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Abstract

The combinatorial explosion of T cell receptor (TCRs) sequences enables our
immune systems to recognise and respond to an enormous diversity of pathogens.
Modelling the highly stochastic TCR generation and selection processes at both
sequence and repertoire levels is important for disease detection and advancing
therapeutic research. Here we demonstrate that protein language models fine-tuned
on TCR sequences are able to capture TCR statistics in hypervariable regions to
which mechanistic models are blind, and show that amino acids exhibit strong
dependencies on each other within chains but not across chains. Our approach
generates representations that improve the prediction of TCR binding specificities.

1 Introduction

T cells are activated when their surface receptors (TCRs) recognise peptides presented on the surface
of nearby cells’ major histocompatibility complex molecules (pMHCs). To specifically recognise
a large diversity of peptide sequences, a TCR consists of two different proteins: an alpha chain
and a beta chain1. TCRs are generated randomly through the process of V(D)J recombination,
which enables huge diversity to be concentrated in the third complementarity-determining region
(CDR3) within both the alpha chain and the beta chain [2]. The diversity of TCRs has two related
consequences: predicting TCR-pMHC binding specificities is challenging, and generating meaningful
TCR representations is non-trivial.

A recent trend in generating protein representations has been towards utilising protein language
models (PLMs), and this approach has already demonstrated success in protein folding [3] and
predicting disease variant effects [4]. Although the applications of PLMs to antibody sequences have
been explored in some detail [5, 6, 7], the potential benefits of fine-tuning on other non-conserved
protein sequences such as TCRs remain less well understood. Here we demonstrate that PLMs
fine-tuned on TCR sequences reveal correlations between amino acids in hypervariable regions, and
that the extracted representations can be useful in downstream applications such as the prediction of
TCR-pMHC binding. Throughout this work, we demonstrate these results using a PLM with 150M
parameters, ESM-2 [8], fine-tuned on 2.4M single-cell TCR sequences [9].

∗Corresponding authors: lewis@synteny.ai, aaron@synteny.ai
1We restrict our attention to TCRs which consist of an alpha chain and a beta chain, as such TCRs account

for 95% of those found in humans [1].
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2 Results

Fine-tuned PLMs recover biological features of TCR sequences that mechanistic models do not.
Let a1a2 · · · aL be a TCR sequence of length L, with ai the amino acid at position i. Throughout this
work, we will make use of some simplified notation, and take

P(ai|aj · · · ak)
to denote the probability that a model assigns to the true amino acid at position i, given the amino
acids at positions {j, . . . , k}. With this notation, the perplexity at position i for the TCR is

Pi := P(ai|a1a2 · · · ai−1ai+1 · · · aL)−1.

With the fine-tuned model, we evaluated the perplexity of each amino acid within the hypervariable
CDR3 for each TCR in the test set. As shown in Figure 1a, the perplexity is greater in the beta
chain, owing to additional combinatorial factors introduced by the D-gene. Note that there is a
biophysical lower limit on the perplexity within each chain due to the inherent stochasticity of V(D)J
recombination and selection pressures [2]. The distribution of perplexities is bimodal for both chains.
Some amino acids are inferred with very low perplexity, whereas the second mode is comparable
with the perplexity of the distribution of amino acid frequencies.

Figure 1: (a) The distribution of log perplexity (entropy) for amino acids in the CDR3α and CDR3β.
The dotted vertical lines mark the entropy of the distribution of amino acid frequencies for each chain.
(b-c) The geometric mean perplexity of amino acids by position within the CDR3.

To further explore the nature of the distribution of perplexities in the CDR3, we calculated the
perplexity by position. The fine-tuned model finds the perplexity to be lower towards the start and
end of the CDR3, where the amino acids are highly constrained by the V- and J-genes. Figures 1b
and 1c illustrate this for the most common CDR3α and CDR3β lengths of 14 and 15, respectively.
The analogous plots for chains of different lengths can be found in Supplementary Figure S1. Within
the CDR3β, the perplexity also dips towards the middle of the CDR3, reflecting the fact that the
D-gene constrains these amino acids. We include for comparison ESM-2 with just 8M parameters,
and note that it does not recognise the relatively conserved amino acids towards to end of the CDR3.

We considered three further methods for comparison: a method based on amino acid frequency;
OLGA [10]; and soNNia [11]. The frequency-based method attributes probabilities according to the
frequency of each amino acid at each position in the training set. OLGA is a mechanistic model of
V(D)J recombination that calculates the probability that a TCR is generated in the absence of any
additional selection pressures. soNNia is a deep learning model that extends OLGA by learning such
pressures on selection to obtain the probability that a TCR appears in a given repertoire.

Let pgen(a1 · · · aL) denote the probability of generation as given by OLGA. The perplexity at position
i according to OLGA is

Pi = P(ai|a1a2 · · · ai−1ai+1 · · · aL)−1

=

[
pgen(a1 · · · ai−1aiai+1 · · · aL)∑

ã∈A pgen(a1 · · · ai−1ã ai+1 · · · aL))

]−1

,
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where A is the set of amino acids. An analogous calculation can be performed for soNNia. As shown
in Figures 1b and 1c, fine-tuning ESM-2 brings the perplexity by position below that of OLGA and
soNNia, demonstrating a strength of our approach over mechanistic models.

Amino acids exhibit strong dependencies within chains, but not across chains. We extended
the above analysis of single amino acid statistics to examine the pairwise relationships between
amino acids to which fine-tuned PLMs attend. Consider a pair of positions within the TCR, (i, j),
where, without loss of generality, i < j. Allowing ourselves our earlier abuse of notation, the mutual
information for this pair, conditioned on complete knowledge of the rest of the TCR, can be calculated
as [12]

Hij := log2
P(aiaj |a1a2 . . . ai−1ai+1 . . . aj−1aj+1 . . . aL)

P(ai|a1a2 . . . ai−1ai+1 . . . aL)P(aj |a1a2 . . . aj−1aj+1 . . . aL)
.

We calculated the mean mutual information between amino acids by position before and after fine-
tuning the PLM for TCRs in the test set. Before fine-tuning, mutual information is attributable mostly
to noise. After fine-tuning, the PLM identifies strong correlations between neighbouring amino acids,
and several weaker correlations between more distant amino acids on the same chain. However,
despite fine-tuning on both alpha and beta chains together, the PLM does not identify any similar
relationships between amino acids on complementary chains.

Figure 2: The mutual information between pairs of amino acids for three different models.

We also considered the mutual information for the semi-mechanistic model soNNia. Comparing
Figure 2b to 2c, we see that soNNia identifies fewer significant dependencies between distant amino
acid pairs, instead relying predominately on short-range dependencies spanning only a handful of
amino acid positions. This offers an explanation for the lower perplexity of the fine-tuned PLM
compared to soNNia: it is able to uncover weaker correlations between more distant amino acids.

Fine-tuned representations improve TCR-pMHC binding predictions. One strength of our
approach of fine-tuning a PLM over mechanistic models is that it provides representations that can be
used for downstream tasks, such as TCR-pMHC binding. We designed a novel architecture that takes
a TCR and pMHC representation and returns a probability of binding. Crucially, the architecture
involves a learnt weighting of amino acid representations in the TCR and pMHC, so that not all
amino acids are equally emphasised in the prediction.

Weight initialisation Fine-tuning on TCRs AUROC AUPRC
Random No 0.738 0.165
ESM-2 No 0.742 0.182
Random Yes 0.757 0.189
ESM-2 Yes 0.770 0.218

Table 1: The performance of our binding specificity model. We compare the results for TCR
representations generated with and without fine-tuning, and initialised with and without the pre-
trained ESM-2 weights.
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As shown in Table 1, the binding specificity model performs best on the test set when using rep-
resentations generated by fine-tuned PLMs. Moreover, we find that using the pre-trained ESM-2
weight initialisation, rather than fine-tuning from a random initial condition, is beneficial. We infer
the representations trained from the ESM-2 initial conditions retain latent information about general
proteins from ESM-2’s training data [13] that can be harnessed for predicting binding specificities.

We conclude that generating meaningful TCR representations, such as those generated through
fine-tuned PLMs, is likely to be a crucial element in solving the TCR-pMHC binding problem. Here
we have fine-tuned a PLM with 150M parameters, but PLMs have been trained with as many as 100B
parameters [14], and further work may explore the relationship of our results to scale.

3 Data and Methods

TCR sequence data. Single-cell TCR sequence data were sourced from six healthy repertoires [9],
with gene assignments determined by AbStar [15] and complete TCR sequences constructed using
Stitchr [16]. The six repertoires were pooled to create a universal donor repertoire from which we
created three different datasets: for inference of the alpha chain, of the beta chain, and of both chains.
Within each dataset, two TCRs were deemed duplicate and removed if and only if all chains under
consideration for that dataset were identical (for example, two TCRs with the same alpha chain but
different beta chain are considered duplicate in the alpha chain dataset, but not in the beta chain or
both chains dataset). Each dataset was split into a train, validation, and test set in the ratio 80:10:10.

TCR-pMHC binding data. Binding data were sourced from three public databases: VDJdb [17],
IEDB [18], and McPAS-TCR [19]. Non-human TCRs and HLA types other than HLA-A*02:01 were
filtered out. Two TCRs were identified as duplicate if they shared the same CDR3α and CDR3β
sequences. If both CDR3s were identical, the TCRs were merged. If exactly one chain was identical,
the TCRs were placed in the same train/validation/test split to circumvent data leakage [20]. Train,
validation, and test sets were generated in the ratio 80:10:10. For each of the datasets, negative
binding pairs were generated by exchanging the TCR in a positive binding pair with a random TCR,
sampled according to the distribution of TCRs in the dataset [21]. In the validation set, we restricted
negative sampling to TCRs within the same batch. The ratio of negative to positive binding pairs was
set to 9:1 in the training and validation sets and 50:1 in the test set.

Masked amino acid prediction task. ESM-2 consists of a transformer-like architecture [22] with a
RoBERTa head [23]. To fine-tune ESM-2, we followed the ESM-2 procedure of masking out 15% of
amino acids using BERT-style replacement [24]. The model was fined-tuned on TCR sequence data
for six epochs using Adam [25] with the same hyperparameters as ESM-2. Rather than training the
full model, LoRA with rank four was used for each of the transformer layers [26]. To train soNNia,
we used a learning rate of 0.001, which we determined to be the optimal learning rate from the set
{0.01, 0.003, 0.001, 0.0003}, and trained until the negative log-likelihood loss was minimised on the
validation set.

TCR-pMHC binding prediction task. Let ai and bj be the representations of the amino acid at
position i along the CDR3α and position j along the CDR3β, respectively. For our novel binding
architecture, we first calculated a representation of the TCR in terms of the representations of each
amino acid in the TCR through

t := V

(
GELU

[∑
i

(w⊤
α ai)ai

]
⊕ GELU

[∑
j

(w⊤
β bj)bj

])
,

where wα ∈ Rn, wβ ∈ Rn, and V ∈ Rn×m are learnt tensors, and n and m are the dimensions
of the amino acid and TCR representations, respectively. Through wα and wβ , a weighted sum of
amino acid representations is learnt, so that amino acids are able to make different contributions in
accordance with their relevance for binding.

We sought to minimise the cross entropy loss between the predicted labels, ŷ(p, t), and actual labels,
y(p, t), across all (peptide, TCR) pairs (p, t) in the dataset, where

ŷ(p, t) :=
2

1 + exp ||p − t||2
,
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and p ∈ Rn is a learnt embedding of the pMHC p. We trained the binding head for sixteen epochs
using Adam [25] with learning rate 0.001, β1 = 0.9, and β2 = 0.999.
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