
Published as a conference paper at ICLR 2025

HANDLING DELAY IN REAL-TIME REINFORCEMENT
LEARNING

Ivan Anokin12, Rishav Rishav13, Matthew Riemer124, Stephen Chung5

Irina Rish126, Samira Ebrahimi Kahou136

1Mila 2Université de Montréal 3University of Calgary 4IBM Research
5University of Cambridge 6CIFAR AI Chair
ivan.anokhin@mila.quebec

ABSTRACT

Real-time reinforcement learning (RL) introduces several challenges. First, policies
are constrained to a fixed number of actions per second due to hardware limitations.
Second, the environment may change while the network is still computing an
action, leading to observational delay. The first issue can partly be addressed with
pipelining, leading to higher throughput and potentially better policies. However,
the second issue remains: if each neuron operates in parallel with an execution
time of τ , an N -layer feed-forward network experiences observation delay of
τN . Reducing the number of layers can decrease this delay, but at the cost of the
network’s expressivity. In this work, we explore the trade-off between minimizing
delay and network’s expressivity. We present a theoretically motivated solution
that leverages temporal skip connections combined with history-augmented ob-
servations. We evaluate several architectures and show that those incorporating
temporal skip connections achieve strong performance across various neuron ex-
ecution times, reinforcement learning algorithms, and environments, including
four Mujoco tasks and all MinAtar games. Moreover, we demonstrate parallel
neuron computation can accelerate inference by 6-350% on standard hardware.
Our investigation into temporal skip connections and parallel computations paves
the way for more efficient RL agents in real-time setting.

1 INTRODUCTION

(a)

0 20 40 60 80 100
Number of layers

0

100

200

300

Sp
ee

d-
up

 (%
)

gpu gpu (sparse weights) cpu

5 7
0

10
20

(b)

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
pe

rfo
rm

an
ce

M
LP

M
LP

 w
/ a

ug

M
LP

 w
/ L

ST
M

M
LP

 w
/ s

ki
p

M
LP

 w
/ s

ki
p

&
au

g

MuJoCo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

CN
N

CN
N

w/
 a

ug

CN
N

w/
 L

ST
M

CN
N

w/
 sk

ip

CN
N

w/
 sk

ip
 &

 a
ug

MinAtar

w/o w/ skip connections

0.0

0.2

0.4

0.6

0.8

1.0

CN
N

CN
N

w/
 a

ug

CN
N

w/
 L

ST
M

CN
N

w/
 sk

ip

CN
N

w/
 sk

ip
 &

 a
ug

MiniGrid

Figure 1: (a) Parallel computations of layers speed-up inference time. Speed-up on GPU is achieved
using default Pytorch software and widely accessible Nvidia GPU. (b) Normalized averaged perfor-
mance and standard error of agents in parallel computation framework. Agents with skip connections
and history-augmented observations exhibit strong performance. Performance is averaged across
the following environments: HalfCheetah-v4, Walker2d-v4, Ant-v4 and Hopper-v4 on Mujoco,
all six environments on MinAtar, and Empty-Random-5x5-v0 and DoorKey-5x5-v0 on MiniGrid.
Performance on Mujoco is also averaged across four different neuron execution times.

Neural network inference presents several challenges in real-time reinforcement learning (RL) as
the environment can change significantly, even during the networks’ inference process. One major
challenge is that the inference time directly impacts throughput, the number of actions the agent can
produce per second. High throughput is important in domains like robotics, algorithmic trading, and
real-time gaming, where frequent decision-making can significantly improve policy performance.

1

Published as a conference paper at ICLR 2025

To address this challenge, a straightforward approach is to speed up inference by employing pipelining
techniques. In a pipelined architecture, instead of waiting for the entire neural network to complete
its forward pass on one input before processing the next, each layer begins processing the subsequent
input as soon as it produces its output for the current one (Carreira et al., 2018; Iuzzolino et al., 2021).
This approach increases the throughput of a neural network (see Fig. 1a), as layers are effectively
working in parallel but on different inputs. Throughout this paper, we refer to this approach as the
parallel computation framework.

However, even within the parallel computation framework, a traditional N -layer feed-forward neural
network still suffers from another issue known as observational delay: the agent’s action at time step
t is based on an observation from time step t −Nδ where δ denotes execution time of each layer.
This delay arises because, in a pipelined system, each layer is processing data from different time
steps simultaneously – layer 1 processes input from time t, layer 2 processes the output of layer 1
from time t− δ, and so on (as illustrated in the center graph of Fig. 2). This challenge leads us to the
central question of this paper:

If we use parallel computations of layers, how do we address observational delay?

Reducing the number of layers can mitigate delay but limits the network’s expressivity. To overcome
this, we propose using temporal skip connections. Traditionally, skip connections are used to stabilize
training and allow gradient flow in deep networks (Ronneberger et al., 2015; He et al., 2016). However,
within the parallel computation framework, skip connections offer another advantage: they do not
only shortcut between layers along depth, but also along time, by sending activations forward in
time (see the rightmost graph in Fig. 2). This temporal application of skip connection in the parallel
computation setting reduces the observational delay. Nevertheless, the computational paths through
these temporal skip connections are shorter than those without them and thus offer limited expressivity
compared to longer paths through more neurons.

 t − δ t t + δ

 Dep
th

 t + 2δ

 obs

 1

 2

 Lay
er

1

 Lay
er

2

 Lay
er

3

 t + 5δ

 action

 Parallel Computations

 t − δ t t + δ t + 2δ

 obs

 1

 2

 t + 5δ

 action

 t − δ t t + δ t + 2δ

 obs

 1

 2

 t + 5δ

 action

 With Skip Connections

 Action

 Hidden

 Observation

 Computations

 Sequential Computations

 idle period

Figure 2: Computation flow of agents. Left graph represents sequential computations and the central
graph – parallel computations of layers. δ is execution time of each neuron (or layer). All nodes
at each column are available at the same time and can be processed further in parallel. The right
architecture with skip connections exhibits less delay as it performs shortcuts along time-steps.

We explore the trade-off between delay and network expressivity and investigate various types of
architectures to find an optimal balance. Our theoretical analysis quantifies the impact of skip
connections on reducing the regret associated with observational delay. Furthermore, we justify the
importance of augmenting observations with past data in architectures with temporal skip connections.
Experiments confirm the importance of skip connections and history-augmented observation (see Fig.
1b), and our analysis shows that the skip connection offers a fast but less refined path for processing
inputs, while the main connections provide a slower but more refined path. Our results show that
in many environments this allows the policy in a parallel computation setting to achieve similar
performance to an oracle agent with an instantaneous forward pass, provided the inference time of a
layer is not large.

While the parallel layer computation approach and temporal skip connections were proposed before
to accelerate predictions on image (Iuzzolino et al., 2021; Fischer et al., 2018) and video (Carreira
et al., 2018; Kugele et al., 2020) domains, this is the first application in RL – a domain where one
bad action can critically impact the entire trajectory due to the agent’s influence on the environment.

2

Published as a conference paper at ICLR 2025

To summarize, we introduce a solution to real-time RL: speeding up inference time by parallel
computations of layers and addressing associated observational delay. We demonstrate that parallel
computations significantly improve throughput on modern hardware like GPUs. To address the
observational delay, we provide a theoretically justified solution using temporal skip connections
and history-augmented observations. Our experiments demonstrated its effectiveness across various
cases, paving the way for more efficient RL agents in real-time setting.

2 RELATED WORK

Parallel computations of neurons (or layers). Parallel processing of information is consistent with
popular mathematical models of the human cortex (Tomita et al., 1999; Betti & Gori, 2019; Kubilius
et al., 2018; Larkum, 2013), where neurons operate asynchronously. Inspired by this, several attempts
have been made to parallelize neural networks, aiming to maximize processing resource utilization
and reduce latency. Carreira et al. (2018) introduced parallel video networks that employ parallel
layer computations and temporal skip connections, significantly boosting throughput (or frame rate)
during inference. Similarly, Iuzzolino et al. (2021) explored this approach for still images, enabling
fast “anytime predictions” that improve over time. Additionally, Fischer et al. (2018) provided a
theoretical framework for these ideas, and Kugele et al. (2020) applied them for Spiking Neural
Networks on image and video domains. Unlike these approaches, we apply these ideas in RL.

Several studies have proposed techniques to handle parallel computations of layers not only during
the forward pass but also during the backward pass (by modifying or replacing backpropagation) in
both training and inference. Sideways (Malinowski et al., 2020; 2021) achieved this with approximate
backpropagation in the video domain. Asynchronous Coagent Networks (Kostas et al., 2020)
and Chung (2022) introduced methods where each neural network unit operates independently to
maximize its own reward, enabling asynchronous inference and training of neurons. However,
Sideways focuses on video data, and both Coagent Networks and Chung (2022) are limited to a small
number of neurons, making scalability to larger networks challenging compared to our approach.

Delay in RL. Early works on handling delays in traditional RL settings include (Walsh et al., 2007;
Bander & White, 1999; Katsikopoulos & Engelbrecht, 2003; Altman & Nain, 1992). Notably,
(Katsikopoulos & Engelbrecht, 2003) was the first to introduce the notion of a Delayed Markov
Decision Process (DMDP). However, their results have not been fully translated into Deep RL.

Recent efforts have addressed delays in Deep RL. Firoiu et al. (2018) tackled delay by predicting
future observations, while Wang et al. (2023) trained the critic without delay, augmented state
information with historical data, and used self-supervised losses to improve performance on DMDPs.
The RLRD method (Bouteiller et al., 2021) further enhanced the critic by augmenting its input with
future on-policy actions available due to delay, resulting in more accurate value estimations.

These approaches consider delay as an external factor to the agent. However, our agent inherently
introduces delays due to parallel computations, resulting in additional interplay between the agent’s
architecture and these inherent delays. This allows us to introduce more inductive biases, such as
temporal skip connections, into the neural network architecture to effectively mitigate such delays.

3 PROBLEM SETTING AND NOTATION

A Markov Decision Process (MDP) (Puterman, 1994; Sutton & Barto, 2018) is defined as a tuple
(S,A,P0,P, γ), where S and A are the state and action spaces, respectively. P0 specifies the initial
state distribution such that P0(s) is the probability of a state s ∈ S being an initial state. P specifies
the state transition probability such that P(s′, r|s, a) is the probability of reaching to a new state
s′ ∈ S with an immediate reward r ∈ R after taking an action a ∈ A at a state s ∈ S. γ ∈ [0, 1) is
the discount factor, which weights the importance of rewards at future steps. It is typically assumed
that MDPs are ”pausable” i.e. that the agent and environment proceed in a turn-based interaction
framework where each waits for each other before proceeding. In realtime environments, however,
the agent and environment each proceed at their own pace (Travnik et al., 2018).

Then we define an asynchronous delayed MDP as a tuple (S,A,P0,Pd, γ, β, d), which extends the
standard notion of an MDP by defining β – the default behavior policy of the system between actions
taken by the agent, d ∈ N is amount of delay, and fixed interaction frequency, indicating the number of

3

Published as a conference paper at ICLR 2025

environment steps between the agent’s actions at the same time. Pd is the delayed transition probabil-
ity function, which we will define to model the environment’s dynamics under the influence of both the
agent and the default policy. Pd(s′, R | s, a) = Eβ

[∏d
k=1 P(sk, rk | sk−1, ak−1) | s0 = s, a0 = a

]
where s0 = s, a0 = a, sd = s′ and R =

∑d
k=1 rk is the cumulative reward over d steps. The delayed

transition probability function Pd captures the probability of transitioning from state s to state s′ over
d steps, starting with the agent’s action a and followed by the default policy β.

We extend asynchronous delayed MDP further to asynchronous delayed observation MDP (asyn-
chronous DOMDP) to define that agent observes history of past states (st−dN , st−d(N−1), . . . , st−d)
where N will define number of layers in neural network later.

3.1 FORMALIZING THE PARALLEL COMPUTATION FRAMEWORK

We execute layers of our neural network in parallel to speed-up inference in realtime settings. Thus,
we need to incorporate computational constraints related to the parallel computations. We define δ as
neural execution time i.e. the number of environment steps that pass during the computation of a
single neural network layer. If δ > 1, a default policy β takes control for δ steps. For δ < 1, we either
accelerate the environment or group ⌈1/δ⌉ layers together to form a new macro layer. The agent’s
policy, π, represented with N -layer neural network, observes a history of past states, hδ , at intervals of
δ: π(hδ) = π

(
st−⌈Nδ⌉, . . . , st−⌈2δ⌉, st−⌈δ⌉

)
. The policy must respect the computational constraint

that it cannot process past state st−k through more than ⌊k/δ⌋ layers before producing action at.
As such, our goal is to find a policy π(hδ) that maximizes cumulative rewards in a asynchronous
DOMDP with delay of ⌈δ⌉, subject to the constraint that L(st−k, a) ≤ ⌊k/δ⌋ ∀k ∈ {⌈δ⌉, . . . , ⌈Nδ⌉}
where L(st−k, a) is number of layers between st−k and a. We can view a neural network as a directed
acyclic graph (DAG), where the nodes represent input data or intermediate computational results,
and the edges represent the computational operations. L(s, a) is the path in this graph from s to a.
We define a neural network that only consists of the longest paths in π(hδ) as a vanilla feed-forward
neural network. All other paths will be referred to as temporal skip connections.

3.2 SOURCES OF REALTIME REGRET

We define a delay regret as the difference in performance of the optimal policy in the original MDP
and the optimal policy in asynchronous DOMDP. Similarly, an inaction regret is defined as the
difference in performance of the optimal policy in the original MDP and performance of default
policy β in asynchronous DOMDP. We give the formal definitions in Appendix F.

4 METHOD

We show benefits of temporal skip connections for minimization delay regret bound ∆delay in
Proposition 1 and benefits of temporal skip connections combined with the state augmented with
recent actions in Proposition 2.

4.1 ADDRESSING DELAY

In a vanilla feedforward neural network deployed to address realtime RL, actions at are based on
states st−Nδ delayed by Nδ steps. Temporal skip connections directly alleviate this issue as actions
at are now based on a set of N states {st−Nδ, ..., st−δ}. As a result, skip connections lead to a tighter
lower bound on delay regret, ∆delay(t) in a worst case environment.

Proposition 1 (Tighter Delay Regret Bound): For any vanilla N layer neural network without tem-
poral skip connections in parallel computation framework, the regret resulting from delay ∆vanilla

delay (t)
after t steps in a worst case environment can be lower bounded by:

∆vanilla
delay (t) ∈ Ω(t(1− (pminimax)

⌈Nδ⌉)) (1)

where pminimax := mins∈S,a∈A maxs′∈S p(s′|s, a) is a measure of environment stochasticity. How-
ever, a network with temporal skip connections achieves a tighter bound on delay regret ∆skip

delay(t):

4

Published as a conference paper at ICLR 2025

∆skip
delay(t) ∈ Ω(t(1− (pminimax)

⌈δ⌉)) (2)

which is less sensitive to the environment stochasticity measured by pminimax.

Following the lower bound on delay regret established in (Riemer et al., 2024), the delay regret
depends on the number of stochastic environment steps between an action and the input used to
produce it. Temporal skip connections enable the policy to incorporate the state from ⌈δ⌉ steps ago,
whereas a vanilla feedforward network can only condition on steps ⌈Nδ⌉ in the past. This can lead to
an exponential reduction in the policy’s inaccuracy caused by the stochasticity in the environment,
which becomes especially prominent for environments that are highly stochastic or neural networks
with a large number of layers.

4.2 ADDRESSING TRAINING STABILITY

Another difficulty with vanilla feedforward neural networks, even with parallel inference, is that
the effective delayed decision process where actions at are taken based on the delayed state st−Nδ

is non-Markovian. This fact will lead to unstable learning in many environments as typical RL
algorithms are not expected to converge in this regime. Meanwhile, this is another key issue that can
be addressed with temporal skip connections and augmenting state with recent actions. With this
architecture, we have access to all previous actions when computing at and thus can consider a stable
augmented state space s̃t = (st−Nδ, at−Nδ:t−1) that the decision process is Markovian with respect
to as p(rt, s̃t+1|s̃t, at) is stationary and stable over time.

Proposition 2 (Markovian Property): A vanilla N layer neural network without skip connections
in parallel computation framework bases its actions on the delayed state st−Nδ and experiences
non-Markovian environment transitions p(rt, st+1|st−Nδ, at) without having access to at−Nδ:t−1 =
at−Nδ, ..., at−1. These actions are available when using temporal skip connections, making environ-
ment Markovian based on the augmented delayed state space s̃t = (st−Nδ, at−Nδ:t−1).

The vanilla network is non-Markovian as it depends on past actions from a changing policy. Skip con-
nections and past actions remove this non-stationary dependency. This property can be illustrated with
the following example: If the action at at time t is based on the state st−1, the transition probability
function becomes P (s′|st−1, at) = P (s′|st, at)P (st|st−1, at−1)π(at−1|st−2). While P (s′|st, at)
is stationary, the term π(at−1|st−2) is non-stationary because the policy changes throughout learning.
However, by augmenting the state with at−1, the policy term disappears, and the transition function
becomes stationary. Proposition 2 is an important point to emphasize as it extends Proposition 1
to explain optimization issues related to delay that may be present even when the environment is
deterministic within the parallel computation framework. When using an earlier state to generate a
policy, the effect of the actions of that policy also depend on the actions taken between action com-
putations because of the non-Markovian nature of that input representation. As such, the transition
dynamics appear nonstationary as the policy itself changes and appear stochastic when the policy is
stochastic. This serves to slow down learning and leads to instability that hurts sample efficiency as
we demonstrate in our experiments.

When using temporal skip connections, our policy conditions on N previous states and actions
while only the most recent one st−δ and at−δ are needed in our derivations of Propositions 1 and
2. However, utilizing these previous states is still helpful within the framework of parallel layer
computation because we are able to consider more neural network layers for states that are more
outdated. This way the policy can be more expressive with respect to previous states than it is to the
most recent state. This is a useful feature in environments that are relatively stable and predictable
across each step while requiring complex high-level reasoning. For example, in a maze environment
the overall structure of the maze may stay constant across steps, so even distant steps can be useful in
processing a higher level plan of action with more recent steps being used to encode the representation
of the agent’s current location. Indeed, our experiments validate the value of adding more layers even
with outdated states in delayed variants of popular environments within the deep RL community.

Performance gap. Propositions 1, 2 highlight the performance gap between agents with and without
skip connections and last-action augmentation, in terms of delay regret. Besides, Propositions 1 and
3 (Appendix G) provide insights into the performance gap between the instantaneous and real-time

5

Published as a conference paper at ICLR 2025

actors in a parallel computation framework under worst-case environments. Notably, even with skip
connections, the delay δ remains. In contrast, the instantaneous actor does not experience any delay
or inaction regrets. The closer the environment is to a worst-case scenario, the more pronounced the
performance gap becomes.

However, when using skip connections, state-augmentation with last actions, deterministic environ-
ment, and neural execution time less than 1, Propositions 1, 3 falls short to differentiate between
instantaneous and real-time actors. In this case, the real-time actor also exhibits zero delay and
inaction regrets. Nevertheless, we anticipate the real-time actor to perform worse than the instanta-
neous actor. Skip connections may lack the expressivity needed to efficiently differentiate between
distinct environment states, effectively perceiving the environment as stochastic. This limitation
makes Proposition 1 relevant again.

4.3 ALGORITHM

We apply Soft Actor Critic (SAC) (Haarnoja et al., 2018) for continuous action-space environments or
PPO for discrete 1 . We train a critic without delay following suggestions from (Wang et al., 2023) and
an actor with appropriate delay and restriction following Subsection 3.1 with vanilla backpropagation.
We employ last action repetition as default policy, β, if δ > 1.

The basic structure of our SAC algorithm is presented in Algorithm 1. To begin collecting experience,
we initialize the first observation from the environment and set initial hidden activations, depicted
in Fig. 2, to zero 2. While the critic is trained online without delay, our actor is trained within
the parallel computation framework by unrolling on sub-trajectories sampled from the buffer (with
hidden activation set to zero at the first state of a sub-trajectory), allowing all weights to be available
for backpropagation. For details on the PPO variant of the algorithm, refer to Appendix A.

Algorithm 1 Soft Actor-Critic Algorithm with parallel neuron computation.

1: Init an actor and a critic with random parameters.
2: Set initial state to be s0, h

0
0, ..., h

N
0 , where hj

0 is activations for layer j at a time step 0.
3: Wrap the environment with sticky actions or repeating observations wrapper if needed based on

neural execution time.
4: for t ∈ 0, . . . , L do
5: at, h

0
t+1, ..., h

N
t+1 = Actor(st, h

0
t , ..., h

N
t) (Query current policy for the next action and next

Actor’s hidden activations given current observation and hidden activations)
6: Take the action at and receive {rt, st+1} from the environment.
7: Put {st, at, rt, st+1} to the buffer.
8: Sample transition {si, ai, ri, si+1} from the buffer and update the critic on it.
9: Sample sub-trajectory from the buffer {si, ai, ri, si+1, ..., ri+k, si+k}

10: Init h0
0, ..., h

N
0 and simulate the actor dynamic forward on given sub-trajectory.

11: Update the actor on the last transition of the sub-trajectory (via back-propagation through time
if needed)

12: end for

5 EXPERIMENTS

We perform our main experiments on Mujoco (Todorov et al., 2012), MiniAtar (Young & Tian, 2019)
and MiniGrid (Chevalier-Boisvert et al., 2023) environments. Mujoco has a continuous action space,
while MiniAtar and MiniGrid have discrete action spaces. We train our agents using SAC for Mujoco
and PPO (Schulman et al., 2017) for MiniGrid and MinAtar. We report mean and standard error (SE)
in all our plots and experiments unless stated otherwise. We normalize return for every environment
and neuron execution time with respect to vanilla SAC or PPO performance without delay. Additional
architectural and training details can be found in Appendix E.

1Full code is available at https://github.com/avecplezir/realtime-agent.
2Since we initialize the hidden activations to zero, the first delayed actions can be ineffective. We also tried

to initialize them by performing an instantaneous forward pass on the first observation, but saw no improvement.

6

https://github.com/avecplezir/realtime-agent

Published as a conference paper at ICLR 2025

5.1 MAIN RESULTS

We aim to validate our theoretical predictions that architectures with skip connections outperform
those without, and that history-augmented observations will further enhance the performance of
agents using skip connections according to Propositions 1 and 2.

We explore the following architectures within the parallel computation framework:

1. Default architectures: three-layer MLP or five-layer Convolutional Neural Network (CNN);

2. Augmenting observations with historical states and/or actions in the default architectures
(see Appendix C for details);

3. Replacing the second last fully connected layer with an LSTM in the default architectures;

4. Adding skip connections to the default architectures;

5. Augmenting observations with historical states and/or actions in the architectures with skip
connections.

6. The RLRD (Bouteiller et al., 2021) with neural execution time of one in Mujoco3.

We tested these architectures on four Mujoco environments (HalfCheetah-v4, Walker2d-v4, Ant-
v4, and Hopper-v4) and across four different neuron execution times (ranging from one to four).
Additionally, we also tested these architectures on all six MinAtar environments and two toy MiniGrid
environments – Random-5x5-v0 and DoorKey-5x5-v0 – where a neuron execution time of one is
applied to both MinAtar and MiniGrid. A summary of results across Mujoco, MinAtar and minigrid
is presented in Fig. 1b and detailed quantitative results can be found in Appendix I.

Our findings show that adding skip connections to default MLP/CNN architectures significantly
enhances performance. Additionally, augmenting observations with historical states and/or actions
further improves performance, aligning with Propositions 1 and 2. Fig. 3 presents more detailed
results for the Mujoco environments with varying neuron execution times. It demonstrates that the
agents with skip connections and state augmentation consistently match or exceed the performance
of agents without skip connections and RLRD across nearly all tested environments and neuron
execution times.

Moreover, as expected, in Fig. 1b we observe that neither LSTMs nor history-augmented observations
offer much benefit to the default architecture without skip connections in the Mujoco or MinAtar
environments. In contrast, history augmentation and LSTMs significantly improve performance
in the MiniGrid environments, likely due to their underlying POMDP structure, where historical
information is essential for better decision-making. We conjecture that temporal skip connection is
also helpful for POMDP, as it allows agents to integrate historical data from different time steps.

1 2 3 4
Neuron Execution Time

0.2

0.4

0.6

No
rm

al
ize

d
Re

tu
rn

HalfCheetah-v4

1 2 3 4
Neuron Execution Time

0.6

0.8

1.0
Walker2d-v4

1 2 3 4
Neuron Execution Time

0.4

0.6

0.8

1.0

Ant-v4

1 2 3 4
Neuron Execution Time

0.5

1.0

Hopper-v4

two layers w/ aug three layers w/ aug three layers w/ skip connections & aug RLRD

Figure 3: The performance of different agents and RLRD method on Mujoco. The agent with skip
connections performs as well as, or better than, other agents in general. SAC without delay, which
has a normalized performance of one, is omitted from the plots. The shaded area indicates SE across
3 seeds.

Performance drop. We aim to quantify the performance gap between an agent in a standard MDP
without delay and our best agent in the parallel computation framework. Additionally, we are

3RLRD addresses DOMDP rather than policy-constrained DOMDP, making it not directly comparable to
other choices. We use the publicly available RLRD code to obtain the results.

7

Published as a conference paper at ICLR 2025

interested in identifying scenarios where it may be possible to close this gap between the agent in
these two settings.

Fig. 3 indicates that, in many cases, there is no drop in performance when compared to the vanilla
SAC without any delay. For example, this holds true for Hopper across all neuron execution times, as
well as for Walker and Ant with neuron execution times of one and two.

HalfCheetah is the only Mujoco environment where a significant performance drop occurs compared
to the agent without delay. To address this, we accelerated the environment making time between
consecutive observation twice shorter. This adjustment resulted in a normalized performance of
0.87± 0.06 for the agent with skip connections, bringing it closer to the performance of the vanilla
SAC with instantaneous actions.

In MiniGrid, the performance drop caused by parallel computations is relatively minor, whereas
in MinAtar, the drop is more pronounced (refer to Appendix Tables 10 and 11). We conjecture
that rendering skip connections alone insufficient to close the performance gap in MinAtar with
considered neural execution time.

One potential solution could involve increasing the neural network’s expressivity or reducing the
neural execution time. However, if the architecture and its associated delay are fixed, the optimal
solution achievable with this architecture may be strictly worse compared to an instantaneous actor,
as discussed in Section 4.2.

Overall, the results show that in most environments, an agent with skip connections operating in the
parallel regime can achieve performance comparable to an agent without delay, while significantly
improving inference time. However, in more complex cases, skip connections alone may not be
sufficient to match the performance of an agent without delay.

5.2 ABLATION STUDY

To identify the most effective type of skip connection, we conducted an ablation study comparing
three options: projection to action, projection from observations, and a combination of projection
to action with residual connections, as shown in Fig. 4. For simplicity, we refer to these sometimes
as proj-to-action, proj-from-obs, and proj-to-action & res, respectively. Additionally we tested all
possible forward skip connections between layers in Mujoco, denoting this option as All Skips. The
results of the ablation study are summarized in Table 1. The findings help guide our selection of the
default skip connection type for each environment. Based on the results, we adopt proj-from-obs
for Mujoco environments and proj-to-action & res for MinAtar and MiniGrid, referring to these
configurations as “skip connections” throughout the rest of the paper.

A detailed ablation study on other architectural choices, including the number of layers and augmen-
tation strategies, is provided in AppendixC.

t − δ t t + δ t + 2δ
Time

obs

1

2

t + 5δ

action

Projections to Action

t − δ t t + δ

D
ep

th

t + 2δ
Time

obs

1

2

t + 5δ

action

Residual Connections

t − δ t t + δ t + 2δ

obs

1

2

t + 5δ

action

Projections From Observation

Action

Hidden

Observation

Computations

Figure 4: Illustration of different skip connections. δ represents execution time of each neuron.

Disentangling architectural benefits of skip connections. To disentangle the architectural ben-
efits of temporal skip connections from their impact on reducing delays in parallel computation
framework, we report the performance of a vanilla SAC pipeline, both with and without traditional
skip connections and without any computational delay, in Table 2. The results show a significant

8

Published as a conference paper at ICLR 2025

Table 1: Comparison between different skip-connection. Normalized averaged performance and
standard error of agents are reported. For each task mean and SE is computed based on three seeds.

MuJoCo MinAtar MiniGrid
Projections from Observation 0.79± 0.04 0.45± 0.05 0.91± .006
Projections to Action 0.78± 0.04 0.46± 0.04 0.95± .002
Projections to Action & Residual 0.77± 0.05 0.52± 0.06 0.96± .002
All Skips 0.75± 0.05 − −

performance improvement from traditional skip connections only in the Ant environment. Therefore,
we believe that the performance gain from temporal skip connections may be due to factors beyond
just reducing computational delay in only the Ant environment in parallel computation framework.

Table 2: Vanilla (without delay) SAC with and without skip connections.

Halfcheetah-v4 Walker2d-v4 Ant-v4 Hopper-v4
SAC 11739± 283 4415± 227 3595± 1027 2672± 463
SAC w/ skip connections 11250± 32 4597± 100 5719± 176 2451± 52

5.3 ANALYSIS

Distillation. We aimed to determine whether performance limitations were due to the RL algorithm
or the expressivity of our architecture. To investigate this, we used a distillation approach (employing
DAgger (Ross et al., 2011)) to transfer a highly-performing vanilla SAC HalfCheetah policy (return
of 11, 000) into our agent with skip connections and a neuron execution time of one. However, the
distilled agent achieved a return of only 7590 ± 93, which was comparable to training the same
architecture directly with SAC (7892± 378). This suggests that the performance bottleneck is not
algorithm-specific but rather a consequence of the reduced expressivity of the agent’s architecture in
capturing the true state.

default obs first layer second layer

0

1000

2000

3000

Re
tu

rn

Figure 5: Removing different con-
nections in the proj-to-action agent.
Mean and one SD across 100
episodes are reported.

Analyzing skip connections. We hypothesize that skip con-
nections enable the generation of fast & effective actions, while
subsequent layers refine these actions. To validate this, we
removed various projection and connection pathways in a three-
layer proj-to-action agent in Ant-v4 environment with a neuron
execution time of four (Fig. 5). Specifically, we removed
projections from observations, projections from the first-layer
representations, and connections from the second-layer repre-
sentations to the action space. The agent performed poorly with-
out the first two projections, but still achieved some non-zero
return when the connections from the last layer were removed,
supporting our hypothesis.

5.4 INFERENCE TIME SPEED-UP

We evaluated the speed-up caused by parallel computations of neurons on various hardware platforms,
observing significant improvements in inference time when utilizing a GPU. Fig. 1a illustrates
the percentage improvement in inference speed as the number of layers increases across different
hardware configurations.

GPU. For GPU setting we measured performance speed-up on a single A100SXM4 GPU with 40
GB memory. The tests were conducted on a deep Multilayer Perceptron (MLP) with a batch size of
one and a hidden layer size of 256 for all layers. For parallel computation on the GPU, we naively
concatenated all inputs to the layers and combined all layer weights into one large sparse matrix. For
agents without skip connections, this matrix has a block-diagonal form. We then used either regular

9

Published as a conference paper at ICLR 2025

or sparse matrix multiplication to compute the output for each layer. In Fig. 1a, these approaches
are labeled as GPU and GPU (sparse weights), respectively. The MLP was implemented in PyTorch,
utilizing PyTorch’s sparse tensor representations and sparse matrix multiplication for the GPU (sparse
weights) approach.

Fig. 1a shows that the parallel computations on the GPU accelerate inference time considerably for
deep neural networks. Regular matrix multiplication reached its peak performance speed-up around
30 layers, after which the speed-up started to decline; sparse matrix multiplication surpassed regular
matrix multiplication at around 30 layers and continued to increase almost linearly with the number
of layers achieving 350% speed-up for 100-layers MLP in our test setting.

CPU. We evaluated the benefits of parallelizing layers using C++ multi-threading on a CPU with 32
cores and 32 GB of RAM. Our tests showed a 6% speed-up for a 10-layer network, but gains dropped
to 0.1-1% for networks with over 20 layers due to thread synchronization overhead. We used a batch
size of 10,000 and hidden dimensions of 10,000 in MLP, with similar trends observed across other
configurations. The limited speed-up can be attributed to the Eigen C++ library, which optimizes
matrix multiplications through multi-threading, reducing the impact of further parallelization. In
contrast, parallelizing naive matrix multiplications (without Eigen’s optimizations) scales linearly
with the number of layers, doubling for 2 layers, tripling for 3, and so on, until performance plateaus
around 40 layers.

6 LIMITATIONS

One important assumption we make in our experiments is that we have a fixed neuron execution
time (δ) which is not the case in real world environments where δ can be stochastic. We propose
this as a future line of work where methods can explore handling stochastic δ. Additionally, we
limit our experiments to at most a 5-layer neural network, as scaling vanilla RL methods to deeper
architectures is non-trivial and often requires additional losses or training tricks (see Obando-Ceron
et al. (2024)). Finally, we believe neuromorphic computing will benefit from our approach the most
due to parallel nature of our approach. However, since neuromorphic chips are not widely available
our immediate impact on the field may be limited.

7 CONCLUSION

Our work addresses the challenge of delays in reinforcement learning caused by parallel computations
of neurons. We theoretically and experimentally show the advantages of architectures with temporal
skip connections and history augmentation. These architectures demonstrate robust performance
across various environments and neuron execution times. Furthermore, we demonstrate that when
neuron execution time is sufficiently small, agents in the parallel regime can achieve similar perfor-
mance to agents in the instantaneous regime, while significantly accelerating inference time on GPUs.
This property is particularly beneficial in dynamic settings requiring rapid decision-making. However,
when neuron execution times are bigger, or environments are more complex (e.g., MinAtar), the
performance gap between the instantaneous and parallel regimes widens. Further research is needed
to either mitigate this gap or identify cases where it may be unavoidable. Future studies could also
explore asynchronous neuron computation and leverage hardware optimizations to further enhance
speed-up.

8 ACKNOWLEDGMENT

We acknowledge the support from the Canada CIFAR AI Chair Program and from the Canada
Excellence Research Chairs Program. The research was enabled in part by computational resources
provided by the Digital Research Alliance of Canada and Mila Quebec AI Institute. IA thanks
Nishanth Anand and Arsenii Kuznetsov for helpful discussions and comments, and Serge Zakharov
for his consultation on Eigen C++.

10

Published as a conference paper at ICLR 2025

REFERENCES

Eitan Altman and Philippe Nain. Closed-loop control with delayed information. ACM sigmetrics
performance evaluation review, 20(1):193–204, 1992.

James L Bander and CC White. Markov decision processes with noise-corrupted and delayed state
observations. Journal of the Operational Research Society, 50:660–668, 1999.

Alessandro Betti and Marco Gori. Backprop diffusion is biologically plausible. arXiv preprint
arXiv:1912.04635, 2019.

Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas. Rein-
forcement learning with random delays. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=QFYnKlBJYR.

João Carreira, Viorica Pătrăucean, Laurent Mazare, Andrew Zisserman, and Simon Osindero. Mas-
sively parallel video networks. In European Conference on Computer Vision (ECCV). DeepMind
and Department of Engineering Science, University of Oxford, 2018.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831,
2023.

Stephen Chung. Learning by competition of self-interested reinforcement learning agents. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 6384–6393, 2022.

Vlad Firoiu, Tina Ju, and Josh Tenenbaum. At human speed: Deep reinforcement learning with
action delay, 2018.

Volker Fischer, Jan Köhler, and Thomas Pfeil. The streaming rollout of deep networks-towards fully
model-parallel execution. Advances in Neural Information Processing Systems, 31, 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Michael L. Iuzzolino, Michael C. Mozer, and Samy Bengio. Improving anytime prediction with
parallel cascaded networks and a temporal-difference loss. In Proceedings of the 35th Conference
on Neural Information Processing Systems (NeurIPS). NeurIPS, 2021.

K.V. Katsikopoulos and S.E. Engelbrecht. Markov decision processes with delays and asynchronous
cost collection. IEEE Transactions on Automatic Control, 48(4):568–574, 2003. doi: 10.1109/
TAC.2003.809799.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2), 2002.

James Kostas, Chris Nota, and Philip Thomas. Asynchronous coagent networks. In International
Conference on Machine Learning, pp. 5426–5435. PMLR, 2020.

Jonas Kubilius, Martin Schrimpf, Aran Nayebi, Daniel Bear, Daniel LK Yamins, and James J DiCarlo.
Cornet: Modeling the neural mechanisms of core object recognition. BioRxiv, pp. 408385, 2018.

A Kugele, T Pfeil, M Pfeiffer, and E Chicca. Efficient processing of spatio-temporal data streams
with spiking neural networks front, 2020.

Matthew Larkum. A cellular mechanism for cortical associations: an organizing principle for the
cerebral cortex. Trends in neurosciences, 36(3):141–151, 2013.

11

https://openreview.net/forum?id=QFYnKlBJYR

Published as a conference paper at ICLR 2025

Mateusz Malinowski, Grzegorz Swirszcz, Joao Carreira, and Viorica Patraucean. Sideways: Depth-
parallel training of video models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

Mateusz Malinowski, Dimitrios Vytiniotis, Grzegorz Swirszcz, Viorica Patraucean, and Joao Carreira.
Gradient forward-propagation for large-scale temporal video modelling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9249–9259, 2021.

Johan Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Foerster,
Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of experts unlock
parameter scaling for deep rl. arXiv preprint arXiv:2402.08609, 2024.

ML Puterman. Markov decision processes. 1994. Jhon Wiley & Sons, New Jersey, 1994.

Matthew Riemer, Gopeshh Subbaraj, Glen Berseth, and Irina Rish. Enabling realtime reinforcement
learning at scale with staggered asynchronous inference. arXiv preprint arXiv:2412.14355, 2024.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention (MICCAI), pp. 234–241. Springer, 2015.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: an introduction, 2nd edn. adaptive
computation and machine learning, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In IROS, pp. 5026–5033. IEEE, 2012. ISBN 978-1-4673-1737-5. URL http:
//dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12.

Hyoe Tomita, Machiko Ohbayashi, Kiyoshi Nakahara, Isao Hasegawa, and Yasushi Miyashita. Top-
down signal from prefrontal cortex in executive control of memory retrieval. Nature, 401(6754):
699–703, 1999.

Jaden B Travnik, Kory W Mathewson, Richard S Sutton, and Patrick M Pilarski. Reactive reinforce-
ment learning in asynchronous environments. Frontiers in Robotics and AI, 5:79, 2018.

Thomas J. Walsh, Ali Nouri, Lihong Li, and Michael L. Littman. Planning and learning in environ-
ments with delayed feedback. In Joost N. Kok, Jacek Koronacki, Raomon Lopez de Mantaras,
Stan Matwin, Dunja Mladenič, and Andrzej Skowron (eds.), Machine Learning: ECML 2007, pp.
442–453, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-74958-5.

W. Wang, D. Han, X. Luo, and D. Li. Addressing signal delay in deep reinforcement learning. In
The Twelfth International Conference on Learning Representations, Virtual Event, October 2023.
ICLR.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for more efficient reinforcement
learning experiments. CoRR, abs/1903.03176, 2019. URL http://arxiv.org/abs/1903.
03176.

12

http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
http://arxiv.org/abs/1903.03176
http://arxiv.org/abs/1903.03176

Published as a conference paper at ICLR 2025

A PPO ALGORITHM WITH PARALLEL NEURON COMPUTATION

The basic structure of the PPO algorithm is presented in Algorithm 2. To begin collecting experience,
we initialize the first observation from the environment and set initial hidden activations, depicted in
Fig. 2, by performing an instantaneous forward pass on the first observation. While the critic is trained
online without delay, our actor is trained within the in-parallel computation framework by unrolling it
on recent sub-trajectories stored in the buffer (with hidden activation reset with instantaneous forward
pass), allowing all weights to be available for backpropagation.

Typically, in PPO, the critic and actor share a common backbone. However, to enable online training
of the critic without delay, we employ separate neural networks for the critic and actor.

Algorithm 2 PPO with parallel neuron computation.

1: Init an actor and a critic with random parameters.
2: Set initial state to be s0, h

0
0, ..., h

N
0 , where hj

0 is activations for layer j at a time step 0.
3: Wrap the environment with sticky actions or repeating observations wrapper if needed based on

neural execution time.
4: for t ∈ 0, . . . , L do
5: at, h

0
t+1, ..., h

N
t+1 = Actor(st, h

0
t , ..., h

N
t) (Query current policy for the next action and next

Actor’s hidden activations given current observation and hidden activations)
6: Take the action at and receive {rt, st+1} from the environment and put {st, at, rt} to the

buffer.
7: if buffer is full then
8: Compute gae return on the buffer.
9: for t ∈ 0, . . . , n epochs do

10: Init h0
0, ..., h

N
0 and simulate the actor dynamic forward and get critic output without delay

on the collected buffer.
11: Compute the PPO loss
12: Update the actor and the critic (via back-propagation through time if needed)
13: end for
14: Empty the buffer
15: end if
16: end for

B SUPPLEMENTARY EXPERIMENTAL RESULTS

Atari games. We present preliminary results on a small subset of Atari environment in Table 3. We
use the same architectures and hyper-parameters as we used for MiniGrid experiments. As standard
choice in Atari we augment the state with 4 past observations, grayscaled observations, for all actors
and bin reward to be +1, 0,−1 by its sign, and repeat each action four times for all agents.

Table 3: Subset of Atari games average returns after training on 1 mln observations. The results are
averaged across three seeds, mean and standard deviation are reported. PPO denotes vanilla PPO
without inference delay. CNN and CNN with skip connections denote architecture executed withing
parallel computation framework with neural execution time of one.

PPO CNN w/ aug CNN w/ skip & aug
Boxing-v5 21.4± 4.4 2.8± 1.4 2.6± 3.6
Breakout-v5 15.6± 7.6 6.3± 0.7 6.9± 5.5
BattleZone-v5 3683± 375 5336± 1366 4943± 984
SpaceInvaders-v5 386± 27 412± 8 456± 31
Assault-v5 887± 186 660± 9 712± 37
Bowling-v5 37.2± 2.4 37.9± 4.9 40.9± 9.6
Freeway-v5 22.18± 0.34 22.18± 0.34 22.18± 0.34

13

Published as a conference paper at ICLR 2025

Stochastic environments. We also conducted experiments in stochastic environments by introduc-
ing ”sticky actions” in MinAtar, where the agent’s last action was repeated with a probability of 0.25
(Table 4). This modification led to a decline in performance across all agents; however, the relative
trends remained consistent.

Table 4: Results after training on 10 million samples in MinAtar games with a sticky action probability
of 0.25. The mean and standard error across three seeds are reported. The neuron execution time is 1.
PPO refers to the standard implementation of PPO without inference delay.

Breakout-v0 Seaquest-v0 Freeway-v0 Asterix-v0 SpaceInv-v0
PPO 8.29± 1.16 21.48± 8.55 60.15± 1.53 25.38± 2.40 91.38± 12.33
CNN w/ aug 3.38± 0.32 2.72± 1.15 27.59± 2.49 4.25± 1.86 25.08± 0.43
CNN w/ skip & aug 6.29± 0.18 5.38± 0.83 53.51± 0.84 9.94± 2.03 40.47± 1.04

Sequential baseline. Throughout the paper, we use an agent with pipelining (parallel computation
of layers) but without skip connections as our simplest baseline. In Table 5, we also present a
baseline for an agent that computes layers sequentially (see the leftmost graph in Fig. 2). To
construct this baseline, we needed to estimate how much slower an agent would be without parallel
computations. To highlight the potential benefits of pipelining, we assumed an ideal speed-up
scenario for parallelization, representing the performance gain at its theoretical limit. Specifically, for
a three-layer neural network, we assumed a threefold slowdown when abandoning parallelization.

It is important to note that Table 5 reinterprets the information available in Fig. 3. We report the
sequential agent for MinAtar in Table 10.

Table 5: Mujoco average normilized returns after 1mln states of training for the four selected
environments. Neural execution time is one.

Halfcheetah-v4 Walker2d-v4 Ant-v4 Hopper-v4
sequential three layers w/ aug 0.246 0.651 0.516 0.456
three layers w/ aug 0.574 0.888 0.974 0.998
three layers w/ skip & aug 0.685 0.807 0.828 1.309

C SUPPLEMENTARY ABLATION RESULTS

Varying number of layers. We are interested in how the number of layers impacts the performance
of the agents. Our hypothesis is that performance will be highly sensitive to the number of layers in a
default MLP, as it directly influences the amount of delay. In contrast, we expect the sensitivity to be
lower for MLPs with skip connections. Additionally, we aim to investigate whether an architecture
with a well-tuned number of layers, but without skip connections, could outperform one that includes
skip connections.

Figure 6 shows that the optimal number of layers without skip connections for Mujoco environments
in the parallel pipeline is two. However, this configuration does not outperform the MLP with skip
connections. In fact, the results are even stronger: as shown in Figure 3, the three-layer MLP with
skip connections consistently outperforms both two- and three-layer MLPs without skip connections
across nearly all environments and neural execution times.

Additionally, we varied the number of layers in the augmented agent with skip connections (having
a neuron execution time of four) across three Mujoco environments, as illustrated in Figure 10.
We found that increasing the number of layers from two to three improved performance in all
environments, a trend also supported by the last two bars in Figure 6. However, beyond three layers,
the performance trends diverged and stopped being statistically significant, leading us to adopt three
layers as the default choice for skip-connected MLPs. Notably, performance does not significantly

14

Published as a conference paper at ICLR 2025

drop when exceeding three layers, suggesting that the architecture with skip connections adapts the
effective number of layers to manage the delay.

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
pe

rfo
rm

an
ce

1
la

ye
r

1
la

ye
r w

/ a
ug

2
la

ye
rs

2
la

ye
rs

 w
/ a

ug

3
la

ye
rs

3
la

ye
rs

 w
/ a

ug

2
la

ye
rs

 w
/ s

ki
p

&
au

g

3
la

ye
rs

 w
/ s

ki
p

&
au

g

MuJoCo

w/o w/ skip connections

Figure 6: Ablating number of layers in Mujoco.

0.0

0.1

0.2

0.3

0.4

0.5

CN
N

w/
 L

ST
M

CN
N

w/
 L

ST
M

 &
 a

ug

CN
N

w/
 sk

ip

CN
N

w/
 sk

ip
 &

 a
ug

CN
N

w/
 L

ST
M

 &
 sk

ip

CN
N

w/
 L

ST
M

 &
 sk

ip
 &

 a
ug

MinAtar

w/ w/o LSTM

Figure 7: Recurrence with skip connections.

Combining recurrent and skip connections. One way to make agents more expressive without
increasing delay is to add recurrent connections. We investigated whether this result in better perfor-
mance. We experimented with combining recurrent (LSTM) and skip connections. However, this
combination degraded performance on MinAtar (see Fig. 7) or failed to provide notable improvements
on MiniGrid (see Table 11). We believe that combination of LSTM and skip connection may require
additional tuning of hyperparameters.

Action repetition. We included SAC-repeat-2 and SAC-repeat-3, which are variants of the vanilla
instantaneous SAC algorithm with action repetition, as part of our ablation study (Table 6). In these
versions, the same action is repeated in the environment two or three times, respectively. This can
improve overall performance in MuJoCo environments by simplifying the credit assignment problem.
Our findings show that action repetition significantly enhance performance on the Ant and Hopper
tasks with two repetitions, and on Hopper with three repetitions. We believe this makes action
repetition particularly responsible for the good results in a parallel computations setting, when the
neural execution time is set to two for Ant and Hopper, and three for Hopper.

Table 6: Average returns after 1mln states of training in the four selected environments for SAC
and SAC with sticky actions. The results are averaged across 3 seeds. Mean and standard error are
reported.

Halfcheetah-v4 Walker2d-v4 Ant-v4 Hopper-v4
SAC 11739± 283 4415± 227 3595± 1027 2672± 463
SAC-repeat-2 8626± 523 4670± 221 4102± 1228 3520± 140
SAC-repeat-3 8168± 618 3763± 582 2625± 796 3517± 94

Ablating observation augmentation strategies. Following common practices, we augment obser-
vations with four past frames in MiniGrid to account for its original partial observability, two recent
actions in Mujoco, and one recent action in MinAtar, based on Proposition 2 and the ablation study
results presented here.

We conducted an ablation study to investigate different observation augmentation strategies by varying
the number of recent available actions included in state augmentation for Mujoco, ranging number
of actions from one to three. Fig. 8 presents the results for two architectures: three-layer MLP and
three-layer MLP with skip connections. While there is no significant difference in performance for the
standard three-layer MLP, the MLP with skip connections shows a slight performance improvement
when augmenting the state with the two most recent available actions. Based on these findings, we
use state augmentation with two actions as the default choice for Mujoco environments.

15

Published as a conference paper at ICLR 2025

Similarly, Fig. 9 shows the results for MinAtar. We experimented with three augmentation strategies:
using the four most recent available states, adding the most recent available action to the hidden
representations of the last two fully connected layers, and a combination of both. Interestingly, all
these strategies resulted in approximately the same performance improvement for the CNN with skip
connections. Therefore, we chose the simpler and theoretically supported approach of augmenting
with the last available action as the default strategy in MinAtar environments.

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
pe

rfo
rm

an
ce

3
la

ye
rs

 w
/ 1

 a
ct

io
n

3
la

ye
rs

 w
/ 2

 a
ct

io
ns

3
la

ye
rs

 w
/ 3

 a
ct

io
ns

3
la

ye
rs

 w
/ s

ki
p

&
1

ac
tio

n

3
la

ye
rs

 w
/ s

ki
p

&
2

ac
tio

ns

3
la

ye
rs

 w
/ s

ki
p

&
3

ac
tio

ns

MuJoCo

w/o w/ skip connections

Figure 8: Ablating augmentation choices in Mu-
joco.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

CN
N

w/
 sk

ip

CN
N

w/
 sk

ip
 &

 4
 o

bs

CN
N

w/
 sk

ip
 &

 la
st

 a
ct

io
n

CN
N

w/
 sk

ip
 &

 4
 o

bs
 &

 la
st

 a
ct

io
n

MinAtar

w/o w/ state augmentation

Figure 9: Ablating augmentation choices in Mi-
nAtar.

D ADDITIONAL ANALYSIS

Noisy computations. In our simulations, while we model parallel neuron computations during both
inference and training, the processes were globally synchronized, meaning that all neurons completed
and initiated new computations simultaneously. As a step towards introducing asynchronous neuron
computations, we tested a noisier version of parallel computation by applying dropout in every hidden
layer during the training and inference stages in our agent with skip connections. In Fig. 11 one
can see that the agent is quite robust to a large amount of dropout, and the performance starts to
deteriorate if dropout probability becomes more than 40%. The motivation behind this approach
comes from the fact that when each neuron updates asynchronously, we can track the time elapsed
since the last update and if this time exceeds a predefined threshold, we can zero out the activation,
mimicking the effect of dropout to some extent.

2 3 4 5 6
Number of layers

2000

3000

4000

Re
tu

rn

HalfCheetah-v4
Walker2d-v4
Hopper-v4

Figure 10: Varying number of layers in the agent
with skip connections having neuron execution
time of four. The shaded area indicates the stan-
dard error.

0.0 0.1 0.2 0.3 0.4 0.5
Probability of dropout

3000

4000

5000

Re
tu

rn

Figure 11: Average return with SE across 3 seeds
vs different amounts of dropout for the agent with
skip connections in HalfCheetah with neuron exe-
cution time of two.

Qualitative analysis. Trajectories rollouts of the CNN agent with skip connections and the CNN
agent (without skip connections and with history augmentation) is presented in Fig. 12 for MiniGrid-

16

Published as a conference paper at ICLR 2025

DoorKey-5x5-v0. The objective in the game is to find the key, toggle the door and reach the
destination. The trajectories show the agent with skip connections demonstrates less “roaming
around” behaviour compared to the agent without skip connections. inal location while the agent
without skip connections is fairly indecisive. Notably, it took the agent without skip connections 2x
more steps on an average to reach the goal compared to the one with skip connections. We present
multiple trajectory samples in Appendix J.

7 8 9 10 11 12 13 14 15 16 17 18

11 12 13 14 15 16 17 18 19 20 21 22

Figure 12: Behaviour of agents with (top row) and without (bottom row) skip connections on
MiniGrid-DoorKey-5x5. For comparison, we pick a sub-trajectory from the full episode for each
agent. The arrows in each figure indicate the observations that influence the decision-making process.
For the sake of brevity, we have shown only one set of temporal connection in both the cases.
However, they exist throughout. The heatmap below each figure denotes the action probabilities,
the actions in this case are (in the same sequence in the heatmap): l:turn left,r:turn
right,f:move forward, p:pickup an object, t: toggle an object. The
agent with skip connections show less “wandering” behaviour. For instance, the agent with no
skip connections reaches the door and continues to take random actions while the agent with skip
connections toggles the door much earlier. Interestingly, the agent without skip connection is quite
confident in its decisions. We hypothesize that because an agent’s own policy makes the environment
appear non-stationary, high confidence may help it cope with this.

E IMPLEMENTATION DETAILS AND HYPERPARAMETERS USED IN
EXPERIMENTS

Conv(3,	16,	kernel=3,	stride=4)

Conv(16,	32,	kernel=3,	
stride=2)

Conv(32,	64,	kernel=3,	
stride=1)

FC

FC

Logits

ℎ!"## ℎ!"#$ ℎ!"#% ℎ!"#&

ℎ!&

ℎ!%

ℎ!$

ℎ!#

Flatten

Figure 13: Minigrid agent without skip connec-
tions

Conv(3,	16,	kernel=3,	stride=4)

Conv(16,	32,	kernel=3,	
stride=2)

Conv(32,	64,	kernel=3,	
stride=1)

Concat FC

FC

Max	Pool

Flatten

Logits

ℎ!"## ℎ!"#$ ℎ!"#% ℎ!"#&

ℎ!&

ℎ!%

ℎ!$

ℎ!#

Figure 14: Minigrid agent with skip connec-
tions. Residual connections are emitted from
the figure for simplicity.

We use ReLu activation function. Our SAC actor employees three-layer MLP if not stated otherwise
with hidden dimensions of 256.

17

Published as a conference paper at ICLR 2025

Our PPO actor employs a 3-layer Convolutional Neural Network (CNN) followed by two fully
connected layer with hidden dimension of 512. All CNN layers have a kernel size of 3 and C =
{32, 64, 64} channels, maintaining the same resolution throughout the CNN for MinAtar and using
strides {4, 2, 1} for MiniGrid. The feature volume is then flattened and fed into the fully connected
layer for action prediction. For architectures with skip connections, the feature volumes from previous
layers are maxpooled, concatenated and then flattened and subsequently fed to the fully connected
layers. Our Q-network shares the same architecture as the actor.

Notably, when working with networks incorporating skip connections, we observed a performance
drop when attempting to combine all convolutional features by flattening and concatenating them
into a single feature volume. To address this, we experimented with various methods for feature com-
bination and found that max-pooling all features to a fixed size before flattening and concatenating
yielded the best results.

We present the architecture with skip connections used for the MiniGrid experiments in Figure 14; a
similar architecture was also employed for MinAtar. Specifically, given an input xt at time step t and
a set of hidden activations (h1

t−1, h
2
t−1, . . .), if these are convolutional features, they are max-pooled

using the formula:

size =
current spatial size

last spatial size

Here, current spatial size refers to the spatial size of the current convolutional feature, and
last spatial size refers to the spatial size of the final convolutional feature in the network (the
third convolutional block in Fig. 14). After max-pooling, the features are flattened, concatenated, and
passed through linear layers for further processing.

The hyperparameters used in the main experiments on SAC Mujoco and PPO MinAtar/MiniGrid can
be found in Table 7. For training LSTM in Mujoco, we used a learning rate of 1e-4 instead of the
default value specified in the table, as we observed a slight improvement in performance with this
adjustment.

F DEFINING REGRETS

We define regret with respect to cumulative undiscounted rewards:

Gπ(t, π′) = E

 ∑
i<t, i∈D(π′)

ri

∣∣∣∣∣∣π

where i ∈ D(π′) indicates the time steps where the policy π′ is used. The expectation is over
trajectories generated by following policy π, but rewards are accumulated only at times i ∈ D(π′).

We denote π∗ as an optimal policy in original MDP and π∗
parallel as an optimal policy in parallel

computation framework. Then delay regret, ∆delay(t), and inaction regret, ∆inaction(t), are defined as:

∆delay(t) := Gπ∗
(t, π∗

parallel)−Gπ∗
parallel(t, π∗

parallel) (3)

∆inaction(t) := Gπ∗
(t, β)−Gβ(t, β) (4)

where β is default policy we employ during inaction period.

18

Published as a conference paper at ICLR 2025

Table 7: Hyperparameters used in experiments.

Parameter Value

SAC Mujoco
Discount rate γ 0.99
Policy frequency 2
Target network frequency 1
Target smoothing coefficient 0.005
Policy learning rate 3e-4
Q-function learning rate 1e-3
Optimizer Adam
Adam beta (0.9, 0.999)
Adam epsilon 1e-8
Replay buffer size 1,000,000
Batch size 256
Learning starts 10,000
Entropy regularization Auto-tuned
Target entropy scale 1

PPO MinAtar and MiniGrid
Discount rate γ 0.99
Lambda for general advantage estimation 0.95
Entropy coefficient 0.01
Value function coefficient 0.5
Normalize advantages True
Number of steps to unroll a policy 32
Number of environments 32
Update epochs 4
Learning rate 2.5e-4
Anneal lr True
Optimizer Adam
Adam beta (0.9, 0.999)
Adam epsilon 1e-5
Maximum gradient norm for clipping 0.5

19

Published as a conference paper at ICLR 2025

G DISCUSSION OF REALTIME SETTING AND INACTION REGRET

In realtime RL settings agents and environments interact asynchronously at their own pace. As
discussed by Travnik et al. (2018), this setting is more realistic of real world deployment than the
typical sequential interaction paradigm of RL where the agent and environment are both assumed
to wait for each other in a turn-based manner. Sources of regret as a function of time were recently
analyzed for this setting by Riemer et al. (2024) where it was concluded that the total accumulated
realtime regret ∆realtime can be decomposed into three different sources such that ∆realtime = ∆inaction+
∆delay +∆learn. Here ∆learn is the typical kind of regret analyzed in RL (Kearns & Singh, 2002) that
arises from the need for the algorithm to explore and learn from its environment. This kind of regret
is present even in standard turn-based environments that can pause. However, ∆inaction and ∆delay
are new notions of regret specific to the realtime setting. ∆inaction is regret incurred when an agent
does not act frequently enough in the environment. Meanwhile, ∆delay is the regret incurred because
actions are produced based on delayed observations.

Proposition 3 (Inaction Regret): In parallel computation framework for any N layer neural network
constrained such that δ ≤ 1, inaction regret is zero. Otherwise, if δ ≥ 1 the regret from inaction is
independent of N and bounded by:

∆inaction(t) ∈ Θ(t(δ − 1)) (5)

This proposition follows from the fact that inference time speedups within the parallel computation
framework allow a network of length N to achieved an N times increased action throughput. This
result then follows when considering the worst case environment from (Riemer et al., 2024) Theorem
1 where the default behavior is always sub-optimal when the agent does not act with its own policy.
This bound with the parallel computation framework is significantly better for large networks than
the bound of ∆inaction(t) ∈ Θ(t(Nδ − 1) with a single standard sequential layer inference process.

H TRAINING & HARDWARE

We used A100SXM4 GPU for training all our methods. We use the same GPU for testing our methods
as well. It took us approximately 2 hours per seed to train a MinAtar experiment for 10 million steps,
4 hours per seed – MiniGrid experiment, and it took 7 hours per seed to train one MuJoCo experiment
for 1 million steps.

20

Published as a conference paper at ICLR 2025

I DETAILED UNNORMALIZED RESULTS

Detailed unnormalized results for all main and ablation study experiments are provided in Tables 8,
10 and 11 for Mujoco, MinAtar, and MiniGrid, respectively.

For MinAtar, we additionally include results for a neural execution time of 0.4 and 2. For MiniGrid,
we also provide results with a neural execution time of 4. The neural execution time of 0.4 for the
MinAtar five-layer CNN agent is achieved by treating the computation of 2.5 layers as a new basic
block within the parallel computation pipeline.

Table 8: Mujoco average returns after 1mln states of training for the four selected environments. The
results are averaged across ten seeds for two layers, three layers and w/ projections from observation
agents without augmentations, across 5 seeds for RLRD and the rest of results use 3 seeds. Mean and
standard error are reported. We take mean action as a policy during evaluation stage as we notice it
may significantly boost the performance of the delayed actor. RLRD (Bouteiller et al., 2021) is a
baseline that addresses DOMDP rather than a parallel computations.

Halfcheetah-v4 Walker2d-v4 Ant-v4 Hopper-v4
SAC 11739± 283 4415± 227 3595± 1027 2672± 463

neuron execution time of 1

RLRD for delay of 1 3147± 1044 3714± 547 2924± 568 3314± 157
one layer 5086± 662 1209± 652 1043± 526 759± 65
two layers 6660± 360 4271± 164 1938± 274 3001± 293
three layers 7814± 130 4459± 176 2792± 620 3115± 173
LSTM 7096± 138 3764± 410 2847± 587 2462± 162
three layers w/ proj-to-action & res 8295± 522 4567± 123 4425± 424 3019± 432
three layers w/ proj-to-action 7690± 480 4048± 681 4599± 111 2871± 552
three layers w/ proj-from-obs 7892± 379 4497± 140 3728± 355 3187± 195
three layers w/ all skips 8102± 285 4934± 57 4270± 410 3381± 114
two layers w/ aug 6881± 467 3516± 681 3347± 532 3454± 76
three layers w/ aug 6735± 387 3920± 33 3502± 252 2666± 422
LSTM w/ aug 7980± 168 3289± 207 2167± 335 2948± 317
two layers w/ proj-from-obs & aug 7082± 266 4596± 376 2969± 48 3389± 148
three layers w/ proj-from-obs & aug 8037± 201 3561± 682 2976± 972 3499± 30
three layers w/ all skips & aug 8165± 196 4490± 174 4729± 267 3253± 229

neuron execution time of 2

one layer 1846± 440 1535± 329 1783± 243 1980± 439
two layers 3173± 399 3791± 368 2061± 108 3317± 31
three layers 3027± 329 3277± 180 1780± 276 2538± 281
LSTM 2413± 363 3084± 92 2078± 92 2764± 150
three layers w/ proj-to-action & res 3330± 751 4226± 258 2049± 101 3531± 61
three layers w/ proj-to-action 4729± 145 3197± 396 2685± 19 3597± 14
three layers w/ proj-from-obs 4715± 392 4137± 291 2669± 224 3569± 63
three layers w/ all skips 1682± 80 3068± 415 1472± 900 3607± 17
two layers w/ aug 2142± 598 2656± 69 2467± 214 3544± 94
three layers w/ aug 1298± 67 3499± 209 2231± 224 2297± 345
LSTM w/ aug 3027± 636 2724± 217 1459± 278 1794± 467
two layers w/ proj-from-obs & aug 4156± 116 2774± 114 2255± 145 3628± 30
three layers w/ proj-from-obs & aug 4937± 351 4362± 194 3180± 51 3665± 9
three layers w/ all skips & aug 3649± 416 4419± 152 3172± 168 3580± 22

21

Published as a conference paper at ICLR 2025

Table 9: Continuation of the Table 8.

Halfcheetah-v4 Walker2d-v4 Ant-v4 Hopper-v4
neuron execution time of 3

one layer 1293± 481 2157± 189 1597± 110 1150± 347
two layers 2299± 350 3037± 180 1884± 125 2098± 97
three layers 3145± 158 3054± 106 1865± 79 1171± 79
LSTM 2816± 254 2843± 324 987± 690 1144± 293
three layers w/ proj-to-action & res 2897± 679 2711± 245 1205± 380 3647± 15
three layers w/ proj-to-action 2886± 147 2391± 6 2160± 66 3633± 33
three layers w/ proj-from-obs 3224± 424 3043± 182 2097± 84 3505± 43
three layers w/ all skips 2745± 733 2583± 8 2182± 208 3290± 153
two layers w/ aug 2286± 511 3074± 261 1842± 162 3294± 42
three layers w/ aug 2886± 204 2874± 133 1856± 59 1218± 80
LSTM w/ aug 2212± 509 2700± 299 1085± 261 1291± 35
two layers w/ proj-from-obs & aug 1729± 616 3006± 133 566± 699 3603± 24
three layers w/ proj-from-obs & aug 3214± 417 4415± 174 2139± 14 3504± 90
three layers w/ all skips & aug 3459± 440 3237± 179 1927± 191 3647± 7

neuron execution time of 4

one layer 1284± 251 1975± 159 1132± 561 1372± 151
two layers 1681± 281 2355± 291 1427± 467 1263± 91
three layers 2421± 133 2532± 109 735± 756 1041± 21
LSTM 2496± 303 2353± 58 617± 747 724± 176
three layers w/ proj-to-action & res 1748± 414 2886± 186 1909± 178 3472± 78
three layers w/ proj-to-action 2330± 594 3079± 319 1642± 29 3310± 35
three layers w/ proj-from-obs 2674± 288 2898± 134 1959± 78 2990± 209
three layers w/ all skips 1733± 408 3031± 86 1898± 159 3016± 128
two layers w/ aug 2378± 177 2762± 69 1785± 36 1190± 136
three layers w/ aug 2813± 206 2716± 139 1512± 56 1005± 11
LSTM w/ aug 2206± 168 2792± 212 1702± 62 892± 55
two layers w/ proj-from-obs & aug 1738± 393 2726± 147 1862± 126 3215± 26
three layers w/ proj-from-obs & aug 3375± 193 3206± 197 1911± 66 3369± 53
three layers w/ all skips & aug 2879± 437 3074± 134 1906± 53 2711± 293

J FULL TRAJECTORY ROLLOUTS FOR MINIGRID

We present a few full trajectories of agents with and without skip-connections on Fig. J.

22

Published as a conference paper at ICLR 2025

Table 10: Full results for PPO MinAtar. Average returns after training on 10 million samples on
MinAtar games. Results are averaged across three seeds and standard error is reported. Sequential
CNN w/ aug represents an agent that computes layers sequentially and we assume the speed of the
inference of this five-layers neural network is five times slower.

Breakout-v0 Seaquest-v0 Freeway-v0 Asterix-v0 SpaceInv-v0
PPO 20.81± 0.15 25.94± 14.52 64.68± 0.93 42.01± 0.52 297.49± 69.86

neuron execution time of 0.4
CNN 16.88± 0.81 25.75± 3.65 57.28± 0.51 9.89± 3.82 78.55± 2.24

neuron execution time of 1

Sequential CNN w/ aug 0.79± 0.06 1.51± 0.32 28.68± 0.18 2.24± 0.20 14.29± 0.93
CNN 7.92± 0.84 8.41± 0.05 28.865± 4.31 7.81± 2.27 35.39± 1.52
CNN w/ aug 6.67± 0.27 7.10± 1.75 28.31± 2.61 10.41± 0.50 41.95± 1.51
LSTM 6.49± 0.43 5.63± 1.01 28.85± 0.46 7.35± 1.34 34.31± 1.26
LSTM w/ aug 4.20± 1.31 4.45± 1.48 29.50± 0.77 7.68± 2.06 37.26± 0.37
CNN w/ skip 14.46± 1.81 15.59± 4.26 52.11± 2.43 11.74± 1.20 69.80± 1.42
CNN w/ skip & aug 16.96± 0.58 16.01± 3.34 50.79± 2.06 13.24± 1.09 73.58± 3.72
CNN w/ skip & aug & lstm 11.69± 0.56 4.16± 2.61 16.80± 0.72 1.23± 0.54 52.37± 1.41

neuron execution time of 2

CNN 2.53± 0.18 3.22± 1.10 31.29± 0.30 8.61± 0.55 29.35± 2.23
LSTM 2.68± 0.04 4.14± 1.50 29.74± 1.22 5.25± 1.96 34.84± 2.20
CNN w/ skip 5.41± 0.27 9.65± 1.09 40.84± 1.70 9.28± 1.01 53.50± 3.67

Table 11: MiniGrid average returns after training on 10 mln states for the two toy environments. The
agent receives a reward of one only when reaching the target location. The results are averaged across
three seeds, mean and standard error are reported. PPO denotes vanilla PPO without inference delay.

Empty-Random-5x5-v0 DoorKey-5x5-v0
PPO 0.963± 0.0013 0.961± 0.0015

neuron execution time of 1
CNN 0.812± 0.0137 0.613± 0.0053
CNN w/ aug 0.894± 0.0036 0.859± 0.0064
LSTM 0.922± 0.0038 0.904± 0.0074
LSTM w/ aug 0.855± 0.0343 0.895± 0.0134
CNN w/ skip 0.924± 0.0025 0.930± 0.0020
CNN w/ skip & aug 0.932± 0.0031 0.922± 0.0047
CNN w/ skip & lstm 0.926± 0.0055 0.920± 0.0097
CNN w/ skip & aug & lstm 0.933± 0.0024 0.932± 0.0018

neuron execution time of 4
CNN 0.810± 0.0043 0.607± 0.0118
CNN w/ aug 0.894± 0.0075 0.872± 0.0019
LSTM 0.919± 0.0027 0.899± 0.0085
LSTM w/ aug 0.916± 0.0059 0.788± 0.1088
CNN w/ skip 0.923± 0.0044 0.933± 0.0010
CNN w/ skip & aug 0.921± 0.0025 0.919± 0.0026
CNN w/ skip & lstm 0.933± 0.0011 0.567± 0.2333
CNN w/ skip & aug & lstm 0.923± 0.0074 0.927± 0.0033

23

Published as a conference paper at ICLR 2025

(a) Rollout 1: Doorkey, Agent without skip connections.

(b) Rollout 1: Doorkey, Agent with skip connections.

(c) Rollout 2: Doorkey, Agent without skip connections.

(d) Rollout 2: Doorkey, Agent with skip connections.

Figure 15: Trajectory rollouts (best viewed in a zig-zag fashion starting from top left) comparing
agents with and without skip connections in the Doorkey environment. Each sequence shows one full
trajectory.

24

	Introduction
	Related Work
	Problem Setting and Notation
	Formalizing the Parallel Computation Framework
	Sources of Realtime Regret

	Method
	Addressing Delay
	Addressing Training Stability
	Algorithm

	Experiments
	Main Results
	Ablation Study
	Analysis
	Inference Time Speed-Up

	Limitations
	Conclusion
	Acknowledgment
	PPO algorithm with parallel neuron computation
	Supplementary Experimental Results
	Supplementary Ablation Results
	Additional Analysis
	Implementation Details and Hyperparameters Used in Experiments
	Defining Regrets
	Discussion of Realtime Setting and Inaction Regret
	Training & Hardware
	Detailed Unnormalized Results
	Full trajectory rollouts for Minigrid

