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Abstract

This study addresses the interpretability of001
word representations through an investigation002
of a count-based co-occurrence matrix. Em-003
ploying the mathematical methodology of For-004
mal Concept Analysis, we reveal an underlying005
structure that is amenable to human interpreta-006
tion. Furthermore, we unveil the emergence of007
hierarchical and geometrical structures within008
word vectors as consequences of word usage.009
Our experiments on the PPMI matrix demon-010
strate that the formal concepts we identified011
align with interpretable categories, as shown in012
the category completion task.013

1 Introduction014

Word vector representations are central to natu-015

ral language processing, as they capture semantic016

and syntactic features (Lenci, 2018). Their signif-017

icance has amplified in recent times, as they are018

used as input for Transformer-based language mod-019

els (Vaswani et al., 2017), where static embeddings020

are contextualized. Their effectiveness has been021

explained by the distributional hypothesis (Harris,022

1954) linking similar semantics and similar dis-023

tribution (Jurafsky and Martin, 2009). However,024

the interpretability of their dimensions remains an025

active research topic (Şenel et al., 2018). Levy026

and Goldberg (2014a) found neural word embed-027

dings to be uninterpretable while acknowledging028

that sparse vectors capture some latent topics. Geva029

et al. (2022) pioneered efforts to interpret dynamic030

embeddings in GPT-2 (Radford et al., 2019) by031

projection into the vocabulary space, though a sys-032

tematic approach to interpret dimensions of embed-033

dings remains an open issue.034

Many preceding studies have investigated the035

semantic properties of word embeddings and re-036

vealed that word vectors in a vector space capture037

relational meanings. The most well-known exam-038

ple is the parallelogram formed in the vector space039

by the embeddings of words in analogical relations 040

(e.g. king:queen::man:woman) (Mikolov et al., 041

2013c). Other semantic relationships also exhibit 042

geometrical counterparts, such as semantic compo- 043

sition with vector addition (Mikolov et al., 2013b; 044

Mitchell and Lapata, 2008), hypernymy captured 045

by linear projection (Fu et al., 2014), and polysemy 046

as a linear combination of vectors (Arora et al., 047

2018). Regarding the theoretical analysis of em- 048

beddings, Levy and Goldberg (2014b) suggested 049

that word2vec (Mikolov et al., 2013a) is equivalent 050

to the factorization of a word co-occurrence matrix. 051

Arora et al. (2016) proposed a generative model in 052

which PMI-based word embeddings exhibit linear 053

structures. These related studies collectively hint 054

that the latent structure in the co-occurrence ma- 055

trix reflects linguistic regularities and is inherently 056

embedded within vector representations. There- 057

fore, understanding the word co-occurrence matrix 058

represents a cornerstone in elucidating the inter- 059

pretability of word representations. 060

In this study, we directly address the mathemati- 061

cal structure of a word co-occurrence matrix to un- 062

cover underlying linguistic patterns and to interpret 063

the dimensions of word embeddings. We claim that 064

a formal concept, as mathematically defined in the 065

matrix, corresponds to interpretable categories. We 066

substantiate our claim through the category com- 067

pletion task. Specifically, we used Formal Concept 068

Analysis (FCA), a field of applied mathematics 069

(Ganter and Wille, 2012), to formally characterize 070

the internal structure of a matrix. We define a group 071

of words as interpretable if it can be descriptively 072

labeled. Furthermore, we demonstrate that a hier- 073

archical structure of formal concepts emerges as 074

a geometric formation in the vector space, which 075

explains why relational meanings are captured by 076

word embeddings. 077

Our contributions are threefold. First, we pro- 078

pose two methods that apply FCA to real-valued 079

data: binarization by varying thresholds and fuzzi- 080
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fication of FCA. Second, we empirically show that081

the formal concepts in the co-occurrence matrix082

coincide with interpretable categories. Third, we083

present a novel algorithm to detect formal concepts,084

which is capable of disambiguating polysemous085

words. To our knowledge, this is the first study to086

apply FCA to a word-word co-occurrence matrix.087

Our study offers a new approach to uncover latent088

linguistic structures in co-occurrence matrices.089

2 Formal concept analysis of word090

co-occurrence matrix091

2.1 Basics of FCA092

FCA is related to order theory and abstract algebra.093

It mathematizes concepts and conceptual hierarchy094

(Ganter and Wille, 2012). A concept comprises095

a pair of its extents (objects) and its intents (at-096

tributes). Concepts can form a hierarchy known097

as a lattice. FCA has been empirically applied for098

data mining and ontology (Poelmans et al., 2013),099

especially in bioinfomatics (Roscoe et al., 2022).100

A formal context K := (G,M, I) consists of101

two sets G,M and a binary relation I ⊆ G ×M .102

The elements of G and M are called objects and103

attributes, respectively. For g ∈ G and m ∈M , a104

relation (g,m) ∈ I means that the object g has the105

attribute m. We define two derivation operators;106

↑ : 2G → 2M maps a subset of objects to a subset107

of attributes, and its reverse ↓ : 2M → 2G maps108

attributes to objects. For A ⊆ G,B ⊆M ,109

A↑ := {m ∈M | (g,m) ∈ I (∀g ∈ A)} (1)110

B↓ := {g ∈ G | (g,m) ∈ I (∀m ∈ B)} (2)111

A↑ ⊆ M is the set of attributes common to all112

objects in A, whereas B↓ ⊆ G is the set of ob-113

jects that possess all the attributes in B. It can114

be shown that A ⊆ B↓ ⇔ B ⊆ A↑, which115

is a structure-preserving (order-reversing) corre-116

spondence between ordered sets known as a Galois117

connection (Davey and Priestley, 2002).118

A formal concept of the context (G,M, I) is119

defined as a pair (A,B) ∈ 2G × 2M where both120

A↑ = B and B↓ = A hold. A and B are121

considered the extent and intent, respectively, of122

the formal concept (A,B). The compositions123

of two derivation operators ↑↓ : 2G → 2G and124

↓↑ : 2M → 2M are closure operators (Davey and125

Priestley, 2002), with a formal concept defined as126

the fixed point of these operations. If a formal127

context is represented as a binary matrix, it corre-128

sponds to a maximal rectangular (submatrix) with129

all ones in its entries when the rows and columns 130

are appropriately reordered. 131

A formal concept can also be equated with a 132

maximal biclique, i.e., a complete subgraph of 133

a bipartite graph (Chiaselotti et al., 2015). All 134

elements of A and B are completely connected 135

within that subgraph. 136

2.2 Rational and benefit of using FCA 137

A word co-occurrence matrix, used as input data to 138

learn word embeddings, is constructed by counting 139

the frequency of a target-context word pair that co- 140

occurs in the neighborhood. By regarding target 141

words as objects and context words as attributes, we 142

can express this co-occurrence as a binary relation. 143

Thus, we can treat a co-occurrence matrix as a 144

formal context. 145

FCA is effective in analyzing co-occurrence ma- 146

trices for three reasons. First, it can characterize 147

a local structure within the matrix. Second, for- 148

mal concepts can capture relations between more 149

than three words, which cannot be represented by 150

individual pairwise relationships, yielding a richer 151

analysis of the structure. Third, we can define (par- 152

tial) order relation between formal concepts. A 153

semantic relationship such as hypernymy can be 154

formalized by such an order relation. We further 155

demonstrate the function of FCA in Section 3. 156

To apply the crisp (binary) FCA to a real-valued 157

co-occurrence matrix, we tested two approaches. 158

First, we simply binarized the matrix values by 159

thresholds, with a varying threshold method de- 160

ployed to flexibly locate formal concepts (Section 161

4). Second, we extended the crisp FCA to an FCA 162

built on fuzzy logic (Section 5). 163

3 Demonstration using synthetic data 164

3.1 Artificial toy corpus 165

We examined how FCA handles a word co- 166

occurrence matrix using a toy corpus. We demon- 167

strated that formal concepts capture semantic cate- 168

gories emerging from word usage in the corpus and 169

introduced a concept lattice of FCA to illustrate 170

the hierarchical structure of concepts. 171

The demonstration contains 1) a corpus of 24 172

synthetic sentences with 17 words (Appendix A), 173

2) a co-occurrence matrix obtained from the cor- 174

pus, and 3) word vectors acquired from the matrix 175

(Fig. 1). The corpus is designed to replicate a geo- 176

metric formation of the analogy relation. Specifi- 177

cally, we targeted eight words—king, queen, man, 178
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woman, and their plurals—so that their vectors179

formed a parallelepiped. The sentences were ex-180

pressed analogously: E.g., ‘king (queen) live in181

palace”, whereas “man (woman) live in house”.182

The co-occurrence matrix X ∈ {0, 1}17×17 is bi-

Figure 1: Binary co-occurrence (sub)matrix: Each entry
is 1 if shaded and 0 otherwise. Each row is a word
vector. Three submatrices with shade patterns indicate
different formal concepts f, e, v.

183
nary, where Xij = 1 if two words co-occur in a184

sentence and Xij = 0 otherwise. Each row of this185

matrix represents a word vector. Projected on the186

3-dimensional space, the eight word vectors form187

a parallelepiped (Fig. 2).

x 3.03.54.04.55.05.56.0
y

3.0
3.5

4.0
4.5

5.0
5.5

6.0

z

3.0
3.5
4.0
4.5
5.0
5.5
6.0

king man

queen woman

kings men

queens women

Figure 2: A parallelepiped emerges when eight word
vectors (rows) are projected onto 3-dimensional space.

188

3.2 Detecting formal concepts189

We now apply FCA to the matrix X . Although190

formal concepts can be determined by applying191

the closure operator ↑↓, a simplified method is to192

find a rectangular in the matrix. For example, the193

submatrix of rows i ∈ {1, 3, 4, 7} and columns194

j ∈ {1} represents a formal concept, as all its195

entries are 1s and no other rectangular matrix con-196

tains it. This concept represents a pair of the ex-197

tent {king, queen, kings, queens} and the intent198

{palace}, interpreted as "royal."199

There are a total of 28 formal concepts in this 200

matrix (see Appendix B for the list and notation). 201

They are classified into five types, including two 202

trivial ones wherein one element is empty. Ex- 203

amples of the three non-trivial types include the 204

following: 205

f1 := ({king,man, kings,men}, {tie}) (3) 206

e1 := ({king,man}, {tie, alone}) (4) 207

v1 := ({king}, {tie, palace, alone}) (5) 208

To see hierarchical relations between formal 209

concepts, we first define the order relation. Let 210

B(G,M, I) be the set of all concepts of (G,M, I). 211

Given (A1, B1), (A2, B2) ∈ B(G,M, I), 212

(A1, B1) ≤ (A2, B2)
def⇐=⇒ A1 ⊆ A2 ⇔ B1 ⊇ B2

(6) 213

Thus, if the extent A1 is contained by the extent 214

A2, then the formal concept (A1, B1) is less than or 215

equal to (A2, B2). Owing to the Galois connection, 216

A1 ⊆ A2 holds if and only if B1 ⊇ B2. Then, 217

⟨B(G,M, I) : ≤⟩ is a complete lattice known as 218

a concept lattice, a nonempty ordered set where a 219

join and a meet exist for all elements and subsets. 220

Fig. 3 visualizes all ordered relations between the 221

formal concepts identified in the matrix X . We

f1 f2 f3 f4 f5 f6

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

v1 v2 v3 v4 v5 v6 v7 v8

T

B

Figure 3: Concept lattice. Each node represents a formal
concept. They correspond to geometric simplices of the
parallelepiped: 8 vertices, 12 edges, 6 faces.

222
observe that the lattice of formal concepts (Fig. 3) 223

corresponds to the parallelepiped (Fig. 2). This 224

suggests that geometric relations between word 225

vectors reflect the hierarchical structure latent in 226

the word co-occurrence matrix. 227

3.3 Three implications of FCA 228

First, FCA allows us to easily interpret the identi- 229

fied formal concepts. For example, f1 should be 230

labeled as masculine from its extent {king, kings, 231
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man, men}, whereas f6, with the extent {queen,232

queens, woman, women}, must be labeled as fem-233

inine. The other f -type concepts can be labeled234

as royal, common, singular and plural. Thus,235

formal concepts coincide with semantic categories.236

Second, v1 (king) can be seen as the intersection237

of three others—f1, f3, f5— analogous to a vertex238

included in three faces. Semantically, king is some-239

thing royal, masculine, and singular. This relation240

can be algebraically formulated as v1 = f1∧f3∧f5241

where ∧ is a meet operation.242

Third, pairs of opposing faces in the paral-243

lelepiped form complementary concepts such as244

masculine vs. feminine. Mathematically, we can245

construct a formal concept algebra by defining ad-246

ditional operations as axioms (Wille, 2004). Us-247

ing this algebra, the formal concept of masculine248

can be demonstrated to complement that of fem-249

inine; ¬f1 = f6 where ¬ is a negation. The ob-250

servation that king v1 = f1 ∧ f3 ∧ f5 and queen251

v5 = f6 ∧ f3 ∧ f5 share f3 and f5 explains the phe-252

nomenon that both synonyms and antonyms appear253

close to each other in the vector space (Turney and254

Pantel, 2010).255

In summary, the co-occurrence matrix exhibits256

the geometrical and algebraic structures formed by257

interpretable formal concepts.258

4 Experiment 1: FCA by binarization259

We now demonstrate that formal concepts can be260

defined on actual word co-occurrence data and cor-261

respond to both semantic and syntactic categories.262

4.1 Algorithm to identify formal concepts263

We designed a novel algorithm to locate formal264

concepts through the conversion of two derivation265

operators (Eq. 1 and 2). The corresponding pseudo-266

algorithm is shown in Algorithm 1. Given a co-267

occurrence matrix X and set of target words S268

as a seed, the algorithm returns a formal concept269

(S↑↓, S↑), which is a pair of two subsets of the270

vocabulary. Here, S↑↓ is the closed set of S.271

The first derivation operator ↑ must identify con-272

text words that co-occur with all target words in273

S. In other words, a context word is selected when274

it has all entry values exceeding the threshold t275

for the target words in S. Equivalently, any en-276

try value that the seed words have with the con-277

text word should not be less than t, meaning that278

their minimum must be greater than or equal to279

t. As indicated in Line 3, the algorithm finds280

Algorithm 1 Varying Threshold Method

Input: X ∈ RN×N , S := {wi}i∈IS , k ∈ N
Output: FC := (S↑↓, S↑), t ∈ R

1: function FINDFORMALCONCEPT(S, k)
2: for j ← 1 to N do
3: mj ← mini∈IS Xij

4: end for
5: Sort [mj ] in descending order← [mp(j)]
6: JS↑ ← {p(j)}j≤k

7: S↑ ← {wj}j∈JS↑

8: t← mp(k)

9: IS↑↓ ← ∅
10: for i← 1 to N do
11: µi ← minj∈JS↑ Xij

12: if µi ≥ t then
13: IS↑↓ ← IS↑↓ ∪ {i}
14: end if
15: end for
16: S↑↓ ← {wi}i∈IS↑↓

17: return (S↑↓, S↑), t
18: end function

the minimum value that the seed words (in rows 281

∀i ∈ IS) have against a certain context word (in 282

a column j ∈ {1, . . . , N}), sorts them in descend- 283

ing order (Line 5), and selects the first k context 284

words (columns) S↑ (Line 6). The threshold is au- 285

tomatically determined as the kth largest minimum 286

value (Line 8). Next, an inverse operation executes. 287

Given S↑, the algorithm finds a minimum value 288

over the context words S↑ (JS↑ in the column in- 289

dex) against a target word in a row i (Line 11) and 290

selects the target words (rows IS↑↓) with minimum 291

values exceeding the threshold (Line 13), which 292

form S↑↓. For a discussion on mathematical prop- 293

erties of identified submatrices, see Appendix C. 294

4.2 Category completion test 295

The experiment was conducted to verify that the 296

formal concepts identified from the co-occurrence 297

matrix coincide with interpretable categories. 298

Test set We adopted two existing test sets from 299

Lindh-Knuutila and Honkela (2015) containing se- 300

mantic categories: the Battig set (Bullinaria and 301

Levy, 2012), comprising 53 categories with 10 302

words for each, and BLESS (Baroni and Lenci, 303

2011), containing 17 categories with 5-17 words 304

for each. We also compiled two additional sets: Se- 305

ries and Syntactic. The categories tested are listed 306

in Appendix D. 307
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Procedure For each category, we systematically308

furnished the algorithm with all possible word pairs309

as seeds derived from the category’s word set. Next,310

we identified the optimal seed that yields the most311

extensive set of accurately classified words. We312

then assessed how effectively the algorithm re-313

trieves the correct words from the optimal seed for314

the given category (Precision, Recall). Because315

the word sets are not necessarily exhaustive, we316

also regarded those missed words as correct, based317

on our human judgement (Extended precision)1.318

Baseline We used a similarity-based approach as319

a baseline. Specifically, we applied the k-nearest320

neighbor algorithm with cosine similarity. To en-321

sure a fair comparison, we utilized the identical op-322

timal seeds derived by the FCA method and found323

the nearest vectors to their mean vectors.324

Data The co-occurrence matrix was constructed325

from the English Wikipedia dump (20171001)2326

(2.9B tokens), counted with a window of 10. We327

adopted PPMI (positive point-wise mutual informa-328

tion) as it yields the best results in the semantic task329

(Bullinaria and Levy, 2012). To keep the matrix330

size manageable, we limited the vocabulary to the331

10K most frequent words.332

4.3 Results333

Qualitative results Table 1 presents output sam-334

ples produced by the algorithm. When given {large,335

huge} as a seed, the algorithm returned {large,336

huge, enormous, vast} as the extent and {sums,337

amounts, quantities} as the intent, which consti-338

tutes a formal concept. All PPMI values within339

this concept exceeded 3.95. This formal concept340

can be labeled as "largeness" or Adjective of size,341

which implies that it is indeed interpretable. In-342

terestingly, another formal concept consisting of343

{large, small} arises from the different seed instead.344

Similar results held for other seeds.345

Quantitative results Table 2 shows that 61.5–346

84.3% of the identified extent words matched the347

category labels in the test sets (Extended preci-348

sion). Furthermore, 56.3–76.8% of the words in the349

test sets were retrieved by the algorithm (Recall).350

Semantic categories in Battig, BLESS, and Series351

were more effectively captured by formal concepts352

than syntactic categories. We also observed that353

1The annotation was done by one of the authors, who is
non-native but has educational experience in the U.S.

2CC BY-SA 3.0; https://dumps.wikimedia.org/legal.html

homogeneous categories (e.g., Country) frequently 354

formed formal concepts. With the exception of the 355

Extended Precision metric for the Syntactic test set, 356

our proposed method consistently achieved higher 357

scores compared to the baseline. 358

The use of optimal seeds in the evaluation is 359

justified because the objective is to measure the 360

extent to which a mathematically identified formal 361

concept best matches categories provided in the 362

test set. Other non-optimal seeds return different 363

formal concepts, which indicate the heterogene- 364

ity of human-made categories in the test set. See 365

Appendix F for performance spread and a further 366

discussion on the roles of seed words. 367

4.4 Analysis 368

The results suggest that formal concepts overlap 369

with interpretable categories, which are defined 370

as a set of words that human can descriptively 371

label. Furthermore, the FCA method exhibited 372

a notable advantage over the cosine similarity- 373

based approach in concept retrieval. This is be- 374

cause the latter broadly identifies related words, 375

whereas the former delves into specifying the un- 376

derlying context. For example, given the seed 377

words {church, chapel}, FCA additionally retrieves 378

{cathedral, shrine}, emphasizing the context of "re- 379

ligious buildings." In contrast, the cosine method 380

returns {cathedral, catholic} as output, failing to 381

extract the feature of "buildings." 382

This advantage of FCA stems from its ability to 383

locate mathematical structures within the matrix. 384

Higher PPMI values discriminate the submatrix 385

of a formal concept from its neighbors, forming a 386

local plateau-like structure that is not necessarily 387

captured by the cosine similarity (see a mathemati- 388

cal discussion in Appendix C). This insight offers 389

a use case for the proposed algorithm. 390

Disambiguating polysemy A target word can 391

participate in multiple formal concepts. By in- 392

putting seed words with different associations, we 393

found that polysemous words such as tie and spring 394

have multiple formal concepts, as shown in Table 395

3. We observed that separate formal concepts (e.g., 396

clothing, match, fasten) may contain the same word 397

(e.g., tie) in their extents. Three separate plateaus 398

may share the same row as visualized in Fig. 4. 399

Arora et al. (2018) discovered that the embed- 400

dings of polysemous words can be decomposed as 401

linear combinations of sense vectors. Our finding 402

suggests that these vectors reflect separate formal 403
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Seed Formal Concept (upper:extents; lower:intents) Th. Category

large, huge
large, huge, enormous, vast

3.95
Adjectives

sums, amounts, quantities of size

large, small
large, small

3.47
Adjectives

amounts, quantities, intestine of scale

church, temple, mosque
chapel, church, mosque, synagogue, temple

2.85
Religious

worship, jpg,ruined buildings

quicker, bigger, warmer
bigger, brighter, colder, cooler, heavier, hotter, louder,...

2.45 Comparatives
than, considerably, deeper

Table 1: Examples of formal concepts identified from a binarized PPMI matrix. Given seed words, the algorithm
returns an extent-intent pair representing a formal concept. The parameter k was set to 3. Th. means threshold.

Testset Mtd Pr Ext.P Re LKH
Battig FCA 51.0 81.7 64.4 (37.0)

BL 36.9 67.8 50.5 -
BLESS FCA 57.8 84.3 67.0 (64.7)

BL 50.5 74.5 57.5 -
Series FCA 62.8 82.7 76.8 -

BL 53.5 75.6 67.5 -
Syntactic FCA 57.1 61.5 56.3 -

BL 53.6 61.8 54.6 -

Table 2: Average precision (Pr), extended precision
(Ext.P), and recall (Re) over the categories (k = 3),
expressed as percentages. LKH lists % of the cate-
gories identified by Lindh-Knuutila and Honkela (2015).
BL=baseline

concepts, and that the embeddings inherit the inner404

structure of the co-occurrence matrix.405

5 Experiment 2: Applying Fuzzy FCA406

5.1 Fuzzification of FCA407

Our second application of FCA to a real-valued ma-408

trix involves the fuzzification of the crisp FCA by409

incorporating fuzzy set theory (Belohlavek, 2007).410

A fuzzy set formalizes an ambiguous set, such as "a411

set of tall people," by assigning a degree of mem-412

bership to each element. In Appendix E, we give413

the definition of a fuzzy formal concept and show414

that it is equivalent to a rank-one submatrix under415

our proposed specification. Thus, the problem of416

finding fuzzy formal concepts can be regarded as417

that of identifying nonnegative rank-one submatri-418

ces in a PPMI matrix.419

Because it is NP-hard to exactly decompose a420

matrix into nonnegative factors (Vavasis, 2010),421

we obtained an approximation by deploying non-422

negative matrix factorization (NMF; Lee and Se-423

ung, 1999), as its L1 regularization is considered424

Intent for tie1 Intent for tie2 Intent for tie3

jacket
shirt

dress
pants

tie

winning
tie

teams
championship

loosing

rope
tie

cable
neck

0

1

2

3

4

5

6

7

Figure 4: PPMI submatrix of three formal concepts
containing the same polysemous word tie. For ease of
visibility, the row for tie is presented multiple times.

effective in making them sparse. We controlled 425

the sparseness so that the decomposed submatrices 426

became disjoint. NMF decomposes X ∈ Rm×n
+ 427

into two matrices W ∈ Rm×r
+ and H ∈ Rn×r

+ 428

so that X = WHT =
∑r

k=1wkh
T
k , where wk 429

and hk are the kth columns of W and H , respec- 430

tively. The outer product wkh
T
k is of rank one and 431

preferably sparse, thereby approximating a fuzzy 432

formal concept. The loss function is Lα(W,H) = 433
1
2∥X − WHT ∥2F + α

(
n∥W∥1 + m∥H∥1

)
. We 434

recursively applied NMF 3 over three rounds—first 435

to the PPMI matrix as in Section 4, then twice 436

to the positive residual matrices resulting from 437

decomposition—factorizing into r = 300 compo- 438

nents each round. Parameters for the L1 norms 439

were set to α = 5, 3, 1× 10−4 for each round. 440

5.2 Results 441

We manually labeled 900 rank-one submatrices by 442

reviewing the words corresponding to the largest 443

entries in wk and hk (see Appendix G.1 for de- 444

tails). We then classified the submatrices among 445

3NMF from Scikit-learn library: BSD license.
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Word (sense) Seed Extent of Formal concept
tie1 (clothing) tie, pants, shirt collar, jacket, pants, shirt, tie, wears
tie2 (match) tie, teams, winning championship, playoffs, teams, tie, winning
tie3 (fasten) tie, cable, rope cable, loose, neck, rope, tie
spring1 (season) spring, autumn, month autumn, cold, coldest, cooler, dry, month, rainfall,...
spring2 (metal) spring, wheel, suspension fitted, mounted, rear, spring, suspension, wheel, wheels
spring3 (water) spring, creek, river basin, brook, creek, reservoir, river, spring, stream

Table 3: The extent of multiple formal concepts comprises polysemous words. The proposed algorithm is able to
disambiguate these contexts in response to the seeds associated with them. The parameter k was set to 5 except for
the case of spring1 (k = 10).

four categories to assess how well the labels de-446

scribe the words in each formal concept4 (Table 4).447

Out of 900 acquired formal concepts, 95.7% were

Class R1 R2 R3 LKH
Descriptive 182 75 73 27

Partial 56 63 48 72
Meaningful 56 150 158 2
Nonsense 6 12 21 11

Total 300 300 300 112

Table 4: Decomposed rank-one submatrices in four
classes for each round, indicating how the submatrices
coincide with labeled categories. Definitions are pro-
vided in Appendix G.2 and the numbers under LKH are
cited from Lindh-Knuutila and Honkela (2015).

448
labeled descriptively or partially descriptively, or449

at least consisted of meaningfully related words.450

5.3 Analysis451

We found that Fuzzy FCA reveals the same formal452

concepts as the crisp FCA. For example, all cat-453

egories listed in Table 2 also appear as rank-one454

submatrices. Of the 108 formal concepts identi-455

fied in Experiment 1, 89 formal concepts (82.4%)456

were included by those found by the fuzzy method457

(Supplemental statistics in Appendix H). In fact,458

Fuzzy FCA detected more eligible words (e.g. im-459

mense, massive for Largeness, shrine for Religious460

Buildings). This observation demonstrates the ro-461

bustness of FCA, as well as the correlation between462

the two methods.463

Another interesting finding is that two types of464

rank-one submatrices were discovered: a clique465

type with identical rows and columns, and a bi-466

clique type with different rows and columns. An467

example of the latter is ({explain, describe, discuss,468

...}, {beliefs, concepts, ideas,...}), which represents469

a verb phrase for an act of communication.470

4The same as the footnote 1.

6 Discussion 471

6.1 Why do formal concepts correspond to 472

intepretable categories ? 473

As noted in Section 2, a formal concept is equiva- 474

lent to a biclique, which means that the words in it 475

are densely connected. A group of words forms a 476

dense community if the words are repeatedly used 477

together. Furthermore, if the same latent state al- 478

ways emits the same set of words, then those words 479

are repeatedly counted as co-occurrence, thereby 480

forming a formal concept. The random walk model 481

of Arora et al. (2016) captures the same mechanism 482

to generate linearly structured embeddings. 483

However, a latent state is not necessarily limited 484

to a topic, i.e., a state based on thematic proxim- 485

ity. As revealed in Section 4, formal concepts may 486

reflect functional proximity, e.g. the comparative. 487

Furthermore, we observed phrasal proximity, as in 488

a verb phrase. Thus, a broad range of semantic and 489

syntactic patterns of word usage may be captured 490

as a formal concept. 491

These results open questions about the potential 492

relationship between formal concepts and human 493

cognition (e.g., Wu et al., 2022 showed that fMRI 494

patterns contain information to solve analogical rea- 495

soning), which may be the subject of future studies 496

of semantic cognition. Our approach may provide 497

a quantitative method to address these questions. 498

6.2 How can formal concepts be fully 499

captured ? 500

We designed two methods that apply FCA to a 501

real-valued matrix to detect interpretable formal 502

concepts, although we do not yet have a theory to 503

assess and relate the two methods. 504

In general, the challenge of FCA in applied stud- 505

ies is scalability stemming from computational 506

complexity, which must be addressed when increas- 507

ing the size of a co-occurrence matrix. Another 508

7



challenge is posed by heterogeneous data from509

large corpora. Specifically, we observed that inter-510

pretable formal concepts are detected at different511

threshold levels (Section 4) and by layered factor-512

ization (Section 5). The latent structures at different513

scales indicate that multiple formal contexts co-514

exist in the matrix as if they were superposed, and515

they were probably generated separately. Thus, the516

rank-one submatrices may be disjoint, superposed,517

or overlapping. To extract such latent structures518

more precisely, the algorithm must depend upon519

the modeling of generative processes, which is also520

a topic for a future study.521

6.3 What do embeddings represent after all?522

Recall that formal concepts defined as rank-one523

submatrices appear as components of matrix factor-524

ization X = WHT (Section 5). While a column525

of W corresponds to a fuzzy set that constitutes526

each formal concept, a row of W is used as a word527

embedding. Thus, a value in each dimension of the528

embedding can be seen as the "coordinate" of the529

corresponding formal concept. The other matrix530

H is considered to encode attributes. The embed-531

dings, acquired by matrix factorization or implicit532

factorization (Levy and Goldberg, 2014b), must in-533

herit the structures of formal concepts, as the factor534

matrices can be mutually transformed.535

6.4 Are FCA methods beneficial in practice?536

The FCA method exhibited an advantage over the537

cosine similarity-based approach in the category538

completion task (Section 4). Although both meth-539

ods can capture a similarity between words, a fun-540

damental distinction lies in the subspace where541

these similarities are assessed. While cosine sim-542

ilarity utilizes the entire vector space and treats543

vectors as static entities, the FCA method dynam-544

ically narrows the subspace based on a given set545

of words. It identifies subvectors with significantly546

high occurrences, a task that cosine-based methods547

cannot perform. This merit makes FCA beneficial548

in various tasks such as polysemy disambiguation549

and concept completion (e.g., Shani et al., 2023).550

Another potential benefit of FCA is its use as an551

analytical tool for contextualized embeddings. Dar552

et al., 2023 reveals that the inner representations of553

GPT-2 can be interpreted by projecting vectors into554

the vocabulary space. They report actual pairs of555

words processed in layers of GPT-2, some of which556

seem to be similar to the formal concepts identified557

in Experiment 2. Thus, there is a possibility that558

the contextualization process can be interpreted as 559

certain algebraic operations on formal concepts, 560

though this is still speculative. 561

7 Related studies 562

Several studies demonstrated that sparse embed- 563

dings are interpretable. Murphy et al. (2012) and 564

Biggs et al. (2008) applied nonnegative matrix 565

factorization with a sparsity constraint to word- 566

document co-occurrence data and discovered top- 567

ics. Other studies (Faruqui et al., 2015; Park et al., 568

2017; Jang and Myaeng, 2017) investigated word 569

embeddings to restore interpretability by using spar- 570

sity. We mathematically formalized the latent struc- 571

ture in the word co-occurrence matrix, which prior 572

studies might have empirically detected. 573

FCA has been applied in linguistics (Priss, 2005), 574

primarily for ontology. Cimiano et al. (2005) ap- 575

plied FCA for the automatic acquisition of tax- 576

onomies from a corpus. Moraes and Lima (2012) 577

built a semantic structure by setting the S-V-C tu- 578

ples of the annotated corpora as a formal context. 579

Berend et al. (2018) used FCA by binarizing sparse 580

word embedding for hypernymy discovery. In con- 581

trast to these studies, we deployed FCA to explore 582

the structure of the matrix itself, which revealed the 583

underlying structure of word-word co-occurrence 584

matrices. 585

Gastaldi (2021) delved into the underlying mech- 586

anism of word embeddings from a linguistic- 587

philosophical perspective and pointed out simulta- 588

neous codetermination or bi-duality between terms 589

and contexts as a significant feature of language, 590

which we believe to have successfully formalized 591

via FCA. Our mathematical approach to interpret- 592

ing co-occurrence data may shed light on the struc- 593

ture of language, as Bradley et al. (in press) frames 594

language in category theory. 595

8 Summary 596

This study establishes a mathematical character- 597

ization of semantic relations represented as geo- 598

metrical formations in a vector space, employing 599

FCA to investigate a word co-occurrence matrix. 600

Our experiments demonstrate that identified formal 601

concepts align with interpretable categories. Using 602

synthetic data, we also illustrated the emergence 603

of hierarchical structures from word usage. Subse- 604

quent challenges include theoretical sophistication 605

in applying FCA, exploring generative modeling, 606

and delving into cognitive inquiries. 607
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9 Limitations and risks608

Our study is inherently exploratory, with the aim of609

communicating critical insights in a timely manner610

before exhaustively diving into a comprehensive611

analysis. Consequently, a more thorough investi-612

gation and nuanced analysis are deferred to future613

work, acknowledging that the current study serves614

as a preliminary exploration that lays the founda-615

tion for deeper scrutiny. One direction is to identify616

the entire formal concepts and construct a concept617

lattice to identify all the possible semantic relations618

within a vocabulary. Another direction is to inves-619

tigate more thoroughly the relationship between620

formal concepts and linguistic concepts to quantify621

how far the distributional hypothesis holds.622

Another limitation of this work stems from the623

reliance on a singular dataset for our analysis. Al-624

though our findings reveal compelling patterns625

within the chosen dataset, generalizability across626

diverse data sets remains an unexplored avenue.627

We anticipate similar trends in other data sets, but628

a comprehensive cross-validation across various629

sources is pending. Future research efforts should630

extend our methodology to encompass a wider631

spectrum of data sets, ensuring the robustness and632

applicability of our observed trends across different633

contexts.634

The study constitutes a fundamental analy-635

sis aimed at identifying mathematical properties636

within linguistic statistical data, thus enhancing in-637

terpretability. Notably, no significant material risks638

were identified throughout the investigation and639

will not be seen due to the nature of the analytical640

approach employed.641
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A Toy corpus 860

The corpus contains 24 synthetic sentences shown 861

in Table 5. The target words—king, queen, man, 862

woman and their plurals—are subjects of the sen- 863

tences. Each of the eight words appears with three 864

verbs—live-in, wear, eat—once for each. The 865

remaining six words—palace, house, tie, dress, 866

alone, together—discriminate the subject words 867

so that they are in the analogical relations of three 868

dimensions.

king live-in palace kings live-in palace
queen live-in palace queens live-in palace
man live-in house men live-in house
woman live-in house women live-in house
king wear tie kings wear tie
queen wear dress queens wear dress
man wear tie men wear tie
woman wear dress women wear dress
king eat alone kings eat together
queen eat alone queens eat together
man eat alone men eat together
woman eat alone women eat together

Table 5: 24 sentences in the toy corpus
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B List of formal concepts870

There are 28 formal concepts in the co-occurrence871

matrix derived from the toy corpus.872

Suppose that the set of objects (target words)873

and the set of attributes (context words) be G,M874

respectively, defined as:875

G = {king,man, queen, queens,876

kings,men, queens, women, }877

M = {tie, dress,878

palace, house,879

alone, together}880

Then, all the formal concepts are identified as881

below:882

T = (G, ∅)883

f1 = ({king,man, kings,men}, {tie})884

f2 = ({man,woman,men,women}, {house})885

f3 = ({king, queen,man,woman}, {alone})886

f4 = ({kings, queens,men,women}, {together})887

f5 = ({king, queen, kings, queens}, {palace})888

f6 = ({queen,woman, queens, women}, {dress})889

e1 = ({king,man}, {tie, alone})890

e2 = ({king, kings}, {tie, palace})891

e3 = ({man,men}, {tie, house})892

e4 = ({kings,men}, {tie, together})893

e5 = ({king, queen}, {palace, alone})894

e6 = ({man,woman}, {house, alone})895

e7 = ({kings, queens}, {palace, together})896

e8 = ({men,women}, {house, together})897

e9 = ({queen,woman}, {dress, alone})898

e10 = ({queen, queens}, {palace, dress})899

e11 = ({woman,women}, {house, dress})900

e12 = ({queens, women}, {dress, togther})901

v1 = ({king}, {tie, palace, alone})902

v2 = ({man}, {tie, house, alone})903

v3 = ({kings}, {tie, palace, together})904

v4 = ({men}, {tie, house, together})905

v5 = ({queen}, {dress, palace, alone})906

v6 = ({woman}, {dress, house, alone})907

v7 = ({queens}, {dress, palace, together})908

v8 = ({women}, {dress, house, together})909

B = (∅,M)910

911

C Mathematical property of an identified 912

submatrix 913

Let IS↑↓ and JS↑ be subsets of rows and columns 914

corresponding to S↑↓ and S↑ that define an identi- 915

fied formal concept, respectively, and let t be the 916

threshold determined in the binarization method 917

for a matrix X . Then, Algorithm 1 ensures that a 918

submatrix (Xij)i∈IS↑↓, j∈JS↑ satisfies: 919

Xij ≥ t (i ∈ IS↑↓, j ∈ JS↑) (7) 920

Xij < t (∀j /∈ JS↑, ∃i ∈ IS↑↓) (8) 921

Xij < t (∀i /∈ IS↑↓,∃j ∈ JS↑) (9) 922

Note that the submatrix of IS↑↓ × JS↑ is discrimi- 923

nated from its neighbouring area. Its inner region 924

has higher values than t (Eq. 7), whereas each of 925

its exterior rows and columns horizontally (Eq. 8) 926

and vertically (Eq. 9) adjacent to the submatrix 927

contains at least one cell below the threshold. In 928

other words, the higher entry values discriminate 929

the submatrix of a formal concept from its neigh- 930

bors, forming a local plateau-like structure that is 931

not necessarily captured by the cosine similarity. 932

D Category completion test 933

We used the four test sets for the category comple- 934

tion test: Battig, BLESS, Series and Syntactic. 935

Battig test (Bullinaria and Levy, 2012), origi- 936

nated from Battig and Montague (1969), contains 937

53 categories with 10 words for each category, of 938

which we used 44 categories in the experiments, 939

since the others have less than two words in our 940

vocabulary of the co-occurrence matrix. 941

BLESS (Baroni and Lenci, 2011) contains 17 942

categories with 5-17, of which we used 12 cate- 943

gories for the same reason. 944

Both of Series and Syntactic are developed 945

by the authors to supplement Battig and BLESS, 946

which contain only common nouns. Series is hinted 947

by Hashimoto et al. (2016) that proposed the series 948

completion task (penny:nickel:dime:?) for word 949

embeddings. Syntactic is motivated by our early 950

finding that comparative adjectives such as quicker, 951

faster, ... emerge as a salient formal concept with 952

a high threshold in the binary FCA experiment. 953

In both test sets, each category consists of 4 to 5 954

words, which are manually selected by one of the 955

authors. In the development process, we partly use 956

AI assistance5 to generate a list of candidates for 957

5https://chat.openai.com/
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a category and its word set, by prompting with an958

example "Direction: north, east, south, west".959

Examples of a category in each test set are shown960

below (Table 6)961

Test set Category Word set
Battig Metal gold, iron, lead, steel,...

BLESS Fruit apple, banana, pear,...
Series Direction north, east, south, west

Syntactic Verb (go) go, goes, went, gone

Table 6: Examples of test sets

We used only the categories that contain more962

than or equal to three words in our vocabulary,963

which are listed in Table 7.964

E Fuzzification of FCA965

Formally, a fuzzy set A is a function A : X → L966

where X is a ground set and L = [0, 1], which967

assigns the value to each member of X . A sub-968

sumption relation A ⊆ B holds if and only if969

A(x) ≤ B(x) for all x ∈ X . In Fuzzy FCA, a970

formal concept is K := (G,M, I, L). We consider971

two fuzzy sets A ∈ LG, B ∈ LM as objects and972

attributes and a fuzzy relation I ∈ LG×M . Mathe-973

matically, L can be generalized to a residuated lat-974

tice that includes [0, 1] as its special case. Similar975

to the crisp setting, two fuzzy derivation operators976

↑ : LG → LM and ↓ : LM → LG are defined as977

follows: For all m ∈M and g ∈ G,978

A ↑ (m) :=
∧
g∈G

(
A(g)→ I(g,m)

)
∈ L (10)979

B ↓ (g) :=
∧

m∈M

(
B(m)→ I(g,m)

)
∈ L (11)980

Note that A↑ ∈ LM , B↓ ∈ LG and (→) : L ×981

L→ L , which is a binary operation defined on L.982

In plain English, the degree to which an object g983

belongs to the fuzzy set A should imply the level984

of co-occurrence between g and an attribute m,985

which retrospectively should determine the degree986

to which the attribute m belongs to another fuzzy987

set A↑. Then, fuzzy formal concepts are defined988

as a pair of fuzzy sets (A,B) where A↑ = B and989

B↓ = A hold as in the crisp FCA.990

We need to specify operations such as (→) to991

numerically compute them. Three specifications,992

named as Lukasiewicz, Gödel and Goguen, have993

already been proposed (Belohlavek and Vychodil,994

2012), but instead we propose our own specifica-995

tion tailored to the analysis of a word co-occurrence996

matrix. 997

a→ b :=

{
b/a if a > 0

⊤ if a = 0
(12) 998

where ⊤ is the greatest element in L. This specifi- 999

cation is a slight modification of the one proposed 1000

by Goguen. The meet ∧ is numerically calculated 1001

as a minimum. 1002

Our specification is equivalent to defining 1003

(A,A↑) and (B↓, B) as a rank-one submatrix. Re- 1004

call that the fuzzy set A ∈ LG assigns a value 1005

x ∈ L to the element g. Similarly, the fuzzy set 1006

A↑ ∈ LM assigns a value y ∈ L to the element 1007

m. Thus, the specification in Eq. (12) ensures that 1008

y = xy/x for x > 0. This means that nonnega- 1009

tive entries in both fuzzy sets A,A↑ constitute a 1010

rank-one submatrix. 1011
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Battig BLESS Series Syntactic
Disease Ground mammal Emotion Demonstrative adverb
Metal Furniture Season Comparative adjective
Carpenter’s tool Tool Sea Preposition
Crime Container Great lakes Verb conjugation
Substance for flavoring food Fruit Direction Manner adverb
Elective Office Vehicle Art form Adverb of frequency
Toy Appliance Part of a tree Personal pronoun
Weapon Weapon Book part Linking verb
Member of clergy Musical instrument Continent Demonstrative determiner
Four-footed animal Building Movie genre Coordinating conjunction
Nonalcoholic beverages Clothing Number Adjective of taste
Building for religious services Bird US president Possessive pronoun
Precious stone Stage of life Frequency adverb
Part of human body Planet Quantitative determiner
Fruit Weekday Subordinating conjunction
Sport Music genre Action verb
Part of a building Natural disaster Modal auxiliary
Male’s first name Decathlon Total pronoun
Relative Family Adjective of size
Human dwelling Ocean Interrogative pronoun
Insect Adverb of time Article
Type of fuel Month Totality adverb
Music instrument Communication act Verb conjugation
Furniture Match
Ship Religion
Kind of money Time of day
Color Writing
Kind of cloth Style of architecture
Unit of distance Midwest U.S. state
Type of music
City
Country
Reading material
Military title
Natural earth formation
Unit of time
Part of speech
Kitchen utensil
Vehicle
Science
Weather phenomenon
Occupation or profession
Bird

Table 7: Used categories of the test sets
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F Role of seed words and performance1012

spread1013

In Algorithm 1 (Section 4), seed words are required1014

as input to the algorithm since a formal concept1015

is detected as a closed set containing those seed1016

words. A closed set is the fixed point of a closure1017

operator. In this algorithm, any set of words can be1018

a seed. If seed words are randomly chosen, then the1019

algorithm will find and return a formal concept in1020

an unsupervised way. Different sets of words return1021

the same formal concept if all of the used words1022

belong to the same closed set, and derive different1023

formal concepts otherwise due to the mathematical1024

property of a closure operator and closure system.1025

In the category completion test in Experiment1026

1, all possible pairs from the word list of the same1027

category are used as seeds (2 words) to derive a for-1028

mal concept. Therefore, different formal concepts1029

can be identified by a chosen pair of words from1030

the test set.1031

Table 8 shows the statistics of the distribution1032

of recalls calculated for all combinations of two1033

words, reflecting the degree to which the FCA re-1034

trieved elements from the test set based on seed1035

choices. To verify, cross-reference the numbers1036

in the Max column with the corresponding recalls1037

reported in Table 2 where the optimal seed pairs1038

were selected. In cases where a word set within a1039

specific category in the test set comprises 10 words,1040

there exist 10C2 = 45 possible pairs. We com-1041

puted the minimum, maximum, and median values1042

for each category, subsequently averaging them be-1043

tween categories for each test set and the entire1044

dataset.1045

These statistics suggest that employing a "right1046

seed" (optimal pair) results in the formal concept1047

covering 56.3% (Syntactic) to 76.8% (Series). On1048

the contrary, the use of a different seed may yield1049

a distinct formal concept. This divergence can1050

be attributed to the non-cohesive nature of word1051

groups within the test set.1052

For instance, the "Occupation or profession"1053

category of Battig comprises words such as doc-1054

tor, lawyer, teacher, engineer, professor, carpen-1055

ter, salesman, nurse, psychologist (with one word1056

omitted due to limited vocabularies in the matrix).1057

Notably, the FCA found that the maximum formal1058

concept within this category is only four words:1059

lawyer, nurse, psychologist, teacher, which seem1060

to represent the "profession" part of the category.1061

Test set Min Max Median
Battig 33.8 64.4 37.3

BLESS 36.5 67.0 43.9
Series 49.2 76.8 53.6

Syntactic 46.1 56.3 48.6

Table 8: Spread % of Recall over different choice of
seeds

G Decomposition by NMF 1062

G.1 Decomposed submatrices by NMF 1063

We applied NMF recursively in three rounds. In the 1064

first round, we decomposed the PPMI matrix as in 1065

X0 ≈W1H
T
1 into 300 components (α = 0.0005). 1066

In the second round, we applied NMF to the pos- 1067

itive residual matrix after the first decomposition: 1068

X1 := max(X0−W1H
T
1 , 0) as decomposed as in 1069

X1 ≈ W2H
T
2 (α = 0.0003). In the third round, 1070

the residual matrix X2 := max(X1 −W2H
T
2 , 0) 1071

was decomposed into X2 ≈W3H
T
3 (α = 0.0001). 1072

Note that each component (rank-one matrix) wkh
T
k 1073

was forced to be sparse by L1 regularization. Thus, 1074

their nonnegative rows and columns make a non- 1075

negative rank-one submatrix, which we regard as a 1076

fuzzy formal concept. 1077

The components derived in the first round were 1078

indexed from 1 to 300. Similarly, those in the sec- 1079

ond round were indexed from 301 to 600, and the 1080

ones from the third round were indexed from 601 1081

to 900. We ordered each component according to 1082

the Frobenius norm within each round. Therefore, 1083

the smaller ID number implies that the submatrix 1084

has a greater norm in each round. 1085

Samples of the components are presented in Ta- 1086

ble 9. The class was evaluated by one of the authors 1087

according to the definition given in Appendix G.2. 1088

The author also labeled a category from the words 1089

that comprise the submatrix wkh
T
k . More specif- 1090

ically, for each vector wk and hk, we picked 20 1091

words that correspond to the largest elements in the 1092

vectors, respectively. In Table 9, the only four top 1093

words are presented for both wk as extents and hk 1094

as intents. For ease of visibility, categories were 1095

labeled with more general expressions, although 1096

they could be labeled with more focused category 1097

names. 1098

Table 10 shows a supplemental analysis of the 1099

type of relatedness between words participating in 1100

each submatrix. 1101
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ID Class Category Extents (top 4 words) Intent (top 4 words)
2 D Geography iran, kerman, khorasan, province iran, kerman, khorasan, province

5 N None pineapples, tasteful, lilongwe, unimpressive dawn, windsor, batting, relegation

8 D Music chart, charts, billboard, singles chart, charts, billboard, singles

14 D Sports discus, javelin, jump, hurdles discus, javelin, jump, hurdles

22 D Education degree, bachelor, doctorate, laude degree, bachelor, doctorate, laude

35 D Diplomacy embassy, ambassador, diplomatic, relations turkmenistan, tajikistan, kyrgyzstan, uzbekistan

46 D Sports baseman, pitcher, outfielder, shortstop baseman, pitcher, outfielder, shortstop

89 D Religion rabbi, yeshiva, synagogue, hebrew rabbi, yeshiva, synagogue, hebrew

90 D US states idaho, montana, dakota, wyoming idaho, montana, dakota, wyoming

95 D Climates cyclone, hurricane, storm, typhoon cyclone, hurricane, storm, typhoon

98 D Politics polling, votes, voters, vote polling, votes, voters, vote

102 D Phrases increases, decreases, decrease, increase temperature, concentrations, accuracy, velocity

104 D Politics incumbent, reelection, democrat, republican incumbent, reelection, democrat, republican

116 P Medical ligament, knee, ankle, injury ligament, knee, ankle, injury

125 P Career postdoctoral, professor, adjunct, emeritus postdoctoral, professor, adjunct, emeritus

137 P TV show starring, roommate, daughters, actress jennifer, laura, jessica, nicole

146 P Legal convicted, guilty, sentenced, imprisonment convicted, guilty, sentenced, imprisonment

147 P History nazi, nazis, deported, camps nazi, nazis, deported, camps

159 P Geography mountain, peaks, summit, mountains mountain, peaks, summit, mountains

160 M Expression acclaim, garnered, reviews critical garnered, acclaim, reviews, critical

165 P Expression regain, recover, conquer, attract trying, attempting, attempt, attempts

181 M Expression tasked, thereby, prevented, intention securing, obtaining, capturing, creating

184 M Expression lied, intentions, poisoned, whereabouts reveals, realizes, believing, realises

192 D Music punk, hop, hip, folk punk, hop, hip, folk

210 D Religion christianity, catholicism, islam, beliefs christianity, catholicism, islam, beliefs

212 M Religion you, think, really, know you, think, really, know

214 M Syntactic various, numerous, several, these genera, disciplines, locations, dialects

237 D Comparative faster, stronger, heavier, than faster, stronger, heavier, than

239 D Politics obama, barack, reagan, clinton obama, barack, reagan, clinton

313 D Religion quantities, amounts, sums, amassed enormous, huge, immense, considerable

329 P Time spends, spend, spent, spending summers, much, time, remainder

341 P Geography maui, oahu, hawaii, honolulu maui, oahu, hawaii, honolulu

370 D Unit millions, billions, million, billion millions, billions, million, dollars

405 M Linguistics vowel, vowels, stressed, accent vowel, vowels, stressed, accent

408 P Travel immigration, nationals, emigration, citizen immigration, nationals, emigration, citizen

419 D Proposal proposal, offer, invitation, plea rejected, accepted, rejects, accepting

431 M Expression poorly, properly, carefully, fully handled, treated, understood, trained

435 D Buildings housed, built, constructed, build synagogue, mosque, mansion, convent

484 D Auxiliary did, does, doesn, didn speak, exist, suffer, appear

507 D Movement down, forth, out, into fell, put, falling, fallen

514 D War pistol, revolver, magnum, rifle pistol, revolver, magnum, rifle

517 M Plants botanical, zoological, garden, gardens botanical, zoological, garden, gardens

577 P Expression totally, completely, virtually, almost totally, virtually, completely, vanished

605 D Number vii, ix, viii, xiii fantasy, corps, intensity, chapter

626 P Accounting collect, collecting, exception, collected taxes, debt, debts, fees

645 D Month june, july, august, september premiered, consecrated, baptised, inaugurated

667 D Expression taking, take, taken, takes hostage, advantage, seriously, refuge

669 D Geography gaza, palestinians, palestinian, israeli strip, gaza, rockets, barrier

679 D Geography colombian, venezuelan, peruvian, chilean peso, divisi, primera, aut

774 P IT java, server, windows, software java, server, windows, software

781 D Expression bought, purchased, buying, buy shares, stake, tickets, tracts

784 M Marketing advertising, commercials, campaigns, marketing advertising, commercials, campaigns, marketing

804 M Expression about, detail, matters, topics discuss, discussed, discussing, discusses

855 M Expression heavily, originally, by, recently influenced, inspired, invented, borrowed

864 D Expression currently, presently, still, today currently, resides, owns, produces

874 P Expression launching, pursued, launched, developed ventures, venture, scheme, initiative

Table 9: Samples of decomposed submatrices labeled with a category name. Classes are abbreviated; D:Descriptive,
P:Partial, M:Meaningful, N:Nonsense
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Proximity R1 R2 R3
Categorical 74 64 53
Contextual 171 147 148

Combinatorial 41 59 62
Syntactic 9 18 19

None 5 12 18
Total 300 300 300

Table 10: Proximity types of word relations in each
NMF-decomposed component. Categorical: words are
in the same category, Contextual: words are related in
a shared context, Combinatorial: words are a part of
possible phrases, i.e., paradigmatic, Syntactic: words
are in the same syntactic category.

G.2 Types of qualitative classes1102

The set of words corresponding to the largest di-1103

mensions within each component is classified into1104

four qualitative classes, as in the below definition1105

(Table 11), following Lindh-Knuutila and Honkela1106

(2015) . These classes indicate how well an iden-1107

tified formal concept (a rank-one matrix) is inter-1108

pretable as a category.1109

Class Description

Descriptive

Words are related in some
way, and the majority label
given is as descriptive
as possible of the words
in the set.

Partial

Words are related in some
way, and the majority label
is somewhat descriptive,
but a more descriptive
account can be easily given.

Meaningful
Words are related, but no
majority label describes
the words.

Nonsense

There is no majority label,
nor is there any perceived
relation between
the words in the set.

Table 11: Definition of qualitative classes assessing
how well the labels describe the words in each formal
concept. (Lindh-Knuutila and Honkela, 2015)

H Overlap of two FCA methods 1110

In addition, we performed an analysis of set over- 1111

lap at the word level. For each of the 89 groups, we 1112

calculated the set overlap using the Jaccard index, 1113

which is defined as the number of words in the in- 1114

tersection divided by the number in the union. The 1115

results are presented in Table 12 as percentages. 1116

Min Max Mean Median
1.4 64.5 23.7 20.0

Table 12: Jaccard index between the corresponding for-
mal concepts of Binarization method and Fuzzy method
over 89 categories
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