γ is the initialization rate. We employ the
AdamW optimizer with a learning rate of 1e-5, epsilon of 1e-8, weight decay of 0.01, and β1 and
β2 values of 0.9 and 0.999, respectively. The model is trained for 210 epochs using a batch size of
2048 and a gradient clipping maximum norm of 1. The learning rate is scheduled using a warm-up
period followed by cosine decay, with a warmup period of 10 epochs, a multiplier of 25 (if there is
no special instruction), a cosine decay number of epochs of 200, and a minimum learning rate of
1e-5. For Fig. 3(a, b), Fig. 4(b), Fig. 5(b, d), we use a two-layer transformer with initialization rate
γ = 0.5. For Fig. 3(c), Fig. 4(a, c), Fig. 5(a, c), we use a two-layer transformer with initialization
rate γ = 0.8.

For Fig. 2(c), Fig. 6, Fig. 7, Fig. 17 we employ the architecture of GPT-2 in our experiments. For
Fig. 2(c), to ensure consistency between the model structure and the settings described in the paper,
we adopt the post-norm configuration. We have also conducted experiments using the pre-norm
setting and obtained consistent conclusions. Apart from the differences in the model architecture,
we retain the same data, training strategy, parameter initialization, and other settings as mentioned
in the previous sections.

For Fig. 14, Fig. 15, Fig. 16, we train the networks using initialization rate γ = 0.5 with different
learning rates and weight decay coefficients. The learning rate is scheduled using a warm-up period
followed by cosine decay, with a warmup period of 10 epochs, a multiplier chosen from the set {5,
10, 20, 40, 60}, a cosine decay number of epochs of 200, and a minimum learning rate of 1e-5.

Experiments Compute Resources. The experiments were conducted on a server with the follow-
ing configuration:

• 48 AMD EPYC 7352 24-Core Processors, each with 512KB of cache
• 251GB of total system memory
• 8 NVIDIA GeForce RTX 4090 GPUs with 24GB of video memory each
• The experiments were run using Ubuntu 22.04 LTS operating system
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B Illustrative Examples of Key Definitions

B.1 Examples of Two-anchor composite function

In this paper, we use an anchor set A = {1, 2, 3, 4} containing four elements. Each anchor corre-
sponds to a specific function:

g(x; 1) = x+ 5, g(x; 2) = x+ 1, g(x; 3) = x− 2, g(x; 4) = x− 8.

Suppose we have an input sequence X = (23, 1, 2, 43, 46, 74, 54, 44, 72). In this sequence, the 2nd
and 3rd items (i.e., items 1 and 2) belong to the anchor set A, thus forming an anchor pair (1, 2).
The item 23, immediately preceding the anchor pair, is called the key item.

For this input sequence X , the computation process of the two-anchor composite function is as
follows:

f(X) = f(23; 1, 2) = g(g(23; 1); 2) = g(23 + 5; 2) = 28 + 1 = 29.

As we can see, the two-anchor composite function first passes the key item 23 into the function
g(x; 1) = x + 5 corresponding to the first anchor 1, obtaining the result 28; then it passes 28 into
the function g(x; 2) = x+ 1 corresponding to the second anchor 2, finally obtaining the output 29.

B.2 Examples of Data Generation

In the experiments of this paper, we use four anchors (i.e., 1,2,3,4) and numbers sampled from
20 to 99 to construct the input dataset. Each input sequence includes an anchor pair, a key item
(immediately preceding the anchor pair), and some noise items unrelated to the target.

For example, we can construct an input sequence as follows:

X = (52, 33, 36, 2, 4, 78, 92, 24, 58).

In this example, the anchor pair is (2, 4), the key item is 36, and 52,33,78,92,24,58 are noise items.

For a given input sequence X , we stipulate that its target is only related to the key item and the
anchor pair. Furthermore, we artificially assign mappings to the anchor pairs and take the output
value of the key item under the mapping corresponding to the anchor pair as the target of this
sequence. In the default case, we use the composite anchor function corresponding to the anchor
pair as the mapping corresponding to this anchor pair, and this mapping is called the inferential
mapping (derived by composing single anchor mappings). In some special cases, we may modify
the mapping corresponding to the anchor pair so that it does not satisfy the corresponding composite
anchor function, and such mappings are called non-inferential solutions. The detailed examples are
shown in Section B.3.

B.3 Examples of Mapping Type of an anchor pair

For an anchor pair (a1, a2), its mapping M(a1,a2)(·) can have the following types:

Inferential mapping. If the designated target mapping of the anchor pair (a1, a2) is consistent with
the output of the two-anchor composite function, i.e., M(a1,a2)(x) = f(x; a1, a2), then it is called
an inferential mapping.

For example, for the anchor pair (1, 2) and key item x, if the target output is f(x; 1, 2) =
g(g(x; 1); 2) = (x+ 5) + 1 = x+ 6, then the mapping of (1, 2) is an inferential mapping.

Non-inferential mapping. If the designated target mapping of the anchor pair (a1, a2) is inconsis-
tent with the output of the two-anchor composite function, i.e., M(a1,a2)(x) ̸= f(x; a1, a2), then it
is called a non-inferential mapping.

For example, for the anchor pair (1, 2) and key item x, if the target output is designated as x + 10,
rather than f(x; 1, 2) = g(g(x; 1); 2) = (x + 5) + 1 = x + 6, then the mapping of (1, 2) is a
non-inferential mapping.

Symmetric mapping. If the designated target mapping of the anchor pair (a1, a2) is consistent
with the mapping of its symmetric anchor pair (a2, a1), i.e., M(a1,a2)(x) = M(a2,a1)(x), then it is
called a symmetric mapping.
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For example, suppose the mapping of the anchor pair (3, 4) is designated as M(3,4)(x) = x+10. If
the mapping of the anchor pair (4, 3) is also designated as M(4,3)(x) = x + 10, then the mapping
of (4, 3) is a symmetric mapping, because it is exactly the same as the mapping of (3, 4).

For a given model, we define its inferential (non-inferential, symmetric) accuracy on a specific an-
chor pair as the accuracy obtained when using the inferential (non-inferential, symmetric) mapping
of that anchor pair as the target. In particular, if a model exhibits a tendency to generate outputs
that align with the inferential (non-inferential, symmetric) mapping for an anchor pair, we adopt the
convention of stating that the model has learned the inferential (non-inferential, symmetric) solution
for that specific anchor pair.

B.4 Examples of Generalization

As introduced in the main text, there are two types of generalization in this paper: generalization on
data and generalization on task. Here we provide some examples to illustrate their differences, also
shown in Fig. 8.

Figure 8: Illustration of the two types of generalization studied in this paper. Generalization on data
tests a model’s performance on sequences with seen anchors but unseen combinations of key items
and anchor pairs. Generalization on task evaluates a model’s ability to infer the mappings for unseen
anchor pairs.

Generalization on data. The test set for evaluating generalization on data consists of sequences
with anchor pairs seen in the training set, but the sequences (detailed splitting method is shown in
Appendix C) are not seen in training. Models with good generalization on data should be able to
correctly predict the targets for these test sequences.

Generalization on task. To test generalization on task, we need to construct sequences with anchor
pairs not seen (anchor pair (4, 3)) during training and designate their target mappings. If the model
can output targets consistent with the designated mappings for (4,3), then it achieves good general-
ization on task. It is worth noting that the unseen anchor pair (4, 3) does not have a natural target.
Therefore, we can calculate its accuracy under different designated target mappings to reflect the
model’s preference for the learned solutions under various settings.

17



C Dataset Splitting Method

A straightforward division based on data ranges proves to be impractical. To illustrate, consider a
scenario where the range of key items in the training set is denoted as [a, b], while in the test dataset,
it is represented as [b+1, c]. The encoding of data within the interval [b+1, c] is not learned during
the neural network training process. As a result, the neural network fails to produce the key item
output for the test dataset.

To address this issue, we divide the dataset based on the value and the position of the key item,
as shown in Fig. 9. Consider a task with an input sequence of length n. For an input sequence
in the training dataset, an item x can be placed in the pos-th position of such input sequence only
when mod(x, n − 2) ̸= pos. For an input sequence in the test dataset, if the token at the i-th
position is a key item, then an item x can be placed in the pos-th position of such input sequence
only when mod(x, n − 2) = pos. It is important to note that the test data and training data are not
completely separated in terms of values. However, when the positions of the key items are the same,
the corresponding test data and training data do not overlap.

Figure 9: Illustration of the dataset splitting method based on the value and position of the key item.
The training data and test data are divided according to the modulo operation on the key item value
and its position in the input sequence.

We further define two types of generalization based on this dataset splitting method. For training
data, we use pairs of seen anchors and training data (training key items) for training. Regarding data
generalization, we test the model using pairs of seen anchors and test data (test key items) to eval-
uate the model’s ability to generalize to different items within seen composite mappings. For task
generalization, we use pairs of unseen anchors with test data or training data to evaluate the model’s
performance on masked composite mappings. It is important to note that for task generalization,
we can test the accuracy of the anchor pairs with different ground truth mappings. This accuracy
reflects the model’s preferred mappings for these anchor pairs.

18



D Detailed Results for Model Complexity with Different Initialization

D.1 Detailed Results for Condensation

In order to show the parameter condensation at different depths and different initialization scales,
we plotted the cosine similarity of the WQ(1) matrix neurons corresponding to the phase diagram in
Fig. 2. As shown in Fig. 10, for each subgraph, we group the weights of two neurons with cosine
similarity greater than 0.7 into the same category (adjacent index in the heat map) to highlight the
condensation properties of neurons. It is easy to see that as the initialization rate increases (the
initialization scale becomes smaller), the WQ(1) matrix neurons show an obvious condensation
trend, implying that the model complexity decreases.

Figure 10: Cosine similarity matrices of WQ(1) neurons at different depths and initialization scales.
Each subgraph represents a different depth (from 2 to 6, bottom to top) and initialization rate γ
(from 0.3 to 0.7, left to right). Colors indicate the cosine similarity between neurons, with warmer
colors representing higher similarity. The neurons are grouped by cosine similarity greater than 0.7
to highlight the condensation properties. As the initialization scale increases, neurons exhibit more
condensation, indicating decreased model complexity.
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D.2 Detailed Results for the Structural Features of the Word Embedding Matrix

Similar to the previous subsection on condensation, we examine the structural changes in the model’s
word embedding matrix as the initialization scale and model depth vary. We visualize the parameter
matrix using t-SNE. As shown in Fig. 11, as the initialization rate γ increases, the word embedding
matrix gradually exhibits distinct structural features. These structural features enable the model
to accurately represent the numerical meaning of different items. Additionally, a high degree of
structure indicates low complexity in the word embedding matrix (i.e., low matrix rank), aligning
with the low complexity hypothesis for models with small initialization scales.

Figure 11: Visualization of the embedding space using t-SNE at different depths and initialization
scales. Each subgraph represents a different depth (from 2 to 6, bottom to top) and initialization rate
γ (from 0.3 to 0.7, left to right). As the initialization scale increases, the word embedding matrix
gradually exhibits distinct structural features, indicating decreased model complexity.

D.3 Detailed Rank Analysis for Different Weight Matrices

To further verify the low complexity bias of the word embedding matrix, we visualize the eigenval-
ues of the covariance matrix of the embedding vectors (Fig. 12(a)). For small initialization scales,
the covariance matrix has a small number of large eigenvalues, indicating that the model learns a
low-dimensional representation of the input tokens that captures their ordinal relationships. This
low-dimensional representation facilitates the learning of inferential solutions by aligning with the
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underlying structure of the single anchor operations. In contrast, for large initialization scales, the
eigenvalues are more evenly distributed, suggesting that the model learns a more distributed repre-
sentation that does not effectively capture the ordinal structure. This lack of structure in the embed-
ding space hinders the model’s ability to learn the relationships between the input tokens and the
underlying single anchor operations, leading to the learning of symmetric solutions.

(a) eigenvalue (b) eigenvalue evolution

Figure 12: Eigenvalues of the covariance matrix of the embedding matrix for different initialization
scales and the evolution process of the eigenvalues of the small initialization model. Left: Eigenval-
ues of the covariance matrix of the embedding vectors for different initialization scales. The abscissa
is the eigenvalue index, and the ordinate is the eigenvalue. Colors represent different initialization
scales. The definition of the initial scale γ is consistent with Fig. 2. Right: The evolution process
of the eigenvalues of specific indexes of the small parameter initialization model as the training pro-
gresses.

Meanwhile, we investigated the evolution of the eigenvalues corresponding to specific indices of the
small initialization model during training. As shown in Fig. 12(b), the model gradually increases its
complexity over the training process. Specifically, the model first increases the value of the largest
eigenvalue, while the other eigenvalues remain almost unchanged in the initial phase of training. As
training progresses, the model requires more eigen-directions to fit the data, leading to a subsequent
increase in the other eigenvalues. Once the model complexity increases sufficiently to fit the training
data, it ceases to further increase its complexity. This gradual increase in complexity ensures that
the model maintains the lowest possible complexity necessary to fit the data well, enabling it to learn
fundamental operations rather than merely memorizing the training data.

To further validate the low complexity of the model under small initialization, we present the singular
value distributions of the weight matrices across various linear layers for both models with different
initializations, as shown in Fig. 13. It is evident that, for the small initialization model, the first few
singular values are significantly larger than the remaining ones. In contrast, this distinct difference
is not observed in the model with large initialization. This indicates the pervasive low-complexity
characteristic of the internal parameters in the small initialization model.
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Figure 13: Singular value distributions of the weight matrices across various linear layers for models
with different initializations. Each subplot corresponds to a specific linear layer, with blue curves
representing the small initialization model (γ = 0.5) and red curves representing the large initializa-
tion model (γ = 0.8). The abscissa denotes the singular value index, and the ordinate denotes the
singular value magnitude on a logarithmic scale.
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E Learning Rate and Weight Decay Coefficient Affecting Solution Phases

A series of studies have experimentally investigated the impact of large learning rates and significant
weight decay on the model’s flatness and solution consolidation. In our experiments, we found that
high learning rates and weight decay coefficients tend to guide the model towards learning inferential
solutions. It is important to note that to avoid training instability caused by high learning rates, we
modified the settings described in the main text.

In the main text, we artificially assigned non-inferential solutions to the anchor pair (3, 4) as
M(3,4)(x) = x−6. This non-inferential solution significantly disrupts the learning of single anchor
mappings for models with small initialization, leading to instability during training with high learn-
ing rates. In fact, if we only consider the model’s ability to learn inferential solutions, we can treat
both anchor pairs (3, 4) and (4, 3) as unseen anchor pairs. Under this setting, if the model can learn
the inferential solutions for (3, 4) and (4, 3), it proves that the model learns single anchor mappings.
Otherwise, it learns symmetric or other solutions.

As shown in Fig. 14, we study a 3-layer, 1-head transformer model with an initialization rate of
γ = 0.5. We conducted nine independent experiments with different learning rates and weight
decay coefficients. The figure presents the mean accuracy of the model’s inferential solutions on
the unseen anchor pair (4, 3). This visualization clearly demonstrates that larger learning rates and
weight decay lead to higher accuracy in inferential solutions, supporting the hypothesis that these
hyperparameters play a crucial role in guiding the model towards different phases.

Figure 14: The impact of learning rate and weight decay on the accuracy of inferential solutions
in a 3-layer, 1-head transformer model. The heatmap displays the mean accuracy of the model’s
inferential solutions on the unseen anchor pair (4, 3) across nine independent experiments. The x-
axis represents different weight decay coefficients, and the y-axis represents different learning rates.
The color bar on the right indicates the accuracy of the inferential solutions on the unseen anchor (4,
3), with higher values corresponding to better performance.
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E.1 Detailed Results for Condensation with Different Learning Rates and Weight Decay
Coefficients

In order to show the parameter condensation at different learning rates and different weight decay
coefficients, we plotted the cosine similarity of the WQ(1) matrix neurons corresponding to the
phase diagram in Fig. 14. As shown in Fig. 15, for each subgraph, we group the weights of two
neurons with cosine similarity greater than 0.7 into the same category (adjacent index in the heat
map) to highlight the condensation properties of neurons. It is easy to see that as the weight decay
coefficient and learning rate increase, the WQ(1) matrix neurons show an obvious condensation
trend, implying that the model complexity decreases.

Figure 15: Cosine similarity matrices of WQ(1) neurons at different depths and initialization scales.
Each subgraph represents a learning rate and weight decay coefficient. Colors indicate the cosine
similarity between neurons, with warmer colors representing higher similarity. The neurons are
grouped by cosine similarity greater than 0.7 to highlight the condensation properties.
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E.2 Detailed Results for the Structural Features of the Word Embedding Matrix with
Different Learning Rates and Weight Decay Coefficients

We examine the structural changes in the model’s word embedding matrix as the learning rate and
weight decay coefficient vary. We visualize the parameter matrix using t-SNE. As shown in Fig. 16,
as the learning rate and weight decay coefficient increase, the word embedding matrix gradually ex-
hibits distinct structural features. These structural features enable the model to accurately represent
the numerical meaning of different items.

Figure 16: Visualization of the embedding space using t-SNE at different learning rates and weight
decay coefficients. Each subgraph represents a different learning rate (from 5×10−5 to 6×10−4, top
to bottom) and weight decay coefficient (from 0.003 to 0.3, left to right). As the learning rates and
weight decay coefficients increase, the word embedding matrix gradually exhibits distinct structural
features, indicating decreased model complexity.
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F Detailed Introduction of Datasets and Additional Results

Compositional tasks: SCAN and COGS. SCAN and COGS are two classic compositional tasks,
both of which are also synthetic but with more natural language variance, thus being ideal testbeds.
For the SCAN dataset, we selected the “Generalizing composition across primitive commands" task,
where the “turn left" command only appears in single-command mappings and is trained along-
side other composite commands. We assess the model’s generalization ability on composite com-
mands that include the “turn left" command. For the COGS dataset, we evaluate the model’s in-
distribution and out-of-distribution generalization performance after training on the same training
set. In-distribution generalization is tested with data constructed from different primitives in the
same combinatorial patterns. Out-of-distribution generalization is tested with data that follows dif-
ferent combinatorial rules (the original paper outlines 21 methods for generating out-of-distribution
data, from which we generate test data with equal probability).

Reasoning tasks: PrOntoQA. PrOntoQA is a synthetic multi-step reasoning dataset where each
data point assigns hierarchical relationships among objects and requires the model to determine
whether a multi-step reasoning chain is correct. Although we use next-token prediction for training,
during testing, we only evaluate the model’s accuracy in judging hierarchical relationships (thus, the
model’s random guessing accuracy is 50%).

Realistic tasks: Addition task and SlimPajama dataset. Unlike traditional addition tasks, we
use a case-based reasoning intervention experiment (Hu et al., 2024) to study the generalization of
rule learning in the addition task. Specifically, we consider the setup: a + b = c, where a, b ∈
[0, 999]. We use a, b ∈ [400, 600] as the test set and the remaining data as the training set. This
construction prevents the model from simply mimicking training data similar to the test set. We
trained a simple 2-layer 1-head model and a GPT-2 model. As shown in Fig. 17(a), regardless
of model size and learning mode, small initialization scales (or large weight decay coefficients)
generally lead to good rule generalization, while large initialization scales (or small weight decay
coefficients) fail to generalize perfectly.

Figure 17: Performance comparison of models with different initialization scales and weight decay
coefficients on realistic tasks: Addition task and SlimPajama dataset. (a) In the addition task, we use
a case-based reasoning intervention experiment with a test set of a, b ∈ [400, 600] and the remaining
data as the training set. Models with small initialization scales (or large weight decay) generally
show better rule generalization. (b) For the SlimPajama dataset, GPT-2 Medium models trained
on GitHub and GitHub+Wikipedia data with small initialization scales consistently achieved lower
perplexity. The parameters are initialized following a zero-mean normal distribution with a standard
deviation of d−γ

in .

For the SlimPajama dataset, we used two data compositions: the GitHub section and the
GitHub+Wikipedia section. We trained GPT-2 Medium models with different initializations on both
datasets for 40B tokens. As shown in Fig. 17(b), for both data compositions, smaller initialization
scales consistently achieved lower perplexity. Notably, by observing the training trajectories, we
found that for the GitHub data, the model with small initialization achieved lower perplexity than
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the model with large initialization early in training (around 2B tokens). For the GitHub+Wikipedia
data, the model with small initialization achieved lower perplexity later in training (around 30B
tokens). This further validates the preference of small initialization for reasoning tasks. We will
present the detailed training trajectories in the revised manuscript.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We elaborate on our setups and contribution in the abstract and introduction,
especially in the last paragraph of the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We show the detailed limitation in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
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not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.
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and how they scale with dataset size.
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dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This is a work of phenomenological analysis with no theoretical results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We show the detailed setups in Appendix A, and we provide the original code
in the attached file.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code in the attached file.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We show the detailed experimental setups in Appendix A, and the detailed
data splitting method in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We show the error bar in Fig. 2 for multiple parallel experiments with different
seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We show the detailed information on the computer resources in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is a phenomenological study, therefore, there is no societal impact
of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work is a phenomenological study, therefore, this work poses no such
risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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• The answer NA means that the paper does not use existing assets.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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asset is used.
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as well as details about compensation (if any)?
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• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
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• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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