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1 Single Day Outdoor Photometric Stereo
2 Yannick Hold-Geoffroy , Paulo Gotardo, and Jean-François Lalonde

3 Abstract—Photometric Stereo (PS) under outdoor illumination remains a challenging, ill-posed problem due to insufficient variability in

4 illumination. Months-long capture sessions are typically used in this setup, with little success on shorter, single-day time intervals. In

5 this paper, we investigate the solution of outdoor PS over a single day, under different weather conditions. First, we investigate the

6 relationship between weather and surface reconstructability in order to understand when natural lighting allows existing PS algorithms

7 to work. Our analysis reveals that partially cloudy days improve the conditioning of the outdoor PS problem while sunny days do not

8 allow the unambiguous recovery of surface normals from photometric cues alone. We demonstrate that calibrated PS algorithms can

9 thus be employed to reconstruct Lambertian surfaces accurately under partially cloudy days. Second, we solve the ambiguity arising in

10 clear days by combining photometric cues with prior knowledge on material properties, local surface geometry and the natural

11 variations in outdoor lighting through a CNN-based, weakly-calibrated PS technique. Given a sequence of outdoor images captured

12 during a single sunny day, our method robustly estimates the scene surface normals with unprecedented quality for the considered

13 scenario. Our approach does not require precise geolocation and significantly outperforms several state-of-the-art methods on images

14 with real lighting, showing that our CNN can combine efficiently learned priors and photometric cues available during a single

15 sunny day.

16 Index Terms—Photometric stereo, high dynamic range, deep learning, outdoor lighting

Ç

17 1 INTRODUCTION

18 SINCE its inception in the early 80s, Photometric Stereo
19 (PS) [1] has been explored under many an angle.
20 Whether it has been to improve its ability to deal with com-
21 plex materials [2] or lighting conditions [3], the myriad of
22 papers published on the topic are testament to the interest
23 this technique has garnered in the community. While most
24 of the papers on this topic have focused on images captured
25 in the lab, recent progress has allowed the application of PS
26 on images captured outdoors, lit by the more challenging
27 case of uncontrollable, natural illumination.
28 While capturing more data in the lab can be done rela-
29 tively easily, the same cannot be said for outdoor imagery.
30 Indeed, one does not control the sun and the other atmo-
31 spheric elements in the sky; so one must wait for lighting
32 conditions to change on their own. A creative solution to
33 this problem was proposed in [4], but it is limited to objects
34 that can be placed on a small moving platform. Therefore,
35 capturing more data for fixed, large objects still means wait-
36 ing days, or even months, potentially [5], [6].
37 A promising approach to answer this question is to use
38 more elaborate models of illumination—high dynamic
39 range (HDR) environment maps [7]—as input to outdoor
40 PS. Favorable results have been reported in [8] for outdoor
41 images taken in a single day, within an interval of just eight

42hours. However, the quality of outdoor results is reported
43to be inferior to that obtained in indoor environments. The
44decline is attributed to modest variation in sunlight, but no
45clear explanation is found in the literature. This observation
46leads to many interesting, unanswered questions: had the
47atmospheric conditions been different on that day, could
48the quality of their results have been better? Is a full day of
49observations enough to obtain good results in outdoor PS?
50This paper investigates PS in outdoor environments over
51the course of a single day and under a variety of sunlight
52conditions. Our first goal is to assess the reconstructibility of
53surface patches as a function of their orientation and the
54illumination conditions. This is done using a large database
55of sky probes [9], capturing the variability of natural, out-
56door illumination. A detailed look at the conditions under
57which normals can be reconstructed reliably is presented,
58followed by an analysis of surface reconstruction stability.
59Our analysis reveals that reconstruction performance of
60classical PS methods can be categorized in two different sky
61types: partially cloudy and clear days. Interestingly, partially
62cloudy days typically offer better reconstruction accuracy,
63while clear days generally yield poor performance. During
64clear days, photometric cues alone do not provide a stable
65solution to the PS problem, leaving it under-constrained [1].
66Our insight to solve this issue is to augment the photometric
67cues with learned features on geometry, reflectance and
68lighting to resolve ambiguities in singe-day outdoor PS.
69We summarize our contributions as follows:

70� an analysis of the conditioning of outdoor PS given
71photometric cues captured over a single day;
72� a framework for predicting the performance of sin-
73gle-day outdoor PS with calibrated lighting, and its
74application in reconstructing surfaces on partially
75cloudy days;
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76 � a state-of-the-art method for single-day outdoor PS
77 with weakly-calibrated lighting, which is specifically
78 designed to work on the ambiguous case of clear
79 days. The method is robust to shadows, specularities
80 and arbitrary but spatially uniform albedo.
81 Our contributions show that PS can be applied to
82 images obtained over a single day under most weather
83 conditions.

84 2 RELATED WORK

85 This section focuses on the more relevant work on outdoor
86 PS, for conciseness. For an overview of general PS, the
87 reader is referred to the recent, excellent review in [10].
88 Woodham’s seminal work [1] shows that, for Lambertian
89 surfaces, calibrated PS computes a (scaled) normal vector in
90 closed form as a simple linear function of the input image
91 pixels; this linear mapping is only well-defined for images
92 obtained under three or more (known) non-coplanar light-
93 ing directions. Subsequent work on outdoor PS has strug-
94 gled to meet this requirement since, over the course of a
95 day, the sun shines from directions that nearly lie on a
96 plane. These co-planar sun directions then yield an ill-
97 posed problem known as two-source PS; despite extensive
98 research using integrability and smoothness constraints [11],
99 [12], results still present strong regularization artifacts on

100 surfaces that are not smooth everywhere. To avoid this issue
101 in outdoor PS, authors initially proposed gathering months
102 of data, watching the sun elevation change over the sea-
103 sons [5], [6]. Shen et al. [13] noted that the intra-day copla-
104 narity of sun directions actually varies throughout the year,
105 with single-day outdoor PS becoming more ill-posed at
106 high latitudes near the winter solstice, and worldwide near
107 the equinoxes.
108 Another important issue is that, so far, most of the litera-
109 ture on PS has adopted a simple directional illumination
110 model, for which optimal lighting configurations can be the-
111 oretically derived [13], [14], [15]. Until recently, no attempt
112 had been made to model natural lighting more realistically
113 in an outdoor setup, where lighting cannot be controlled
114 and atmospheric effects are difficult to predict. In such an
115 uncontrolled environment, exploiting the subtlety and rich-
116 ness of natural lighting is key to improve the conditioning
117 of PS and successfully apply it in the wild and with short
118 intervals of time.

119Thus, more recent approaches have attempted to compen-
120sate for limited sun motion by adopting richer illumination
121models that account for additional atmospheric factors in the
122sky. This is done by employing (hemi-)spherical environ-
123ment maps [16] that are either real sky images [4], [8], [17],
124[18] or synthesized by parametric sky models [19], [20].
125Despite these developments, state-of-the-art approaches in
126calibrated [8] and semi-calibrated [20] (based on precise geo-
127location) outdoor PS are still prone to potentially long waits
128for ideal conditions to arise in the sky; and verifying the
129occurrence of such events is still a trial-and-error process.
130Under more extreme ambiguity, techniques for shape-
131from-shading (SfS) [21], [22], [23] attempt to recover 3D nor-
132mals from a single input image, in which case the shading
133cue alone is obviously insufficient to uniquely define a solu-
134tion. Thus, SfS relies strongly on priors of different complex-
135ities and deep learning is quickly bringing advances to the
136field [24], [25], [26]. While this is encouraging, here we seek
137to improve the accuracy of 3D normal estimation by relying
138less heavily on priors and more strongly on the photometric
139cues obtained from multiple images. Finally, most of these
140methods are limited to a specific type of object and reflec-
141tance model (e.g., human faces, Lambertian [25]).

1423 OVERVIEW

143In this paper, we investigate the complex, natural lighting
144phenomena that help condition outdoor PS. Our analysis
145uses the Laval HDR Sky Database [9], [27], a rich dataset of
146high dynamic range (HDR) images of the sky, captured
147under a wide variety of weather conditions. In all, the data-
148set totals more than 5,000 illumination conditions, captured
149over 50 different days. Fig. 1 shows examples of these envi-
150ronment maps, which are tone mapped for display only; the
151actual sky images have a dynamic range that spans the full
15222 stops required to properly capture outdoor lighting.
153Our investigations have approached outdoor PS under
154two different scenarios, leading to two specialized solutions:

1551) First, we consider the popular case of calibrated, out-
156door PS for Lambertian objects (Section 4) and we
157assess how outdoor PS is conditioned solely by the
158few photometric cues obtained over the course of
159one day. By considering Lambertian reflectance, the
160number of unknowns is reduced to a minimum and,
161therefore, this analysis provides an upper bound on

Fig. 1. Examples from our dataset of HDR outdoor illumination conditions. In all, our dataset contains 3,800 different illumination conditions, captured
from 10:30 until 16:30, during 23 days, spread over ten months and at two geographical locations. Each image is stored in the 32-bit floating point
EXR format, and shown tone mapped here for display (with g ¼ 1:6).
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162 the quality of recovered normals for objects with
163 general reflectances. As we initially reported in [28],
164 [29], partly cloudy days are in fact better for single-
165 day outdoor PS since clouds obscure and further
166 scatter sun light, causing a beneficial shift in the
167 effective direction of illumination. Such conditions
168 lend themselves well to calibrated PS algorithms. On
169 the other hand, our analysis also suggest that a dif-
170 ferent approach is needed for outdoor PS with clear
171 skies and objects with more general reflectances.
172 2) Second, we consider non-Lambertian objects and
173 the more difficult, under-constrained case of sunny
174 days with clear skies (Section 5). In addition, we
175 also relax the assumption on fully-calibrated light-
176 ing. Since there are more unknowns in this new sce-
177 nario, we cannot rely solely on the few photometric
178 cues obtained within a single day. We thus propose
179 an approach that uses deep learning to resolve
180 ambiguities in outdoor PS by aggregating prior
181 knowledge on object geometry, material and their
182 interaction with natural outdoor illumination. This
183 new approach is the first of its kind—so far, deep
184 PS had only been applied in indoor scenarios with
185 rich and controlled illumination [10], [30], [31], [32].
186 We conclude by discussing how the advantages of the
187 two solutions above could be integrated into a single, more
188 generic approach in future work.

189 4 LAMBERTIAN, CALIBRATED OUTDOOR PS

190 4.1 Image Formation Model

191 Consider a small, Lambertian surface patch with normal
192 vector n and albedo r (w.l.o.g., assume albedo is monochro-
193 matic). At time t, this surface patch is observed under natu-
194 ral, outdoor illumination represented by the environment
195 map LtðvvÞ (e.g, Fig. 1), with vv denoting a direction in the
196 unit sphere. With an orthographic camera model, this patch
197 is depicted as an image pixel with intensity

bt ¼ r

p

Z
Vn

LtðvvÞhvv;nidvv ; (1)

199199

200 where h�; �i denotes the dot product. Integration is carried
201 out over the hemisphere of incoming light, Vn, defined by
202 the local orientation n of the surface, Fig. 2. This hemisphere
203 corresponds to an occlusion (or attached shadow) mask;
204 only half of the pixels in the environment map contribute to
205 the illumination of the surface patch. To make the analysis
206 tractable and independent of object geometry, this analysis
207 focuses on the simpler case without cast shadows.
208 This image formation model is then discretized as,

bt ¼ r

p

X
vvj2Vn

L̂tðvvjÞhvvj;ni ; (2)

210210

211 with L̂tðvvjÞ ¼ LtðvvjÞDvvj representing the environment map
212 weighted by the solid angle Dvvj spanned by pixel j (Dvvj, 8j,
213 are normalized as to sum to 2p). Eq. (2) can be further sum-
214 marized into the equivalent form

bt ¼�l
T

t x; (3)216216

217where x ¼ rn is the albedo-scaled normal vector and

�lt ¼ 1

p

X
vvj2Vn

L̂tðvvjÞvvj 2 R3: (4)

219219

220This vector �lt can be interpreted as a virtual point light
221source summarizing the illumination provided by the envi-
222ronment map at a time t. This vector �lt is the mean of the
223light vectors computed over the hemisphere of incoming
224light directions defined by n (see Fig. 6). As such, this vector
225is henceforth referred to as the mean light vector (MLV). It is
226important to note that, as opposed to the traditional PS sce-
227nario where point light sources are fixed and thus indepen-
228dent of n, here the per-pixel MLV is a function of n. Thus,
229patches with different orientations define different sets of
230MLVs (see Fig. 2). A similar lighting representation has
231been adopted in the uncalibrated case in [18].
232Given multiple images taken at times t 2 f1; 2; . . . ; Tg,
233we collect all photometric constraints for patch x to obtain:

b ¼
b1
b2
..
.

bT

2
6664

3
7775 ¼

�lT1
�l
T
2

..

.

�l
T

T

2
6664

3
7775x ¼ Lx : (5)

235235

236With Eq. (5), this model of natural environmental illumina-
237tion becomes quite similar to a model with a distant point
238light source, the well-known case in PS. However, note that
239each�lt in L is a function of Vn and, thus, of n.
240Most importantly, in outdoor PS, a well-defined solution
241x may exist even if the relative sun motion is nearly planar
242during a certain time interval. Instead of relying solely on
243sun direction, now, the solution requires non-coplanar
244mean light vectors �lt, which are determined by a compre-
245hensive set of natural illumination factors.

2464.2 Measuring Uncertainty

247From Eq. (5), the least-squares solution x ¼ ðLTLÞ�1LTb of
248outdoor PS is clearly affected by the condition number of L.
249Thus, we next characterize how well the solution x is con-
250strained by natural, outdoor illumination within a given
251time interval (e.g, one day)—which is encoded by the set of
252mean light vectors�lt in L or, equivalently, the set of environ-
253ment maps Ltð�Þ.
254To assess the reliability of a solution x, we follow stan-
255dard practice in PS [15], [33] and consider image measure-
256ments corrupted by zero-mean Gaussian noise with equal

Fig. 2. A normaln defines an integration hemisphereVn on the environment
map. Only light emanating from this hemisphere contributes to the shading
on that patch. Thus, patches with different normals are lit differently even if
the environmentmap is the same.

HOLD-GEOFFROY ET AL.: SINGLE DAY OUTDOOR PHOTOMETRIC STEREO 3
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257 variance s2 (as least squares estimation is only optimal for
258 this practical, most common noise model). Thus, b in Eq. (5)
259 follows a normal distribution:

b � N mmb; s
2I

� �
; (6)

261261

262 where mmb has the (unknown) uncorrupted pixel values.
263 Since the desired least-squares solution for the albedo-
264 scaled normal, x ¼ LTL

� ��1
LTb, is a linear transformation

265 of a Gaussian random vector, it is easy to show that

x � N mmx; s
2ðLTLÞ�1

� �
; (7)

267267

268 where mmx ¼ LTL
� ��1

LTmmb is the expected value of x. Once
269 the albedo of a surface patch is known, we analyze its con-
270 tribution to the uncertainty in the estimated normal vector,
271 n ¼ r�1x, using a similar distribution,

n � N mmx

r
;
s2

r2
ðLTLÞ�1

� �
: (8)

273273

274

275 The marginal distributions in Eq. (8) allow us to derive
276 confidence intervals that indicate the uncertainty in each
277 component of the least squares estimate n̂ ¼ ½n̂x n̂y n̂z�T of
278 n ¼ ½nx ny nz�T . The corresponding 95 percent confidence
279 interval [34] is given by

n̂� dd ; with dk ¼ 1:96
s�k

r
; (9)

281281

282 where �k is the square root of the kth element on the diagonal
283 of ðLTLÞ�1. As expected, the sensor-dependent noise level s
284 is not the only factor that determines uncertainty. The noise
285 gain factor �k in Eq. (9) reveals how outdoor illumination
286 (the conditioning of L) can amplify the effect of noise on the
287 solution n̂. The albedo r also impacts the solution stability,
288 where a lower albedo translates in a larger variance in the
289 obtained estimate n̂ (as less light is reflected towards the
290 camera). Our goal is then to answer the remaining question:
291 how do natural changes in outdoor illumination affect this
292 noise gain factor (�k) and, therefore, uncertainty?
293 To provide a measure of uncertainty that is more intui-
294 tive than Eq. (9), we consider angular distances in degrees,

u� ¼ cos �1ðnT n̂�Þ ; n̂� ¼ n̂� dd

kn̂� ddk : (10)

296296

297 The uncertainty in the estimate of n is then summarized in a
298 single confidence interval, in degrees,

Cn ¼ ½ 0; maxðu�Þ � ; (11)
300300

301 which indicates the expected accuracy of the estimated sur-
302 face orientation n̂.
303 Note that the condition number, determinant, and trace
304 of matrix ðLTLÞ�1 can also be used as measures of total vari-
305 ance in the estimated solutions—as done in [33]—to find the
306 optimal location of point light sources in PS. These meas-
307 ures are closely related to the rank of matrix L, which must
308 be three for a solution to exist; that is, LTL must be nonsin-
309 gular. In practice, this matrix is always full-rank, although it
310 is often poorly conditioned [13]. In the following, we also
311 consider the gain factor �k in (9) as a measure of uncertainty

312independent of albedo and sensor noise. We focus on ana-
313lyzing our ability to recover geometry and will assume that
314the albedo is constant.

3154.3 Effect of Clouds on Outdoor Lighting

316This section investigates the environmental element that
317most influences mean light vectors throughout the day:
318clouds. Cloud coverage has an important effect on the uncer-
319tainty of normal reconstruction because clouds introduce
320variability in illumination and, thus, new photometric cues
321as they (dis)occlude the sun. Here, we present a systematic
322analysis of their influence on outdoor PS. To control for the
323effect of the sun elevation, the analysis is performed on 23
324days with similar sun elevations by keeping only the skies
325captured in October and November.
326We approximate cloud coverage by computing the frac-
327tion of time that the sun is visible, i.e, that it fully shines on
328the scene, for a given day. To do so, we simply find the
329brightest spot in a sky image, and determine that the sun
330shines on the scene if the intensity of the brightest pixel is
331greater than 20 percent of the maximum sun intensity—we
332determined empirically that this is the point at which the
333sun is bright enough to start creating cast shadows. Cloud
334coverage is represented by computing the mean sun visibil-
335ity for a given day. Values of less than 10–15 percent indi-
336cate mostly overcast skies, while skies are mostly clear if
337above 85–90 percent.
338The relation between sun visibility and the confidence
339interval Cn is shown in Fig. 3. Photometric-related normal
340reconstruction errors will likely be quite high in two situa-
341tions: completely overcast (low sun visibility), or completely
342clear skies (high sun visibility). Interestingly, good recon-
343struction results are expected for a wide range of cloud cov-
344erage conditions, ranging from 10–90 percent mean sun
345visibility.
346These results are corroborated by Fig. 4, which shows the
347confidence intervals themselves. These intervals are aver-
348ages over skies belonging to four groups: overcast (0–15 per-
349cent), mixed overcast (15–50 percent), mixed clear (50–85
350percent), and clear (85–100 percent) days. Again, high

Fig. 3. Median confidence interval of normal estimates (red line) as a
function of mean sun visibility over the course of the day for a signal
noise s ¼ 0:5%, in bins of 10�. Our analysis predicts that normal recon-
struction errors will likely be high if the sky is completely overcast (low
sun visibility), or completely clear (high sun visibility). Good results can
thus be expected in partially cloudy conditions, as shown in Fig. 4. The
lower (upper) edge of each blue box indicates the 25th (75th) percentile.
Statistics are computed only on normals pointing upwards to lessen
ground effects.
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IEE
E P

ro
of

351 uncertainty results are visible for the two extreme cases of
352 fully overcast and fully clear days, while the remainder
353 indicate more stable solutions.
354 Under clear skies, the MLVs �lt of the model above will
355 point nearly towards the sun, from which arrives most of
356 the incoming light. Thus, near an equinox (worldwide), the
357 associated MLVs are nearly coplanar [13], resulting in poor
358 performance, Fig. 5a. For a day with an overcast sky, perfor-
359 mance is also poor because the set of MLVs are nearly colin-
360 ear and shifted towards the patch normal n, Fig. 5b. The
361 improved conditioning in mixed skies is explained by the
362 following key observation: cloud cover shifts the MLVs �lt
363 towards zenith and away from sun trajectory in the sky,
364 Fig. 5c. Therefore, even when the sun moves along a trajec-
365 tory that nearly lies on a 3D plane, as shown in Fig. 6, cloud
366 cover effectively causes an out-of-plane shift of the MLVs,
367 making reconstruction possible.
368 It is important to note that surface patches of different
369 orientations (normals) are exposed to different hemispheres
370 of illumination, with light arriving from above (sky) and
371 below (ground). More MLV trajectories are shown in Fig. 7
372 for three different normal vectors (rows) and two different
373 days (columns). Each globe represents the coordinate sys-
374 tem for the environment maps captured in a day. For each
375 combination normal-day, the time-trajectory of computed
376 MLV directions (dots) and intensities (colors) are shown on
377 the globe. Brighter MLVs lie close to the solar arc, while
378 darker MLVs may shift away from it. Note that we present
379 normals that are mainly Southward as they receive the most
380 direct sunlight throughout the day in the Northern hemi-
381 sphere. Surfaces with normals pointing North, for example,
382 would be in shadow throughout the day in latitudes higher

383than the Tropic of Cancer around the winter solstice. Thus,
384the remainder of this paper considers a camera pointing
385North.
386To more closely match the scenario considered above, we
387scale these real MLVs so that the brightest one over all days
388(i.e, for the most clear sky) has unit-length. From Fig. 7, also
389note that some MLVs are shifted very far from the solar arc
390but, as indicated by the darker colors, their intensity is

Fig. 4. Influence of cloud cover on the 95 percent confidence intervals (in
degrees) with s ¼ 1%. Each pair of plots show the full sphere of normals
from two different viewpoints: South (left), and North (right). Four differ-
ent types of skies are shown, based on sun visibility. For example, the
top-left plots show the confidence intervals averaged over all days with
direct sun visibility in the range 85-100 percent.

Fig. 5. Impact of cloud coverage on the numerical conditioning of out-
door PS: Clear (a) and overcast (b) days present MLVs with stronger
coplanarity; in partly cloudy days (c) the sun is often obscured by clouds,
which may lead to out-of-plane shifts of MLVs.

Fig. 6. Cloud effect on the MLV over one day: while the sun path
(orange) yields nearly co-planar directions of illumination, the mean light
directions (red dots) for a normal pointing up provide a much more varied
set (data from 11/06/2013, second row of Fig. 1).

Fig. 7. Globes representing the coordinate system of sky probes. Each
normal (blue arrow) defines a shaded hemisphere in the environmental
map that does not contribute light to the computed MLVs (dots). All
MLVs in two particular partly cloudy days (columns) were computed
from real environment maps [28] for 3 example normal vectors (rows).
Relative MLV intensities are shown in the color bar on the left.

HOLD-GEOFFROY ET AL.: SINGLE DAY OUTDOOR PHOTOMETRIC STEREO 5
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391 dimmed considerably by cloud coverage; little improve-
392 ment in conditioning is obtained from these MLVs.
393 Most important, Fig. 7 shows that the amount of out-of-
394 plane MLV shift (elevation) relative to the solar arc also
395 depends on the orientation n of the surface patch. This indi-
396 cates that outdoor PSmay present different degrees of uncer-
397 tainty (conditioning) depending on the normal of each patch.
398 Indeed, the maximum noise gain (�max ¼ max �kð Þ) values in
399 Fig. 8 show that patches with nearly horizontal normals
400 (orthogonal to the zenith direction) are associated with sets
401 of MLVs that are closer to being coplanar throughout the
402 day. As expected, patches oriented towards the bottom also
403 present worse conditioning since they receive less light.
404 This key observation also demonstrates the advantages
405 of adopting more elaborate illumination models (e.g, [8]).
406 For instance, the simpler point light model was used in [13]
407 to study the conditioning of outdoor PS. Because the atmo-
408 spheric component is not modeled, the conclusion was that
409 single-day reconstruction breaks down in two cases of
410 nearly coplanar sun directions: closer to the poles near the
411 winter solstice, and worldwide near an equinox. Our results
412 suggest that more attention should be placed on the illumi-
413 nation model, without focusing exclusively on the sun.

414 4.4 Lambertian, Calibrated PS on Partially Cloudy
415 Days

416 The analysis performed on theHDR sky dataset (c.f. Section 3)
417 indicates that surface patches may be better reconstructed in
418 certain conditions, dependent upon cloud coverage and the

419orientation of the patch itself. In the case of partially cloudy
420days, our investigation reveals that those conditions usually
421shift theMLVs enough for outdoor PSmethods towork.
422To validate that accurate surface reconstructions can
423indeed be obtained on partially cloudy days, we captured a
424sequence of a real object lit by the sky over the course of a
425day. We oriented an owl statuette towards south and took
42666 HDR captures using a Canon EOS Rebel SL1 between
42710h30 and 16h30, local time, in Quebec City. We simulta-
428neously captured hemispherical HDR sky images (as in Sec-
429tion 3) to provide high fidelity estimates of the illumination
430conditions for each image as shown in Fig. 9. Ground-truth
431surface normals were obtained by aligning a 3D model of
432the object (obtained with a Creaform MetraSCAN scanner)
433to the image using POSIT [35].
434We then perform calibrated outdoor PS on these images
435using the algorithm proposed by Yu et al. [8], with the fol-
436lowing three differences: (i) we use all possible pairs of
437images to compute ratios, instead of selecting a single
438denominator image; (ii) we apply anisotropic regulariza-
439tion [12] to mitigate the impact of badly-conditioned pixels
440on the surface reconstruction; and (iii) remove the low-rank
441matrix completion preprocessing, which, in our experi-
442ments, caused slightly degraded performance.
443The result on these real images is shown on Fig. 9. As
444predicted in the analysis from Fig. 8, normals on the head
445and the bottom of the abdomen, pointing respectively up or
446down, are mostly accurately estimated. As can be observed
447in Fig. 9a, clouds sometimes occlude the sun, which
448improves the conditioning of the problem to yield an
449acceptable result. Without clouds, this day would have lead
450to an unstable formulation of the photometric stereo prob-
451lem, as it is close to the fall equinox, which corresponds to
452the worst case scenario with coplanar sun directions [13].

4535 NON-LAMBERTIAN PS ON CLOUDLESS DAYS

454Full environment maps taken at short intervals are needed
455to analyze the case of partly cloudy days, as one needs to
456capture the precise moment when the sun is occluded by
457clouds. However, in the case of clear days, the photometric
458cue is much weaker but the general appearance of the sky is
459more predictable and can be modeled by physically-based
460sky models (as in [20]). In this section, we present a novel
461approach using deep learning to handle the ambiguities
462that arise in outdoor PS on a single day with a clear sky.

Fig. 8. Noise gain for normal directions n of patches visible to the cam-
era, which is located South of the hypothetical target object. The colors
indicate the shifting (coplanarity) of the associated MLVs. On both days,
normals that are nearly horizontal are associated with nearly coplanar
MLVs (smaller shifts, higher gains). These normals define a zero-
crossing region between positive and negative out-of-plane shifts (mid
row in Fig. 7), where sun occlusion shifts MLVs predominantly along the
solar arc.

Fig. 9. (left) Real outdoor HDR images of owl statuette and corresponding HDR environment maps (top row) providing synchronized, high-fidelity
estimates of illumination conditions. All images were acquired on 10/11/2014 and tone-mapped for display only (with g ¼ 1:6). The sun visibility was
43 percent on this day. We show the ground truth normals of the object (a) as well as normals recovered from [8] (b), along with a reference normal
sphere in inset. The reconstruction error (c) shows sphere is shown as a color coding reference; (b) normal estimation error at each pixel; and (c) the
error distribution, in degrees.

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. X, XXXXX 2019



IEE
E P

ro
of

463 Our CNN-based approach compensates for the lack of
464 photometric constraints by modeling prior knowledge on
465 object geometry, material properties, as well as their local
466 spatial correlation and interaction with natural outdoor
467 lighting. In order to build such knowledge base, one needs a
468 large number of images depicting various objects lit by out-
469 door lighting throughout the day, over different geographic
470 locations and days over the year; finally, the surface normal
471 map of each object is also required. Unfortunately, no such
472 large-scale dataset currently exists, so a natural choice is to
473 synthesize realistic data to train our network. Next, we pres-
474 ent our problem formulation, CNN architecture, followed by
475 the training procedure and data generation.

476 5.1 Illumination Model: The Solar Analemma

477 We follow a semi-calibrated PS approach that does not
478 require known lighting environments [8] nor complete cam-
479 era geolocation data [20]. Our method only assumes that:
480 (1) the object images are captured at approximate prede-
481 fined times of the day, t 2 ft1; t2; . . . ; tTg; (2) the sun is unob-
482 structed by clouds at these times; and (3) the camera is
483 orthographic and faces approximately North (or South). In
484 Section 5.6, we analyze the robustness of our network with
485 respect to departures from these ideal conditions.
486 Together, these assumptions constrain the sun position to
487 lie within an “8-figure” subspace at each time t, known as a
488 solar analemma, whose shape also varies with geographical
489 location (Fig. 11). For a given time t, the sunmay be positioned
490 at different locations depending upon the selected date and
491 latitude, as prescribed by the analemma. The neural network
492 is thus expected to adapt to this (constrained) variability in
493 sun position and associated intensity. As shown in Figs. 11a
494 and 11b, for a given timestamp and latitude, the sun position
495 spans relatively small angular ranges, which still remain quite
496 constrained even when considering geographical locations
497 sampled over the Northern Hemisphere (Fig. 11c) (note that a
498 similar plot would be obtained by sampling the Southern
499 Hemispherewith the camera facing South).
500 Clear days can be accurately synthesized byparametric sky
501 models, with much lower dimensionality in comparison to a
502 full environment map. To generate training data, we use the
503 physically-based parametric sky model of Ho�sek and
504 Wilkie [36] to obtain the spherical illumination function LtðvvÞ
505 in Eq. (1). The model represents the spectral sky radiance as a

506parametric function of the sun position, sky turbidity and
507ground albedo; turbidity is set to 2, which corresponds to a
508clear day, and ground albedo to 0.3. Note that we do not
509model light scattering caused by clouds obscuring the sun
510and thus assume the sun is fully visible in the sky.

5115.2 Deep Outdoor PS Network

512Here, we consider a more general image formation model in
513which the Lambertian term r

p
in Eq. (1) is replaced with a

514standard GGX shader rð�Þwith varying diffuse and specular
515parameters. Our goal now is to invert this new rendering
516equation and recover the surface normal n based on the
517observed changes in pixel intensities bt, which are caused
518by the changing natural illumination LtðvvÞ throughout the
519day. However, a solution based solely on the photometric
520cues from a sunny day is typically undefined due to limited
521sun motion and, thus, insufficient variability in LtðvvÞ and bt.
522Therefore, instead of considering a single pixel bt, we
523reformulate our goal and instead aggregate additional RGB
524image data within a neighborhood Bt 2 RP	P	3, depicting a
525larger surface patch of width P centered at the pixel bt.
526Now we seek to learn a predictor N ¼ fðBt1 ; . . . ;BtT Þ,
527where T denotes the number of input images and
528N 2 RP	P	3 is the patch normals. In this paper, T ¼ 8 and
529P ¼ 16 but we experiment with other values in Sec-
530tions. 5.6.2 and 5.6.3 respectively. This approach is moti-
531vated by the fact that complex object geometry is often
532made up of simpler, small surface patches presenting highly
533correlated surface normals and material properties.
534A natural way to obtain this predictor fð�Þ is to train a
535Convolutional Neural Network (CNN) and learn a nonlin-
536ear function of local surface features that are highly corre-
537lated with the normal n at the center of the patch. We train
538our network on a large synthetic database of surface patches
539realistically rendered (Section 5.3).

5405.2.1 Network Architecture

541The function N ¼ fðBt1 ; . . . ;BtT Þ introduced above is
542designed as CNNwith the architecture shown in Fig. 10. The
543network takes 8 input 16	 16 image patches, extracted from
5448 images captured at regular intervals Dt between 9:00 and
54516:00 solar time throughout a single sunny day. Note that no
546other information (geolocation, capture time, etc.) is pro-
547vided to the network. The first layer is composed of 32

Fig. 10. Our novel CNN architecture for deep single-day outdoor PS on sunny days. The network operates on 16	 16 patches Bt of the input image,
captured at 8 time intervals t regularly spaced throughout a single day. The network uses convolutional (blue) and residual (red) layers before esti-
mating the normals using fully-connected layers (green). Two losses are used to train our method, one based on the cosine distance with the ground
truth n̂ and another to constrain the norm of the output vector.
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549 inputs. The resulting feature maps are subsequently
550 concatenated in a single 14	 14	 256 feature tensor. A sec-
551 ond convolutional layer is then used, yielding 256 channels,
552 followed by 3 residual blocks as defined in the resnet-18
553 architecture [37]. Lastly, 2 fully-connected layers (FC) are
554 used to produce a 16	 16	 3 patch of estimated normals n.
555 Note that we experimented with fully-convolutional archi-
556 tectures [32] but found the FC layers to yield better results.
557 The ELU activation function [38] is used at every convolu-
558 tional and fully connected layer, except the output layer
559 where a tanhð�Þ function is used. As in [39], batch normaliza-
560 tion [40] is applied at every layer except the first and the out-
561 put layer.
562 The 16	 16 estimated normals are represented by Carte-
563 sian ðx; y; zÞ components of the surface normal of the input
564 patch. We experimented with parameterization in both Car-
565 tesian ðx; y; zÞ and spherical coordinates ðu;fÞ, but found
566 the former to be more stable despite its additional degree of
567 freedom. We hypothesize this may be due to the “wrap-
568 around” issue with the azimuth angle f.
569 To process entire images, we crop overlapping tiles from
570 the image with a stride of 8 pixels. Since a pixel can belong
571 to up to 4 patches, the network produces several estimates
572 n̂ that are then merged together using a weighted average.
573 We use a Gaussian kernel with s ¼ 4 centered on the middle
574 of the patch as weighting function to perform the linear
575 interpolation across overlapping patches.

576 5.2.2 Training

577 The network learns a function that estimates the patch nor-
578 mals N. We define the loss to be minimized between the
579 estimated and ground truth patch normals N and N


580 respectively as the sum of two separate loss functions
581 defined on individual patch normals ni, i 2 f1; . . . ; Ng
582 where N ¼ 16	 16 ¼ 256. The total loss is the sum over all
583 N individual normals:

LðN;N
Þ ¼
XN
i¼1

L cos ðni;n


i Þ þ LunitðniÞ

� �
: (12)

585585

586 The first term is the cosine distance between the estimated
587 ni and ground truth normal n


i :

L cos ðni;n


i Þ ¼ 1� ni;n



i

� 	
knikkn


i k
; (13)

589589

590where �; �h i denotes the dot product. The second term enfor-
591ces the unit-length constraint on the recovered normal:

LunitðniÞ ¼ knik � 1j j : (14)
593593

594The loss in Eq. (12) is minimized via stochastic gradient
595descent using the Adam optimizer [41] with an initial learn-
596ing rage of h ¼ 0:001, a weight decay � ¼ 1	 10�4 and the
597recommended values b1 ¼ 0:9 and b2 ¼ 0:999. Mini-batches
598of 128 samples were used during training and regularized
599via early stopping. Training typically converges in around
600250 epochs on our dataset, which is described next.

6015.3 Training Dataset

602To train our predictor function fð�Þ, we rely on a large training
603dataset of synthetic objects, lit by a physically-based outdoor
604daylight model. To generate a single 8-images set of inputs,
605we randomly select a combination of: 1) object shape, 2) mate-
606rial, and 3) geo-temporal coordinates for lighting. We now
607detail how each of these 3 choices aremade.
608Since the neural network only sees patches of 16	 16
609pixels, its receptive field is, by design, not large enough to
610learn priors on whole object shapes. Therefore, our dataset
611contains a wide variety of local surface patches. We used
612the blob dataset from [22] as training models. We also
613added simple primitives (cube, sphere, icosahedron, cone)
614to the data. A validation set, comprised of one of the blobs
615models that was kept from the training set as well as some
616models from the Stanford 3D Scanning Repository [42] and
617the owl model used in [28], was also created. All blobs and
618geometric primitives are randomly rotated about their
619centroid.
620To model a wide range of surface appearance ranging
621from diffuse to glossy, we employ a linear combination of a
622lambertian and a microfacet model:

rðvv;v;nÞ ¼ rrcðaþ ð1� aÞrGGXðvv;v;n; sÞÞ ; (15)
624624

625where rrc 2 R3 is the surface color, and rGGX is the GGX
626microfacet model [43] with surface roughness parameter s.
627The albedo rr is generated in HSV space, where
628H � Uð0; 1Þ, S � T ð0; 0; 1Þ, and V � T ð0; 0:75; 1Þ, where
629Uða; bÞ is a uniform distribution in the ½a; b� interval and
630T ða; b; cÞ is a triangular distribution in the ½a; c� interval with
631mode b. This generates colors that are in general bright and
632prevents an abundance of strongly saturated colors. Surface
633roughness s is sampled as s � T ð0:2; 0:4; 1Þ to avoid mirror-
634like surfaces. Finally, we sample a mixing coefficient
635a � Uð0; 1Þ.
636To light the scene with a wide variety of realistic outdoor
637lighting conditions, we rely on the Ho�sek-Wilkie physically-
638based sky model [36]. We also placed a ground plane of
639albedo 0.3 outside the field of view of the camera, to gener-
640ate a light bounce from below the object. 11 random loca-
641tions in the Northern Hemisphere between latitude 0�

642(Equator) and 56� (Moscow) were selected. Furthermore, 6
643random days throughout the year were chosen in addition
644to the equinoxes and solstices. This results in 110 pairs of
645geographical locations and dates, which are used to com-
646pute the sun position in the sky throughout the day using
647[44]. The distribution of the resulting sun positions through-
648out our training set is shown in Fig. 11. For every pair of

Fig. 11. Solar analemma: position of the sun in the sky at a specific time of
the day and throughout a year over (a) Paris and (b) the Tropic of Cancer.
Note how the analemmas spread over a wide range of zenith and azimuth
angles over the course of a year. (c) Probability of the sun location in the
sky for our training set.
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649 geographical location and day, 8 timestamps ranging from
650 9:00 to 16:00 are used to perform the renders. Timestamps
651 are aligned to the solar noon instead of the political time
652 zone of the geographic location. Although we sample only
653 geographical locations in the Northern hemisphere, our
654 dataset represents equally well days in the Southern hemi-
655 sphere. Indeed, flipping the images left-right, reversing the
656 image order (from 16:00 to 9:00) and pointing the camera
657 Southward would generate data identical to our training
658 dataset.
659 The resulting images are rendered with the Cycles physi-
660 cally-based rendering engine. This results in a dataset of
661 369,440 renders corresponding to 23,090 combinations of
662 geo-temporal coordinates and materials properties, which
663 we then split into 21,220 and 1870 for training and valida-
664 tion, respectively. Each render has a resolution of 256	 256
665 pixels, which amounts to over 10 millions input-output
666 pairs of 16	 16 patches to train on. Special care was taken
667 into ensuring no 3D model nor material properties were
668 shared between both the training and validation datasets.
669 Please see the supplementary material for example training
670 images, available online.

671 5.4 Results on Synthetic Images With Real Lighting

672 We first evaluate and compare the techniques using a
673 dataset of synthetic objects lit by real skies. To generate

674the images, we manually selected 3 sunny days over 2
675geographical locations from the Laval HDR sky data-
676base [9], which contains unsaturated HDR, omnidirec-
677tional photographs of the sky captured with the
678approach proposed in [45]. We build a virtual 3D scene
679containing the HDR sky environment map as the sole
680light source, a 3D object viewed by an orthographic cam-
681era, and a 0.3 albedo ground plane placed under the
682object, outside the field of view of the camera. We used
683the 3D models from the validation set which the neural
684network never saw during training. This results in a
685dataset of 960 renders yielding 60 normal maps to evalu-
686ate. Example images obtained with this technique are
687shown in Fig. 12.
688We compare our method to several state-of-the-art tech-
689niques relying on photometric stereo and/or deep learning
690to estimate surface normals from images. We first compare
691to the calibrated PS technique from Section 4.4. While it is
692an improvement over the method of Yu et al. [8], we still
693refer to it as [8] in figs. 12 and 13. We also compare to the
694semi-calibrated method of Jung et al. [20], which requires
695only knowledge of the camera geolocation. For deep learn-
696ing techniques, we compare to the recent Deep Photometric
697Stereo Network (DPSN) [31], which operates on one pixel at
698a time. Since it assumes known point light source lighting,
699we re-trained this model using the sun position from a geo-
700graphical location and date representative of our training
701dataset. In addition, we also compare to single image net-
702works: Eigen and Fergus [24] and MarrNet [26]. Since they
703rely on a single image, we take the mean of their results
704averaged over all 8 inputs.
705The comparative results, shown qualitatively in Fig. 12
706and quantitatively in Fig. 13, clearly demonstrate that our
707approach significantly outperforms all other techniques. We
708observe that both single image techniques do not work well
709and result in very high median errors of around 40� and 70�

710for [26] and [24], respectively. For [24], this is probably due
711to the fact that they cannot handle the harsh shadows cre-
712ated by outdoor lighting during sunny days, since they train
713with indoor lighting only. In addition, MarrNet [26] outputs
714a voxel occupation grid and only produces normals as a

Fig. 12. (top) An example of the lighting environment maps and renders
throughout a day. (bottom) Qualitative results (odd rows) and errors in
degrees (even rows) of our technique and the state-of-the-art on single-
day photometric stereo in the semi-calibrated [20] and calibrated [8]
cases, deep photometric stereo [31] and single image normal estima-
tion [24], [26] (averaged over the day) on our real lighting dataset. More
results available in the supplementary material, which can be found on
the Computer Society Digital Library at http://doi.ieeecomputersociety.
org/TPAMI.2019.2962693.

Fig. 13. Median reconstruction error on our real lighting dataset dis-
played vertically as box-percentile plots [46]; the center horizontal bars
indicate the median, while the bottom (top) bars are the 25th (75th)
percentiles. Our proposed method (green) provides state-of-the-art
performance compared to non-learned methods for single-day PS
(blue [20], orange [8]), deep learning methods on calibrated photometric
stereo (red [31]) and single image normals reconstruction (purple [26],
brown [24]).

HOLD-GEOFFROY ET AL.: SINGLE DAY OUTDOOR PHOTOMETRIC STEREO 9

http://doi.ieeecomputersociety.org/TPAMI.2019.2962693
http://doi.ieeecomputersociety.org/TPAMI.2019.2962693


IEE
E P

ro
of

715 byproduct (in its latent stage). As such, this method may not
716 be fully optimized for normal estimation.
717 The PS techniques yield much better results but still yield
718 quite significant error since sunny days do not contain suffi-
719 cient constraints to accurately recover surface normals. The
720 (improved) calibrated method of Yu et al. [8] is comparable
721 to the results obtained by DPSN, with a median normal
722 angular estimation error of 33�. Interestingly, the method of
723 Jung et al. [20] actually yields better results with a median
724 error of 22�, despite needing less information (geolocation
725 and time) than the calibrated methods. This could be due to
726 its reliance on a parametric clear sky model to estimate
727 lighting, which closely matches the actual ground truth
728 lighting, and to its reliance on an intensity profile matching
729 algorithm.
730 Note that most PS techniques capture with some degree
731 of success the left/right component of the surface normals
732 (roughly speaking, the red and blue tints in the normal
733 maps). This axis is the same as the sun trajectory through
734 the day when the camera is facing North or South. This
735 results in strong photometric constraints on this axis. On
736 the other hand, the recovery of the up/down axis is much
737 less successful on most techniques as outdoor photometric
738 cues lack information in this direction through a single
739 sunny day.
740 In contrast, our method yields a normal map that is,
741 although a bit smoother, qualitatively very similar to the

742ground truth. Quantitatively, our approach achieves a
743median error of 14� over the evaluation set, with error pre-
744dominantly below that of the second best performing
745method [20] (see Fig. 13). Even when trained on purely syn-
746thetic data, our network is able to generalize well to images
747rendered with real lighting. The difference in performance
748with respect to DPSN shows the usefulness of dealing with
749image patches, which allows the network to learn appropri-
750ate patch-based shape priors which can be exploited when
751the photometric cue alone is not sufficient.

7525.5 Results on Real Captures

753We further evaluate our method on real data. We captured
754sequences of 8 outdoor images of 4 real statuettes during a
755single sunny day using a tripod-mounted Canon EOS 5D
756Mark III camera with a 300 mm lens. These HDR images
757were obtained by merging camera exposure range from 1/
7588000 to 1 second at f/45. Ground-truth normals were
759obtained from a Creaform GO!SCAN 3D laser scans of the
760real objects. The results shown in Fig. 14 demonstrate the
761performance of our proposed method on such ill-posed out-
762door PS problem. Using photometric cues alone, the two
763top statuettes from Fig. 14 have a maximum median recon-
764struction error of 29� (owl) and 47� (bust) due to the lighting
765matrix being nearly singular. In addition to relaxing the cali-
766bration requirements (as full environment maps are not
767needed for our technique), our learning-based technique
768improves the median surface reconstruction accuracy by up
769to 68 percent.

7705.6 Analysis

771We now analyze further our network, and in particular
772explore the robustness of our network to departures from
773the assumptions that were made in Section 5.2.More analysis
774is available in the supplementary material, available online
775including results on a partially cloudy day.

7765.6.1 Camera Calibration Error

777The impact on reconstruction performance when the north-
778facing camera hypothesis is infringed was studied by rotat-
779ing the real environment maps used to render the evalua-
780tion dataset (Section 5.4), and show the results of this
781experiment in Fig. 15 (left). The slight improvement around
7825� west calibration error is due to the timestamps of our real
783lighting dataset that are not perfectly aligned with the neu-
784ral network expected timestamps. We observe that the
785median reconstruction error increases of approximately 5�

786per 10� error on camera calibration, showing that the net-
787work has some built-in robustness to these errors.

7885.6.2 Number of Input Images

789We also investigated normal estimation performance in func-
790tion of the number of inputs T to the CNN (see Section 5.2.1).
791Results ranging from a single input image (T ¼ 1, effectively
792performing shape-from-shading) to T ¼ 16 input images
793all uniformly taken from 9:00 to 16:00 are shown in
794Fig. 15 (center). We observe an rapid improvement in perfor-
795mance from one to three images, which is coherent with PS
796theory [1]. Performance continues to increase until T ¼ 8,
797probably because added constraints improves robustness to

Fig. 14. Result on real statuettes (ill-posed, single day PS problem):
(a) example input images around solar noon; (b) the ground-truth (3D-
scanned) normals; (c) normals estimated by our method; and (d) angular
error map, median error in degree and amount of estimated normals
within 30� of the ground truth (R30). The top two rows were taken on
2015-08-22 while the bottom three rows were taken on 2018-05-24.
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799 tion error increases slightly. This could be due to an increase
800 in the number of parameters to train in our model (the output
801 tensor after concatenation is of dimension 14	 14	 32T ,
802 thereby increasing the number of parameters in the second
803 convolutional layer),making themodel harder to train.

804 5.6.3 Patch Size

805 Fig. 15 (right) shows the impact of varying the patch size P .
806 To achieve this, we add an adaptive max pooling layer of
807 size 4	 4 after the last residual block (see Fig. 10). Accuracy
808 increases with patch size until roughly 14 pixels, and then
809 decreases. We hypothesize that very small patch sizes do
810 not contain enough spatial context while too large patches
811 reveal macroscopic object features, which the neural net-
812 work fails to recognize in the new shapes of the test set.

813 5.7 Limitations

814 The first limitation of the proposed method is that the cam-
815 era is assumed to be pointing north. Although the network
816 shows some resilience to errors in camera calibration (see
817 Fig. 15), larger deviations from the assumed direction yield
818 degraded performance. One possible way to circumvent this
819 limitation would be to train direction-specific models and
820 select the right one by detecting the camera orientation. Fur-
821 thermore, while our approach is robust to non-Lambertian
822 reflections, it assumes the scene to have a spatially-uniform
823 BRDF. This assumption is shared with recent techniques
824 like [18]. Fig. 16 shows the behavior with a spatially-varying
825 BRDF composed of a checkerboard pattern with small and
826 large squares. Unsurprisingly, the resulting normal maps

827appear distorted since the constant albedo assumption is bro-
828ken. One interesting direction for future work here would be
829to train a network on the ratio between pairs of images (e.g., as
830in [8]), which effectively cancels out the albedo.

8316 DISCUSSION

832This paper has presented a thorough analysis of outdoor PS
833under various illumination conditions captured over the
834course of a single day. In this scenario, we have no control
835over illumination, so existing methods for setting up opti-
836mal lighting [14], [15] cannot be applied. Through a data-
837driven analysis of the expected behavior of outdoor PS, we
838reveal natural factors that distinguish good and unfavorable
839daylight conditions and identify mainly two different types
840of working weather conditions: partially cloudy and clear
841days. Our analysis shows that occlusion of the sun by
842clouds provides additional photometric cues that improve
843the accuracy of the surface reconstruction. Furthermore,
844this improvement in conditioning can be observed in short
845time intervals and varies in accord with surface orientation.
846However, with a cloudless sky, outdoor PS becomes ill-
847conditioned (even in case of simple Lambertian reflectance)
848and cannot be solved from photometric cues alone. To
849address this issue, we augment the available photometric
850cues with learned priors. As such, we present the first
851method for single-day outdoor PS based on deep learning.
852This new method is not limited to Lambertian objects and is
853also robust to shadows and specular highlights. It signifi-
854cantly outperforms previous work on a challenging evalua-
855tion dataset of virtual objects (lit by real sunny lighting
856conditions) and yields successful surface reconstructions on
857real objects.
858One exciting direction for future work is to leverage the
859findings in this paper to design a unified approach for out-
860door PS under skies with any amount of cloud coverage.
861For this, a properly-trained neural network could learn to
862reconstruct the detailed surface of a large class of objects
863observed under variable (but uncontrolled) natural outdoor
864illumination. Designing such an approach will however
865require care as simply training on clear days cannot reach
866the same performance on other weather conditions (see the
867supplementary material, available online). We hypothesize
868that a hybrid approach, combining the photometric cues
869from Section 4 with a deep CNN such as the one in Section 5
870could be successful. A question that remains open to inves-
871tigation is the adequate requirement in terms of lighting cal-
872ibration as to provide beneficial information during

Fig. 15. (Left) Median normal estimation error as box-percentile plots (see Fig. 13) in function of the camera deviation from north in degrees on our
real lighting evaluation set. Positive means camera looking westward, negative means camera looking eastward. (Center) Normal estimation error
as box-percentile plots on our evaluation dataset in function of the number of input images T . (Right) Ablative study on the number of pixels in input.

Fig. 16. Limitation of our approach. Our network is trained on spatially
uniform BRDFs, so testing it on spatially-varying albedo maps increases
the estimation error. (left) Spatially-uniform albedos results in low error,
while checkerboard albedo maps with (center) small and (right) large
patterns increase the error.
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873 reconstruction while also allowing for application in the
874 wild. We believe the analysis presented in this paper sets
875 the stage for exciting future work.
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