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Abstract: Imitation learning from human demonstrations is an effective paradigm
for robot manipulation, but acquiring large datasets is costly and resource-
intensive, especially for long-horizon tasks. To address this issue, we propose
SkillMimicGen (SkillGen), an automated system for generating demonstration
datasets from a few human demos. SkillGen segments human demos into ma-
nipulation skills, adapts these skills to new contexts, and stitches them together
through free-space transit and transfer motion. We also propose a Hybrid Skill
Policy (HSP) framework for learning skill initiation, control, and termination
components from SkillGen datasets, enabling skills to be sequenced using motion
planning at test-time. We demonstrate that SkillGen greatly improves data genera-
tion and policy learning performance over a state-of-the-art data generation frame-
work, resulting in the capability to produce data for large scene variations, includ-
ing clutter, and agents that are on average 24% more successful. We demonstrate
the efficacy of SkillGen by generating over 24K demonstrations across 18 task
variants in simulation from just 60 human demonstrations, and training proficient,
often near-perfect, HSP agents. Finally, we apply SkillGen to 3 real-world manip-
ulation tasks and also demonstrate zero-shot sim-to-real transfer on a long-horizon
assembly task. Videos, and more at https://skillgen.github.io.
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1 Introduction

Imitation learning from human demonstrations is an effective approach for training robots to perform
different tasks [1, 2]. One popular technique is to have humans teleoperate robot arms to collect
datasets for tasks of interest and then subsequently use the data to train robots to perform these tasks
autonomously [3,4]. Recent efforts have demonstrated that large, diverse datasets collected by teams
of human demonstrators result in impressive and robust robot performance, and even allow the robots
to generalize to different objects and tasks [2, 5–8]. However, collecting large datasets in this way
is costly and resource-intensive, often requiring multiple human operators, robots, and months of
human effort. Acquiring datasets for challenging long-horizon tasks that require sequencing several
manipulation behaviors together is even more difficult and costly [9].

The need for large datasets has motivated the development of data generation systems [10–12] that
seek to produce task demonstrations with minimal human involvement. For example, some systems
combine teleoperation and planning within the same demonstration, partially automating the demon-
strating process, which ultimately allows a human to teleoperate several robots in parallel [13]. Al-
ternatively, some systems further reduce human involvement through demonstration adaptation. For
example, MimicGen [11], uses a small number of human task demonstrations to automatically gen-
erate large datasets by splitting the source human data into object-centric sequences of end-effector
targets, and then selectively transforming and sequencing such segments in new settings. However,
this and other naive strategies for composing human segments together can produce lower-quality
demonstrations with unintended collisions in the environment, and have heterogeneous motions that
are difficult for policy learning algorithms to learn from, especially in real-world settings.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://skillgen.github.io


SkillGen: Automatic Data GenerationHuman Demonstration

100x Data Amplification Hybrid Skill Policy (HSP)

SkillGen
Data

Teleoperation

…

Policy Deployment

Initiation

Demo

Adapt

MP MP

Adapt

MP BC

Figure 1: SkillGen Overview. SkillGen trains proficient agents with minimal human effort. (left) First, a
human teleoperator first collects ∼ 3 demonstrations of the task and annotates the start and end of the skill
segments, where each object interaction happens. (middle) Then, SkillGen automatically adapts these local
skill demonstrations to new scenes and connects them through motion planning to amplify the number of
successful demonstrations. (right) These demonstrations are used to train Hybrid Skill Policies (HSP), agents
that alternate between closed-loop reactive skills and coarse transit motions carried out by motion planning.

We also seek to minimize the number of required human demonstrations but improve the flexibility
and efficacy of adapted demonstrations. To that end, we first observe that control difficulty is often
not uniformly spread across a task. Specifically, in order to solve many manipulation tasks, the robot
must first move itself in free space in order to reach a state where it can manipulate the world through
contact. For example, consider the cleanup task in Fig. 1. The robot must move through free space
before picking the butter and also before inserting the butter into the trash can. This kind of free
space motion can be easy for planning systems, and greatly reduce the burden on policy learning.

From this observation, we propose SkillMimicGen (SkillGen), a system that leverages the notion of
a manipulation skill to isolate demonstration adaptation to contact-rich segments. At data-generation
time, SkillGen synthesizes candidate demonstrations by executing several adapted skill segments
in sequence, connected through motion planning. At test-time, SkillGen not only learns control
policies for these skills but also initiation and termination conditions, enabling them to be sequenced
using planning in a similar manner but without any requirements regarding state observability.

We make the following contributions:
• We introduce SkillMimicGen (SkillGen), an automated system for generating demonstration
datasets through decomposing tasks into motion segments and skill segments that are adapted from
a few human demos.
•We propose a Hybrid Skill Policy (HSP) framework that learns skill initiation, control, and termi-
nation components, enabling skills to be combined in sequence at test time using motion planning.
•We show that SkillGen improves data generation and policy learning performance over an existing
state-of-the-art data generation framework. Specifically, SkillGen is robust to large scene variation,
such as clutter, and produces policies that on average are 24% more successful than MimicGen [11].
• We demonstrate the efficacy of SkillGen by generating 24K+ demonstrations from 60 human
demonstrations across 18 task variants in simulation and training proficient, often near-perfect, high-
performing HSP agents. Finally, we successfully apply SkillGen to 3 real-world manipulation tasks,
and also demonstrate zero-shot sim-to-real transfer on a long-horizon assembly task.

2 Related Work

Data Collection for Robotics. Robot teleoperation [3, 4, 14–23] is a popular method for collecting
task demonstrations – here, humans use a teleoperation device to control a robot and guide it through
tasks. The robot sensor streams and control actions during operation are logged to a dataset. Sev-
eral efforts [2, 5–8] have scaled this paradigm up by using a large number of human operators and
robot arms over extended periods of time (e.g. months). Some works have also allowed for robot-
free data collection with specialized hardware [24, 25], but human effort is still required for data
collection. In contrast, SkillGen automatically generates data with just a handful of human demon-
strations. Other works seek to generate datasets automatically using pre-programmed demonstrators
in simulation [10, 26–31], but scaling these approaches to a larger variety of tasks can be difficult.

Imitation Learning and Data Augmentation. Behavioral Cloning (BC) [32] is a typical method
for learning policies offline from demonstrations, and has been widely used in robot manipulation [3,
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16, 27, 33–45]. Some works leverage offline data augmentation to increase the size of the training
dataset for learning policies [1, 46–57]. Instead, SkillGen collects new datasets online.

Imitation Learning with Hybrid Controllers. SayCan [6] composes skills learned from demon-
strations using a language model and learns when to begin and end each skill However, each skill
starts when the previous one ends – in contrast, our learned skills are local manipulation behaviors
and transit is carried out via motion planning. Other works [58–60] learn “keyframe” pose actions
from demonstrations and execute them using motion planning, but they lack closed-loop control us-
ing learned policies. Some imitation learning methods decompose learning into coarse-grained and
fine-grained motions [13,61–64], but most use naive linear interpolation to carry out coarse-grained
motions [61, 62], which is susceptible to collisions. Others [63–65] learn open-loop segments for
fine-grained motions, instead of closed-loop skills like our methods. Wang et al. [66] learn paramet-
ric skills using Gaussian Processes and deploy them in a Task and Motion Planning (TAMP) [67]
system. In HITL-TAMP [13], a TAMP planner decides when to employ an agent trained with im-
itation learning for skill segments; however, it is TAMP-gated, meaning that skill start and end
conditions are engineered into the TAMP model instead of learned.

MimicGen. MimicGen [11] is a data generation system that takes a small source set of human
demonstrations on a task and generates larger sets of demonstrations. It builds on replay-based im-
itation learning methods [65, 68–74], which address new task instances by adapting and replaying
motion from existing human data. MimicGen segments the source demonstrations into a contiguous
set of object-centric subtask segments. Then, given a new task instance, MimicGen transforms and
replays open-loop subtask segments from the source data one-by-one to generate a new demonstra-
tion. However, because MimicGen naively stitches source demonstrations with linear interpolation,
it can produce lower quality demonstrations that collide with the environment, and have heteroge-
neous motions difficult for policy learning. By instead adopting a skill-based framework, SkillGen
avoids these pitfalls at data generation time and produces more robust behavior at deployment time.

3 Prerequisites

Imitation Learning. Each robot manipulation task is modeled as a Partially Observable
Markov Decision Process (POMDP). We are given a dataset of N demonstrations D =
{(si0, oi0, ai0, si1, oi1, ai1, ..., siHi

)}Ni=1 consisting of states s ∈ S , observations o ∈ O, and actions
a ∈ A. Each initial state si0 ∼ D is sampled from the initial state distribution D ⊆ S . We
aim to learn a robot control policy π : O → A that maps observation space O to a distribu-
tion over action space A. Behavioral Cloning (BC) [32] is a common method to obtain such a
policy – it uses optimization to find a policy that maximizes the likelihood of producing the data
argmaxθ E(s,o,a)∼D[log πθ(a | o)]. In this work, we train policies via BC and combine them with
various mechanisms to exchange control between a learned policy and a motion planner.

Assumptions. Similar to prior work [11], we make the following assumptions. (A1): The policy
action space A consists of continuous pose commands for an end effector controller along with
a discrete gripper command. This allows us to treat the actions in a human demonstration as a
sequence of target poses for a task-space end-effector controller. (A2): The task involves a set
of manipulable objects {O1, ..., Ok}. (A3): During data collection, the pose of an object can be
observed or estimated prior to the robot making contact with that object.

4 SkillMimicGen

We seek to learn visuomotor policies from demonstrations with minimal human effort by adapting a
small number of human demonstrations to a large set of system states to facilitate automated demon-
stration generation. However, at both demonstration and deployment time, control difficulty is not
uniformly spread across an episode. Specifically, in order to solve many manipulation tasks, the
robot must first move itself in free space in order to reach a state where it can manipulate the world
through contact. Free space motion can easily be carried out via motion planning and greatly reduce
the policy learning burden. Thus, we propose decomposing tasks into motion and skill segments in
order to isolate both demonstration generation and learning to just the skill segments, which will
improve the quality of demonstrations and learned policies. We accomplish this by learning local
manipulation skills that we combine in sequence using motion planning (Section 4.1). We show how

3



q0 𝐼!(𝑜) 𝑇!(𝑜)

𝜋!(𝑜)

Skill ψ" Skill ψ#

𝜋!(𝑜)
𝐼!(𝑜) 𝑇!(𝑜)

Figure 2: HSP Deployment. At test-time SkillGen, executes several learned skills in sequence, using motion
planning to connect the termination state of the last skill with an initiation state of the next skill. Each skill
consists of the initiation condition Iθ , the closed-loop controller πθ , and the termination condition Tθ .

adopting a skill-based framework allows for more focused demonstration replay (Section 4.4) and
ultimately improved policy performance during deployment (Section 4.6).

4.1 Skills Framework

Building off of the options [75] formalism from reinforcement learning, we define a skill ψ =
⟨O, I, π, T ⟩ as a tuple consisting of an object to be manipulated O, initiation condition I, policy
π, and a termination condition T . The initiation condition I defines a set of states where control
using policy π can begin. The termination condition T defines a set of terminal states for policy
π. We will use this skill abstraction to model all three phases of SkillGen, namely the initial tele-
operation demonstrations (Section 4.3), the automated demonstration adaptation and amplification
(Section 4.4), and the system execution at deployment time (Section 4.6).

4.2 Transit and Transfer Motion

Most tasks require performing multiple skills in sequence to complete them, such as the task in
Fig. 2, which involves a pick skill to grasp the coffee pod and an insert skill load the pod in the
coffee machine. In order to first reach the pick skill and then move the pod to the pod holder for
the insert skill, the robot must perform two kinds of classical free-space motion [76,77]. The first is
transit motion, where the robot moves by itself without modifying the world. The second is transfer
motion, where the robot is grasping an object approximately rigidly and transports the object as it
moves. Thus, at both demonstration generation (Section 4.4) and system deployment (Section 4.6)
time, SkillGen alternates between transit or transfer motion and manipulation skills.

SkillGen is a bilevel hierarchy where the skill initiation and termination induce the start and end
robot configurations (q and q∗) for the motion segments. Namely, the termination condition Ti from
the prior skill ψi governs the robot configuration q prior to the motion, and the initiation condition
Ii+1 of the next skill ψi+1 defines the set of target end-effector poses TEW ∈ Ii+1 ⊆ SE(3), whereE
is the end-effector frame andW is the world frame. To generate these motions, we first convert task-
space pose TEW to joint-space configuration q∗ using inverse kinematics and then plan and execute a
joint-space path from current configuration q to q∗ with a motion planner.

4.3 Source Demonstrations

We assume a small source dataset of human demonstrations Dsrc collected on the task and our aim
is to automatically generate a large dataset D on either the same task or a task variant. We start
by annotating each trajectory in the source dataset τ ∈ Dsrc with the start and end of each skill.
This decomposes the demonstration into an alternating sequence of motion and skill trajectories
τ = (τ1m, τ1s, ..., τNm, τNs), where τim and τis denote motion and skill segments respectively.
For source demonstrations provided by conventional teleoperation, these annotations can easily be
annotated by a human. In our experiments, we choose to use demonstrations from the HITL-TAMP
system [13], where the human only demonstrates local skill segments of each task, and the rest is
handled by a TAMP system. In this case, annotations can be extracted automatically – each τim and
τis is a TAMP and human segment respectively. Within each skill segment τis, each end-effector
pose action TAt

W (Sec. 3, A1) is stored in the frame of skill object Oi as TAt

Oi
← (TOi

W )−1TAt

W , where
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TOi

W is the pose of object Oi observed prior to the skill. The first robot end effector pose in the skill
demonstration TE0

Oi
← τis[0] is the initiation state and that will be the target end-effector pose for

transit and transfer motion planning. The last pose in the demonstration TEK

Oi
implicitly defines the

termination state, which will be learned through binary classification.

4.4 Demonstration Generation

The demonstrations D are generated through an automated trial-and-error process. Given a new
initial state, SkillGen adapts existing skill segments to the new initial state and executes them in
sequence with motion segments to generate a new demonstration. First, a reference skill segment τis
is sampled. Next, the corresponding initiation state TE0

Oi
is used along with the pose TO

′
i

W of object
Oi in the new scene to obtain an end-effector pose for where the new skill segment should start,
T
E′

0

W ← T
O′

i

W TE0

Oi
. Next, the reference skill segment, expressed as a sequence of end-effector pose

actions, τis = (TA0

Oi
, ..., TAK

Oi
) is transformed to τ ′is = (T

A′
0

W , ..., T
A′

K

W ) where TA
′
t

W ← T
O′

i

W TAt

Oi
. This

transformation preserves the new end-effector pose actions with respect to the object frame [11].
The new skill segment τ ′is is executed by the end-effector controller. The steps above repeat for
each skill, and then SkillGen checks for task success and only keeps the demonstration if it was
successful. Seed Appendix O for pseudocode displaying the demonstration generation process.

4.5 Initiation Augmentation

At test time, learned skills trained on the generated data will be responsible for predicting both
initiation targets for the motion planner and skill segments by employing a closed-loop agent that
decides when to terminate. However, small differences in target pose predictions as well as motion
plan tracking errors can cause learned policies to start out-of-distribution, thus reducing their ac-
curacy. To mitigate such issues, SkillGen optionally adds noise to initiation states TE0

W , producing

new initiation states TE
′
0

W , during data generation to broaden the support of the initiation set. To
account for changing the initiation state, we consequently plan a recovery segment at the start of τ ′is,
consisting of a sequence of pose actions that moves from new T

E′
0

W pose to the original pose TE0

W .

This ensures that the new initiation state TE
′
0

W is connected to the demonstration segment τ ′is when
training closed-loop skill policies. See Appendix G for full details.

4.6 Policy Learning

Hybrid Skill Policy (HSP): We learn parameterized skills ψθ = ⟨O, Iθ, πθ, Tθ⟩ using the generated
datasets (parameterized by θ). The initiation condition Iθ : O→SE(3) is trained to predict initiation
states TE0

W from the last observation o on the prior skill. The policy πθ : O→A is trained on
direct observation and action pairs ⟨o, a⟩ with BC (see Sec. 5). The termination condition Tθ :
O→{0, 1} is a classifier that predicts whether the skill is at a termination state based on the most
recent observation o. During task deployment (Fig. 2), for each skill ψθ ∈ Ψ in a given sequence of
skills Ψ, SkillGen predicts the initiation state TE

′
0

W ← Iθ(o), plans and executes a path to it using a
motion planner, and rolls out the learned policy by predicting actions a← πθ(o) until Tθ(o) predicts
policy termination. Then, this process repeats with the next skill (pseudocode in Appendix O).

HSP Variants: We consider two approaches for learning initiation conditions Iθ: HSP-Reg and
HSP-Class. HSP-Reg formulates learning as a regression problem and directly predicts an initia-
tion pose from the last observation. HSP-Class frames learning as classification problem over the
initiation states in the source dataset Dsrc, where the classifier predicts which source demonstration
spawned the generated demonstration. Once classified, HSP-Class adapts the predicted initiation
state to the current state using the pose adaptation procedure previously described in Section 4.4.
However, recall that this requires the current pose TO

′

W of object O, and thus HSP-Class assumes
that object poses are known or can be estimated at the start of each skill segment. Ultimately,
HSP-Class requires an additional observability assumption over HSP-Reg; however, this enables
HSP-Class to perform discrete prediction over known pose candidates instead of continuous predic-
tion over SE(3). Finally, we also consider HSP-TAMP, which deploys just the learned policies πθ
within HITL-TAMP [13], without the learned initiation and termination conditions.
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(a) Square (b) Threading (c) Piece Assembly

(d) Coffee (e) Coffee Prep (f) Nut Assembly

(g) Pick-Place-Milk (h) Cleanup-Butter-Trash

(i) Coffee (j) Nut-Assembly-Real

Figure 3: Tasks. We deploy SkillGen on 6 simulation tasks (18 task variants, see Appendix J) (a-f) and 4 real-
world tasks (g-j). These tasks involve fine-grained insertion (a-d), composing several manipulation behaviors
together (e, f), real-world data generation and training (g-i) and zero-shot sim-to-real policy transfer (j).

5 Experiment Setup

Tasks and Task Variants. We applied SkillGen to a broad range of tasks (see Fig. 3, full details in
Appendix J) and task variants. Each task has a nominal reset distribution (D0), and broader, more
challenging reset distributions (D1,D2) [11]. All simulation tasks are implemented in robosuite [78]
using its MuJoCo backend [79]. We experiment on simulated Fine-Grained Tasks (Square, Thread-
ing, Coffee, Piece Assembly) that require insertion, pulling, and pushing as well as Long-Horizon
Tasks (Nut Assembly, Coffee Prep) that require chaining multiple behaviors together. Additionally,
we experiment on Real-Robot Tasks (Pick-Place-Milk, Cleanup-Butter-Trash, Coffee), and Sim-
to-Real Tasks (Nut-Assembly-Sim, Nut-Assembly-Real) to investigate SkillGen’s propensity for
zero-shot sim-to-real policy deployment.

Data Generation and Imitation Learning. For most of the experiments, a source dataset of 10
demonstrations was collected for each task on the D0 variant by a single human operator using the
HITL-TAMP teleoperation system [13]. SkillGen was used to generate 1000 successful demon-
strations for each task variant (D0, D1, D2) (see Appendix J for details), using each task’s source
dataset. Motion augmentation (Sec. 4) is only used to generate data to train HSP-Reg agents; HSP-
TAMP and HSP-Class agents are trained on datasets generated without motion augmentation. See
Appendix H for full policy learning details. The agent control policies used in the hybrid control
policies (πθ) were trained using BC with an RNN architecture [1] with the same hyperparameters
from MimicGen. Policy performance is reported as the maximum success rate across all policy
evaluations as in Mandlekar et al. [1]. All agents are trained with front-view and wrist-view RGB
observations along with robot proprioception. Apart from the new task variants, we report the base-
line data generation and agent performance statistics present in the MimicGen paper [11].

Motion Planning. In both the simulation and real-world tasks, we use TRAC-IK [80] for inverse
kinematics, RRT-Connect [81] for joint-space motion planning, and Operational-Space Control
(OSC) for task-space control [82]. In simulation, we check collisions during planning using the
ground-truth obstacle collision geometries. In the real world, because collision geometries are not
known, we use point-cloud-based collision checking using the segmented point cloud.

6 Experiments

6.1 SkillGen Features

SkillGen improves data generation rates over MimicGen substantially. MimicGen uses replay-
based data generation for the entire trajectory, while SkillGen only uses replay for short skill seg-
ments, deferring larger transit motions to a motion planner. This results in substantially higher data
generation success rates compared to MimicGen (average 75.4% vs. 40.7%, see Appendix F), espe-
cially when the reset distribution is large compared to the source demonstrations. Some compelling
examples include Square D2 (87.7% vs. 31.8%), Threading D2 (74.3% vs. 21.6%), Three Piece
Assembly D2 (69.3% vs. 31.3%), and Coffee D2 (70.0% vs. 27.7%).

SkillGen data collection is robust to large object rearrangements and clutter. In Coffee Prep
D2, the drawer containing the coffee pod and the mug are on opposite ends of the table compared to
D0 (source demos), and MimicGen is unable to collect any demonstrations while SkillGen achieves
59.9% data generation success. Additionally, in the Clutter variants of Square and Coffee (Ap-
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Task Variant Src MG HSP-T HSP-C HSP-R

Square D0 50.0 90.7 100.0 100.0 94.0
Square D1 - 73.3 100.0 98.0 62.0
Square D2 - 49.3 94.0 94.0 52.0

Threading D0 64.0 98.0 100.0 92.0 94.0
Threading D1 - 60.7 72.0 66.0 60.0
Threading D2 - 38.0 62.0 50.0 62.0

Piece Assembly D0 28.0 82.0 96.0 80.0 86.0
Piece Assembly D1 - 62.7 88.0 78.0 78.0
Piece Assembly D2 - 13.3 84.0 74.0 50.0

Coffee D0 100.0 100.0 100.0 100.0 100.0
Coffee D1 - 90.7 100.0 100.0 100.0
Coffee D2 - 77.3 94.0 100.0 98.0

Nut Assembly D0 22.0 60.0 100.0 92.0 94.0
Nut Assembly D1 - 16.0 72.0 78.0 20.0
Nut Assembly D2 - 12.0 54.0 50.0 24.0

Coffee Prep D0 2.0 97.3 92.0 92.0 84.0
Coffee Prep D1 - 42.0 54.0 74.0 64.0
Coffee Prep D2 - 0.0 80.0 74.0 84.0

Average - 59.1 85.7 82.9 72.6

Square (D2) Threading (D1) Piece Assembly (D0) Piece Assembly (D2)
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HSP-TAMP Training Data Comparison

200 Human 200 SG 1000 SG 5000 SG

Task MimicGen [11] SkillGen

Milk-Bin - 95.0
Butter-Trash - 95.0
Coffee 14.0 65.0

Nut-Assembly [Sim] 72.0 92.0
Square-Assembly 5.0 35.0
Nut-Assembly 0.0 35.0

Figure 4: (left) Agent Performance on SkillGen Datasets. Success rates of agents trained on source demon-
strations (with HSP-TAMP), MimicGen [11] data (with BC-RNN [1]), and SkillGen data (with all HSP vari-
ants). SkillGen data greatly improves agent performance on D0 compared to the source data, and SkillGen
agents substantially outperform MimicGen agents, especially on more challenging task variants. (upper right)
Training Data Comparison. HSP-TAMP agent performance is comparable on 200 SkillGen demos and 200
human demos, despite SkillGen using just 10 human demos for generation. Generating more SkillGen demon-
strations can result in significant performance improvement (also see Appendix E). (lower right) Real-World
Manipulation Results. HSP-Class agents trained on SkillGen data generated in the real world are proficient,
and substantially outperform using MimicGen data. They can also be transferred zero-shot from sim-to-real.

pendix D), a large object is placed randomly on the table. SkillGen achieves data generation rates
from 49.0% to 72.0% while MimicGen only achieves 4.0% to 16.5%.

SkillGen greatly improves agent performance on the source task. Comparing HSP-TAMP agents
trained on the source data vs. on SkillGen data onD0, we see dramatic improvement (Fig. 4) – some
examples include Three Piece Assembly (28% to 96%) and Nut Assembly (22% to 100%).

SkillGen produces more proficient agents through its use of hybrid control. Averaged across
all tasks, HSP-TAMP, HSP-Class, and HSP-Reg achieve 85.7%, 82.9%, and 72.6% success rates
respectively, compared to 59.1% for agents trained on MimicGen data (Fig. 4). Furthermore, HSP-
Class and HSP-Reg make fewer assumptions than HSP-TAMP (see Sec. 4) while retaining the ben-
efits of hybrid control. On Nut Assembly D1 and D2, HSP agents trained on SkillGen data outper-
form agents trained on MimicGen data by up to 62%, and SkillGen is able to train proficient agents
(74% to 84%) on Coffee Prep D2, while MimicGen fails to generate data for this variant (Fig. 4).

SkillGen effectively adapts demonstrations across robots. We use source demonstrations col-
lected on the Panda arm and generate demonstrations for the Sawyer arm. As shown in Appendix N,
data generation rates and policy performances are much higher for SkillGen than MimicGen.

6.2 SkillGen Analysis

Can agent performance on SkillGen data match agent performance on an equal amount of
human demonstrations? We collected 200 demonstrations with the HITL-TAMP system [13] on
each of 4 tasks and compared HSP-TAMP agent performance (the same method from HITL-TAMP)
on the 200 human demos vs. 200 SkillGen demos (Fig. 4) generated from just 10 HITL-TAMP
demos (which took less than 4 minutes per task to collect, compared to 37-71 minutes). Performance
is comparable across all 4 tasks – 10% is the largest deviation, showing that SkillGen generated data
is as effective as an equal number of human demos but only requires a small fraction of the effort.

Does agent performance improve by generating more demonstrations? We compared the per-
formance of the different HSP algorithms on 200, 1000, and 5000 SkillGen demonstrations across
the same 4 tasks from above – the results are presented in Fig. 4 (HSP-TAMP), and Appendix E
(HSP-Class, HSP-Reg). All tasks and methods receive a significant increase from 200 to 1000 de-
mos, and some tasks benefit strongly from 1000 to 5000 demos, notably Square D2 (52% to 72%
on HSP-Reg) and Threading D1 (60% to 76% on HSP-Reg).

7



How does performance compare between the different hybrid control learning algorithms?
Average task performance between HSP-TAMP and HSP-Class is similar (85.7% vs. 82.9%), and
only slightly lower for HSP-Reg (72.2%) despite HSP-Class and HSP-Reg making much fewer
assumptions (Fig. 4). HSP-Reg results could improve with more SkillGen data (Appendix E).

6.3 Real World Evaluation

We first demonstrate that SkillGen data generation can be deployed in the real-world and the data
enables proficient policies to be learned. Next, we transfer agents trained in simulation with SkillGen
zero-shot to the real-world on a long-horizon task, demonstrating that combining SkillGen with
more sophisticated sim-to-real approaches is a promising method for robots to acquire real-world
manipulation capabilities with minimal human effort. Results are summarized in Fig. 4 (lower right).

Setup. We use a Panda robot arm, a front-view RealSense D415 camera, and a wrist-view RealSense
D435 camera. Pose estimates are obtained using FoundationPose [83]. Agents use proprioception
and 120x160 camera images (except for sim-to-real agents) and are evaluated over 20 rollouts.

SkillGen Data Generation and Policy Learning in the Real World. We collect 3 source demon-
strations with HITL-TAMP teleoperation on each of our tasks (Pick-Place-Milk, Cleanup-Butter-
Trash, and Coffee), use SkillGen to generate 100 demonstrations, and train HSP-Class agents on
the generated data (Appendix J has full details). These agents obtain near-perfect success rates
on the Pick-Place-Milk and Cleanup-Butter-Trash tasks despite large amounts of spatial variation.
HSP-Class also obtains 65% on the challenging Coffee task, while the BC-RNN agent trained on
MimicGen data from [11] could only obtain 14%. This result is comparable with the 74% reported
in HITL-TAMP [13] for an HSP-TAMP agent trained with 100 HITL-TAMP demos. We note the
lower human effort (3 human demos vs. 100), that our Coffee task is more challenging (requires
agent to learn to grasp the pod, unlike [13]) and our HSP-Class agent makes fewer assumptions.

Zero-Shot Sim-to-Real Deployment of SkillGen Policies. We designed a simulation task (Nut-
Assembly [Sim]) that mirrors our real-world “Nut Assembly” task, where the robot must grasp a
square and round nut and fit them onto corresponding square and round pegs. We train agents
in simulation by collecting 1 source demo (with HITL-TAMP for SkillGen and with conventional
teleoperation for MimicGen), generate 1000 demonstrations with SkillGen and MimicGen, and sub-
sequently train an HSP-Class agent and a MimicGen (BC-RNN) agent (see Fig. 4, lower right). This
task is challenging even in simulation, as the trained simulation agents are imperfect (HSP-Class:
92%, MimicGen: 72%). When deployed on the real-world task, the MimicGen agent manages to
solve the first insertion task (Square-Assembly) with 5% success rate, but never solves the full task
while the HSP-Class agent is able to achieve 35% success rate. This shows the value of SkillGen’s
hybrid control paradigm in aiding sim-to-real transfer through decomposing tasks into a sequence
of local behaviors that are more likely to transfer [84]. More details and discussion in Appendix K.

7 Limitations

SkillGen requires knowledge of a fixed sequence of skills that can complete a task. It assumes that
object poses can be observed at the start of each skill segment during data generation. SkillGen was
demonstrated on quasi-static tasks involving rigid objects. SkillGen produces the best results when
using source human demonstrations collected with the HITL-TAMP system – improving results
with conventional teleoperation is left for future work. In the sim-to-real experiment, the agents had
limited observability. Namely, agents only observe changes in proprioception, as no pose tracking
or visual observations are used during execution. See Appendix C for full discussion.

8 Conclusion

We introduced SkillGen, a data generation system that synthesizes large datasets by adapting select
skill segments from a handful of human demonstrations, and a Hybrid Skill Policy (HSP) learning
framework to learn from the generated datasets by enabling closed-loop skills to be sequenced using
a motion planner. We showed that SkillGen improves over a state-of-the-art data generation sys-
tem, in both data generation capability and the ability to learn proficient agents from the data. We
demonstrated SkillGen on real-world manipulation tasks, including zero-shot sim-to-real transfer.
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Appendix
A Overview

The Appendix contains the following content.

• FAQ (Appendix B): answers to some common questions
• Limitations (Appendix C): more thorough list and discussion of SkillGen limitations
• Analysis on Challenging Data Generation Scenarios (Appendix D): more results and

discussion on challenging data generation scenarios addressed by SkillGen
• Dataset Scaling Law Analysis (Appendix E): full set of results for generating larger

datasets with SkillGen
• Data Generation Success Rates (Appendix F): data generation success rates for SkillGen

datasets
• Data Generation Details (Appendix G): more details on how SkillGen generates data
• Policy Learning Details (Appendix H): more details on how policies were trained from

SkillGen datasets
• Planning Details (Appendix I): more details on the planners used in this work
• Tasks and Task Variants (Appendix J): detailed descriptions of tasks and task variants

used to evaluate SkillGen
• Sim-to-Real Experiment (Appendix K): details on sim-to-real experiments
• Results with Conventional Teleoperation Source Demonstrations (Appendix L): Skill-

Gen performance on conventional teleoperation source demos
• Ablations (Appendix M): ablations of certain data generation and policy learning compo-

nents
• Robot Transfer (Appendix N): SkillGen applied to generate data and train policies across

robot arms
• Algorithm Pseudocode (Appendix O): pseudocode for SkillGen data generation and pol-

icy deployment
• Comparison with HITL-TAMP [13] (Appendix P): more discussion on how SkillGen

compares with HITL-TAMP
• Discussion on HSP-Reg Results (Appendix Q): more discussion on the gap between HSP-

Reg and other methods and additional promising results
• Skill Segments and Annotations (Appendix R): more commentary on skill segments and

how they can be annotated in the source data
• Comparison with Replay-Noise Baseline (Appendix S): comparison of SkillGen to a

baseline that replays the source demonstrations with noise added to the actions
• Results Across Multiple Seeds (Appendix T): policy learning results across multiple seeds
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B FAQ

1. What are some limitations of SkillGen?
See Appendix C.

2. Why might a data generation attempt in a failure?
The transformed human segments (skill segments) during data generation (Sec. 4.4) might
result in poses that are difficult or impossible for the motion planner or task-space controller
to reach. Small errors can also accumulate during open-loop replay of the skill segments,
causing failures during high-precision motions such as insertion. Despite the potential for
these failures, proficient agents can be trained from SkillGen datasets.

3. Are there concrete examples of situations where SkillGen succeeds in generating data
but MimicGen fails?
See Appendix D.

4. Is SkillGen compatible with normal teleoperation systems or do I have to use HITL-
TAMP?
Yes, SkillGen is compatible with normal teleoperation systems – see Appendix L for results
and discussion.

5. What are the assumptions made by each HSP policy learning method?
HSP-Reg makes no additional assumptions compared to standard Behavioral Cloning
methods. HSP-Class makes similar assumptions to those made during data generation –
namely that the sequence of relevant objects that the robot must interact with for a task
are known, and we are able to observe or estimate object poses prior to robot interaction
(Sec. 3, A2 and A3). Importantly, this does not require full object pose tracking. HSP-
TAMP [13] makes the most assumptions. It assumes access to a TAMP system that knows
where to move the robot before initiating the learned skill policy and when to terminate the
learned skill policy.

6. There is a small but significant performance gap between HSP-Reg, and the other
HSP methods. Does that mean that policies must use privileged information to get the
benefits of the HSP skill formulation?
The results are close between HSP-Reg and the other methods in many cases (Fig. 4, av-
erage success rate only lower by 10% to 13%) despite making much fewer assumptions
(see FAQ (5) above). However, there are some easy ways to improve performance fur-
ther (discussion in Appendix Q), including generating more data (Appendix E). Moreover,
HSP-Reg might be the only method appropriate for tasks in which, for example, the objects
vary.

7. Is it necessary for SkillGen data generation rates to be high for policies trained on
the generated demo to perform well? If not, why is it beneficial to have higher data
generation rates?
There isn’t a strict correlation between data generation success rate and trained policy
success rate. In many cases, data generation success rates can be very low, especially
when using initiation augmentation (Appendix F), compared to the resulting policy suc-
cess rates. However, higher data generation rates can be beneficial for generating datasets
more quickly (in terms of wall clock time), since it will take less time to reach a target
amount of data. Even when data generation rates are low, SkillGen can leverage paral-
lelization during data generation to generate data faster (Appendix G.4). Finally, a higher
data generation rate can imply better coverage of the task reset distribution in the generated
data, but a low data generation rate does not necessarily mean the task reset distribution is
not covered well.

8. Can SkillGen be used to generate data for different robot arms, like MimicGen?
Yes, see Appendix N for results.

9. Explain how SkillGen was used to generate over 24K demonstrations across 18 task
variants in simulation from just 60 human demonstrations.
We generated 1000 SkillGen demos for each of the 18 task variants in Fig. 4 and an addi-
tional 6 more datasets (1000 demos each) with a different robot arm (Appendix N), using
just 10 source human demos collected on the 6 simulation tasks. We do not include the
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dataset scaling law experiments (Appendix E), the datasets generated with initiation aug-
mentation, and the datasets generated in the real world, which would increase the total
substantially.

10. How does SkillGen compare to a baseline that replays existing source demonstrations
with noise?
We present this comparison in Appendix S and show that SkillGen outperforms this base-
line, especially when the reset distribution is large. Furthermore, this baseline cannot gen-
erate data for new reset distributions, unlike SkillGen.
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C Limitations

We discuss limitations of SkillGen that can inform future work, extending Section 7.

1. Given sequence of skill segments during data generation. During data generation, the
sequence of skill segments (relevant objects that must be manipulated by the robot during
each skill) must be provided.

2. Object pose estimates during data generation. During data generation, SkillGen as-
sumes access to the object pose at the start of each skill segment, either by direct observa-
tion (simulation) or estimation (real world).

3. Quasi-static tasks with rigid objects. This paper applies SkillGen to primarily quasi-static
tasks with rigid objects.

4. Better performance when using source human data from HITL-TAMP [13] than from
conventional teleoperation systems. SkillGen obtains better results when using human
demonstrations collected with HITL-TAMP than with conventional teleoperation systems
(Appendix L). Investigating how more consistent human annotations can reduce this gap is
future work.

5. Limited agent observability and action space for sim-to-real experiments. Agents used
in the sim-to-real experiments only observe changes in robot proprioception, as no pose
tracking or visual observations are used during execution. The agent also receives object
poses at the start of each episode, but these are never updated. The action space is restricted
to position-only control (no rotation). These design choices were made to maximize the
possibility of transfer without the need for addressing the gap in perception between simu-
lation and the real world, and without the need for extensive robot controller tuning between
simulation and the real world. See Appendix K for more details and discussion.
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D Analysis on Challenging Data Generation Scenarios

In this section, we discuss some challenging data generation scenarios where SkillGen is able to
generate data, while MimicGen struggles. We first review some limitations of MimicGen, and then
we discuss different data generation scenarios.

D.1 MimicGen Limitations

Susceptibility to scene collisions. MimicGen uses a naive linear interpolation scheme during data
generation to connect the end of one transformed object-centric human segment to another one.
This approach is not aware of scene geometry, which can result in data generation failures due to
collisions between the robot and other objects in the scene. By contrast, SkillGen transit and transfer
motions between skill segments are carried out via motion planning.

Tradeoff between Data Generation Quality and Policy Learning Proficiency. The use of naive
linear interpolation also impacts learning ability. Longer in time (not space) interpolation segments
have been shown to be harmful to policies trained from MimicGen data [11], which motivates the
use of short interpolation segments with a small number of intermediate waypoints. However, this
can lower the data generation success rate, since the end-effector controller might not be capable of
accurately tracking waypoints that are far apart, and this also can be unsafe for real-world deploy-
ment. Consequently, MimicGen has a fundamental tradeoff with respect to interpolation segments.
On one hand, shorter segments are better for policy learning but can result in lower data generation
success rates and be unsafe for real-world deployment. On the other, longer segments are more suit-
able for real-world deployment and for ensuring better data generation throughput but make policy
learning more difficult. By contrast, SkillGen has no such tradeoff.

D.2 Challenging Data Generation Scenarios

Figure D.1: Example Configurations for Clutter Tasks. Example configurations from the clutter task variants
of Square and Coffee.

Presence of Clutter. SkillGen successfully generates data for scenes with large obstacles, unlike
MimicGen. We develop variants of the Square and Coffee tasks that have a large obstruction placed
in the workspace (Fig. D.1). The reset distributions for these tasks are identical to their clutter-free
counterparts described in Appendix J except for the presence of the obstruction, which has its own
reset distribution, and is placed randomly near the center of the workspace. We use the same source
demonstrations as before (collected on the clutter-free D0 variants of these tasks) and perform 200
data generation attempts with both SkillGen and MimicGen. The data generation success rates are
presented in Table D.1. We see that SkillGen substantially outperforms MimicGen by margins as
large as 58.5%.

Task Variant MimicGen [11] SkillGen

Square (D1, Clutter) 4.0 62.5
Square (D2, Clutter) 14.5 72.0

Coffee (D0, Clutter) 16.5 49.0
Coffee (D1, Clutter) 14.0 55.0

Table D.1: Data Generation Rates for Environments with Clutter. SkillGen is able to generate data for
environments with clutter much more effectively than MimicGen.
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Large Scene Variations from Source Demos. SkillGen excels at generating data even when there
are substantial deviations from where objects were located in the source human demonstrations
unlike MimicGen, which suffers from having to use short linear interpolation segments during gen-
eration. For example, MimicGen is unable to produce any data on Coffee Prep D2, due to the mug
and drawer being on opposite sides of the table compared to the source demos (D0) (see Fig. D.2),
while SkillGen can generate data and train proficient agents on D2 (Fig. 4). SkillGen also enjoys
large gains over MimicGen for data generation rates, especially onD2 task variants, which vary sub-
stantially from D0, where source data was collected. This can be seen in Table F.1 (Appendix F).

Figure D.2: Coffee Prep D0 and D2. Example configurations for two task variants of Coffee Prep. Source
demonstrations were collected on D0. MimicGen is unable to generate data on D2 due to the drawer and mug
being on opposite ends of the table compared to the source demos, while SkillGen successfully generates data
and trains proficient policies for D2.

Safe and Proficient Real World Deployment. SkillGen is able to obtain proficient policies in
the real world, as shown in Sec. 6.3, unlike MimicGen. MimicGen had to use longer interpolation
segments in the real world, to enforce safety during execution, which made policy learning results
suffer (as discussed above).
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E Dataset Scaling Law Analysis

We present results for using different amounts of SkillGen data for policy training, to see how policy
success rate scales with amount of data. We present results in Table E.1 (for HSP-TAMP), Table E.2
(for HSP-Class) and Table E.3 (for HSP-Reg). HSP-Reg uses SkillGen with initiation augmentation
(Sec. 4.5). All tasks and methods receive a significant increase from 200 to 1000 demos, and some
tasks benefit strongly from 1000 to 5000 demos, notably Square D2 (52% to 72% on HSP-Reg) and
Threading D1 (60% to 76% on HSP-Reg).

Task Variant Human 200 SkillGen 200 SkillGen 1000 SkillGen 5000

Square (D2) 88.0 84.0 94.0 92.0

Threading (D1) 32.0 36.0 72.0 84.0

Piece Assembly (D0) 98.0 88.0 96.0 96.0
Piece Assembly (D2) 60.0 60.0 84.0 92.0

Table E.1: Policy Training Dataset Comparison with HSP-TAMP [13]. Table of results corresponding to
the comparison in Fig. 4 (upper right). HSC-TAMP agent performance is comparable on 200 SkillGen demos
and 200 human demos, despite SkillGen using just 10 human demos for generation. Generating more SkillGen
demonstrations can result in significant performance improvement.

Task Variant SkillGen 200 SkillGen 1000 SkillGen 5000

Square (D2) 74.0 94.0 96.0

Threading (D1) 34.0 66.0 80.0

Piece Assembly (D0) 72.0 80.0 86.0
Piece Assembly (D2) 44.0 74.0 78.0

Table E.2: Policy Training Dataset Comparison with HSP-Class. Generating more SkillGen demonstrations
can result in modest performance improvement.

Task Variant SkillGen 200 SkillGen 1000 SkillGen 5000

Square (D2) 4.0 52.0 72.0

Threading (D1) 14.0 60.0 76.0

Piece Assembly (D0) 68.0 86.0 82.0
Piece Assembly (D2) 2.0 50.0 62.0

Table E.3: Policy Training Dataset Comparison with HSP-Reg. Generating more SkillGen demonstrations
can result in substantial performance improvement for certain tasks.
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F Data Generation Success Rates

We present data generation rates for the datasets used in our experiments (Table F.1 for simula-
tion tasks and Table F.2 for real-world tasks and the sim-to-real task). In most cases, SkillGen
achieves higher data generation rates than MimicGen. One notable exception is when using initia-
tion augmentation (Sec. 4.5) – success rates are much lower in this case. However, this is due to the
aggressive noise distribution applied to motion planner targets during the generation process. See
Appendix G.3 for more discussion.

Task Variant MimicGen [11] SkillGen SkillGen (+IA)

Square (D0) 73.7 99.8 30.7
Square (D1) 48.9 91.5 34.3
Square (D2) 31.8 87.7 27.5

Threading (D0) 51.0 76.2 35.0
Threading (D1) 39.2 66.4 27.2
Threading (D2) 21.6 74.3 24.9

Piece Assembly (D0) 35.6 82.5 5.1
Piece Assembly (D1) 35.5 72.7 4.7
Piece Assembly (D2) 31.3 69.3 4.6

Coffee (D0) 78.2 73.3 9.3
Coffee (D1) 63.5 73.6 9.1
Coffee (D2) 27.7 70.0 8.5

Nut Assembly (D0) 53.0 98.6 15.2
Nut Assembly (D1) 30.0 91.7 15.1
Nut Assembly (D2) 22.8 69.1 10.6

Coffee Prep (D0) 53.2 64.6 1.4
Coffee Prep (D1) 36.1 36.8 0.7
Coffee Prep (D2) 0.0 59.9 0.6

Average 40.7 75.4 14.7

Table F.1: Data Generation Rates for Simulation Environments. SkillGen improves data generation rates
over MimicGen substantially. When using initiation augmentation (+IA), data generation rates are much lower,
due to the aggressive noise distribution applied to motion planner targets.

Task MimicGen [11] SkillGen

Pick-Place-Milk - 100.0
Cleanup-Butter-Trash - 95.0
Coffee 52.0 73.0

Nut-Assembly [Sim] 72.6 94.8

Table F.2: Data Generation Results on Real World Manipulation Tasks and Sim-to-Real Tasks. SkillGen
has high data generation throughput even in the real world, and compares favorably to MimicGen. The bottom
part of the table shows the data generation rate in simulation for the task used for sim-to-real transfer.
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G Data Generation Details

In this section, we provide more details on SkillGen data generation. We first describe how reference
skill segments are selected, and how they are transformed and executed. We next describe how
initiation augmentation can be used to produce more robust closed-loop agents. Finally, we describe
how we leveraged parallelization to generate large datasets efficiently with reasonable wall clock
times, even when data generation rates were low.

G.1 Reference Skill Segment Selection

During a data generation attempt, SkillGen adapts existing skill segments to the new scene and
executes them sequentially with motion segments (Sec. 4.4). To generate a new skill segment (for
skill index i for a task), SkillGen requires a reference skill segment τis to be selected from the
source demonstrations Dsrc. Since the skill index should match between the source demonstrations
and the current skill segment that must be generated, this problem reduces to selecting a source
demonstration index j ∈ {1, 2, ..., N}. In our experiments, we sample this index randomly for the
first skill segment, and then leave it fixed for the rest of the episode. However, more sophisticated
selection methods could be used to select a different source demonstration index for each skill index
if desired.

G.2 Skill Segment Execution and Action Noise

During a data generation attempt, after an existing skill segment is selected and transformed to
obtain a new sequence of end-effector pose actions τ ′is = (T

A′
0

W , ..., T
A′

K

W ) (Sec. 4.4), this sequence
of actions is executed one by one. However, we found it beneficial to apply additive noise to the
pose actions. As in MimicGen, we convert each absolute pose action to a normalized delta pose
action (using the current robot end effector pose) and add Gaussian noise N (0, 1) with magnitude
σ in each dimension, where σ = 0.05. Note that the gripper actuation actions are copied as-is from
the source skill segment, and no noise is added. These modified normalized delta pose actions are
then executed, and stored in the generated dataset.

G.3 Initiation Augmentation

As described in Sec. 4.5, SkillGen has the option of adding noise to the skill initiation states TE0

W ,

producing new initiation states TE
′
0

W , to broaden the support of the initiation set and allow the trained
closed-loop skill policies to be more robust to incorrect initiation pose predictions. We found this
to be very helpful for HSP-Reg agents, which must directly predict initiation poses via regression.
Consequently, all of our HSP-Reg agents are trained on datasets with initiation augmentation, unless
otherwise noted.

For datasets generated with initiation augmentation, we add uniform translation noise to the target
position for each initiation state U [−t, t], where t is the position noise scale. We also modify the
target rotation, by sampling a random rotation axis (random vector on 3D unit sphere), sampling a
random angle ϕ ∼ U [0, r], converting the new sampled axis-angle rotation to a rotation matrix, and
multiplying the target rotation by this rotation matrix. The motion planner will attempt to reach the
new target pose, and then we will subsequently plan and execute a recovery segment consisting of
a sequence of pose actions that moves from new pose TE

′
0

W to the original pose TE0

W . The recovery
segment is added to the transformed skill segment, and is part of the dataset used to train the closed-
loop agent.

In our experiments, we chose t = 0.08 meters and r = 80 degrees. We note that this is a very wide
and aggressive pose randomization distribution, and that a large portion of sampled poses will be
unreachable by the motion planner, due to the pose being in collision with the scene. This is why the
data generation rates for the initiation augmentation datasets are significantly lower (Appendix F).
This could be addressed with more intelligent sampling mechanisms, but we leave this for future
work. Instead, opted to leverage parallelization during data generation to efficiently generate large
datasets in a reasonable amount of wall clock time (described below).
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G.4 Efficient Data Generation with Parallelization

Datasets generated with initiation augmentation can have low data generation rates due to the broad
noise distribution and rejection sampling process used. To mitigate this, we parallelized data col-
lection across a large number of cpu processes. The SkillGen data generation process is easily
amenable to this type of parallelization.

G.5 Hardware

Data generation runs were batched together and run simultaneously (on a compute cluster) on 8-
GPU nodes consisting of 8 NVIDIA Volta V100 GPUs, 64 CPUs, and 400GB of memory. Real
robot experiments were run on a machine with an NVIDIA GeForce RTX 3090 GPU, 36 CPUs,
32GB of memory, and 1 TB of storage.

23



H Policy Learning Details

Here, we describe how policies are trained with SkillGen data. All policies trained on MimicGen
data are trained with BC-RNN [1] using the same hyperparameters as in MimicGen [11].

H.1 Observation Spaces

Every network used camera observations, consisting of a front-view camera and a wrist-view cam-
era, and proprioception consisting of end effector poses and gripper finger positions unless otherwise
mentioned. The simulation tasks used an image resolution of 84x84 and the real-world tasks used
an image resolution of 120x160. All networks taking image inputs utilize pixel shift randomiza-
tion [1, 47–50] to shift image pixels by up to 10% of each dimension randomly on each forward
pass.

H.2 Policy Evaluation

Unless otherwise mentioned, policies are evaluated using 50 rollouts per checkpoint during training.
The best-performing policy success rate is reported for each training run [1].

H.3 Training Procedures and Hyperparameters

We outline how each network used by the HSP algorithms described in Sec. 4.6 is trained. All
networks are trained with the Adam optimizer [85] with a learning rate of 1e-4. Only one network
of each type is used across all skill segments (e.g. we do not train separate networks per skill).

Policy Network (πθ) (HSP-Reg, HSP-Class, HSP-TAMP): The policy network is trained with
BC-RNN using robomimic [1] using the same default network structure and hyperparameters from
their study. This matches the settings used for training policies in MimicGen [11].

Termination Classifier (Tθ) (HSP-Reg, HSP-Class): This is a binary classification network
Tθ : O→{0, 1} that is trained to predict when the skill policy should be running. The network
architecture uses the same observation encoder structure (with different learned weights) as the pol-
icy network – each image is encoded using a ResNet-18 network [86] followed by a spatial-softmax
layer [87], and these outputs are concatenated directly with the other non-image observations. This
is then fed to an MLP with 2 hidden layers of size 1014, which outputs 2 logits. The network is
trained with a standard multi-class classification Cross-Entropy loss. Labels to train this network
are easily obtained from the SkillGen dataset, as each observation-action pair (o, a) is labeled with
whether it was collected while the motion planner was running or not. We additionally apply data
augmentation, and flip the labels on the last 50% of each motion planner segment. This is useful
to ensure the termination classifier does not erroneously predict that the policy should terminate at
the start of the skill segment. During agent rollouts, we additionally only accept a valid termination
prediction when termination has been predicted 5 times – we found this to be a simple mechanism
to prevent early termination prediction.

Initiation Regression Network (Iθ) (HSP-Reg): This is a network Iθ : O→SE(3) that directly
predicts an end effector pose corresponding to the initiation condition for the next skill. The archi-
tecture is the same as the termination classifier, except for the last layer, which directly predicts a
position (3-dim) and a rotation (6-dim rotation representation from Zhou et al [88]). To allow for
multimodal predictions, we use a Gaussian Mixture Model (GMM) head, using the same hyperpa-
rameters as the BC-RNN-GMM model from robomimic [1]. The position and rotation targets to
train the network come from the SkillGen dataset, and correspond to the targets that were sent to the
motion planner during data generation. These targets are normalized to lie in [−1,+1], using the
same procedure from Chi et al. [89]. During agent rollouts, this network directly samples a target
pose for the motion planner to reach.

Initiation Classifier (Iθ) (HSP-Class): This is a classification network Iθ : O→{1, 2, ..., Nsrc}
that frames skill initiation condition prediction as a classification problem over initiation states in
the source dataset Dsrc. The architecture is the same exact network (with shared weights) as the
termination classifier described above (Tθ) – there is simply an extra classification head added to
the output of the network. It is trained to predict the source demonstration in Dsrc that spawned the
generated demonstration inD using a standard multi-class classification Cross-Entropy loss. During
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agent rollouts, after predicting a source demonstration label, the corresponding initiation state in the
source demonstration is adapted to the current state using the adaptation procedure from Sec. 4.4 to
obtain a target pose for the motion planner.

H.4 Hardware

Policy learning runs each used a machine (on a compute cluster) with an NVIDIA Volta V100 GPU,
8 CPUs, and 50GB of memory. Real robot experiments were run on a machine with an NVIDIA
GeForce RTX 3090 GPU, 36 CPUs, 32GB of memory, and 1 TB of storage.
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I Planning Details

In this section, we provide additional details on the Motion Planner and the Task and Motion Planner
used in our experiments, beyond those in Sec. 5. We used PyBullet [90] for collision checking during
motion planning and TAMP. Within the HITL-TAMP system, we used PDDLStream [91] for task
and motion planning.

For each motion planning query, we decompose planning into three phases. The first is a short retreat
motion that moves the robot’s end effector backward. The second is a transit or transfer motion that
moves the robot a short distance in front of the query pose. The third is an approach motion that
moves to the query pose. The retreat and approach motions move the robot out of and into contact
respectively. During these short phases, we ignore expected collisions between the robot and any
manipulated object along with collisions between manipulated objects and the environment. In our
experiments, we used a retreat and approach distance of 5cm in the end effector’s z axis.

Expanding on Section 6.3, in the real world, we assume manipulable object segmentation. While a
number of choices on segmentation methods can be made [92, 93], we deploy a simple yet effective
pipeline which works well in our setup. Specifically, we first perform RANSAC plane fitting to
filter the table from the observed point cloud. Then, we use DBSCAN [94] to cluster the objects
within the remaining point cloud. In settings where we have shape models for the objects, the
object cloud segments are distinguished by comparing to their respective 3D models and we use
FoundationPose [83] for object 6D pose estimation. Otherwise, we reconstruct collision volumes
for the manipulable objects online by running marching cubes [95] on each segmented point cloud.
For transfer motion planning, we detect whether a manipulable object is grasped by checking for
contact between both the robot’s fingers and the object in our planning model. While grasped, we
assume the object is rigidly attached to the robot, modifying its collision geometry.
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J Tasks and Task Variants

In this section, we provide detailed descriptions of all the tasks (Fig. J.1) and task variants. See the
website (https://skillgen.github.io) for more visualizations. The action space for all
tasks is a delta-pose action space (using an Operational Space Controller [82]) to control the arm),
along with a gripper open/close command. Control occurs at 20 hz.

J.1 Simulation Tasks

(a) Square (b) Threading (c) Piece Assembly

(d) Coffee (e) Coffee Prep (f) Nut Assembly

Figure J.1: Simulation Tasks. We deploy SkillGen on 6 simulation tasks (18 task variants). These tasks include
fine-grained and long-horizon manipulation.

All tasks and task variants are taken from the MimicGen paper [11], with the exception of Nut
Assembly (D1, D2) and Coffee Prep (D2), which were newly implemented. For each task, we
describe the goal, the task variants, and the skill segments.

• Square. The robot must pick a square nut and place it on a peg. (D0) The peg never moves,
and the nut is placed in small (0.005m x 0.115m) region with a random top-down rotation.
(D1) The peg and the nut are initialized in large regions, but the peg rotation is fixed. The
peg is initialized in a 0.4m x 0.4m box and the nut is initialized in a 0.23m x 0.51m box.
(D2) The peg and the nut are initialized in larger regions (0.5m x 0.5m box of initialization
for both) and the peg rotation also varies. There are 2 skill segments (grasp nut, place onto
peg).

• Threading. The robot must pick a needle and thread it through a hole on a tripod. (D0)
The tripod is fixed, and the needle moves in a modest region (0.15m x 0.1m box with 60
degrees of top-down rotation variation). (D1) The tripod and needle move in large regions
on the left and right portions of the table respectively. The needle is initialized in a 0.25m
x 0.1m box with 240 degrees of top-down rotation variation and the tripod is initialized in
a 0.25m x 0.1m box with 120 degrees of top-down rotation variation. (D2) The tripod and
needle are initialized on the right and left respectively (reversed from D1). The size of the
regions is the same as D1. There are 2 skill segments (grasp needle, thread into tripod).

• Coffee. The robot must pick a coffee pod, insert the pod into the coffee machine, and close
the machine hinge. (D0) The machine never moves, and the pod moves in a small (0.06m x
0.06m) box. (D1) The machine and pod move in large regions on the left and right portions
of the table respectively. The machine is initialized in a 0.1m x 0.1m box with 90 degrees
of top-down rotation variation and the pod is initialized in a 0.25m x 0.13m box. (D2) The
machine and pod are initialized on the right and left respectively (reversed from D1). The
size of the regions is the same as D1. There are 2 skill segments (grasp pod, insert-into and
close machine).

• Three Piece Assembly. The robot must pick one piece, insert it into the base, then pick the
second piece, and insert into the first piece to assemble a structure. (D0) The base never
moves, and both pieces move around base with fixed rotation in a 0.44m x 0.44m region.
(D1) All three pieces move in the workspace (0.44m x 0.44m region) with fixed rotation.
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(D2) All three pieces can rotate (the base has 90 degrees of top-down rotation variation, and
the two pieces have 180 degrees of top-down rotation variation). There are 4 skill segments
(grasp piece 1, place into base, grasp piece 2, place into piece 2).

• Nut Assembly. Similar to Square, but the robot must place both a square nut and round
nut onto two different pegs. (D0) Each nut is initialized in a small box (0.005m x 0.115m
region with a random top-down rotation). (D1) The nuts are initialized in a large box
(0.23m x 0.51m region) with random top-down rotation, and the pegs are initialized in a
large box (0.4m x 0.4m) with a fixed rotation. (D2) The nuts and pegs are initialized in
a larger box (0.5m x 0.5m) with random top-down rotations. There are 4 skill segments
(grasp each nut and place onto each peg).

• Coffee Prep. A more comprehensive version of Coffee — the robot must load a mug onto
the coffee machine, open the machine, retrieve the coffee pod from the drawer and insert
the pod into machine. (D0) The mug moves in a modest (0.15m x 0.15m) region with fixed
top-down rotation and the pod inside the drawer moves in a 0.06m x 0.08m region while
the machine and drawer are fixed. (D1) The mug is initialized in a larger region (0.35m x
0.2m box with random top-down rotation) and the machine also moves in a modest region
(0.1m x 0.05m box with 60 degrees of top-down rotation variation). (D2). Same task as
D0 but the drawer is placed on the right side of the table, and the mug is initialized on the
left side of the table, instead of the right. There are 5 skill segments (grasp mug, place onto
machine and open lid, open drawer, grasp pod, insert into machine and close lid).

J.2 Real-World Tasks

Coffee

Trash

Bin

Figure J.2: Real-World Task Executions. The 1) initial state, 2) pick initiation state, 3) pick termination state,
4) placement or insertion initiation state, and 5) placement or insertion termination state for an example episode
of the Milk-Bin, Butter-Trash, and Coffee tasks. The orange arrows indicate a transition facilitated by motion
planning, and the blue arrows indicate a transition conducted by a learned skill policy.

Figure J.2 and Figure J.3 display example task executions and the initial state distributions respec-
tively for the Pick-Place-Milk, Cleanup-Butter-Trash, and Coffee tasks introduced in Section 6.3.
For each task, we describe the goal, the initialization regions for the objects, and the skill segments.

• Pick-Place-Milk. The robot must pick the milk and place it in the bin. The milk and
bin objects are randomly placed anywhere on the table, with random orientations that are
within +/-45 degrees of yaw from their nominal orientations. There are two skill segments:
pick milk and place into bin.

• Cleanup-Butter-Trash. The robot must pick the butter and insert it into the trash can by
pushing the trash can’s lid. The butter and trash can are placed randomly on the left and
right sides of the table respectively, with random orientations that are within +/-45 degrees
of yaw from their nominal orientations. There are two skill segments: pick butter and insert
into trash can.

• Coffee. The robot must pick the coffee pod, insert it into the coffee machine, and then close
the machine’s lid. The pod is initialized in a 0.44m x 0.35m box (as in MimicGen [11]).
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There are two skill segments: pick pod and both insert pod into machine as well as close
lid. Here, the insertion and closing are treated as a single learned skill.

CoffeeTrashBin
Figure J.3: Real-World Reset Distributions. The initial states of the Pick-Place-Milk, Cleanup-Butter-Trash,
and Coffee tasks each overlaid onto a single image.
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K Sim-to-Real Experiment

Figure K.1: Real-World Nut Assembly Execution. An example execution of the real-world Nut Assembly
task. The task involves four skill segments (in blue) and four motion planning segments (in orange). The skill
segments are 1) pick the Square Nut, 2) place the Square Nut on the Square Peg, 3) pick the Round Nut, 4)
place the Round Nut on the Round Peg.

As described in Section 6.3, we performed an experiment to explore SkillGen’s ability at facilitating
zero-shot sim-to-real transfer. In this section, we provide further details omitted in the main text.
We considered the “Nut Assembly” task (Figure K.1) where the robot must pick a Square Nut, place
the Square Nut on the Square Peg, pick a Round Nut, and place the Round Nut on the Round Peg.
This task is long-horizon in that it involves four skill stages; additionally, each place stage require
precise manipulation to fit each nut on its associated peg.

Insertion Tolerance. We designed a simulated analog of the task, “Nut Assembly [Sim]”, in ro-
bosuite [78]. In the real world, we replicate the CAD model of each nut and peg and 3D printed
them so that the real and simulated geometries matched. The square peg is 3.2cm on each side,
the square hole on the nut is 4.6cm on each side, the round peg is 4cm in diameter, and the round
hole is approximately 6.8cm in diameter, leaving only a couple centimeters of tolerance for each nut
insertion.

Initialization Bounds. In simulation, the nuts and pegs are each initialized randomly in non-
overlapping 21cm x 41.5m quadrants of the table, with fixed orientation. In the real world, the
initialization region for the objects are as follows: square nut (18cm x 26cm), round nut (20cm x
20cm), square peg (14cm x 40cm) and round peg (16cm x 30cm). The simulation bounds were
intentionally designed to be more extensive than the real world initialization bounds.

Observation and Action Space. As mentioned in Section 7, we made several assumptions specifi-
cally for this experiment. First, we trained pose-based rather than image-based policies. As a result,
there is no visual sim-to-real transfer. Second, because pose estimation during robot execution
can be challenging, for example, due to the robot occluding the camera, each policy observes only
the initial object poses. They do however consume up-to-date robot proprioception measurements,
consisting of the end effector position and width of the gripper fingers. We make an additional sim-
plification, and provide the end effector position with respect to the initial object position for all 4
items, instead of providing the end effector position and the object poses separately. Consequently,
the final observation consumed by the agent is simply the robot end effector position with respect
to the initial square nut position, square peg position, round nut position, and round peg position,
as well as the width of the gripper fingers. Additionally, we simplified the agents action space by
fixing the orientation of the end effector, which results in a 4-DOF position-only action space (one
extra dim for gripper actuation).

Policy Training Details. We mostly follow the procedure described in Appendix H for HSP-Class
training and the procedure from MimicGen [11] for training the MimicGen policies. We use an
increased learning rate of 1e-3 for the closed-loop policy network. We also change the RNN policy
to make it “open-loop” over the RNN horizon by repeating the first observation in the sequence
instead of providing the current observation – this is equivalent to the action chunking described in
Zhao et al. [19].

Experiment Summary. Ultimately, through SkillGen, we were able amplify a single simulation
source demonstration into 1000 simulation demonstrations on Nut Assembly [Sim], train a pose-
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based HSP-Class policy, and deploy it using SkillGen without any real-world data, where it achieved
35% success rate, while the MimicGen agent could not complete the full task, and achieved 5%
success rate on the first square nut insertion.

31



L Results with Conventional Teleoperation Source Demonstrations
Task Variant MimicGen [11] SkillGen

Square (D0) 73.7 87.3
Square (D1) 48.9 73.8
Square (D2) 31.8 65.1

Threading (D0) 51.0 43.6
Threading (D1) 39.2 36.7
Threading (D2) 21.6 36.9

Piece Assembly (D0) 35.6 48.7
Piece Assembly (D1) 35.5 48.4
Piece Assembly (D2) 31.3 53.8

Coffee (D0) 78.2 81.5
Coffee (D1) 63.5 75.4
Coffee (D2) 27.7 59.8

Average 44.8 59.3

Table L.1: Data Generation Rates from using Conventional Teleoperation Source Data. SkillGen improves
data generation rates over MimicGen substantially for most tasks, particularly the D2 variants.

Task Variant MimicGen [11] HSP-Class HSP-Reg

Square (D0) 90.7 100.0 84.0
Square (D1) 73.3 84.0 58.0
Square (D2) 49.3 68.0 46.0

Threading (D0) 98.0 94.0 94.0
Threading (D1) 60.7 46.0 56.0
Threading (D2) 38.0 34.0 50.0

Piece Assembly (D0) 82.0 80.0 74.0
Piece Assembly (D1) 62.7 48.0 52.0
Piece Assembly (D2) 13.3 42.0 36.0

Coffee (D0) 100.0 98.0 100.0
Coffee (D1) 90.7 100.0 94.0
Coffee (D2) 77.3 92.0 90.0

Average 70.0 73.8 69.5

Table L.2: Agent Performance on Datasets Generated from Conventional Teleoperation Source Data.
Across the tasks, the average SkillGen policy learning results are comparable to MimicGen, but HSP-Class
slightly outperforms the MimicGen baseline.

The experiments presented in Sec. 6 used demonstrations collected with HITL-TAMP [13], a teleop-
eration system where humans only demonstrate select skill segments of each task. A TAMP system
plans and executes the rest of the task, in between skill demonstrations. In this section, we ana-
lyze how SkillGen’s performance changes when using source demonstrations from a conventional
teleoperation system instead of HITL-TAMP.

We use the same source demonstrations as MimicGen, and annotate the skill phases (Sec. 4) to
enable data generation with SkillGen. Table L.1 shows that the average data generation rate is higher
by 15% over MimicGen. However, Table L.2 shows that the average policy learning results are
comparable to MimicGen (compared to the substantial improvements over MimicGen from using
HITL-TAMP source data in Fig. 4). This shows that SkillGen performance is higher when using
HITL-TAMP source data. One potential reason is due to the variability in motion planner poses when
using manual annotations compared to the consistent annotations based on pre-conditions coming
from the HITL-TAMP system. This variability can pose a challenge for learning methods [61].
Analyzing this gap further is a valuable avenue for future work.
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M Ablations
Task Variant H-TAMP H-TAMP(+T) H-Class H-Class(-T) H-Reg H-Reg(-T) H-Reg(-R)

Square (D0) 100.0 100.0 100.0 100.0 94.0 98.0 80.0
Square (D2) 94.0 90.0 94.0 96.0 52.0 46.0 40.0

Threading (D0) 100.0 100.0 92.0 94.0 94.0 92.0 100.0
Threading (D1) 72.0 68.0 66.0 58.0 60.0 66.0 58.0

Piece Assembly (D0) 96.0 94.0 80.0 80.0 86.0 80.0 80.0
Piece Assembly (D2) 84.0 82.0 74.0 76.0 50.0 40.0 14.0

Coffee (D0) 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Coffee (D2) 94.0 100.0 100.0 98.0 98.0 96.0 56.0

Table M.1: Ablation of Key Components. To understand the difficulty of predicting policy termination, we
modify HSP-TAMP to use a termination classifier (HSP-TAMP (+T)), and modify HSP-Class and HSP-Reg to
use TAMP to handle termination instead of the termination classifier (-T variants). We see that performance is
largely unchanged, indicating that learning termination is relatively easy. To understand the value of initiation
augmentation (Sec. 4.5), we train HSP-Reg on dataset generated without it. The large performance regressions
demonstrate it can be critical.

M.1 Difficulty of Predicting Policy Termination

To understand the difficulty of predicting policy termination, we make the following changes to
each method. HSP-TAMP (+T): we modify HSP-TAMP to use the same policy termination clas-
sifier Tψ(ot) from HSP-Class and HSP-Reg, and use it instead of TAMP to determine when agent
πθ should terminate and cede control back to TAMP. HSP-Class (-term) and HSP-Reg (-T): we use
the same conditions as HSP-TAMP to dictate when to cede control from the agent πθ back to the
motion planner, instead of using the classifier. We see that the performance of HSP-TAMP (+T) is
at most 4% below and 6% above HSP-TAMP, showing that predicting policy termination is not very
difficult. Comparing HSP-Class (-term) to HSP-Class (8% lower to 2% higher) and HSP-Reg (-T)
to HSP-Reg (10% lower to 6% higher) corroborates this claim. By comparison, the significant dif-
ference in performance between HSP-Class and HSP-Reg on a select few tasks (analyzed in Sec. 6)
demonstrates that motion planner target prediction is significantly more challenging. This suggests
that the key bottleneck for improving HSP-Reg performance is improving its ability to predict mo-
tion planner target poses – there is consequently an opportunity for future work to improve this by
integrating models that utilize 3D information [58, 59] or exploring alternative model architectures.
See Appendix Q for further discussion.

M.2 Value of Initiation Augmentation

To show the value of initiation augmentation (Sec. 4.5), we train HSP-Reg on datasets generated
without motion augmentation (HSP-Reg (-R)) and compare with HSP-Reg. Removing motion aug-
mentation can cause significant performance drops (e.g. 40% drop on Coffee D2, 26% on Three
Piece Assembly D2), showing that it can be critical to enable better performance by allowing agents
to recover from incorrect motion planner target predictions.
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N Robot Transfer

We apply SkillGen to generate datasets and train agents for a robot arm that is different than the one
the human collected source demonstrations on (Fig. N.1). We use the same source demonstrations
as those used in our main experiments, collected on the Panda arm, and generate demonstrations
for the Sawyer arm. The results are presented in Table N.1 (data generation) and Table N.2 (policy
learning). We see that data generation rates are substantially higher for SkillGen than MimicGen,
and that HSP-Class policies trained on SkillGen data are higher performing than their MimicGen
counterparts.

Figure N.1: Data Generation for Sawyer Robot Arm. Example configurations for task variants where Skill-
Gen generated data for the Sawyer robot arm, using source human data collected on the Panda robot arm.

Task Variant MimicGen [11] SkillGen

Square (D0) (Panda) 73.7 99.8
Square (D0) (Sawyer) 55.8 95.2
Square (D1) (Panda) 48.9 91.5
Square (D1) (Sawyer) 38.8 94.0

Threading (D0) (Panda) 51.0 76.2
Threading (D0) (Sawyer) 28.8 68.2
Threading (D1) (Panda) 39.2 66.4
Threading (D1) (Sawyer) 23.7 62.5

Nut Assembly (D0) (Panda) 53.0 98.6
Nut Assembly (D0) (Sawyer) 34.7 86.1
Nut Assembly (D1) (Panda) 30.0 91.7
Nut Assembly (D1) (Sawyer) 22.1 78.3

Table N.1: Data Generation Rates for Generating Datasets for Different Robots. We use SkillGen to
produce datasets on the Sawyer robot arm using the same 10 source demos collected on the Panda arm. SkillGen
improves data generation rates substantially over MimicGen.

Task Variant MimicGen [11] HSP-Class

Square (D0) (Panda) 90.7 100.0
Square (D0) (Sawyer) 86.0 96.0
Square (D1) (Panda) 73.3 98.0
Square (D1) (Sawyer) 60.7 98.0

Threading (D0) (Panda) 98.0 92.0
Threading (D0) (Sawyer) 88.7 94.0
Threading (D1) (Panda) 60.7 66.0
Threading (D1) (Sawyer) 50.7 54.0

Nut Assembly (D0) (Panda) 60.0 92.0
Nut Assembly (D0) (Sawyer) 74.0 88.0
Nut Assembly (D1) (Panda) 16.0 78.0
Nut Assembly (D1) (Sawyer) 8.0 62.0

Table N.2: Agent Performance on Generated Datasets for Different Robot Arms. We use SkillGen to
produce datasets on the Sawyer robot arm using the same 10 source demos collected on the Panda arm. HSP-
Class policies trained on SkillGen data significantly outperform agents trained on MimicGen data.
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O Algorithm Pseudocode

Algorithm 1 provides the pseudocode for the data generation process described in Section 4.4. For
each skill trajectory in the source demonstration, SkillGen first estimates the current pose of the
object that the skill manipulates. This is used to transform the stored initiation state. Then, MOTION-
PLANNER solves for a robot configuration that reaches this pose and plans a joint-space path to the
configuration, executed with a joint space controller. Finally, each end-effector action is adapted to
the world frame and executed using task-space control.
Algorithm 1 Demonstration Generation

procedure GENERATE-DATA(τ )
for τis ∈ τ do

T
O′

i

W ← ESTIMATE-POSE()

T
E′

0

W ← TOi

W τis[0]
q0 ← CURRENT-CONFIG()

q∗ ← INVERSE-KINEMATICS(T
E′

0

W )
for q ∈ MOTION-PLANNER(q0, q∗) do

JOINT-SPACE-CONTROL(q)

for TEt

Oi
∈ τis do

T
E′

t

W ← T
O′

i

W TEt

Oi

TASK-SPACE-CONTROL(T
E′

t

W )

Algorithm 2 provides the pseudocode for HSP deployment, which was described Section 4.6. The
structure has some global similarity with Algorithm 1, but critically, it operates over skills instead of
trajectories and does not require pose estimation. For each skill in a provided sequence of skills Ψ,
DEPLOY-HSP predicts the initiation pose using the current observation o. Then, it plans and executes
joint-space motions to the initiation pose. Until the termination network predicts to terminate, the
skill queries its policy for the next task-space action.
Algorithm 2 HSP Deployment

procedure DEPLOY-HSP(Ψ)
for ⟨O, Iθ, πθ, Tθ⟩ ∈ Ψ do

o← OBSERVE()

T
E′

0

W ← Iθ(o)
q0 ← CURRENT-CONFIG()

q∗ ← INVERSE-KINEMATICS(T
E′

0

W )
for q ∈ MOTION-PLANNER(q0, q∗) do

JOINT-SPACE-CONTROL(q)

while Tθ(o) ̸= True do
T
E′

t

W ← πθ(o)

TASK-SPACE-CONTROL(T
E′

t

W )
o← OBSERVE()
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P Comparison with HITL-TAMP

As we described in Section 2, HITL-TAMP [13] is a prior system that integrates BC and planning to
improve both data collection efficiency and policy success rates. Within SkillGen, we optionally use
HITL-TAMP to both collect a handful of source demonstrations (Section 4.3) and deploy learned
skills at test time through HSP-TAMP (Section 4.6). However, when compared directly, SkillGen
has several advantages over HITL-TAMP.

Fewer Assumptions. HITL-TAMP requires a model to plan the TAMP segments. Specifying one
requires defining Planning Domain Definition Language (PDDL) actions, including their parame-
ters, preconditions, and effects, along with sampling procedures that generate continuous action pa-
rameter values [91]. In contrast, SkillGen only requires a skill plan at data generation time, namely
the sequence of objects that will be acted upon. At test time, SkillGen can even reduce this assump-
tion by learning a single skill that encompasses all learned segments without explicitly conditioning
on any objects. HITL-TAMP also requires pose observation or estimation during all its phases, for
example, to define TAMP-gated hand-off regions from TAMP to a learned policy. Through directly
learning initiation sets, which can be viewed as learning-gated conditions, SkillGen not only uses
learning to transfer control but also avoids pose estimation in its HSP-Reg configuration.

Lower Human Effort. Although HITL-TAMP partially automates the demonstration process, a
human must still manually teleoperate a portion of each episode. Thus, the amount of human effort
required scales linearly with the number of demonstrations. In contrast, SkillGen only requires a
fixed amount of human effort and can spawn an arbitrarily large number of demonstrations. Further-
more, policy learning results can be comparable given a similar amount of SkillGen demonstrations
and HITL-TAMP demonstrations (Sec. 6.2), with just a fraction of the human effort.

Object Grasp Segments Delegated to Learned Policies. HITL-TAMP, TAMP is responsible for
carrying out object grasps, while SkillGen defers all object interaction to learned agents. For exam-
ple, in the real-world Coffee task, TAMP controls the arm to grasp the coffee pod and approach the
insertion point on the machine, and a learned policy is only responsible for the insertion segment. In
SkillGen, there are two skill segments that must be learned – one for pod grasping and one for pod
insertion. Despite this increased difficulty, a policy trained on SkillGen data performs comparably.
HSP-Class obtains 65% on the Coffee task with 100 SkillGen demos generated from just 3 human
demos, in comparison to HSP-TAMP achieving 74% from 100 HITL-TAMP demos.
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Figure P.1: Comparison Between Skill Segments Learned by SkillGen and HITL-TAMP. The experiments
in HITL-TAMP [13] assumed that TAMP carries out object grasps (the left two frames for the Coffee task
shown above) – consequently, the trained agent was responsible for less portions of each task (e.g. the right
two frames for the Coffee task above). By contrast, SkillGen is responsible for all segments shown above.
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Q Discussion on HSP-Reg Results

HSP-Reg makes the fewest assumptions out of the three HSP methods presented in this work
(Sec. 4.6). However, while the average task success rate is only lower by 10% to 13% than the
other methods, there can still be a significant gap in policy performance depending on the specific
task. In this section, we provide some reasons to be optimistic that HSP-Reg performance can be
increased significantly.

Using more SkillGen data. In this work, our main experiments (Fig. 4) used 1000 SkillGen demon-
strations – this number was chosen for consistency with prior work [11]. However, we found that
using more demonstrations can significantly boost HSP-Reg results (Appendix E). Some notable
performance increases from 1000 SkillGen demos to 5000 SkillGen demos include SquareD2 (52%
to 72% on HSP-Reg) and Threading D1 (60% to 76% on HSP-Reg).

Improving agent observability. HSP-Reg is responsible for directly predicting a 6-DoF target
pose for the motion planner to reach – this can be the key bottleneck for improving performance
(corroborated by ablations in Appendix M and the performance gap between HSP-Reg and HSP-
Class). This can be a difficult prediction problem when using just a front-view and wrist-view image
for this prediction. Consequently, we ran an experiment to see if adding a third, side-view image
would improve results. We used 5000 SkillGen demos with front-view, wrist-view, and side-view
observations, and obtained our best HSP-Reg results – 82% for Square D2 (compared to the 52% in
Fig. 4), 86% for Threading D1 (compared to 60%), and 74% for Piece Assembly D2 (compared to
50%). These results also demonstrate that adding depth information for the pose prediction can be
beneficial, as used in prior work [58, 59].

38



R Skill Segments and Annotations

In order to amplify a set of source demonstrations in a targeted manner, SkillGen requires annotation
of the start and end of each skill that should be learned on the demonstrations. Even when using
HITL-TAMP to gather source demonstrations, the TAMP model must specify action preconditions
and effects (Appendix P), which loosely correspond to skill initiation and termination conditions.

The choice of what skills to learn and how fine-grained they should be can be customized by a
human supervisor. For example, in the Coffee task displayed Fig. J.2, the robot must insert the pod
and then close the coffee machine lid. We choose to model and learn both behaviors as a single skill
rather than split them into two separate skills, connected by transit motion planning. This imposes a
larger burden on learning but reduces the execution time by not requiring motion planning between
the two behaviors.

Ultimately, the motivation of Sec. 4 is our primary recommendation with respect to modeling prin-
ciples. Motion planning is a safe and reliable technique for addressing contact-adverse segments of
tasks, which are often substantial in many common tasks. If learned policies are able to replicate
these attributes for a given task, then it makes sense to incorporate more learning. Otherwise, defer-
ring learning to primarily the contact-rich task segments, where motion planning is ineffective is the
wiser strategy.
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S Comparison with Replay-Noise Baseline

Task Replay-Noise SkillGen

Square (D0) 99.8 99.8

Threading (D0) 76.1 76.2

Piece Assembly (D0) 82.3 82.5

Coffee (D0) 74.2 73.3

Table S.1: Data Generation Results on Replay-Noise baseline. SkillGen achieves comparable data genera-
tion success rates compared to a baseline that replays the source demonstrations and adds action noise.

Task Variant HSP-T (RN) HSP-T (SG) HSP-C (RN) HSP-C (SG)

Square D0 82.0 100.0 80.0 100.0
Square D1 24.0 100.0 6.0 98.0
Square D2 12.0 94.0 4.0 94.0

Threading D0 100.0 100.0 88.0 92.0
Threading D1 2.0 72.0 4.0 66.0
Threading D2 0.0 62.0 0.0 50.0

Piece Assembly D0 64.0 96.0 70.0 80.0
Piece Assembly D1 78.0 88.0 10.0 78.0
Piece Assembly D2 46.0 84.0 2.0 74.0

Coffee D0 100.0 100.0 100.0 100.0
Coffee D1 8.0 100.0 26.0 100.0
Coffee D2 0.0 94.0 0.0 100.0
Average 43.0 90.8 32.5 86.0

Table S.2: Agent Performance on Datasets Generated by Replay-Noise Baseline. This table compares the
performance of agents trained on datasets generated by the Replay-Noise baseline, which replays the source
demonstrations with action noise, to agents trained on SkillGen datasets. Policies trained on SkillGen D0

datasets are more proficient than those trained on the Replay-Noise datasets. Furthermore, Replay-Noise is
unable to generate data for D1 and D2 as the source demonstrations do not cover this distribution. Conse-
quently, agents trained on Replay-Noise data perform poorly on the other task variants that are unseen during
data generation.

We compare SkillGen against another data generation baseline that replays the source demonstra-
tions with action noise – we call this baseline Replay-Noise. Concretely, we start with the same
set of source demonstrations. At the start of each data generation attempt, we select a random
source demonstration, and reset the simulator state to the initial state in the demonstration. We then
replay the actions from the demonstration with the same level of action noise (0.05) used in our
experiments, and keep the executed trajectory if it is successful. Note that motion segments in the
source demonstrations are ignored (as in SkillGen) and a motion planner is used to directly reach
the starting robot configuration of each skill segment in the source demonstration. We continue data
collection in this manner until 1000 successful trajectories are collected, for fair comparison with
the results presented in the main text.

We present the data generation rates for the Replay-Noise baseline in Table S.1 and the success rates
of HSP-TAMP and HSP-Class agents trained on the generated datasets in Table S.2, and compare
against SkillGen. Note that this baseline can only generate data for the same reset distribution as
the source demonstrations (D0) since the task resets used for data collection come directly from the
source data. Consequently, all agents trained on Replay-Noise data are trained on the same dataset
(D0) but evaluated across all task variants. The results show that data generation rates on the source
distribution (D0) are similar, as expected, but policies trained on SkillGen data are more proficient
on D0 than those trained on replay data. Furthermore, SkillGen can train capable agents on reset
distributions not explicitly collected by the human (D1,D2) unlike the Replay-Noise baseline, where
agents achieve lower, often near-zero success rates due to the inability to collect relevant data.

This comparison shows the value of using SkillGen to adapt existing human demonstrations and col-
lect demonstrations on new task instances (Sec. 4.4), instead of just replaying the existing demon-
strations with noise.
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T Results Across Multiple Seeds

Task Variant Src MG HSP-T HSP-C HSP-R

Square (D0) 60.7± 7.7 90.7± 1.9 100.0± 0.0 100.0± 0.0 94.0± 3.3
Square (D1) - 73.3± 3.4 99.3± 0.9 97.3± 0.9 70.7± 6.6
Square (D2) - 49.3± 2.5 94.7± 4.1 91.3± 1.9 53.3± 1.9

Threading (D0) 56.7± 9.0 98.0± 1.6 98.0± 1.6 96.0± 3.3 95.3± 1.9
Threading (D1) - 60.7± 2.5 70.0± 2.8 62.0± 5.7 63.3± 2.5
Threading (D2) - 38.0± 3.3 63.3± 0.9 54.7± 5.2 64.7± 3.8

Piece Assembly (D0) 50.7± 16.4 82.0± 1.6 94.0± 2.8 80.0± 3.3 82.7± 3.4
Piece Assembly (D1) - 62.7± 2.5 89.3± 0.9 78.0± 1.6 68.7± 0.9
Piece Assembly (D2) - 13.3± 3.8 84.7± 0.9 74.7± 0.9 48.7± 8.2

Coffee (D0) 99.3± 0.9 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Coffee (D1) - 90.7± 2.5 100.0± 0.0 98.7± 0.9 98.0± 1.6
Coffee (D2) - 77.3± 0.9 97.3± 2.5 97.3± 1.9 96.7± 1.9

Nut Assembly (D0) 20.7± 5.0 63.3± 3.4 99.3± 0.9 96.0± 2.8 88.0± 8.5
Nut Assembly (D1) - 18.0± 4.3 77.3± 7.5 74.0± 7.1 6.7± 9.4
Nut Assembly (D2) - 16.0± 4.3 56.0± 4.3 50.0± 3.3 19.3± 3.4

Coffee Prep (D0) 5.3± 3.4 97.3± 0.9 92.0± 1.6 88.7± 2.5 84.0± 3.3
Coffee Prep (D1) - 42.0± 0.0 50.0± 4.3 65.3± 6.2 59.3± 4.1
Coffee Prep (D2) - - 82.7± 2.5 74.7± 2.5 84.0± 1.6

Average - 59.6 86.0 82.1 71.0

Table T.1: Agent Performance on Source and Generated Datasets across Multiple Seeds. Success rates
of agents trained on source demonstrations (with HSP-TAMP), MimicGen [11] data (with BC-RNN [1]), and
SkillGen data (with all HSP variants) across 3 seeds per run. SkillGen data greatly improves agent performance
on D0 compared to the source data, and SkillGen agents substantially outperform MimicGen agents, especially
on more challenging task variants.

In the main text, we presented policy learning results using a single seed. In this section, we present
policy learning results across 3 seeds for the core set of SkillGen datasets presented in Fig. 4 (left)
and show that the results are extremely similar. Comparing the averages from the single-seed results
against the results averaged across 3 seeds in Table T.1, we see very similar performances (59.1 vs.
59.6 for MimicGen, 85.7 vs. 86.0 for HSP-TAMP, 82.9 vs. 82.1 for HSP-Class, and 72.6 vs. 71.0
for HSP-Reg).

Note that the MimicGen paper [11] (Appendix T) showed that data generation has very little variance
empirically across multiple seeds. We also found this to be true for SkillGen, and as a result, we do
not present results across multiple seeds for data generation.
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