NS-Gym: A Comprehensive and Open-Source
Simulation Framework for Non-Stationary Markov
Decision Processes

Nathaniel S Keplinger; Baiting Luo,
Department of Computer Science Department of Computer Science
Vanderbilt University Vanderbilt University
Nashville, USA Nashville, USA
nathaniel.s.keplinger@vanderbilt.edu baiting.luo@vanderbilt.edu
Yunuo Zhang, Kyle Hollins Wray,
Department of Computer Science Khoury College of Computer Sciences
Vanderbilt University Northeastern University
Nashville, USA Boston, MA
yunuo .zhang@vanderbilt.edu k.wray@northeastern.edu
Aron Laszka, Abhishek Dubey,
Information Sciences and Technology Department of Computer Science
Pennsylvania State University Vanderbilt University
State College, PA Nashville, USA
aql5923@psu.edu abhishek.dubey@vanderbilt.edu
Ayan Mukhopadhyay*
Department of Computer Science
Vanderbilt University

Nashville, USA
ayan.mukhopadhyay@vanderbilt.edu

Abstract

Many real-world applications require decision-making where the environmental
dynamics evolve over time. These non-stationary environments pose significant
challenges to traditional decision-making models, which typically assume sta-
tionary dynamics. Non-stationary Markov decision processes (NS-MDPs) offer
a framework to model and solve decision problems under such changing condi-
tions. However, there are no standardized simulation frameworks for NS-MDPs,
as opposed to widely popular frameworks for stationary problems. We present
NS-Gym, the first simulation toolkit designed explicitly for NS-MDPs, integrated
within the popular Gymnasium framework. In NS-Gym, we segregate the evolu-
tion of the environmental parameters that characterize non-stationarity from the
agent’s decision-making module, allowing for modular and flexible adaptations
to dynamic environments. We review prior work in this domain and present a
toolkit encapsulating key problem characteristics and types in NS-MDPs. This
toolkit is the first effort to develop a set of standardized interfaces and benchmark
problems to enable consistent and reproducible evaluation of algorithms under
non-stationary conditions. We also benchmark several algorithmic approaches

*Corresponding authors

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

from prior work on NS-MDPs using NS-Gym. We envision that NS-Gym will
enable researchers to study decision-making under non-stationarity by provid-
ing standardized interfaces, simulation frameworks, and benchmark problems.
Project documentation, webpage, and code can be found at https://nsgym. io
and https://github.com/scope-lab-vu/ns_gym

1 Introduction

Many real-world problems involve agents making sequential decisions over time under exogenous
sources of uncertainty. Such problems exist in autonomous driving [Kiran et al., 2021], medical
diagnosis and treatment [Yu et al., 2021], emergency response [Mukhopadhyay et al., 2022], vehicle
routing [Li et al., 2021], and financial portfolio optimization [Pendharkar and Cusatis, 2018]. We
define an agent as an entity capable of computation that acts based on observations from the
environment [Kochenderfer er al., 2022]. Decision-making for such agents is widely modeled by
Markov decision processes (MDPs), a general mathematical model for stochastic control processes.

A canonical challenge in such problems, motivated by practical scenarios, is non-stationarity, where
the distribution of environmental conditions can change over time. While non-stationarity has been
well-explored from both control and decision-theoretic perspectives, several conceptual paradigms of
non-stationarity exist, which lead to different mathematical formalisms for how the environmental
parameters change and how the agent interacts with the changes. Ackerson and Fu [1970] provide
one of the earliest conceptualizations of a system operating in “switching” environments, where the
mean and covariance of the underlying process can change over time. Campo et al. [1991] formalize
the switching process, where some environment parameters can change after a random sojourn time,
as a sojourn-time-dependent Markov chain, which is semi-Markovian.

Recent investigations of non-stationary stochastic control processes involve two major threads: the
first problem deals with an agent trying to adapt to a single change in the environment (which can
either be observed [Pettet et al., 2024] or unobserved [Luo et al., 2024]); and the second problem
models situations where environmental parameters can change continuously over time [Lecarpentier
and Rachelson, 2019]. In an orthogonal line of work, Chandak et al. [2020b] present a problem
formulation where the agent’s goal is to maximize a forecast of future performance (of the control
policy) instead of directly modeling the non-stationarity. Notably, these problem classes provide
fundamentally different formalisms (or treatments) for non-stationarity.

Indeed, not only are the formalisms different, but we point out another interesting observation from
prior work on non-stationary stochastic control processes: while recent prior work on stationary
Markov decision processes (MDP) use standard benchmark problems, e.g., by using the popular
Gymnasium toolkit Towers et al. [2023], there are no standard problems or benchmarks for non-
stationary MDPs. For example, Lecarpentier and Rachelson [2019] evaluate non-stationarity using
a custom non-stationary bridge environment (an abstract problem where an agent must navigate
on a grid-based slippery maze where the properties of the surface change over time), Chandak et
al. [2020b] use problems motivated by real-world applications such as recommendation systems
and diabetes treatment, and Pettet ez al. [2024] use well-known benchmark problems used for
stationary MDPs (e.g., the cartpole problem from Gymnasium [Towers e al., 2023]) and introduce
non-stationarity manually.

In this paper, we identify key characteristics that serve as desiderata for non-stationary MDPs, review
prior work in this area, and present the first simulation toolkit specifically tailored for non-stationary
MDPs. We argue that four key considerations affect decision-making in non-stationary MDPs, where
environmental factors can change over time: what changes? how does it change? can the agent detect
the change? can the agent know the updated parameter that has changed? These questions summarize
the nature of the change and the key properties of modeling approaches from prior work. Based
on these questions, we present NS-Gym (Non-Stationary Gym), the first collection of simulation
environments for non-stationary MDPs.

Inspired by the seminal work of Campo e al. [1991], we segregate the evolution of the environ-
mental parameters that characterize non-stationarity and the agent’s decision-making module. This
modularization enables us to configure various components (and types) of non-stationary MDPs
seamlessly. The NS-Gym toolkit is based on Python and is completely compatible with the widely
popular Gymnasium framework. Instead of developing a new simulation environment from scratch,

https://nsgym.io
https://github.com/scope-lab-vu/ns_gym

Agent
State | Reward 050 Action
t = Uil a
S r (sp a) Parameters
\ (5141, @)
H . Environment
' St+1

Figure 1: An overall framework for non-stationary Markov decision processes. At time ¢, the agent
observes the state s, € S and takes an action ¢ € A. The environment emits a reward signal 7(s;, a)
and transitions to the next state s; 1. The transition and the reward are governed by parameters 6,
which do not necessarily have a stationary distribution. In general, the evolution of 6 occurs through
a semi-Markov chain whose sojourn time is distributed as .S, which might be non-memoryless.
Depending on the problem, the agent can detect and/or observe the evolution of 6.

we build upon the existing Gymnasium toolkit due to its popularity and ensure that the large user
base already familiar with Gymnasium can easily use NS-Gym (we keep all standard Gymnasium
functionalities and interfaces intact). We make the following contributions:

1) We present the first simulation toolkit for NS-MDPs that provides a tailored, standardized, and
principled set of interfaces for non-stationary environments.

2) We identify canonical problem instances for decision-making in non-stationary environments, e.g.,
decision-making where the agent knows about the change but is not aware of exactly what the change
is, or decision-making where the agent is aware of the change.

3) We present an overview of prior work on non-stationary decision-theoretic models and a program-
ming interface that unifies prior work.

4) Our simulation framework extends the widely popular Gymnasium toolkit, thereby requiring
minimal added efforts from researchers in online planning, reinforcement learning, and decision-
making in using our toolkit.

5) We present the first set of benchmark results (and open-source implementations using NS-Gym)
that compares six algorithmic approaches for solving NS-MDPs.

6) Our benchmark results are presented across a series of problem types in non-stationary environ-
ments.

The rest of the paper is organized as follows. We begin by describing characteristics of NS-MDPs
and prior work. Then, we identify canonical problem instances, describe our framework, and present
a tutorial of how to use it. Finally, we present benchmark results using NS-Gym.

2 Characteristics of NS-MDPs and Prior Work

We begin by describing a comprehensive framework for decision-making in non-stationary envi-
ronments. Admittedly, we point out that the conceptual boundaries of what constitutes an agent
are unclear in this context. Instead, we leave this question open and point out the key components
relevant to decision-making; whether these components are part of the agent or those supporting the
agent is orthogonal to our discussion.

We refer to an agent as an entity that receives observations from an environment and can act or
make decisions that interact with said environment. For simplicity, we assume a discrete-time
process, although this discussion also extends to continuous-time stochastic control processes. Our
fundamental model is that of a Markov decision process [Puterman, 2014]. We refer to the current
state of the environment by s € S and an action by a € A, where S and A denote the set of all states
and actions, respectively. After taking an action: 1) the agent receives a scalar signal r(s, a) from the
environment, which can be perceived as a reward or a loss and is a measure of the agent’s utility, and
2) the agent transitions to a new state, governed by a transition function P(s’ | s, a,8), where § € ©

Is the change Is the change ~ What Is the change
Model Reference Nature of the change
notified? known? changes? bounded?

The reward distribution is fixed
Piecewise Stationary MAB Garivier and Moulines [2011] No No Reward over certain time periods, and then No

changes at unknown time steps.

. The reward can change at arbitrary
Non-stationary MAB Besbes et al. [2014] No No Reward

time points.

| X) Transition, Bounded change analyzed as part of
Piecewise Stationary MDP Auer et al. [2008] No No Yes
Reward the UCRL2 algorithm

Transition, The reward and transition can

Non-Stationary MDP Cheung et al. [2020] N/A No Yes
Reward change at every time step
) Transition, Inter-episodic transition and reward
Non-Stationary MDP Chandak et al. [2020b] Yes No No
Reward change; unchanging within an episode
. Transition, Inter-episodic transition and reward
Non-Stationary MDP Chandak et al. [2020a] Yes No Yes

Reward change; unchanging within an episode

The agent knows the current

Non-Stationary MDP Lecarpentier and Rachelson [2019] Yes Yes Transition parameters, but not the future Yes
evolution.

Non-Stationary MDP Pettet et al. [2024] Yes Yes Transition A single discrete change Yes

Non-Stationary MDP Luo et al. [2024] Yes No Transition A single discrete change No

Non-Stationary Bandits) Lo L.
Chakraborty and Shettiwar [2024] No No Reward Periodic Variation Yes
with Periodic Variation

. . . . An unknown transition function
Time-Varying MDP Ornik and Topcu [2021] Yes No Transition Yes
must be learned.

Table 1: Prior work on non-stationary Markov decision processes, categorized by important charac-
teristics that affect decision making.

denotes a set of observable environmental parameters. We argue that explicitly specifying 6 is critical
to modeling non-stationary decision-making problems, as highlighted below.

We show a schematic of the major decision-theoretic components in Figure 1. In a non-stationary
stochastic control process, the environmental parameters 6 or the agent’s utility function 7 (s, a) can
change over time. The manner in which the change evolves over time can be modeled by a Markov
chain or, more generally, by a semi-Markov chain as proposed by Campo et al. [1991]. While this
formalism has often not been used in recent work (which has focused less on the statistical properties
of the changes), we argue that a formal representation of how the environmental parameters evolve
is particularly important from the perspective of studying NS-MDPs. We use the same high-level
formalism as Campo et al. [1991], i.e., the parameters 6 evolve in time through a sojourn time
distribution, which can be non-memoryless, thereby making the resulting stochastic process semi-
Markovian [Hu and Yue, 2007]. If the sojourn-time distribution is memoryless, then the resulting
process is a continuous-time Markov chain [Hu and Yue, 2007].

Motivated by how decision-making components are implemented in practice, we introduce two
additional components: first, we introduce a runtime monitor that tracks the parameters 6 and detects
changes; in practice, the monitor can be implemented as an anomaly detector [Chandola ef al., 2009].
Note that while a monitor can track and detect changes in 6; it might not be equipped to update the
transition model P. From the agent’s perspective, we refer to the ability to detect these environmental
changes as receiving a notification about the change; note that we use this terminology to emphasize
the segregation between the agent and the anomaly detector.

We introduce a second component, a model updater, which is a computational entity that can update
the transition model by observing the changed parameters §. We do not argue that every agent
designed for decision-making in non-stationary environments must have these components; indeed,
we point out algorithmic prior work where one or both of these components are absent. Instead, we
argue that these components sufficiently describe the infrastructure required for decision-making in
non-stationary environments, whether a specific agent designs these components or simply assumes
their existence is orthogonal to our discussion. Given these components, we categorize prior work in
non-stationary stochastic control processes by answering four key questions in Table 1.

Gymnasium Environment ‘ l Parameter Update Function l l Scheduler ‘

Checks if reset is required

1 Get planning environment
env.get_planning_g¢nv()

2Check notification level

' Return planning
3 environment
at notification Ievel

1 4Send action [step(action)]

5Send parameters for update

6 Check if should update

| Update parameter

17 and calculate difference
| _in magnitude

—

Return parameters,
8 change boolean,

' delta change :
9 Retum Observation land Reward :

Loop until done B

AG;"‘ l Gymnasium Environment ‘ l Parameter U;;date Function l l Scheduler ‘

Figure 2: A sequence diagram of the agent-environment interaction in NS-Gym. Steps 4-9 in the
diagram show how parameters are updated. Step 6 checks the current MDP time step and notifies if
the parameter should be updated. Step 9 returns Observation and Reward types.

3 Framework Description

In this section, we outline the general structure of NS-Gym, elaborate upon our design decisions, and
describe the general experimental pipeline using NS-Gym. The project’s source code can be found at
https://github.com/scope-lab-vu/ns_gym. We develop NS-Gym to allow researchers access
to the breadth of NS-MDP specifications in the literature while maintaining the familiar interface
popularized by the Gymnasium library [Towers et al., 2023]. In Gymnasium, the environment object
represents an MDP, defining states, actions, transitions, and rewards. The observation object provides
the current state information available to the agent. The Info dictionary offers auxiliary diagnostic
data, useful for debugging but inaccessible by the agent. The standard Gymnasium workflow involves
initializing the environment, then looping: the agent observes, selects an action, executes it, and
receives the next observation, reward, and done status. Once an episode ends, the environment is
reset.

NS-Gym provides a set of wrappers to augment the classic control suite of Gymnasium environments,
three grid world environments, and the MuJoCo [Todorov et al., 2012] control environment. These
wrappers modify exposed parameters of the base environments (the stationary counterparts of our
non-stationary environments) to introduce non-stationarity, either at each decision epoch or via
user-defined functions. For example, in a deterministic environment such as “CartPole”, an example
change is varying the value of the gravity, thereby altering the dynamics of the cart. In stochastic
environments, the probability distribution over possible next states, given the current state action pair,
changes. For example, in the Frozen Lake environment, this change might increase (or decrease)
the coefficient of friction, making the movement of the agent more (or less) uncertain. Figure 2
illustrates the high-level structure of the wrapper and Table 2 lists the NS-Gym environments and
their observable parameters, with detailed descriptions in the appendix. Modifying these parameters
directly changes the NS-MDP’s core transition function.

A key feature of NS-Gym is its management of the agent-environment interaction during training,
planning, and testing. For rigorous evaluation of policies on NS-MDPs the decision-making algorithm
must not have future ground-truth knowledge of how an NS-MDP may evolve. During training
and planning time the decision-making agent executes actions on and receives observations from a
stationary version of the NS-Gym environment object. While the agent interacts with a stationary
version of the NS-Gym environment during planning, at test time, the execution of all actions and
received observations occurs on a time-dependent NS-MDP, even if planning uses a static model.

These agent-environment interactions encapsulate the following problem types, which we explain us-
ing the Frozen Lake environment. Consider a Frozen Lake environment where the agent’s probability

https://github.com/scope-lab-vu/ns_gym

of going in its intended direction is #; in the base environment. Now, the lake becomes more slippery,
and this probability changes to 6. We model the following key problem types:

1) The agent receives a message that the extent to which the lake is slippery has changed (corre-
sponding to a successful anomaly detection), but it is unaware of the exact change (i.e., it does not
know 6). This setting is motivated by prior work by Luo et al. [2024]).

2) The user is aware of the exact environmental change, i.e., it knows 6 but in non-stationary settings,
the agent might not have time to train a new policy. This setting is motivated by prior work by Pettet
et al. [2024] and Lecarpentier and Rachelson [2019].

3) Problems where the agent is not notified about the change, i.e., it is unaware that the probability is
no longer 0. This setting is motivated by prior work by Garivier and Moulines [2011].

4) In an orthogonal thread, we identify the frequency of the change, i.e., problems with a single
change in an environment variable [Luo ef al., 2024; Pettet et al., 2024] (e.g., the change is from 6,
to #2) or multiple changes within an episode [Cheung et al., 2020] (e.g., the change is 61 — 0, —
03 — ...) or changes within multiple episodes [Chandak et al., 2020b].

Users can configure notifications the agent receives about changes in the NS-MDP at three dis-
tinct levels: 1) Basic Notification: The agent receives a Boolean flag indicating a change in an
environment parameter, 2) Detailed Notification: In addition to the Boolean flag, the agent is
informed of the magnitude of the change and 3) Full Environment Model: If the agent requires
an environmental model for planning purposes (such as in Monte Carlo tree search), NS-Gym can
provide a stationary snapshot of the environment. This snapshot aligns with the basic or detailed
notification settings configured by the user. If the user seeks a model without detailed notification,
the planning environment is a stationary snapshot of the base environment. Conversely, if detailed
notifications are enabled, the agent receives the most up-to-date version of the environment model
(but not any future evolutions).

To accommodate information unique to non-stationary environments, NS-Gym uses custom obser-
vation and reward data types. The custom observation type has four fields: state, env_change,
delta_change, and relative_time. The state field encodes the current environment state.
The env_change field is a dictionary of Boolean flags indicating what environment parameter has
changed. The delta_change reports the amount of change in each environment parameter. By
default, NS-Gym returns the difference in value for scalar parameters and the Wasserstein distance
for probability distributions. The relative_time is the number of decision epochs that have lapsed
since the episode’s start. The reward type is similarly constructed, but instead of the state field, we
have a reward.

NS-Gym’s API is designed to handle a diverse range of custom non-stationary MDPs, allowing users
to flexibly model dynamic environments through configurable “schedulers” and “parameter” update
functions. We decouple the timing (and thereby, the frequency) and the manner of parameter changes,
providing users with greater flexibility.

Schedulers are functions that determine when environmental changes should occur by returning a
Boolean flag at each time step. If a scheduler returns True, the update functions modify the specified
parameter accordingly. NS-Gym includes built-in schedulers for continuous, stepwise, random, and
periodic time steps with support for custom schedulers via subclassing. Update functions define how
parameters change, with examples like random walks with budget-bounded constraints or bounded
by Lipschitz continuity [Lecarpentier and Rachelson, 2019].

Mathematically, at a high level NS-Gym defines:

1. A transition function P(s’ | s, a,f) that defines the probability of transitioning to state s’
given the current state, action taken, and set of environmental parameters, 6.

2. A function f(t) i.e 0;41 = f(6;,t) that controls how 6 evolves over time.

In our framework, we implement f(t) as "schedulers", which determine when updates occur, and
"parameter update functions" which determine how 6 changes.

3.1 Experimental Pipeline

The general NS-Gym experimental setup procedure is: 1) Create a Standard Gymnasium Environment.
2) Define Parameters to Update. 3) Map Parameters to Schedulers and Update Functions. 4)
Generate a Non-Stationary Environment. Consider that a user needs to model a non-stationary
CartPole environment with increasing pole mass (0.1/step), random walk gravity (every 3 steps), and
basic agent notifications, the following NS-Gym code illustrates the setup:

The first step involves importing ns_gym, i.e.,

import gymnasium as gym
import ns_gym
Next, we create the base gymnasium environment, i.e.,

env = gym.make ("CartPole-vi")

Next, to describe the evolution of the non-stationary parameters, we define the two schedulers and
update functions that model the semi-Markov chain over the relevant parameters, i.e.

scheduler_1 = ns_gym.schedulers.ContinuousScheduler ()

scheduler_2 = ns_gym.schedulers.PeriodicScheduler (period = 3)

U_Fn_1 = ns_gym.update_functions.IncrementUpdate (scheduler_1,k = 0.1)
U_Fn_2 = ns_gym.update_functions.RandomWalk(scheduler_2)

Next, we map the parameters to the update functions, i.e.,

tunable_params = {"masspole":U_Fn_1,"gravity": U_Fn_2}

Then, we set the notification level and pass the parameters and environment into the wrapper, i.e.

ns_env = ns_gym.wrappers.NSClassicControlWrapper (env, tunable_params,
change_notification=True)
obs ,info = ns_env.reset ()

Finally, we grab an environment model for planning, i.e.,
planning_env = ns_env.get_planning_env ()
NS-Gym enables efficient experimentation via Gymnasium’s parallelization and vectorization API.

Appendix D provides API examples and execution time measurements. We also provide a detailed
user tutorial in the supplementary material.

Environment Name Tunable Environmental Parameters

Acrobot dt, LINK_LENGTH_1,LINK_LENGTH_2, LINK_MASS_1, LINK_MASS_2, LINK_COM_POS_1, LINK_COM_POS_2, LINK_MOI
CartPole gravity, masscart, masspole, force_mag, tau, length

MountainCar gravity, force

Continuous_MountainCarEnv | power

Pendulum m, 1,dt, g

FrozenLake P

CliffWalking P

Bridge P, left_side_prob, right_side_prob

Table 2: Environmental parameters for classic control and gridworld environments as they appear in
NS-Gym. See Appendix G for details.

3.2 Evaluating Non-Stationary Markov Decision Processes

Evaluating the difficulty or nature of the uncertainties of NS-MDPs is often imperative for decision-
making; however, it is challenging to simulate directly in practice. NS-Gym’s eval module offers
methods to assess non-stationary MDPs. Ideally, as an NS-MDP evolves from an initial MDP, M,
to a subsequent MDP, M7, we could compute the regret of any arbitrary policy 7 with respect to an
optimal policy for M, 77, i.e.,

00 00
Regret =]Epl Z rytrm\ﬁ (5t7 Tq (St)) -]Epl Z fYter (315, 71—(3k (515))
t=0 t=0

However, 77 is typically unknown.! Instead, NS-Gym includes two baseline evaluation functions for
assessing the complexity of an NS-MDP. The first function is an ensemble performance metric that
computes the mean regret across N episodes and a set of stable policies in My, denoted by IT;(My),
ie.,

Ensemble Regret =

1 N
mon a2 2 X ()

m€Ml (M) n=1 (s,a) €Ty, (7, M7)

— Z i Z rMU(s,W(s))}

m€lls(Mo) n=1 (s,a)ETy (7,Mo)

where 7, (m, M) denotes the n-th trajectory by following an arbitrary policy 7 in an MDP M. Users
can supply their own policies or leverage the NS-Gym interface with Stable-Baselines3 [Raffin et al.,
2021] to access reinforcement learning models across Gymnasium environments. For convenience,
we provide a set of pre-trained model weights from Stable-Baselines3, along with additional built-in
algorithms.

For stochastic environments, we also provide a policy-agnostic metric, the PAMCTS-Bound [Pettet
et al., 2024], which measures the maximum difference in transition functions between two MDPs,
My and M, and is defined as:

Vs,a : PAMCTS-Bound = || P(s,a)n, — P(8,a) s ||co

where s denotes environment states and a denotes actions. Custom NS-MDP evaluation metrics
can be easily added by inheriting from NS-Gym’s base “Evaluator” class, which takes an NS-Gym
environment object and returns the computed metric.

4 Benchmark Experiments

In this section, we demonstrate the utility of NS-Gym by evaluating decision-making algorithms in
environments built using the library. We explore the following questions: How well can an agent
adapt when environmental change is known or unknown? What if the system undergoes continuous
evolution? How well can an agent handle frequent updates? Additionally, we show how NS-Gym
can simulate a related modeling paradigm, the contextual Markov decision process.

We benchmark six algorithms across four base environments, namely CartPole, FrozenLake, Clif-
fWalker, and Bridge environments. Additional results for other environments are in the supplemental
material. We evaluate both discrete and continuous transition changes, testing each environment-agent
pair with no notification, basic notification, or an up-to-date model. Performance is measured using
cumulative undiscounted episodic rewards.

For CartPole, we vary the pole’s mass in single and continuous experiments. In the grid-world
environments, we adjust the probability of moving in the intended direction, with single experiments
shifting from a default value to 0.4, 0.6, or 0.8, and continuous experiments decreasing the probability
incrementally until a threshold is reached. Additional details on environment setup and experimental
results for the Pendulum, Mountain Car, and Acrobot are in the supplemental material. Note that
planning and training for all benchmark algorithms are done in stationary versions of the environment.
Test time execution happens in the time-varying NS-MDPs.

We evaluate the non-stationary environment across six different decision-making agents: Monte Carlo
tree search (MCTS) [Kocsis and Szepesvari, 2006], double deep Q learning (DDQN) [van Hasselt et
al., 2015], AlphaZero [Silver et al., 2017], adaptive Monte Carlo tree search (ADA-MCTS) [Luo et
al., 2024], risk-averse tree search (RATS) [Lecarpentier and Rachelson, 2019], and policy-augmented
Monte Carlo tree search (PAMCTS)[Pettet et al., 2024]. Note that our work is the first effort to
benchmark approaches for tackling non-stationarity on standardized problem settings. See Appendix
I for algorithm details. For all environments, model-based algorithms are provided with a stationary
snapshot of the model at the appropriate notification level.

A closely related, but somewhat different modeling paradigm involves contextual Markov decision
processes (C-MDPs). C-MDPs extend standard MDPs by introducing a “context” space, where

'Note that if 77 is known, users can easily use NS-Gym to compute the regret.

each context parameterizes a specific variation within a family of related MDPs [Hallak et al.,
2015]; intuitively, a contextual MDP can be thought of as a special case of an NS-MDP which only
exhibits inter-episodic non-stationarity (defined by the context). As a result, C-MDPs can be easily
implemented using the NS-Gym tool. Similar to its approach with NS-MDPs, NS-Gym allows for
setting a new value for an environmental parameter between episodes, establishing a new context.
NS-Gym then provides an interface to evaluate policies across a range of contexts of a C-MDP. To
demonstrate this capability, we show how NS-Gym can evaluate a full contextual MDP, enabling
experiments that study transfer learning. Table 5 shows the generalized performance results for the
sequential task selection problem on two simple task selection baselines, random task selection and
model-based transfer learning with equidistant task selection [Cho ez al., 2025]. Algorithmic details
and C-MDP background information are found in the supplemental material.

MCTS AlphaZero DDQN PAMCTS PAMCTS PAMCTS ADA-MCTS RATS
0.25 0.5 0.75

0.4 | -0.58 £047 -0.26 & 0.56 -0.82 +0.33 -0.58 4+ 0.27 -0.20 £ 0.33 -0.16 + 0.33 -0.54 £+ 0.07 -0.98 + 0.02
Bridge 0.6 | -0.18 £0.57 0.58 + 0.47 -0.78 £ 0.36 0.46+0.33 0.46 £ 0.3 0.38 +£0.31 -0.16 £ 0.09 0.05 + 0.08

0.8 | 0.64 £0.45 0.92 +0.23 -0.72+ 0.4 0.4 £0.31 0.72 +£0.23 08402 0.46 + 0.09 -0.01 +0.01

04| 0.11£0.18 0.06 + 0.02 0.22+0.17 0.15 £ 0.04 0.16 £ 0.03 0.12+£0.03 0.67 + 0.05 0.6 £ 0.05
Frozen 0.6 | 0.25+0.25 0.25 +0.04 0.66 +0.19 0.3 £0.05 0.33 +0.05 0.27 £ 0.04 0.56+ 0.05 0.88 & 0.03
Lake 0.8 | 0.53 £0.29 0.39 £ 0.05 0.91 +£0.12 0.74 £ 0.04 0.68 + 0.05 0.54 £0.05 0.49 £ 0.05 0.97 + 0.02
clift 0.4 | -1593.89 +68.9 -543.94 4598 -1742.54£9129 -1572.21 +60.82 -477.50 & 54.66 -1382.04 £77.88 -1503.34 4 53.57 -777.55 +/- 31.19

) 0.6 | -1216.72 +63.68 6.97 = 8.2 -1018.27 £96.95 -1159.77 £ 53.85 -374.64 £44.31 -477.50 & 54.65 -1019.72+35.99 -314.84 +12.8

Walking 0.8 | -773.62 £ 54.67 64.41 & 3.44 -287.17+40.55 -790.60 +46.66 -54.22 + 1425 -109.08 2599 -523.73 £23.79 -231.86 +4.22
Cart 1 600.90 + 47.68 441.1 £ 51.96 13553 £0.28 525.98 +31.91 120.48 + 0.57 135.41 £0.32 - -
Pole 1.5 | 641.28 + 50.47 272.82 £21.25 139.19 £0.27 467.35 £25.11 117.60 + 1.24 135.42 4+ 0.34 - -

Table 3: Mean episode reward with standard error with a single exogenous change without notification
(see supplementary material for results with notification). The best-performing agents are in bold.
Blanks denote settings where the algorithm is not applicable.

MCTS AlphaZero DDQN PAMCTS PAMCTS PAMCTS ADA-MCTS RATS
0.25 0.5 0.75

Bridge WN 0.18 £ 0.1 0.6 + 0.08 -0.44 +- 0.09 0.28 4 0.56 0.34 4 0.54 0.08 +/ 0.56 - 0.36 4 0.09

WON | 0.04 £0.10 1.00 £ 0.00 -0.84 +0.05 -0.02 +0.58 0.22 +0.57 0.20 +0.57 0.08 + 0.1 0.36 +0.09
Frozen ~WN 0.15 £+ 0.04 0.25 £ 0.04 0.1 +.04 0.2 £ 0.04 0.15 £ 0.04 0.04 & 0.02 - 0.71 + 0.05
Lake WON | 0.24 £0.04 0.25 4+ 0.04 0.27 4 0.04 0.14 4+ 0.03 0.21 4 0.04 0.08 4 0.03 0.59 4 0.05 0.71 £ 0.05
CIiff WN -847.48 £55.83 77.95+£040 -137.89+29.19 -803.9445489 -56.56+19.2 -75.06 £20.77 - -932.89 + 50.55
Walking WON | -907.67 4+ 54.62 76.0 + 1.89 -359.97 £42.46 -73228 £53.50 -31.84 £14.97 -132.26 £26.98 -1144.91 £43.83 -707.65 £ 36.33
Cart WN 702.7 £21.95 203.68 & 1.35 100.78 £ 2.62 1392.23 £ 65.57 96.15£2.5 99.95 £2.58 - -
Pole WON | 149.0 + 1.79 251.47 £ 5.81 9597 4+2.68 109.39 4 2.69 55.17 £ 1.7 95.61+£2.73 - -

Table 4: Mean episode reward with standard error with continuous parameter updates. WN and
WON denote settings “with notification” and “without notification” respectively. The best-performing
approaches are in bold. Blanks denote settings where the algorithm is not applicable.

Environment: Observable Parameter | Random MBTL-ES
CartPole: masscart 0.67£0.03 0.82+£0.0175
Acrobot: link mass 1 0.83£0.01 0.82£0.01
MountainCar: gravity 0.34+£0.03 0.19+£0.03
Pendulum: mass 0.74£0.01 0.80=£0.01

Table 5: Normalized generalized performance of simple baselines for solving the sequential task
selection problem (k = 9 tasks) on C-MDPs evaluated using NS-Gym.

Table 3 shows results from the single change experiments without notifications, and Table 4 reports
agent performance in the continuous experiment setting with and without notification. We provide a
complete table of experimental results and figures in the supplemental materials. From the benchmark
results, we have derived some key insights about how different strategies perform under varying
conditions. This analysis provides a clearer understanding of how algorithms respond to dynamic
environmental changes.

Impact of Detailed Notification on Performance with Single Transition Change: The presence
of detailed notifications generally enhances the performance of most methods. AlphaZero, MCTS,
PA-MCTS, and RATS demonstrate marked improvements when notifications are available in some
environments, effectively leveraging the most up-to-date dynamics to optimize decision-making
processes. In contrast, DDQN shows only a modest improvement as it is difficult to adapt to changes
in a limited time.

Impact of Notification on Performance with continuous Transition Change: The presence of de-
tailed notifications generally improves the performance of most methods across various environments.
This highlights the importance of quickly adapting the planning model to the latest dynamics of the
environment. For example, methods like MCTS and PAMCTS, which leverage online search, show a
consistent performance increase across different environments, emphasizing the effectiveness of an
online approach in maintaining robust performance amid continuous changes when notifications are
given. We observe that AlphaZero performs exceptionally well with notifications.

Variability in Algorithm Effectiveness: When comparing methods that incorporate risk-averse
strategies with those that do not, it is evident that the ones with risk-averse strategies perform dif-
ferently. In environments like FrozenLake, where the agent is more vulnerable to varying levels
of unpredictability compared to other environments, methods like ADA-MCTS and RATS, which
incorporate risk-averse strategies, generally perform better with single transition changes and con-
tinuous changes. These methods are designed to account for and mitigate the risks brought on by
the environment’s stochastic nature, leveraging worst-case sampling strategies to make decisions
robust to possible changes. This enables them to navigate more effectively and avoid the pitfalls that
non-risk-averse methods might encounter. We also point out that in prior work, ADA-MCTS is the
only approach that can learn

5 Conclusion

We present NS-Gym, the first simulation toolkit and set of standardized problem instances and
interfaces explicitly designed for NS-MDPs. NS-Gym incorporates problem types and features from
over fifty years of research in non-stationary decision-making. We also present benchmark results
using prior work. We will continue to maintain NS-Gym, extend it, and maintain a leaderboard of
approaches.

6 Acknowledgments

This material is based upon work supported by the National Science Foundation (NSF) under Grants
CNS-2238815 and CNS-2531369, and by the Defense Advanced Research Projects Agency (DARPA)
and US Air Force Research Lab (AFRL) under the Assured Neuro Symbolic Learning and Reasoning
program. Results presented in this paper were obtained using the Chameleon testbed supported by the
National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the NSF, DARPA, or
AFRL.

References

Guy Ackerson and K Fu. On state estimation in switching environments. /EEE transactions on
automatic control, 15(1):10-17, 1970.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
learning. Advances in neural information processing systems, 21, 2008.

10

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with non-
stationary rewards. Advances in neural information processing systems, 27, 2014.

L Campo, P Mookerjee, and Y Bar-Shalom. State estimation for systems with sojourn-time-dependent
markov model switching. IEEE Transactions on Automatic Control, 36(2):238-243, 1991.

Titas Chakraborty and Parth Shettiwar. Non stationary bandits with periodic variation. In Proceedings
of the 23rd International Conference on Autonomous Agents and Multiagent Systems, pages

2177-2179, 2024.

Yash Chandak, Scott Jordan, Georgios Theocharous, Martha White, and Philip S Thomas. Towards
safe policy improvement for non-stationary mdps. Advances in Neural Information Processing
Systems, 33:9156-9168, 2020.

Yash Chandak, Georgios Theocharous, Shiv Shankar, Sridhar Mahadevan, Martha White, and Philip S
Thomas. Optimizing for the future in non-stationary mdps. Thirty-seventh International Conference
on Machine Learning (ICML), 2020.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM computing
surveys (CSUR), 41(3):1-58, 2009.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-stationary
markov decision processes: The blessing of (more) optimism. In International Conference on
Machine Learning, pages 1843—1854. PMLR, 2020.

Jung-Hoon Cho, Vindula Jayawardana, Sirui Li, and Cathy Wu. Model-based transfer learning for
contextual reinforcement learning, 2025.

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching bandit
problems. In International Conference on Algorithmic Learning Theory, pages 174—188. Springer,
2011.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes, 2015.

Qiying Hu and Wuyi Yue. Markov decision processes with their applications, volume 14. Springer
Science & Business Media, 2007.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yogamani,
and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. [EEE
Transactions on Intelligent Transportation Systems, 23(6):4909-4926, 2021.

Mykel J Kochenderfer, Tim A Wheeler, and Kyle H Wray. Algorithms for decision making. MIT
press, 2022.

Levente Kocsis and Csaba Szepesvari. Bandit Based Monte-Carlo Planning. In Johannes Fiirnkranz,
Tobias Scheffer, and Myra Spiliopoulou, editors, Machine Learning: ECML 2006, pages 282-293,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Erwan Lecarpentier and Emmanuel Rachelson. Non-stationary markov decision processes, a worst-
case approach using model-based reinforcement learning. Advances in neural information process-
ing systems, 32, 2019.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Advances
in Neural Information Processing Systems, 34:26198-26211, 2021.

Baiting Luo, Yunuo Zhang, Abhishek Dubey, and Ayan Mukhopadhyay. Act as you learn: Adaptive
decision-making in non-stationary markov decision processes. arXiv preprint arXiv:2401.01841,
2024.

Ayan Mukhopadhyay, Geoffrey Pettet, Sayyed Mohsen Vazirizade, Di Lu, Alejandro Jaimes, Said
El Said, Hiba Baroud, Yevgeniy Vorobeychik, Mykel Kochenderfer, and Abhishek Dubey. A
review of incident prediction, resource allocation, and dispatch models for emergency management.
Accident Analysis & Prevention, 165:106501, 2022.

11

Melkior Ornik and Ufuk Topcu. Learning and planning for time-varying mdps using maximum
likelihood estimation. Journal of Machine Learning Research, 22(35):1-40, 2021.

Parag C Pendharkar and Patrick Cusatis. Trading financial indices with reinforcement learning agents.
Expert Systems with Applications, 103:1-13, 2018.

Ava Pettet, Yunuo Zhang, Baiting Luo, Kyle Wray, Hendrik Baier, Aron Laszka, Abhishek Dubey,
and Ayan Mukhopadhyay. Decision making in non-stationary environments with policy-augmented
search. arXiv preprint arXiv:2401.03197, 2024.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1-8, 2021.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo, 2020.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. Mastering Chess and Shogi by Self-Play with a General Rein-
forcement Learning Algorithm, December 2017. arXiv:1712.01815 [cs].

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026-5033,
2012.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Gouldo, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. CoRR, abs/1509.06461, 2015.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare: A
survey. ACM Computing Surveys (CSUR), 55(1):1-36, 2021.

12

https://github.com/DLR-RM/rl-baselines3-zoo

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We make six claims in the introduction. Claims 1-4 are presented in sections 2
and 3. Claims 5 and 6 are presented in 4

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion of limitations in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

13

Justification: The paper does not provide any proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experiment code, experiment descriptions, and algorithm hyper
parameters in the supplemental material.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14

Answer: [Yes]

Justification: We provide the NS-Gym package code as well as the experiment code. Experi-
mental setup and algorithm descriptions are included in the Appendix.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental settings and details are provided in the supplemental materials
and code.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All reward values for the benchmarking experiments report standard error.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Experiment compute resources are provided in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have followed the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We present a toolkit to simulate toy non-stationary Markov decision processes.
We do not believe that there is an inherent societal impact to the tool kit.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We believe the simulation framework has no risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Where appropriate properly credit owners other assets used in this work, i.e
Gymnasium and StableBaselines-3.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, the NS-Gym source code includes a README file that describes installa-
tion, setup, and general workflow. We also provided a tutorial notebook that walks users
through the experimentation pipeline. The code is also well-commented.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs do not play an important non-standard component in the core methods
of this research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Additional NS-Gym Framework Description

NS-Gym provides a simple set of wrappers built on top of the Gymnasium API. Table 6 shows an
example of the custom NS-Gym observation type.

Observation Type
Field Name Data Type
state Union[array,int]
env_change Union[dict[str,bool] ,None]

delta_change Union[dict[str,float],None]

relative_time Union[int,float]

Table 6: The custom observation types of NS-Gym capture essential components of NS-MDPs.

B Limitations and Broader Impact

There are limitations in the diversity of the base environments included in the NS-Gym package. We
aim to broaden its scope to more complex tasks in the future. Beyond NS-Gym’s core functionality,
future efforts will focus on optimizing its environments and enhancing model update mechanisms to
achieve improved runtimes and more efficient experimentation.

NS-Gym, as a toolkit, may not have an immediate societal impact. However, we anticipate that NS-
Gym will enable community-driven development of algorithms for decision-making in non-stationary
environments. These resulting algorithms hold the potential for substantial societal impact by tackling
open problems in healthcare, transportation, and autonomous driving.

C NS-Gym Evaluation Module

NS-Gym includes an evaluation module designed to assess the “difficulty” of a custom NS-MDP.
The evaluation module primarily consists of two submodules. The first submodule comprises
the run_experiment helper functions, which execute a sequence of episode traces and log the
results based on a provided agent, YAML configuration file, and NS-Gym environment. The second
submodule focuses on metrics, a suite of evaluation functions as described in Section 3.2.

Below, we provide an example workflow for using the NS-Gym API to evaluate the difficulty of
a custom NS-MDP. Consider designing a non-stationary version of the “Pendulum” environment,
where at each MDP time step, the mass of the pendulum increases by 0.01 units. This environment
can be constructed as follows:

import gymnasium as gym

from ns_gym.wrappers import x*

from ns_gym.schedulers import *

from ns_gym.update_functions import x*

env = gym.make ("Pendulum-vi")

tunable_param = "m"

scheduler = ContinuousScheduler ()

update_fn = IncrementUpdate (scheduler ,0.01)
param_map = {tunable_param:update_fn}

ns_env = NSClassicControlWrapper (env,param_map)

To evaluate the difficulty of this NS-MDP, we can test it using the EnsembleMetric evaluator, which
computes the ensemble regret across a suite of policies and outputs the results to standard output:

from ns_gym.evaluate.metrics import EnsembleMetric
evaluator = EnsembleMetric ()
ensemble_reward, perfomance_dict = evaluator.evaluate (ns_env ,100)

20

An example of the standard output is shown below:

Ensemble Regret:

Agent Regret:

- DDPG: -176.39195063398657
- PPO: -561.0702939479152

- A2C: -1589.8067051120454
- TD3: -1193.9013437299438

-880.2925733559728

D Execution Time, Vectorization, and Parallelization

In this section, we show runtime comparisons between NS-Gym and the base Gymnasium envi-
ronments. Table 7 compares the execution time for a single step in the environment object with
parameter updates. Naturally, how environmental parameters are updated between decision epochs
will induce additional overhead depending on the complexity of the update operation. The tabular
environments like CliffWalking and FrozenLake rebuild a complete state transition table whenever
there is an update. If there is no parameter update the absolute overhead is minimal. The execution

time to take a stationary snapshot of the environment for planning is shown in Table 8.

Environment | Gymnasium (us) NS-Gym (us) Absolute Overhead (us)
FrozenLake 10.82 +£0.01 299.47 £ 0.07 288.65 £+ 0.07
CliffWalking 10.13 £ 0.01 124.50 +0.07 114.37 £ 0.07
Acrobot 90.90 £0.03 107.11 £ 0.02 16.21 £0.03
MountainCar 17.22£0.01 29.85+0.01 12.63 £ 0.02
CartPole 14.11 £ 0.01 28.11 £0.01 14.00 £ 0.02
Pendulum 32.34+0.01 47.45 +0.02 15.11 £0.02

Table 7: Comparison of execution time for a single step in base Gymnasium environments and
NS-Gym. The NS-Gym shows the execution time when there is a parameter update every timestep.

Environment | env.get_planning_env() (us)
FrozenLake 2032.50 £ 0.36
CliffWalking 21393.41 + 60.26
Acrobot 924.44 + 0.08
MountainCar 491.35 £ 0.08
CartPole 573.05 + 0.08
Pendulum 586.54 + 0.09

Table 8: NS-Gym get updated planning environment execution time.

21

Built on Gymnasium, NS-Gym is compatible with its vectorization and parallelization APIs. Below is
an example of how a user could set up an experiment with a vectorized environment with parallel exe-
cution. To vectorize the NS-Gym environments, the observation and reward types need to be modified
into a dictionary of vectorizable objects. The FlattenObsWrapper and FlattenRewardWrapper
do this.

def make_env():

def _init():

env = gym.make (’FrozenLake-vl1’, render_mode="rgb_array",
is_slippery=False)

scheduler = ContinuousScheduler ()

update_function = DistributionDecrementUpdate (scheduler=
scheduler, k=0.1)

param = "P"

params = {param: update_functionl}

ns_env = NSFrozenlLakeWrapper (env, params, initial_prob_dist
=[1, 0, 0],delta_change_notification=True, change_notification=
True)

ns_env = FlattenObsWrapper (ns_env)

ns_env = FlattenRewardWrapper (ns_env)

return ns_env
return _init

vec_env = AsyncVectorEnv ([make_env() for _ in range(4)])
out = vec_env.reset ()
out = vec_env.step(actions=np.array ([0 for x in range(4)]))

Table 9 shows environment steps per second for each environment running eight parallel asynchronous
environments.

Environment Gymnasium (SPS) NS-Gym (SPS)

FrozenLake 83,978.50 £ 626.08 22,917.84 + 567.25
CliffWalking | 83,978.50 £ 626.08 22,917.84 £ 567.25
Acrobot 39,308.93 £1,214.93 29,803.10 £ 965.21
MountainCar 82,620.94 +898.42 42,802.29 £ 2,026.04
CartPole 83,421.50 4+ 770.88 17,768.18 £ 428.61

Pendulum 94,259.26 £ 216.82 31,677.50 £ 1,493.39

Table 9: Parallel vectorized asynchronous execution for gridworld and classic control environments.
For each environment, we run eight environment instances in parallel and we report environment
steps per second (SPS).

E Additional Details on Simulating C-MDPs in NS-Gym

Contextual Markov decision processes (C-MDPs) are a class of MDP where variations in the
underlying process create related but distinct environments [Hallak et al., 2015]. Formally, a C-MDP
is defined as (C, S, A, M(c)), where C is the context space, S is the state space, A is the action
space, and M(c) = (S, A, P.(s'|s,a), R.(s,a)) maps a context to a specific MDP instance. In this
paper, we evaluate two simple baselines for the sequential source task selection problem, which
aims to dynamically choose a subset of tasks from the entire context space to maximize expected
performance.

We benchmark the following simple strategies for selecting training tasks on a fixed set of hyperpa-
rameters:

22

* Random Task Selection: £ tasks are randomly chosen from the complete context space.

» Equidistant Task Selection: k tasks are selected such that they are uniformly spaced across
the full context space.

For our experiments, we consider the following environments:

* CartPole: The context parameter is the cart’s mass, defined over the range [0.1,10.0]
units. A DQN model from StableBaselines-3 is trained for each context, using default
hyperparameters.

* Acrobot: We vary the mass of the "first link" within the range [0.1,10.0] units. A PPO
model from StableBaselines-3 is trained for each context with default hyperparameters.

* MountainCar: The context is gravity, ranging from [0.0015, 0.006] units.

¢ Pendulum: The pendulum’s mass is the varied context, ranging from [1.0, 10.0] units. For
this environment, a PPO model is trained using default StableBaselines-3 hyperparameters.

F Hardware Specifications

The benchmarking experiments were conducted across a set of computing resources. Specifically, on
one of the following machines:

 Server with single Intel Core 19-14900KS processor and single NVIDIA GeForce RTX 4090
GPU.

 Server with a single AMD Ryzen Threadripper 1950X 16-Core processor and single NVIDIA
TITAN Xp GPU.

* Single processor Chameleon testbed machines.

The execution time experiments were all conducted on a single server with a Ryzen Threadripper
1950X 16-Core processor and a single NVIDIA TITAN Xp GPU. We executed all experiments in
parallel using multiprocessing.

All experiments were executed in parallel using multiprocessing, with each experiment requiring at
most approximately one day to complete.

G Description of NS-Gym Environments

Below, we provide descriptions for each environment supported by NS-Gym. Table 2 outlines tunable
parameters for classic control and gridworld environments as they appear in NS-Gym. Table 10
outlines tunable parameters for MuJoCo environments.

G.1 CartPole

The CartPole environment has a discrete action space and a continuous state space. As illustrated in
Figure 3, the agent’s objective is to keep the pole balanced on top of the cart for as long as possible.
The agent receives a reward of +1 for each time step that the pole remains balanced. The state is
represented by a four-dimensional vector, which includes the cart’s position, cart’s velocity, pole’s
angle, and pole’s angular velocity. At each time step, the agent can apply a fixed force to push the
cart either left or right.

G.2 Mountain Car

The MountainCar environment (see Figure 4) is a continuous state but discrete action space environ-
ment. In this environment, a car is stuck in a valley, and the agent must apply force to the cart to
build momentum so that the car can escape. By default, the agent receives a zero reward for escaping
the valley and a -1 reward otherwise. The agent can either push the car to the left, right, or not at all.
The continuous Mountain Car environment is similar to the standard Mountain Car environment but
with a continuous action space. In the continuous analog, the agent chooses the direction in which to
apply the force to the car.

23

Figure 3: The Gymnasium CartPole environment.

1

/
.

Figure 4: The Gymnasium MountainCar environment.

G.3 Acrobot

The Acrobot environment is a double pendulum (see Figure 5). The agent can apply torque to the
joint connecting the two links of the double pendulum to move the free end above a threshold height.
At each time step, the agent can either apply +1, 0, or -1 units of torque.

Figure 5: The Gymnasium Acrobot environment.

G.4 Pendulum

The Pendulum environment is a continuous state and action space environment. The agent aims to
keep the pendulum inverted for as long as possible. The agent receives a reward proportional to the
pendulum’s angle. At each time step, the agent applies some torque magnitude to the pendulum’s
free end. Figure 6 shows the pendulum environment.

G.5 FrozenLake

The FrozenLake environment (Figure 7) is a stochastic, discrete action, and discrete state space
grid-world environment. The agent navigates from a starting cell in the top left corner of the map to a
jail cell in the bottom right corner while avoiding holes in the "frozen lake." The agent can move in
an intended direction, with some probability that it will move in a perpendicular direction instead.
The agent will get a reward of +1 if it reaches the goal and 0 otherwise.

24

Figure 6: The Gymnasium Pendulum environment.

Figure 7: The Gymnasium FrozenLake environment.

G.6 CliffWalking

The CliffWalking environment (Figure 8) is a deterministic grid-world environment. The agent must
navigate from the start to the goal cell in the fewest steps. If the agent falls off a "cliff," it accrues a
reward of -100 and resets at the start cell without ending the episode. The agent accrues -1 reward for
each cell that is not a cliff or a goal state. The goal cell is the only terminal state. The agent can move
up, down, left, and right.

Figure 8: The Gymnasium CliffWalking environment.

G.7 Bridge

The non-stationary bridge environment (Figure 9) is a grid-world setting where the agent must
navigate from the starting cell to one of two goal cells. The environment was originally introduced by
Lecarpentier and Rachelson [2019]. To reach a goal cell, the agent must cross a “bridge” surrounded
by terminal cells. The secondary goal cell is farther from the starting location but less risky because
fewer holes surround it. Unlike the CliffWalking environment, which has a single global transition
probability, the left and right halves of the Bridge map each have separate probability distributions.
NS-Gym allows for updates to just the left or right halves of the map or to the global value. Similar
to the FrozenLake environment, if the agent moves in some direction, there is some probability
that is moves in one of the perpendicular directions instead. The agent receives a +1 reward for

25

reaching a goal cell, a -1 reward for falling into a hole, and a 0 reward otherwise. Our version of the
non-stationary bridge environment is not included in the standard Gymnasium Python package. We
provide our implementation of the Bridge environment, as described by Lecarpentier and Rachelson
[2019], as part of the NS-Gym package.

Figure 9: The Bridge environment. The start cell is in red, the two goals are in green, and the terminal
“holes” are in gray.

G.8 Ant

The Ant MuJoCo environment (Figure 10) is a 3D quadruped robot, where the agent must take actions
to keep the ant in a healthy state while moving forward. NS-Gym can modify the gravity and mass of
the ant’s torso to induce non-stationary state transitions. The ant environment has a 105-dimensional
continuous observation space and an eight-dimensional continuous action space.

Figure 10: The Ant environment

G.9 Half Cheetah

The Half Cheetah MuJoCo environment (Figure 11) NS-Gym can alter the environment’s gravity,
mass of the front and back shins, mass of the front and back thighs, mass of the front and back feet,
and the damping coefficient of several leg joints. The half cheetah environment has a 17-dimensional
continuous observation space and a six-dimensional continuous action space.

Figure 11: The Half Cheetah Environment

26

G.10 Hopper

The Hopper MuJoCo environment is a two-dimensional one-legged figure. The agent’s objective is to
keep the hopper upright and moving forward. NS-Gym modifies the gravity, mass the the figure’s
torso, mass of its thigh, mass of its foot, the coefficient of friction of the floor, thigh joint damping
coefficient, leg joint damping coefficient ,and the foot joint damping coefficient. The environment
has an 11-dimensional continuous observation space and a three-dimensional action space.

Figure 12: The Hopper Environment

G.11 Inverted Pendulum

The Inverted Pendulum environment (Figure 13) is effectively the CartPole environment (G.1)
powered by the MuJoCo simulation engine. The agent’s objective is to keep the inverted pendulum
upright. NS-Gym induces non-stationarity by altering gravity, the pole’s mass, and the cart’s
mass. The environment has a four-dimensional continuous observation space and a one-dimensional
continuous action space.

Figure 13: The Inverted Pendulum Environment

G.12 Inverted Double Pendulum

The Inverted Double Pendulum environment (Figure 14) is a "double-pendulum" extension of the
CartPole control task. The agent’s objective is to keep the double pendulum upright. NS-Gym
induces non-stationarity by modulating gravity, the cart mass, each double pendulum link mass, the
damping coefficient of the joint connecting each pendulum link, and the damping coefficient of the
joint connecting the pendulum to the cart. This environment has a nine-dimensional continuous
observation space and a one-dimensional continuous action space.

G.13 Reacher

The Reacher environment (Figure 15) is a two-jointed robotic arm where the agent has to maneuver
the arm so that its end point is as close as possible to a target location. NS-Gym adds non-stationarity
by altering each robotic arm link masses and the arm joint damping coefficients. This environment
has a ten-dimensional continuous observation space and a two-dimensional continuous action space.

27

Figure 14: The Inverted Pendulum Environment

Figure 15: The Reacher Environment

G.14 Swimmer

The Swimmer MuJoCo environment (Figure 16 is a "swimmer" that consists of three links. The
agent needs to actuate the joints connecting each link to move the swimmer to the right as fast a
possible. NS-Gym induces non-stationarity by altering the mass of the swimmer’s middle segment.
This environment has an eight-dimensional continuous observation space and a two-dimensional
continuous action space.

Figure 16: The Swimmer Environment

G.15 Pusher

The Pusher MuJoCo environment (Figure 17) is a multi-jointed robotic arm. The agent needs to
control the robot so that it moves a cylindrical object to a goal location. NS-Gym induces non-
stationarity by modifying gravity, the mass of the shoulder link, the upper arm link mass, the forearm
link mass, the shoulder joint damping coefficient, and the elbow flex joint damping coefficient. This
environment has a 23-dimensional continuous observation space and a seven-dimensional continuous
action space.

28

Figure 17: The Swimmer Environment

G.16 Humanoid

The Humanoid MuJoCo environment (Figure 18) is a bipedal humanoid robot. The agent’s goal is to
actuate each of the robot joints to have it walk forward as fast as possible without falling. NS-Gym
induces non-stationary dynamics by modulating gravity, torso mass, the pelvis mass, the masses of
each part of the leg, the mass of the arms, the damping coefficient of each knee joint, and the damping
coefficient of each elbow joint. This environment has a 348-dimensional continuous observation
space and a 17-dimensional continuous action space. NS-Gym also supports the "stand-up" variation
of the environment.

Figure 18: The Humanoid Environment

29

Environment Name Tunable Environmental Parameters

AntEnv gravity, torso_mass

HalfCheetahEnv gravity, torso_mass, bthigh_mass,
bshin_mass, bfoot_mass,
fthigh_mass, fshin_mass,
ffeet_mass, floor_friction,
bthigh_damping, bshin_damping,
bfoot_damping, fthigh_damping,
fshin_damping, ffeet_damping

HopperEnv gravity, torso_mass,
thigh_mass, leg_mass,
foot_mass, floor_friction,

thigh_joint_damping,
leg_joint_damping,
foot_joint_damping

HumanoidEnv gravity, torso_mass,
lwaist_mass, pelvis_mass,
right_thigh mass, left_thigh_mass,
right_shin_mass, left_shin_mass,
right_foot_mass, left_foot_mass,
right_upper_arm_mass,
left_upper_arm_mass,
right_lower_arm_mass,
left_lower_arm_mass,
right_knee_damping,
left_knee_damping,
right_elbow_damping,
left_elbow_damping

InvertedPendulumEnv gravity, pole_mass, cart_mass
InvertedDoublePendulumEnv | gravity, cart_mass, polel_mass,

pole2_mass, slider_damping,
hingel_damping, hinge2_damping

ReacherEnv bodyO_mass, bodyl_mass,
jointO_damping, jointl_damping

SwimmerEnv body_mid_mass

PusherEnv gravity, r_shoulder_pan_link_mass,

r_shoulder_lift_link_mass,
r_upper_arm_link_mass,
r_forearm_link_mass,
r_shoulder_pan_joint_damping,
r_shoulder_lift_joint_damping,
r_elbow_flex_joint_damping

Table 10: Environmental parameters as they appear in NS-Gym for MuJoCo environments.

H Experimental Setup

In this section, we elaborate on how we set up the single and continuous change experiments for each
environment.

30

H.1 CartPole

 Single update case: We initialize the CartPole environment to its default state. After the
first decision epoch, we increase the mass of the pole from 0.1 to a value of 1.0 and 1.5.

* Continuous update case: We initialize the CartPole environment to its default state. After
each decision epoch, we increase the mass of the pole by 0.1.

We truncate the episode after 2500 episode steps if the agent does not reach a terminal state.

H.2 FrozenLake

* Single update case: We initially set the probability of moving in the intended direction to
0.7 and the probability of moving in each perpendicular direction to 0.15. After the first
decision epoch, we change the probability of moving in the intended direction to 0.4, 0.6, or
0.8. We update the chance of moving in a perpendicular direction accordingly.

* Continuous update case: We initialize the FrozenLake environment to be completely
deterministic. We decrease the chance of moving in the intended direction by 0.2 for the
first three decision epochs. We update the chance of moving in a perpendicular direction
accordingly.

We truncate the episode after 100 episode steps if the agent does not reach a terminal state.

H.3 CliffWalking

 Single update case: We initialize the environment to be deterministic. After the first
decision epoch, we update the transition probability to a value of 0.8, 0.6, or 0.4. The
probability of moving in the perpendicular and reverse directions are updated accordingly.

* Continuous update case: We initialize the environment to be deterministic. For the first 10
decision epochs, we decrease the chance of moving in the intended direction by 0.02. The
probabilities of moving in the perpendicular and reverse directions are updated accordingly.

In our experimental setup, we modify the standard CliffWalking rewards so that the goal state has
areward of +100. Additionally, after 200 decision epochs, if the agent has not found the goal, we
truncate the episode.

H.4 Bridge

* Single update case: We initially set the probability of moving in the intended direction
to 0.7 and the probability of moving in each of the perpendicular directions to 0.15. After
the first decision epoch, we change the probability of moving in the intended direction to
a value of 0.4, 0.6, or 0.8. We update the chance of moving in a perpendicular direction
accordingly.

* Continuous update case: We initialize the environment to be deterministic. At each
decision epoch, the probability of going in the intended direction decreases by 0.1.

We truncate the episode after 200 steps if the agent does not reach a terminal state.

H.5 Pendulum

* Single update case: We initialize the pendulum with a mass of 1.0. After the first time step,
we test two scenarios. In the first scenario, the pendulum’s mass is increased to 1.5. In the
second scenario, the mass is increased to 2.0.

* Continuous update case: The pendulum is initialized with a mass of 1.0, and the mass is
increased at each time step by 0.01.
H.6 Acrobot

* Single update case: The "first" link of the Acrobot double pendulum is initialized with a
mass of 1.0. After the first time step, we test two scenarios. In the first scenario, the link’s
mass is increased to 1.5. In the second scenario, the mass is decreased to 0.5.

31

¢ Continuous update case: The "first" link of the Acrobot is initialized with a mass of 1.0,
and the mass is increased by 0.1 at each time step.

H.7 MountainCar

* Single update case: The car’s power is initialized to 0.0015. We then test two scenarios:
one where the power supplied is halved and one where the power is doubled.

* Continuous update case: The car’s power is updated continuously according to a geometric
progression. Specifically, the power supplied at MDP time step ¢ is given by 0.0015 - 0.9%.

I Algorithm Details

In this section, we provide descriptions of algorithms used in NS-MDP benchmarking experiments.

1) MCTS is an anytime online search algorithm that selects optimal action using a model of the
environment. We use the Upper Confidence bound for Trees (UCT) algorithm [Kocsis and Szepesvari,
2006] with random rollouts.

2) The AlphaZero algorithm [Silver ef al., 2017] is a general game-playing algorithm that combines
tree search with a deep value and policy neural network. We train the AlphaZero policy network on a
stationary version and the environment but evaluate the agent on an NS-MDP.

3) We include the popular DDQN approach as a pure reinforcement learning method [van Hasselt et
al., 2015]. In the “with notification” experiments, we perform some gradient update steps using the
most up-to-date model of the MDP (to resemble the baseline setting used by Pettet et al. [2024]).

4) ADA-MCTS as a heuristic tree search algorithm that learns the environmental dynamics and acts
as it learns [Luo et al., 2024]. ADA-MCTS uses a risk-averse strategy to explore the environment
safely by balancing epistemic and aleatoric uncertainties. In our experiments, we only benchmarked
ADA-MCTS when the updated environmental parameters are unavailable, as its core lies in learning
about the updated change through environmental interactions.

5) The RATS algorithm proposed by Lecarpentier and Rachelson [2019] uses a minimax search
strategy to act in a risk-averse manner to future environmental changes. The approach was originally
designed against changes bounded by Lipschitz continuity.

6) We benchmark the Policy-Augmented-MCTS algorithm from Pettet ez al. [2024], which computes
a convex combination of returns generated through online search and a stale policy. Crucially, this
combination occurs outside the tree (as opposed to the AlphaZero algorithm), thereby stabilizing
search under non-stationarity. We evaluate PAMCTS with three « values, 0.25, 0.5, and 0.75, which
control the extent to which the stale policy is preferred over online search.

The Tables 11, 12, 13, 14, 15, and 16 show the parameters used in each experiment. For PPO,
DDPG, and A2C algorithms we reference the hyperparameters provided in the rl-baselines3-zoo
Raffin [2020] repository.

32

Single

Bridge FrozenLake CliffWalking CartPole
m | 500 300 1000 300
d | 100 100 200 500
c | V2 V2 V2 V2
v | 0.99 0.99 0.999 0.5
Continuous

m | 500 300 1000 300
d | 100 100 200 500
c | V2 V2 V2 V2
v | 0.99 0.99 0.999 0.5

Table 11: MCTS parameters for the single and continuous change experiments, where m is the
number of MCTS iterations, d is the maximum rollout depth, c is the exploration parameter, -y is the
tree discount factor.

Bridge FrozenLake CliffWalking CartPole
m 500 300 300 500
c V2 1.44 1.44 V2
0 0.99 0.999 0.999 1
layers | 3 3 3 2
units | 64 64 64 128
o 1 1 5 1
€ 0 0 0.75 0

Table 12: AlphaZero parameters for the single and continuous change experiments, where m is the
number of MCTS iterations, c is the exploration parameter, vy is the tree discount factor, layers are the
number of hidden layers in the neural network, and units are the number of units in each hidden layer.
The parameter « is the concentration parameter for the Dirichlet noise added to the priors in the root
node of the search tree. The parameter e controls the amount of noise added to the priors.

33

Bridge FrozenLake CliffWalking CartPole

layers | 3 2 2 2
units | 64 64 128 64
time 0.4 0.4 0.4 0.4

Table 13: DDQN parameters for both the single and continuous change experiments. The parameter
layers are the number of hidden layers in the DDQN network. The parameter units are the number
of units in each layer. In the "with" notification experiments, the time is the number of seconds the
agent has to collect data and do gradient updates.

Bridge FrozenLake CliffWalking CartPole
m 500 1000 1000 300
d 200 500 200 500
c V2 V2 V2 V2
¥ 0.99 0.99 0.999 1
layers | 3 2 2 2
units | 64 64 128 64

Table 14: PAMCTS experiment parameters for single and continuous experiments, where m is the
number of MCTS iterations, d is the MCTS search depth, c is the exploration parameter, -y is the
discount factor, layers are the number of layers in the DDQN, and units are the number of units in
each hidden layer.

Bridge FrozenLake CliffWalking

~ 1099 099 0.99

d|3 3 3
Table 15: RATS algorithm parameters. -y is the discount factor and d is the tree search depth.

Bridge FrozenLake CliffWalking

v | 0.99 0.99 0.99

m | 3000 100 3000

Table 16: ADA-MCTS algorithm parameters. -y is the discount factor and m is the number of
iterations.

34

J Experiment PAMCTS-Bound

For reference, we have computed the PAMCTS-Bound for the stochastic environments included in
this paper. As a policy-agnostic metric it is one way to quantify the magnitude of non-stationarity
itself, independent of any single agent’s performance. This provides a measure of environmental
difficulty other than reward alone.

Environment PAMCTS-Bound

FrozenLake - (Stochasticity 0.4) 0.3
FrozenLake - (Stochasticity 0.6) 0.1
FrozenLake - (Stochasticity 0.8) 0.1
CliffWalking - (Stochasticity 0.4) 0.6
CliffWalking - (Stochasticity 0.6 0.4

CliffWalking - (Stochasticity 0.8 0.2
Table 17: PAMCTS-Bound for stochastic grid world experiments

35

K Experimental Results

In this section, we include additional experimental results and figures. Table 20 shows the complete
results for the single change with and without notification experiments. Figures 19 , 20, 21, and 22
show the comparative performance of each decision-making agent in the single change experiments.
Figures 23, 24, 25, and 26 show the comparative performance between all agents in the continuous
change case.

We also provide additional experiments for the Pendulum, Acrobot, and Continuous MountainCar
environments. All three environments have continuous action space, state space, or a sparse reward
signal that makes it difficult for the tree-based approaches included in the NS-Gym baseline algorithms.
We instead benchmark these environments with the RL methods using the Stable Baselines3 Raffin et
al. [2021] implementations. Tables 18 and 19 present results for the PPO, DDPG and A2C algorithms
in the single change and continuous change settings respectively.

Each algorithm was trained on the “default” settings for each environment. In the Pendulum
environment, we modify the pendulum mass, in the Acrobot environment we modify the mass
of one of the links and in the Mountain car environment, we modify the power applied to the car at
each time step.

PPO DDPG A2C

1 —153.25£4.02 —14849+3.88 —T781.68 +£27.20
Pendulum 1.5 —236.46 £6.42 —197.33£5.70 —1248.56 £9.61

2 —321.14£8.86 —677.28=8.73 —1310.25£8.84

1 —77.01 +1.29 - —82.614 £ 0.82
Acrobot L.5 —98.766 £1.31 - —97.78 £1.08

0.5 —85.47£2.12 - —79.14 £ 0.98

0.0015 —60.81 £0.0015 93.84 +£0.0063 —9.18 £0.0024
Mountain 0.001125 —98.87 +0.14 88.74 £0.14 —99.9 £ 0.00
Car 0.00225 —99.80 £ 0.0068 94.99 +£0.0048 95.47 £ 0.024

Table 18: Additional experiments with single MDP change without notification on Pendulum, Acrobot,
and continuous MountainCar environment where we have continuous state and action spaces. Blank
spaces are where the policy is not applicable.

PPO DDPG A2C
Pendulum —4095.16 £5.74 —5167.97£6.07 —11333.77 £ 53.04
Acrobot —187.12 £ 2.47 - —227.442 +1.68
MountainCar —98.89 +0.11 —90.69 £0.31 —99.98 + 0.00

Table 19: Additional experiments where the MDP is continuously changing without notification
on Pendulum, Acrobot and continuous MountainCar environment. These environments have either
continuous action spaces or state spaces. Blank spaces are where the policy is not applicable

36

Single Transition Change With and Without Notification

MCTS AlphaZero DDQN PAMCTS PAMCTS PAMCTS ADA-MCTS RATS
0.25 05 0.75
With Notification

04 | -028 +0.56 0.18 £ 0.1 0.82 4033 0.52 4029 0.12+033 0.02+033 - 034+ 0.09
Bridge 06 | -032+0.55 0.8 + 0.06 0.80 035 20.10 £ 033 034032 046+ 0.3 - 030+ 0.09

0.8 | 0324055 0.98 + 0.02 0.90 025 032402 0.84+0.18 0.8+02 - 0.08 +0.03

04 | 0.09+0.17 0.140.03 024004 0.130.08 0.01 +0.02 0.07 + 0.06 - 0.61 +0.05
FrozenLake 0.6 | 0.31 027 021 +0.04 047 +0.05 034+0.11 028 +£0.11 035+0.11 - 0.86 + 0.04

0.8 | 0.53+0.29 0.51 +0.05 0.53 +0.05 0.62+0.11 0.78 +0.10 0.66 +0.11 - 0.97 + 0.02

04 | -1767.75 + 61.69 -588.23 + 46.46 -91250£42.39 -1668.47 + 64.08 -1285.94 +71.43 -1419.56 + 68.83 - -1077.98 + 48.82
CliffWalking 0.6 | -1162.91 + 62.46 -0.48 +10.77 24648 +2.08 -1184.65+57.88 49581 £ 50.71 -54345+ 5480 - -400.72 + 26.59

0.8 | 846.64+53.13 63.11+3.53 2089+ 1044 -852.95+56.15 -43.06 + 509 136.81 £2546 245.54 +927
CartPole || 6336244927 230814106 928433382 7408444323 122.89+0.5 13607029 - -

15| 67858 £51.13 902.05+83.01 230.57£21.39 70258 £43.60 124.29 + 0.47 135224+ 03 - -

Without Notification

04 | -0.58 +0.47 -0.26 + 0.56 0.82 4033 0.58 + 027 020 +033 -0.16 + 033 0.54 £ 0.07 -0.98 £ 0.02
Bridge 0.6 | -0.18 +0.57 0.58 + 0.47 0.78 + 036 046033 046 +0.3 038 +0.31 0.16 + 0.09 0.05 + 0.08

0.8 | 0.64 +0.45 0.92 +0.23 072404 04+ 031 0.72 4023 0.8+02 046 + 0.09 0.01 £ 001

04 | 0.11+0.18 0.06 + 0.02 022+0.17 0.15 + 0.04 0.16 + 0.03 0.12 +0.03 0.67 + 0.05 0.6 +0.05
FrozenLake 0.6 | 0.25 + 025 0.25 +0.04 0.66 + 0.19 03 +0.05 0.33 +0.05 027 +0.04 0.56+ 0.05 0.88 + 0.03

0.8 | 0.53 +0.29 0.39 + 0.05 091 +0.12 0.74 + 0.04 0.68 + 0.05 054+ 0.05 049 + 0.05 0.97 + 0.02

04 | -1593.89 4+ 68.9 -543.94 £4598 -1742.54£9129 -157221 £60.82 -477.50 + 54.66 -1382.04 + 77.88 -1503.34 & 53.57 -777.55+/-31.19
CliffWalking 0.6 | -1216.72 + 63.68 6.97 + 8.2 101827 £96.95 -1159.77 +53.85 -374.64 £ 44.31 -477.50 + 54.65 -1019.72 3599 -314.84 + 12.8

0.8 | -773.62 45467 6441 +£344 -287.17+40.55 -790.60 + 46.66 -54.22+ 1425 -109.08+2599 -523.73+£23.79 -231.86 + 422
CartPole 1| 60090 +47.68 441.1+£51.96 13553+028 52598 +31.91 12048 +0.57 135414032 - -

15 | 64128 +50.47 2728242125 139194027 467.35+2511 117.60 + 1.24 135424034 - -

Table 20: Table of mean rewards and standard error across for the single change environmental
parameter change experiment. The best-performing agents for each environment are in bold.

Non-Stationary Cliff Walking Single Transition Change
‘With Notification

?%{- e

0.6 08

—10001

—20001

—3000 1

Without Notification

0 S
? T 5

—1000 © ° g

g o

e
i 4 o
2000 8 8
—30001 o
o o

04 056 08
Probability of moving in the intended direction

Reward

B PAMCTS - 0.25 B PAMCTS - 0.5 B PAMCTS - 0.75 I MCTS B AlphaZero B DDQN EE ADA-MCTS Il RATS

Figure 19: Distribution of rewards for the CliffWalking experiments with a single change.

37

Non-Stationary Bridge Single Change

With Notification

801
604
404
204
04
©
S

Without Notification

801
601
409
201
0- =3

S
Probability of moving in the intended direction

0.4

Mean Success Rate

=
S

Il PAMCTS - 0.25 EE PAMCTS - 0.5 I PAMCTS - 0.75 N MCTS EEE AlphaZero HEE DDQN [ADA-MCTS [RATS

Figure 20: Average success rate (i.e., the agent finds the goal state) for each agent in the single change
experiments.

Non-Stationary CartPole Single Transition Change
With Notification

o

2000

o]
[¢] Qo
1500 8 §

@ @
® o000

ooo

1000

500

|
|
|

0.1 1.0 1.5
Without Notification

o 8
— —8—-—6—
01 10 15

Pole Mass
B MCTS B AlphaZero BN DDQN B PAMCTS - 0.25 B PAMCTS - 0.5 B PAMCTS - 0.75

Reward

Figure 21: Distribution of episode rewards for each agent tested on non-stationary CartPole environ-
ment with and without notification.

Non-Stationary FrozenLake Single Change

With Notification

1.0

0.8

0.6

0.4

0.2

0.0-
=
S
=
S

<
S

Without Notification

1.0

0.8

0.6

Mean Reward with Standard Error

0.44

0.2

0.0-
©

*x
S

S
Probability of moving in the intended direction
B PAMCTS - 0.25 EE PAMCTS - 0.5 B PAMCTS - 0.75 I MCTS B AlphaZero B DDQN = ADA-MCTS [RATS

Figure 22: Mean episode reward and standard error for each agent in a non-stationary FrozenLake
environment with a single change in its transition function.

Non-Stationary Cliff Walking Continuous Change

With Notification Without Notification
T T—— TR
—500 8 5 —500
8
~1000 { o ~1000 { E
~1500 1 ° ~1500 1 o
—E o e §
£ —20001 ~20001
& o
—25001 g —25001
—30001 8 —30001
R e T T e .
AN & & & \g} S \Q& N N & o \0& o \O&
> & & 9 N e > o &9 ® Ay >
§ <O «§ S \ «§ <O < X \
© > @G A N %\C > V\C) v N
LR L > PR L,
Method

Figure 23: Distribution of episode reward for each agent under the continuous change experiment
conditions.

39

Non-Stationary Bridge Continuous Change

With Notification ‘Without Notification
1.00 1.00 4
5
2 0751 0.75 1
3]
=
= 0.501 0.50 4
=
3
=
2! 0.251 0.251
=
E
~ 0001 0.00
3
z
& —0.259 ~0.251
g
= —0.50 —0.50
—0.751 —0.751

I PAMCTS - 0.25 EE PAMCTS - 0.5 I PAMCTS - 0.75 I DDON I AlphaZero ~ HEEl MCTS EEE RATS [ADA-MCTS

Figure 24: Mean reward and standard error for agents in the non-stationary Bridge environment under
the continuous change conditions.

Non-Stationary FrozenLake Continuous Change

With Notification Without Notification
0.74
L 0.7
IS}
&
0.6
T 0.6 4
3
E
5 051 0.5
=
»n
= 041
s 044 -
=
]
£ 039 0.31
~
=] 1
§ 0.24 0.2
=
0.14 0.14
0.0- 0.0

I PAMCTS - 0.25 EE PAMCTS - 0.5 I PAMCTS - 0.75 I DDON [AlphaZero HEE MCTS [RATS [ADA-MCTS

Figure 25: Mean reward and standard error for agents in the non-stationary FrozenLake environment
under continuous change conditions.

40

Non-Stationary Cartpole Continuous Change

With Notification Without Notification
2500 o 2500 o
o o
8 8
(o] (o]
2000 § 2000 §
8 8
15001 1500 1
k<]
g
Z
Q’i 1000 4 1000 4
500 500
ooy g & Sy g &
O&% & é{? 9 %Qx» Al 0&% & é@ < %Qx» >
Q¥ < X QX < X

Method

Figure 26: Distribution of episode rewards for agents in the continuous non-stationary CartPole
environment.

41

	Introduction
	Characteristics of NS-MDPs and Prior Work
	Framework Description
	Experimental Pipeline
	Evaluating Non-Stationary Markov Decision Processes

	Benchmark Experiments
	Conclusion
	Acknowledgments
	Additional NS-Gym Framework Description
	Limitations and Broader Impact
	NS-Gym Evaluation Module
	Execution Time, Vectorization, and Parallelization
	Additional Details on Simulating C-MDPs in NS-Gym
	Hardware Specifications
	Description of NS-Gym Environments
	CartPole
	Mountain Car
	Acrobot
	Pendulum
	FrozenLake
	CliffWalking
	Bridge
	Ant
	Half Cheetah
	Hopper
	Inverted Pendulum
	Inverted Double Pendulum
	Reacher
	Swimmer
	Pusher
	Humanoid

	Experimental Setup
	CartPole
	FrozenLake
	CliffWalking
	Bridge
	Pendulum
	Acrobot
	MountainCar

	Algorithm Details
	Experiment PAMCTS-Bound
	Experimental Results

