
Understanding and Improving Fast Adversarial
Training against l0 Bounded Perturbations

Xuyang Zhong
Department of Computer Science

City University of Hong Kong
xuyang.zhong@my.cityu.edu.hk

Yixiao Huang
Department of Computer Science

City University of Hong Kong
yixiao.huang@my.cityu.edu.hk

Chen Liu ∗

Department of Computer Science
City University of Hong Kong
chen.liu@cityu.edu.hk

Abstract

This work studies fast adversarial training against sparse adversarial perturbations
bounded by l0 norm. We first demonstrate the unique challenges of employing
1-step attacks on l0 bounded perturbations, especially catastrophic overfitting
(CO) that cannnot be properly addressed by existing fast adversarial training
method for other lp norms (p ≥ 1). We highlight that CO in l0 adversarial
training arises from sub-optimal perturbation locations of 1-step attack. Some
strategies like multi-ϵ can mitigate this sub-optimality to some extent, they lead
to unstable training in turn. Theoretical and numerical analyses also reveal that
the loss landscape of l0 adversarial training is more craggy than its l∞, l2 and l1
counterparts, which exaggerates CO. To address this issue, we adopt soft labels
and the trade-off loss function to smooth the adversarial loss landscape. Extensive
experiments demonstrate our method can overcome the challenge of CO, achieve
state-of-the-art performance, and narrow the performance gap between 1-step
and multi-step adversarial training against sparse attacks. Codes are available at
https://github.com/CityU-MLO/sPGD.

1 Introduction

Deep neural networks have been shown vulnerable to adversarial perturbations [1]. To achieve robust
models, comprehensive evaluations [2, 3, 4] have demonstrated that adversarial training [5] and
its variants [6, 7, 8, 9, 10, 11, 12] are the most effective methods. However, adversarial training is
generally computationally expensive because generating adversarial perturbations in each training
step needs multiple forward and backward passes of the model. Such efficiency issues hinder the
scalability of adversarial training.

Improving the efficiency of adversarial training is tricky. Some works [13, 14, 15, 16] employ
faster but weaker 1-step attacks to generate adversarial perturbations for training. However, such
methods may suffer from catastrophic overfitting (CO) [17]: the model overfits these weak attacks
instead of achieving true robustness against adaptive and stronger attacks. On the other hand, most
existing works [5, 18, 19] focus on studying adversarial perturbations bounded by l∞, l2 or l1
norms. In these scenarios, the set of allowable perturbations is convex, which facilitates optimizing
adversarial perturbations and thus adversarial training. However, there are many scenarios in real-

∗Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/CityU-MLO/sPGD

Table 1: Robust accuracy of sAT and sTRADES [23] with different steps (t) evaluated by Sparse-
AutoAttack (sAA) [23], where the sparsity level is ϵ = 20. The models are PreactResNet-18 [24]
trained on CIFAR-10 [25].

sAT (t = 1) sAT (t = 20) sTRADES (t = 1) sTRADES (t = 20)

Robust Acc. 0.0 36.2 31.0 61.7

world applications where sparse perturbations, bounded by the l0 norm, need to be considered [20,
21, 22, 23]. Since the l0 norm is not a proper norm, the set of all allowable perturbations in this
case is not convex. Consequently, from an optimization perspective, obtaining robust models against
sparse perturbations becomes more challenging. Compared with the l∞, l2 and l1 counterparts, more
steps are needed to generate strong l0 bounded perturbations, making the corresponding adversarial
training even more computationally expensive.

Among algorithms aiming at obtaining robust models against sparse perturbations, sAT and
sTRADES [23] stand out as the most effective ones. These methods employ adversarial train-
ing against Sparse-PGD (sPGD) [23]. However, they still require 20 steps to generate adversarial
perturbations in each training step to achieve decent performance. As demonstrated in Table 1,
naively decreasing the number of steps to 1 leads to a significant performance decline for both sAT
and sTRADES.

In this work, we investigate the challenges associated with fast adversarial training against sparse
perturbations, including training instability caused by CO and performance decline in both robust and
clean accuracy. Specifically, we highlight that CO in l0 adversarial training is caused by sub-optimal
perturbation locations of 1-step attack. Our observation indicates that adjusting the perturbation
magnitudes alone cannot help mitigate CO in this context, so many existing CO mitigation methods
[26, 27, 28, 29] used in other cases do not work at all in the l0 scenario. Although the multi-ϵ
strategy [19, 23] can mitigate sub-optimal perturbation locations, it suffers from unstable training and
degraded clean accuracy. In light of these findings, we present empirical and theoretical evidence to
illustrate that the loss landscape of adversarial training against l0 bounded perturbations is markedly
more craggy compared to its l∞, l2, and l1 counterparts. Furthermore, we corroborate that the craggy
loss landscape aggravates CO in l0 adversarial training.

Drawing from these insights, we adopt soft labels and a trade-off loss function to enhance the
smoothness of the adversarial loss objective function, thereby improving the performance of fast
adversarial training against sparse perturbations. Although similar smoothing techniques have been
applied in adversarial training [30, 31, 32, 33], existing literature employs them to address robust
overfitting to boost performance in l2 and l∞ cases. By contrast, we demonstrate that it is essential
and has a much larger performance improvement in the l0 case of fast adversarial training. Finally,
our extensive experiments demonstrate that smoothing the loss landscape can eliminate CO in the
l0 case, and significantly narrow the performance gap between 1-step adversarial training and its
multi-step counterparts.

To the best of our knowledge, this work is the first to investigate fast adversarial training in the context
of l0 bounded perturbations. We summarize the contributions of this paper as follows:

1. We highlight that catastrophic overfitting (CO) in fast l0 adversarial training arises from sub-
optimal perturbation locations in 1-step attacks. Techniques effective in l∞, l2, and l1 cases cannot
fully address the CO issue in the l0 case.

2. Our theoretical and empirical analysis shows that the adversarial loss landscape is more craggy in
l0 cases, exacerbating CO. In this regard, we can adopt soft labels and the trade-off loss function
to provably smooth the adversarial loss landscape.

3. Comprehensive experiments demonstrate that smoothing the loss function significantly narrows the
performance gap between 1-step l0 adversarial training and its multi-step counterparts, achieving
state-of-the-art performance in efficient adversarial training against sparse perturbations.

Notation and Terminology Consider a classification model F (x,θ) = {fi(x,θ)}K−1
i=0 , where

x ∈ Rd is the input, θ represents the parameters of the model, and K is the number of classes,
fi(x,θ) is the logit of the i-th class. Correspondingly, we use {hi}K−1

i=0 to represent the output
probability of each class, which is the result of softmax function applied to {fi}K−1

i=0 . Therefore, the

2

loss objective function L based on the cross-entropy is calculated as follows:

L(x,θ) def
= −

K−1∑
i=0

yi log hi(x,θ)
def
= −

K−1∑
i=0

yi log
exp(fi(x,θ))∑K−1

j=0 exp(fj(x,θ))
(1)

where y = [y1, y2, ..., yC] is the label of x in a simplex, i.e.,
∑

i yi = 1. In the context of adversarial
perturbation, we use S(p)

ϵ (x)
def
= {δ|∥δ∥p ≤ ϵ, 0 ≤ x+ δ ≤ 1} to represent the adversarial budget,

i.e., the set of all allowable input perturbations for the input x. The adversarial loss function is
L(p)
ϵ (x,θ)

def
= max

δ∈S(p)
ϵ (x)

L(x+ δ,θ). Despite no guarantee to obtain the optimal perturbation in

practice, to simplify the notation, we denote the term L(p)
ϵ also as the adversarial loss induced by the

actual attack algorithms and omit the superscript (p) when there is no ambiguity.

2 Related Works

Adversarial Attacks: The existence of adversarial examples is first identified in [1], which focuses
on l2 norm-bounded adversarial perturbations. Fast gradient sign method (FGSM) [34] introduces an
efficient approach by generating perturbations bounded by its l∞ norm in a single step. Furthermore,
projected gradient descent (PGD) [5] extends and improves FGSM [35] by iterative updating and
random initialization. In addition to these white-box attacks where the attackers have full access to
the models, there are also several black-box attacks [36, 37] where the attackers’ access is restricted.
AutoAttack (AA) [3] is an ensemble of both white-box and black-box attacks to ensure a more
reliable evaluation of model’s robustness.

Adversarial Training: Adversarial training [5, 6, 7, 8, 9, 10, 11, 12] has emerged as a popular
and reliable framework to obtain robust models [2, 3]. Under this framework, we first generate
adversarial examples and update model parameters based on these examples in each mini-batch
update. Different adversarial training variants, such as TRADES [30] and MART [32], may have
different loss objective functions for generating adversarial examples and updating model parameters.
Furthermore, compared with training on clean inputs, adversarial training is shown to suffer more
from overfitting [38, 39]. In this regard, self-adaptive training (SAT) [40], which utilizes historical
predictions as the soft label, has demonstrated its efficacy in improving the generalization.

Sparse Perturbations: Adversarial budget defined by l1 norm is the tightest convex hull of the one
defined by l0 norm. In this context, SLIDE [18] extends PGD and employs k-coordinate ascent to
generate l1 bounded perturbations. Similarly, AutoAttack-l1 (AA-l1) [41] extends AA to the l1 case.
However, AA-l1 is found to generate non-sparse perturbations that SLIDE fails to discover [19],
indicating that l1 bounded perturbations are not necessarily sparse. Therefore, we use l0 norm to
strictly enforce sparsity. It is challenging to optimize over an adversarial budget defined by l0 norm,
because of non-convex adversarial budgets. While naively applying PGD in this case turns out
sub-optimal, there are several black-box attacks, including CornerSearch [21] and Sparse-RS [22],
and white-box attacks, including Sparse Adversarial and Interpretable Attack Framework (SAIF)
[42] and Sparse-PGD (sPGD) [23], which address the optimization challenge of finding l0 bounded
perturbations. Ultimately, Sparse-AutoAttack (sAA) [23], combining the most potent white-box and
black-box attacks, emerges as the most powerful sparse attack.

Fast Adversarial Training: While effective, adversarial training is time-consuming due to the use
of multi-step attacks. To reduce the computational overhead, some studies [13, 14] employ faster
one-step attacks in adversarial training. However, the training based on these weaker attacks may
suffer from catastrophic overfitting (CO) [17], where the model overfits to these weak attacks instead
of achieving true robustness against a variety of attacks. CO is shown to arise from distorted decision
boundary caused by sub-optimal perturbation magnitudes [26]. There are several methods proposed
to mitigate CO, including aligning the gradients of clean and adversarial samples [27], adding stronger
noise to clean sample [43] , adaptive step size [29], regularizing abnormal adversarial samples [44],
adding layer-wise weight perturbations [45], and penalizing logits discrepancy [31]. Furthermore,
compared to its l2 and l∞ counterparts, CO is caused by overfitting to sparse perturbations during l1
adversarial training [19]. To address this issue, Fast-EG-l1 [19] is introduced to generate l1 bounded
perturbations by Euclidean geometry instead of coordinate ascent. In this work, we investigate fast
adversarial training against l0 bounded perturbations.

3

3 Unique Challenges in Fast l0 Adversarial Training

To obtain robust models against sparse perturbations, preliminary efforts use 20-step sPGD in
adversarial training, which introduces significant computational overhead. To accelerate training,
we explore using 1-step sPGD in adversarial training. However, as reported in Table 1, the models
obtained in this way exhibit weak robustness against stronger sparse attacks, such as sAA. In this
section, we study the underlying factors that make fast l0 adversarial training challenging.

3.1 Catastrophic Overfitting in l0 Adversarial Training

0 20 40 60 80 100
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Clean Acc.
Robust Acc.

(a) ϵtrain = 20

0 20 40 60 80 100
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Clean Acc.
Robust Acc.

(b) ϵtrain = 40

0 20 40 60 80 100
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Clean Acc.
Robust Acc.

(c) ϵtrain = 120

Figure 1: The learning curves of adversarial training against 1-step sPGD with random noise
initialization. The models are PreactResNet-18 trained on CIFAR-10. The dashed and the solid lines
represent the accuracy of the training and the test set, respectively. The test robust accuracy is based
on sAA with ϵ = 20. The values of ϵ used in training are shown as ϵtrain, the training robust accuracy
is based on the 1-step sPGD with ϵtrain.

We plot the learning curves of adversarial training using 1-step sPGD in Figure 1. Specifically, we
adopt the multi-ϵ strategy [19, 23] and allow for different adversarial budget sizes, i.e., ϵ, during
training and testing. The results in Figure 1 indicate that CO happens in all configurations. Moreover,
our observations of CO in l0 cases are different from other cases in several aspects. First, random
initialization of adversarial perturbation, proven effective in l∞, l2 and l1 cases, does not yield
similar results in the l0 case. In addition, Figure 1 showcases that the training accuracy on the inputs
perturbed by 1-step sPGD is even higher than their clean counterparts. What’s more, when CO
happens in l∞, l2 and l1 cases, the model sharply achieves perfect robustness against 1-step attacks
but zero robustness against multi-step attacks, both in few mini-batch updates. Such phenomenon
is not observed in l0 cases. By contrast, we observe dramatic performance fluctuations on clean
examples throughout the training process, even in the fine-tuning phase. Such training instability
indicates a non-smooth landscape of the loss function in the parameter space: a subtle change in
parameters θ leads to abrupt fluctuation in the loss.

Moreover, we apply existing CO mitigation methods (ATTA [28], Free-AT [13], GradAlign (GA)
[27], Fast-BAT [46], FLC Pool [47], N-AAER [44], N-LAP [45], and NuAT [16]), which are effective
in l∞ and l2 cases, in fast l0 adversarial training. As shown in Table 2, most methods designed for
other lp norms (p ≥ 1) turn out ineffective at all in the l0 scenario. Although NuAT achieves
non-trivial performance, there is still a significant performance gap to multi-step methods. Therefore,
it is imperative to ascertain more essential causes of CO in fast l0 adversarial training and formulate
effective mitigation strategies accordingly.

Table 2: Comparison between existing CO mitigation methods and multi-step method (sTRADES) in
robust accuracy (%) by sAA. The target sparsity level ϵ = 20. We compare PreAct ResNet-18 [24]
models trained on CIFAR-10 [25]. The italic numbers indicate catastrophic overfitting (CO) happens.
Note that all baselines are tuned by a thorough hyperparameter search.

Method ATTA Free-AT GA Fast-BAT FLC
Pool N-AAER N-LAP NuAT sTRADES

Robust Acc. 0.0 8.9 0.0 14.1 0.0 0.1 0.0 51.9 61.7

4

Table 3: Robust accuracy of the models obtained by 1-step sAT with different ϵtrain against the
interpolation between perturbations generated by 1-step sPGD (ϵ = 20) and their corresponding
clean examples, where α denotes the interpolation factor, i.e., xinterp = x+ α · δ. The results of
sAA are also reported.

α 0.0 0.2 0.4 0.6 0.8 1.0 sAA

ϵtrain = 20 77.5 69.1 80.4 88.0 90.2 90.4 0.0
ϵtrain = 40 70.2 64.3 79.8 87.4 89.6 89.6 0.0
ϵtrain = 120 32.5 24.5 41.5 65.2 72.8 67.6 0.0

3.2 Unique Cause of CO in l0 Adversarial Training: Sub-optimal Perturbation Location

In l∞ and l2 cases, CO occurs due to distorted decision boundary caused by sub-optimal perturbation
magnitude [26]. To ascertain if this applies to l0 adversarial training, we evaluate the robustness
accuracy of models trained by 1-step sAT with varying ϵtrain against interpolations between the
clean inputs and the perturbed ones by 1-step sPGD. Table 3 shows that we cannot find successful
adversarial examples through such simple interpolations.

By contrast, we notice that the adversarial perturbations generated by 1-step sPGD during training
are almost completely different from those generated by sAA in location rather than magnitude (see
in Figure 2(a)). Combining with the results in Table 3, we can demonstrate that CO in l0 adversarial
training is primarily due to sub-optimal perturbation locations rather than magnitudes.

Due to non-convexity and unique project operator to l0 adversarial budget, most existing methods
designed for l2 or l∞ cases do not help improve the perturbation locations. Instead, we study multi-ϵ
strategy, which is particularly effective in multi-step l0 adversarial training [23]. Figure 2(b) indicates
that the perturbations generated by 1-step attack with larger ϵtrain overlap more with those generated
by sAA with a smaller and fixed ϵtest in terms of location. These findings suggest that the sub-
optimal location issue brought by 1-step attacks can be mitigated to some extent by multi-ϵ
strategy. However, as illustrated in Figure 1, a larger ϵtrain, in turn, leads to unstable training
and degraded clean accuracy. To address this challenge, we investigate the loss landscape in the
subsequent sections.

1.75 1.80 1.85 1.90 1.95 2.00
|| train sAA||0 / train

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

train = 20
train = 80
train = 120

(a) Location Difference

0.0 0.1 0.2 0.3 0.4 0.5
|| train test||0 / test

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

train = 20
train = 80
train = 120

(b) Location Overlapping

Figure 2: Visualization of location difference and location overlapping. (a) The distribution of the
normalized l0 distance between training adversarial examples generated by 1-step sPGD and sAA.
The models trained on 20-step sAT with different training ϵ are evaluated. (b) The distribution of the
location overlapping rate between the perturbations generated by attacks used in training (20-step
sPGD) and test (sAA), where ϵtest = 20. The models trained on 20-step sAT with different training ϵ
are evaluated.

4 Fast l0 Adversarial Training Requires Loss Smoothing

In this section, we investigate the landscape of adversarial loss through theoretical analyses and
numerical experiments. Ultimately, we provide our solution to stabilize and improve the performance
of fast l0 adversarial training.

5

4.1 Theoretical Analysis

We first provide theoretical analyses on the smoothness of adversarial loss function. Similar to [48],
we assume the first-order smoothness of the model’s outputs {fi}K−1

i=0 .

Assumption 4.1. (First-order Lipschitz condition) ∀i ∈ {0, 1, ...,K − 1}, the function fi satisfies
the following first-order Lipschitz conditions, with constants Lθ, Lx:

∀x,θ1,θ2, ∥fi(x,θ1)− fi(x,θ2)∥ ≤ Lθ∥θ1 − θ2∥ (2)

∀θ,x1,x2, ∥fi(x1,θ)− fi(x2,θ)∥ ≤ Lx∥x1 − x2∥ (3)

We then study the first-order smoothness of the adversarial loss objective function Lϵ(x,θ).

Theorem 4.2. (Lipschitz continuity of adversarial loss) If Assumption 4.1 holds, we have:

∀x,θ1,θ2, ∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ ≤ Aθ∥θ1 − θ2∥, (4)

The constant Aθ = 2
∑

i∈S+
yiLθ where S+ = {i | yi ≥ 0, hi(x + δ1,θ2) > hi(x + δ1,θ1)},

δ1 ∈ argmaxδ∈Sϵ
L(x+ δ,θ) and δ2 ∈ argmaxδ∈Sϵ

L(x+ δ,θ).

The proof is deferred to Appendix B.1, in which we can see the upper bound in Theorem 4.2 is tight.
Theorem 4.2 indicates that the adversarial loss Lϵ(x,θ) is Lipschitz continuous, consistent with [48].

To study the second-order smoothness of Lϵ(x,θ), we start with the following assumption.

Assumption 4.3. (Second-order Lipschitz condition) ∀i ∈ {0, 1, ...,K − 1}, the function fi
satisfies the following second-order Lipschitz conditions, with constants Lθθ, Lθx:

∀x,θ1,θ2, ∥∇θfi(x,θ1)−∇θfi(x,θ2)∥ ≤ Lθθ∥θ1 − θ2∥ (5)

∀θ,x1,x2, ∥∇θfi(x1,θ)−∇θfi(x2,θ)∥ ≤ Lθx∥x1 − x2∥ (6)

Theorem 4.4. (Lipschitz smoothness of adversarial loss) If Assumption 4.1 and 4.3 hold, we have:

∀x,θ1,θ2, ∥∇θLϵ(x,θ1)−∇θLϵ(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+Bθδ (7)

The constants Aθθ = Lθθ and Bθδ = Lθx∥δ1 − δ2∥+ 4Lθ where δ1 ∈ argmaxδ∈Sϵ
L(x+ δ,θ1)

and δ2 ∈ argmaxδ∈Sϵ
L(x+ δ,θ2).

The proof is deferred to Appendix B.2. Theorem 4.4 indicates the adversarial loss objective function
Lϵ(x,θ) w.r.t. the model parameter θ is no longer smooth. That is to say, gradients in arbitrarily small
neighborhoods in the θ-space can change discontinuously. Furthermore, the degree of discontinuity is
indicated by the value of Bθδ = Lθx∥δ1−δ2∥+4Lθ , so a larger ∥δ1−δ2∥ can intensify the gradient
discontinuity. Additionally, as elucidated by Theorem 2 in [48], the gradients are non-vanishing
in adversarial training. A large Bθδ introduces large gradient magnitudes asymptotically, making
optimization challenging.

In practice, we may use non-smooth activations, like ReLU, which do not strictly satisfy Assumption
4.3. For example, the gradient of ReLU changes abruptly in the neighborhood around 0. In this
regard, we provide a more detailed analysis of this case in Appendix D, which suggests that our
analyses can be straightforwardly extended to networks with non-smooth activations.

Without the loss of generality, the Lipschitz properties in Assumption 4.1 and 4.3 can be based on
any proper lp norm, i.e., p ∈ [1,+∞], which, however, does not include l0 norm. Correspondingly,
∥δ1 − δ2∥ in the expression of Bθδ is based on the same norm as in the assumptions. On the popular
benchmark CIFAR-10, the commonly used values of ϵ in the l0, l1, l2 and l∞ cases are 3602, 24,
0.5 and 8/255, respectively [5, 41, 19, 23]. In Appendix E, we discuss the numerical upper bound
of ∥δ1 − δ2∥ when the Lipschitz assumptions are based on different proper norms. The results
demonstrate that the upper bound of ∥δ1 − δ2∥ in the l0 case is always significantly larger
than other cases, indicating a more craggy adversarial loss function in l0 adversarial training.
Moreover, to corroborate the Lipschitz smoothness assumption in Inequality (6), we compare the
distances between the gradients induced by one-step and multi-step attacks in Appendix F.2.

6

0 2 4 6 8
Index

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

1e5

train = 1
train = 20
train = 40
train = 120

(a) Eigenvalues of ∇2
θL

(0)
ϵ

0 2 4 6 8
Index

101

102

103

104

Va
lu

e l0
l1

l2
l

(b) Eigenvalues of ∇2
θL

(p)
ϵ

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

20

40

60

(c) L(0)
ϵ , ϵtrain = 1

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

1

2

3

4

1.4

1.6

1.8

2.0

2.2

(d) L(1)
ϵ , ϵtrain = 24

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0.0

0.5

1.0

1.5

2.0

0.65

0.70

0.75

0.80

(e) L(2)
ϵ , ϵtrain = 0.5

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0.5

1.0

1.5

2.0

2.5

0.98

1.00

1.02

1.04

1.06

1.08

(f) L(∞)
ϵ , ϵtrain = 8/255

Figure 3: Smoothness of adversarial loss objective functions. All losses are calculated on the training
set of CIFAR-10 by PreactResNet-18. The l0, l1, l2 and l∞ models are obtained by 1-step sAT
[23], Fast-EG-l1 [19], 1-step PGD [38] and GradAlign [37], respectively. (a) Top 10 eigenvalues of
∇2

θL
(0)
ϵ (x,θ) with different values of ϵtrain in the l0 case. (b) Top 10 eigenvalues of ∇2

θL
(p)
ϵ (x,θ)

under different choices of p, including 0, 1, 2 and ∞. The y-axis is shown on a log scale. (c) - (f) The
loss landscape of Lϵ(x,θ + α1v1 + α2v2) where v1 and v2 are the eigenvectors associated with the
top 2 eigenvalues of ∇2

θLϵ(x,θ), respectively. (c) l0 case, ϵtrain = 1. (d) l1 case, ϵtrain = 24. (e)
l2 case, ϵtrain = 0.5. (f) l∞ case, ϵtrain = 8/255.

4.2 Numerical Validation

To validate the conclusions in theoretical analyses, we conduct numerical experiments to study the
properties of loss landscape of l0 adversarial training and compare it with the l∞, l2 and l1 cases.

We first study the curvature in the neighborhood of model parameters, which reflects the second-order
smoothness of the loss function and is dominated by top eigenvalues of Hessian matrix ∇2

θLϵ(x,θ).
Numerically, we employ the power method [49, 48, 50] to iteratively estimate the eigenvalues and
the corresponding eigenvectors of Hessian matrices. We plot the top-10 eigenvalues of the Hessian
matrices ∇2

θLϵ(x,θ) under different ϵ in l0 cases in Figure 3 (a). In addition, we compare the
Hessian spectrum in the l0 case with l∞, l2 and l1 cases in Figure 3 (b). Our results in Figure 3 (a)
demonstrate that eigenvalues of Hessian matrices in l0 cases increase as ϵ grows, indicating a higher
degree of non-smoothness for a larger ϵ. Moreover, Figure 3 (b) indicates that the adversarial loss
landscape in the l0 case is more craggy than its l∞, l2 and l1 counterparts, even when we set ϵ = 1,
i.e., perturbing only a single pixel. These observations corroborate that l0 adversarial training exhibits
worse second-order smoothness than other cases, causing challenges in optimization.

To study the first-order smoothness, we visualize the loss landscape of different settings in Figures 3
(c)-(f), which demonstrate that the loss in the l0 case abruptly increases even with subtle changes
in the model parameters. This further suggests the non-smooth nature of the l0 adversarial loss
landscape. More loss landscape visualizations of l0 adversarial training with different ϵ are provided
in Appendix F.9. The observations are consistent with that in Figure 3. Accordingly, we confirm that
the loss landscape of l0 adversarial loss function is more craggy than other cases from both theoretical
and empirical perspectives. In addition, among the cases studied in Figure 3, the l0 cases are the only
ones suffering from CO.

2In [23], the l0 adversarial budget for training on CIFAR-10 is 120 in the pixel space of RGB images, so the
equivalent l0 norm in the feature space is 360. Note that the adversarial budget mentioned in the experiment part
is still in the pixel space.

7

On the other side, we show in Figure 4 of Appendix F.1 that successful attempts to obtain robust
models against l0 bounded perturbation also include elements that help improve the smoothness of the
loss landscape. 20-step sAT in [23] uses an early stopping (ES) strategy to avoid CO and to achieve
competitive performance. Specifically, ES interrupts the attack iteration once the current perturbed
input is misclassified. ES is shown to circumvent the potential for excessive gradient magnitude
while maintaining the efficacy of the generated perturbations. This finding further highlights a strong
correlation between CO and the craggy nature of the loss landscape in l0 adversarial training.

In summary, our results suggest that the l0 adversarial training exhibits a more craggy loss
landscape than other cases, which shows a strong correlation with CO. Additionally, despite
the non-trivial performance of 20-step sAT with ES, its performance still exhibits considerable
fluctuation and can be further improved, underscoring the need for a smoother loss function. In the
next subsection, we will offer our recipe to address the CO issue in fast l0 adversarial training.

4.3 Recipe: Soft Label and Trade-off Loss Function Smooth Loss Landscape

Notice that Aθ in Theorem 4.2 can be regarded as a function of the label y. Let yh ∈ {0, 1}K and
ys ∈ (0, 1)K denote the hard and soft label, respectively. That is to say, yh is a one-hot vector,
while ys is a dense vector in a simplex. We find that soft label ys leads to a reduced first-order
Lipschitz constant, thereby enhancing the Lipschitz continuity of the adversarial loss function.
Detailed theoretical analysis is deferred to Proposition C.1 of Appendix C.

However, as indicated by Theorem 4.4, the second-order Lipschitz constant remains unaffected
by variations in y. Considering the poor performance on clean inputs when CO happens, we
introduce a trade-off loss function Lϵ,α which interpolates between clean and adversarial losses:
Lϵ,α(x,θ) = (1−α)L(x,θ)+αmaxδ∈Sϵ(x) L(x+δ,θ) where α ∈ [0, 1] is the interpolation factor.
We find that trade-off loss function can enhance the second-order smoothness of adversarial loss
function. Detailed theoretical analysis is deferred to Proposition C.2 of Appendix C.

In implementation, we can stabilize and improve the performance of fast adversarial training against
l0 bounded perturbations by combining soft labels and trade-off loss function. In addition, several
available techniques, such as self-adaptive training (SAT) [40] and TRADES [30], can be considered
variations of soft labels and trade-off loss function. In Appendix A, we provide the pseudo-codes
of both SAT and TRADES and the formulation of their combination as a reference. It should be
highlighted that the rationale for using soft labels and trade-off loss function is different for the l0
case. Although they are widely leveraged to address robust overfitting to boost performance in l2 and
l∞ cases, smoothing the loss function is essential to address the CO issue in the l0 case.

5 Experiments

In this section, we perform extensive experiments to investigate various approaches that can stabilize
and improve the performance of fast l0 adversarial training. Then, we compare the performance of
1-step adversarial training with the multi-step counterparts.

5.1 Approaches to Improving 1-Step l0 Adversarial Training

Table 4: Comparison of different approaches and their combinations in robust accuracy (%) by
sAA. The target sparsity level ϵ = 20. We compare PreAct ResNet-18 [24] models trained on
CIFAR-10 [25]. Note that S and N denote SAT and N-FGSM, respectively. The italic numbers
indicate catastrophic overfitting (CO) happens.

Method sAT Trade-off sTRADES (T) sTRADES (F)

1-step 0.0 2.6 31.0 55.4
+ N 0.3 17.5 46.9 55.9
+ S 29.3 30.3 61.4 59.4
+ S&N 43.8 39.2 63.0 62.6

We begin our analysis by evaluating the effectiveness of different approaches and their combinations,
focusing on those that incorporate either soft labels or trade-off loss functions. Additionally, we
explore a data augmentation technique N-FGSM [43], which may mitigate the sub-optimality of

8

Table 5: Robust accuracy (%) against sparse attacks. (a) PreActResNet-18 trained on CIFAR-10,
where the attack sparsity level ϵ = 20. (b) ResNet-34 trained on ImageNet-100, where ϵ = 200.
CornerSearch (CS) is not evaluated due to its high computational complexity. Cost times are recorded
on one NVIDIA RTX 6000 Ada.

(a) CIFAR-10, ϵ = 20

Model Time
Cost Clean Black White sAACS RS SAIF σ-zero sPGDp sPGDu

Multi-step

sAT 5.3 h 84.5 52.1 36.2 76.6 79.8 75.9 75.3 36.2
+S&N 5.5 h 80.8 64.1 61.1 76.1 78.7 76.8 75.1 61.0

sTRADES 5.5 h 89.8 69.9 61.8 84.9 85.9 84.6 81.7 61.7
+S&N 5.4 h 82.2 66.3 66.1 77.1 77.0 74.1 72.2 65.5

One-step

Fast-LS-l0 0.8 h 82.5 69.3 65.4 75.7 73.7 67.2 67.7 63.0

(b) ImageNet-100, ϵ = 200

Model Time
Cost Clean Black White sAARS SAIF σ-zero sPGDp sPGDu

Multi-step

sAT 325 h 86.2 61.4 69.0 78.6 78.0 77.8 61.2
+S&N 336 h 83.0 75.0 76.4 80.8 78.8 79.2 74.8

sTRADES 359 h 84.8 76.0 77.4 81.6 80.6 81.4 75.8
+S&N 360 h 82.4 78.2 79.2 80.0 78.2 79.8 77.8

One-step

Fast-LS-l0 44 h 82.4 76.8 75.4 74.0 74.6 74.6 72.4

perturbation location by randomly perturbing more pixels. Our findings, summarized in Table 4, are
all based on 1-step adversarial training. The robust accuracy is measured using the sparse-AutoAttack
(sAA) method, with ϵ set to 20.

In Table 4, we investigate the following approaches and their combinations: (1) sAT: adversarial
training against 1-step sPGD [23]. (2) Tradeoff: 1-step adversarial training with the trade-off loss
function as discussed in Section 4.3. (3) sTRADES: the 1-step sTRADES [23]. As discussed in
Appendix A, it incorporates both soft label and trade-off loss function. We include two variants of
sTRADES for comparison: sTRADES (T) is the training mode where we only use the loss objective
function of TRADES for training but still use the cross-entropy loss to generate adversarial examples;
sTRADES (F) is the full mode where we use the KL divergence loss function for generating
adversarial perturbations. Compared with 1-step sAT, sTRADES (T) introduces 25% overhead while
sTRADES (F) introduces 50% overhead. (4) SAT (S): self-adaptive training [40]. As discussed in
Appendix A, it introduces soft labels based on the moving average of the historical predictions and
uses adaptive weights for training instances of different prediction confidence. (5) N-FGSM (N):
data augmentation technique by adding random noise to the training data. It is proven effective in
1-step adversarial training [43]. Among these approaches, SAT (S) and sTRADES introduce soft
labels; trade-off and sTRADES use trade-off loss functions to smooth the loss objective function. The
comparison with other smoothing approaches is undertaken in Appendix F.3. The implementation
details are deferred to Appendix G.

The results in Table 4 indicate that using trade-off loss function alone still suffers from CO. In
contrast, combining it with soft label, either by SAT or sTRADES, can eliminate CO and achieve
notable robust accuracy. Furthermore, sTRADES (F) outperforms sTRADES (T) by a substantial
margin of 24.4%, which can be attributed to the generation of higher-quality adversarial examples
for training by sTRADES (F). Finally, both SAT and N-FGSM can enhance the performance of all
approaches, demonstrating their effectiveness.

Note that the results presented in Table 4 are obtained using sAA, which is known for generating the
strongest attacks in terms of l0 perturbations. Our findings demonstrate that incorporating soft labels
and trade-off loss function yields substantial performance improvements in 1-step l0 adversarial
training. Among various combinations of methods explored, the model trained with sTRADES (T)
with SAT and N-FGSM achieves the highest robust accuracy against sAA, reaching an impressive
63.0%. This establishes the state-of-the-art performance in fast l0 adversarial training methods.
For convenience, we name this combination (i.e., 1-step sTRADES + SAT + N-FGSM) Fast-Loss
Smoothing-l0 (Fast-LS-l0). Its pseudo-code is given in Algorithm 3 of Appendix A.

Furthermore, we validate the robustness of our method against feature-space attacks in Appendix
F.6, validate the efficacy of our method for l1, l2 and l∞ cases in Appendix F.7, validate the efficacy
of our method on different networks in Appendix F.8, visualize the loss landscape when using our
method in Appendix F.10 to demonstrate its improved smoothness, and conduct ablation studies for
analysis in Appendix F.11. Our extensive results demonstrate the broad effectiveness of smoothing
loss landscape in fast adversarial training. Nevertheless, it turns out essential to address CO and has
the largest performance improvement in the l0 cases compared with other lp norms (p ≥ 1), because
the loss landscape is much more craggy in the l0 cases, as analyzed in Section 4.

9

5.2 Comparison with Multi-Step Adversarial Training

In this section, we compare 1-step adversarial training with its multi-step counterpart. For multi-step
adversarial training, we follow the settings in [23] and use 20-step sPGD based on cross-entropy to
generate adversarial perturbations in sAT and sTRADES. Similar to Table 4, we incorporate SAT and
N-FGSM into multi-step adversarial training as well. For 1-step adversarial training, we focus on the
best configuration in Table 4, i.e., Fast-LS-l0.

We conduct extensive experiments on various datasets. The results on CIFAR-10 and ImageNet-
100 [51] are demonstrated in Table 5. More results on CIFAR-100 [25] and GTSRB [52] are in
Table 8 and 9 of Appendix F.4, respectively. In addition to the performance under sAA, we report
the robust accuracy under various black-box and white box attacks, including CornerSearch (CS)
[21], Sparse-RS (RS) [22], SAIF [42], σ-zero3 [53] and two versions of sPGD [23]. Moreover, we
report the clean accuracy and running time for reference. Finally, to more comprehensively validate
the effectiveness of our results, we report the standard deviation of the performance in Table 10 of
Appendix F.5.

The results in Table 5, 8 and 9 suggest that our method can improve the performance of both 1-step
and multi-step adversarial training. In addition, N-FGSM, originally designed for 1-step adversarial
training, also contributes to performance improvements in the multi-step scenario. Furthermore, these
techniques can greatly narrow down the performance gaps between 1-step and multi-step adversarial
training, making fast adversarial training more feasible and competitive. With the assistance of SAT
and N-FGSM, our Fast-LS-l0 can achieve a performance that is merely 2.5% lower than that of
the 20-step sTRADES while requiring less than 1/6 of the total running time.

6 Conclusion

We highlight that the catastrophic overfitting (CO) in l0 adversarial training is caused by sub-optimal
perturbation locations. Our analyses show that the loss landscape of l0 adversarial training is more
craggy than other cases and correlates with CO. To address this, we utilize soft labels and a trade-off
loss function to smooth the adversarial loss. Extensive experiments show our method effectively
mitigates CO and narrows the performance gap between 1-step and multi-step l0 adversarial training,
achieving state-of-the-art robustness against sparse attacks.

Broader Impacts and Limitations

Since our method is evaluated on benchmarks, we do not see it has an obvious negative societal
impact. Despite the effectiveness of soft label and trade-off loss function, we cannot guarantee they
are the optimal method to smooth the loss landscape of l0 adversarial training. We leave developing
more effective methods as future work.

Acknowledgments and Disclosure of Funding

This work is supported by National Natural Science Foundation of China (NSFC Project No.
62306250) and City University of Hong Kong (CityU Project No. 9610614).

References
[1] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-

low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[2] Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In International Conference on
Machine Learning, 2018.

3We replace the regularization term in σ-zero with l̂0 =
∑hw

i=1

∑c
j=1 x2

i,j∑c
j=1 x2

i,j+σ
to generate perturbations in

pixel space, where h, w and c are the height, width and channel of images, and xi,j represents the perturbation
on the i-th channel of a particular pixel.

10

[3] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In International conference on machine learning,
pages 2206–2216. PMLR, 2020.

[4] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas
Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized
adversarial robustness benchmark. arXiv preprint arXiv:2010.09670, 2020.

[5] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

[6] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast
adaptive boundary attack. In International Conference on Machine Learning, pages 2196–2205.
PMLR, 2020.

[7] Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui Dai, Chong Xiang, Mung Chiang,
and Prateek Mittal. Robust learning meets generative models: Can proxy distributions improve
adversarial robustness? In International Conference on Learning Representations.

[8] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A Calian, Florian Stimberg, Olivia Wiles, and
Timothy Mann. Fixing data augmentation to improve adversarial robustness. arXiv preprint
arXiv:2103.01946, 2021.

[9] Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and
Timothy A Mann. Improving robustness using generated data. Advances in Neural Information
Processing Systems, 34:4218–4233, 2021.

[10] Rahul Rade and Seyed-Mohsen Moosavi-Dezfooli. Helper-based adversarial training: Reducing
excessive margin to achieve a better accuracy vs. robustness trade-off. In ICML 2021 Workshop
on Adversarial Machine Learning, 2021.

[11] Jiequan Cui, Zhuotao Tian, Zhisheng Zhong, Xiaojuan Qi, Bei Yu, and Hanwang Zhang.
Decoupled kullback-leibler divergence loss. arXiv preprint arXiv:2305.13948, 2023.

[12] Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion
models further improve adversarial training. In International Conference on Machine Learning,
pages 36246–36263. PMLR, 2023.

[13] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! Advances
in neural information processing systems, 32, 2019.

[14] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
once: Accelerating adversarial training via maximal principle. Advances in neural information
processing systems, 32, 2019.

[15] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial
training. In International Conference on Learning Representations.

[16] Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, and Venkatesh Babu R. Towards
efficient and effective adversarial training. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.
Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 11821–11833. Curran Associates, Inc., 2021.

[17] Peilin Kang and Seyed-Mohsen Moosavi-Dezfooli. Understanding catastrophic overfitting in
adversarial training. arXiv preprint arXiv:2105.02942, 2021.

[18] Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple perturbations.
Advances in neural information processing systems, 32, 2019.

[19] Yulun Jiang, Chen Liu, Zhichao Huang, Mathieu Salzmann, and Sabine Süsstrunk. Towards
stable and efficient adversarial training against l1 bounded adversarial attacks. In International
Conference on Machine Learning. PMLR, 2023.

11

[20] Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Sparsefool: a few
pixels make a big difference. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9087–9096, 2019.

[21] Francesco Croce and Matthias Hein. Sparse and imperceivable adversarial attacks. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pages 4724–4732,
2019.

[22] Francesco Croce, Maksym Andriushchenko, Naman D Singh, Nicolas Flammarion, and
Matthias Hein. Sparse-rs: a versatile framework for query-efficient sparse black-box ad-
versarial attacks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 6437–6445, 2022.

[23] Xuyang Zhong, Yixiao Huang, and Chen Liu. Towards efficient training and evaluation of robust
models against l0 bounded adversarial perturbations. In Forty-first International Conference on
Machine Learning, 2024.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[26] Hoki Kim, Woojin Lee, and Jaewook Lee. Understanding catastrophic overfitting in single-step
adversarial training. In AAAI Conference on Artificial Intelligence, 2020.

[27] Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast ad-
versarial training. Advances in Neural Information Processing Systems, 33:16048–16059,
2020.

[28] Haizhong Zheng, Ziqi Zhang, Juncheng Gu, Honglak Lee, and Atul Prakash. Efficient adversar-
ial training with transferable adversarial examples. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1178–1187, 2019.

[29] Zhichao Huang, Yanbo Fan, Chen Liu, Weizhong Zhang, Yong Zhang, Mathieu Salzmann,
Sabine Süsstrunk, and Jue Wang. Fast adversarial training with adaptive step size. IEEE
Transactions on Image Processing, 2023.

[30] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference
on machine learning, pages 7472–7482. PMLR, 2019.

[31] Lin Li and Michael Spratling. Understanding and combating robust overfitting via input loss
landscape analysis and regularization. Pattern Recognition, 136:109229, 2023.

[32] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In International Conference
on Learning Representations, 2020.

[33] Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Robust overfitting
may be mitigated by properly learned smoothening. In International Conference on Learning
Representations, 2020.

[34] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[35] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale.
In International Conference on Learning Representations, 2017.

[36] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo
Li. Boosting adversarial attacks with momentum. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

12

[37] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square
attack: a query-efficient black-box adversarial attack via random search. In European conference
on computer vision, pages 484–501. Springer, 2020.

[38] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In
International conference on machine learning, pages 8093–8104. PMLR, 2020.

[39] Chen Liu, Zhichao Huang, Mathieu Salzmann, Tong Zhang, and Sabine Süsstrunk. On the
impact of hard adversarial instances on overfitting in adversarial training, 2021.

[40] Lang Huang, Chao Zhang, and Hongyang Zhang. Self-adaptive training: beyond empirical risk
minimization. Advances in neural information processing systems, 33:19365–19376, 2020.

[41] Francesco Croce and Matthias Hein. Mind the box: l_1-apgd for sparse adversarial attacks on
image classifiers. In International Conference on Machine Learning, pages 2201–2211. PMLR,
2021.

[42] Tooba Imtiaz, Morgan Kohler, Jared Miller, Zifeng Wang, Mario Sznaier, Octavia Camps,
and Jennifer Dy. Saif: Sparse adversarial and interpretable attack framework. arXiv preprint
arXiv:2212.07495, 2022.

[43] Pau de Jorge Aranda, Adel Bibi, Riccardo Volpi, Amartya Sanyal, Philip Torr, Grégory Rogez,
and Puneet Dokania. Make some noise: Reliable and efficient single-step adversarial training.
Advances in Neural Information Processing Systems, 35:12881–12893, 2022.

[44] Runqi Lin, Chaojian Yu, and Tongliang Liu. Eliminating catastrophic overfitting via abnormal
adversarial examples regularization. Advances in Neural Information Processing Systems, 36,
2024.

[45] Runqi Lin, Chaojian Yu, Bo Han, Hang Su, and Tongliang Liu. Layer-aware analysis of
catastrophic overfitting: Revealing the pseudo-robust shortcut dependency. In Forty-first
International Conference on Machine Learning, 2024.

[46] Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, and Sijia Liu.
Revisiting and advancing fast adversarial training through the lens of bi-level optimization. In
International Conference on Machine Learning, pages 26693–26712. PMLR, 2022.

[47] Julia Grabinski, Steffen Jung, Janis Keuper, and Margret Keuper. Frequencylowcut pooling-plug
and play against catastrophic overfitting. In European Conference on Computer Vision, pages
36–57. Springer, 2022.

[48] Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, and Sabine Süsstrunk. On the loss
landscape of adversarial training: Identifying challenges and how to overcome them. Advances
in Neural Information Processing Systems, 33:21476–21487, 2020.

[49] Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based
analysis of large batch training and robustness to adversaries. Advances in Neural Information
Processing Systems, 31, 2018.

[50] Xuyang Zhong and Chen Liu. Toward mitigating architecture overfitting on distilled datasets.
IEEE Transactions on Neural Networks and Learning Systems, 2025.

[51] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[52] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. Neural networks,
32:323–332, 2012.

[53] Antonio Emanuele Cinà, Francesco Villani, Maura Pintor, Lea Schönherr, Battista Biggio, and
Marcello Pelillo. σ-zero: Gradient-based optimization of 0-norm adversarial examples. In
ICLR, 2025.

13

[54] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826, 2016.

[55] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11976–11986, 2022.

[56] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[57] Edoardo Debenedetti, Vikash Sehwag, and Prateek Mittal. A light recipe to train robust vision
transformers. In 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML),
pages 225–253. IEEE, 2023.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages 630–645. Springer, 2016.

[59] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incor-
porating second-order functional knowledge for better option pricing. Advances in neural
information processing systems, 13, 2000.

14

A Algorithm Details

Algorithm 1 Self-Adaptive Training (SAT) [40]
1: Input: Data: {(xi,yi)}n; Initial target {ti}n = {yi}n; Batch size: m; Classifier: f ; Enabling

epoch: Es; Momentum factor: α
2: repeat
3: Fetch mini-batch data {(xi, ti)}m at current epoch e
4: for i = 1, ...,m do
5: pi = softmax(f(xi))
6: if e > Es then
7: ti = α× ti + (1− α)× pi

8: end if
9: wi = maxj ti,j

10: end for
11: Calculate the loss LSAT = − 1∑

i wi

∑
i wi

∑
j ti,j log pi,j

12: Update the parameters of f on LSAT

13: until end of training

Algorithm 2 TRADES [30]
1: Input: Data: (x,y); Classifier: f ; Balancing factor: β; TRADES mode: mode; Sparse level: ϵ
2: if mode = F then
3: Generate adversarial sample x̃ = max(x̃−x)∈Sϵ(x) KL(f(x), f(x̃))
4: else if mode = T then
5: Generate adversarial sample x̃ = max(x̃−x)∈Sϵ(x) CE(f(x̃),y)
6: end if
7: Calculate the loss LTRADES = CE(f(x),y) + β ·KL(f(x), f(x̃))
8: Update the parameters of f on LTRADES

The pseudo-codes of SAT [40] and TRADES [30] are provided in Algorithm 1 and 2, respectively.
For SAT, the moving average of the previous predictions {ti}n can be regarded as the soft labels. For
TRADES, f(x) can be seen as the soft label of f(x̃), and the combination of cross-entropy and KL
divergence is also a trade-off loss function. Note that when combining SAT and TRADES, the loss
LS+T for a mini-batch data {(xi,yi)}m can be written as:

LS+T = − 1∑
i wi

∑
i

wi · CE(f(xi), ti) +
β

m

∑
i

KL(f(xi), f(x̃i)) (8)

In addition, we provide the pseudo-code of the proposed Fast-LS-l0, which incorporates SAT,
TRADES and N-FGSM, in Algorithm 3.

B Proofs

B.1 Proof of Theorem 4.2

Proof. Based on the definition of δ1 and δ2, we have Lϵ(x,θ1) = L(x+ δ1,θ1) and Lϵ(x,θ2) =
L(x+ δ2,θ2). In this regard, we have:

∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ = ∥L(x+ δ1,θ1)− L(x+ δ2,θ2)∥ (9)

When L(x+ δ1,θ1) ≥ L(x+ δ2,θ2) we have

∥L(x+ δ1,θ1)− L(x+ δ2,θ2)∥
=∥L(x+ δ1,θ1)− L(x+ δ1,θ2) + L(x+ δ1,θ2)− L(x+ δ2,θ2)∥
≤∥L(x+ δ1,θ1)− L(x+ δ1,θ2)∥

(10)

The inequality above is derived from the optimality of δ2, which indicates L(x+ δ1,θ2)− L(x+
δ2,θ2) ≤ 0 and the assumption L(x+ δ1,θ1) ≥ L(x+ δ2,θ2).

15

Algorithm 3 Fast-LS-l0
1: Input: Data: {(xi,yi)}n; Initial target {ti}n = {yi}n; Batch size: m; Classifier: f ; Enabling

epoch: Es; Momentum factor: α; Balancing factor: β; TRADES mode: mode; Sparse level: ϵ
2: repeat
3: Fetch mini-batch data {(xi, ti)}m at current epoch e
4: for i = 1, ...,m do
5: ηi ∼ S2ϵ(xi)
6: xi = xi + ηi // Augment sample with additive noise
7: if mode = F then
8: x̃i = max(x̃i−xi)∈Sϵ(xi) KL(f(xi), f(x̃i))
9: else if mode = T then

10: x̃i = max(x̃i−xi)∈Sϵ(xi) CE(f(x̃i), ti)
11: end if
12: pi = softmax(f(xi))
13: if e > Es then
14: ti = α× ti + (1− α)× pi

15: end if
16: wi = maxj ti,j
17: end for
18: Calculate LS+T in Eq. (8)
19: Update the parameters of f on LS+T

20: until end of training

Similarly, when L(x+ δ1,θ1) ≤ L(x+ δ2,θ2) we have

∥L(x+ δ1,θ1)− L(x+ δ2,θ2)∥
=∥L(x+ δ1,θ1)− L(x+ δ2,θ1) + L(x+ δ2,θ1)− L(x+ δ2,θ2)∥
≤∥L(x+ δ2,θ1)− L(x+ δ2,θ2)∥

(11)

Without the loss of generality, we further bound ∥Lϵ(x,θ1) − Lϵ(x,θ2)∥ based on (10). The
derivation can be straightforwardly extended to (11) by replacing δ1 with δ2.

Based on the formulation of L in (1), ∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ can be further derived as follows:

∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ ≤

∣∣∣∣∣∣
∑
i∈S+

yi log
hi(x+ δ1,θ2)

hi(x+ δ1,θ1)

∣∣∣∣∣∣
=
∑
i∈S+

yi

∣∣∣∣∣log 1 +
∑

j ̸=i exp(fj(x+ δ1,θ2)− fi(x+ δ1,θ2))

1 +
∑

j ̸=i exp(fj(x+ δ1,θ1)− fi(x+ δ1,θ1))

∣∣∣∣∣
(12)

where S+ = {i | yi ≥ 0, hi(x + δ1,θ2) > hi(x + δ1,θ1)}. Then, according to the mediant
inequality, we have

∣∣∣∣∣log 1 +
∑

j ̸=i exp(fj(x+ δ1,θ2)− fi(x+ δ1,θ2))

1 +
∑

j ̸=i exp(fj(x+ δ1,θ1)− fi(x+ δ1,θ1))

∣∣∣∣∣
≤

∣∣∣∣∣log
∑

j ̸=i exp(fj(x+ δ1,θ2)− fi(x+ δ1,θ2))∑
j ̸=i exp(fj(x+ δ1,θ1)− fi(x+ δ1,θ1))

∣∣∣∣∣
≤max

k

∣∣∣∣log exp(fk(x+ δ1,θ2)− fi(x+ δ1,θ2))

exp(fk(x+ δ1,θ1)− fi(x+ δ1,θ1))

∣∣∣∣
≤max

k
|fk(x+ δ1,θ2)− fk(x+ δ1,θ1)|+ |fi(x+ δ1,θ2)− fi(x+ δ1,θ1)|

≤2Lθ∥θ1 − θ2∥

(13)

16

Note that the bound on the right of (13) is tight. The upper bound can be achieved asymptotically if
the condition in (14) and the Lipschitz bound in Assumption 4.1 are satisfied.

∣∣∣|fk(x+ δ1,θ2)− fi(x+ δ1,θ2)| − |fk(x+ δ1,θ1)− fi(x+ δ1,θ1)|
∣∣∣

≫max
j ̸=k

∣∣∣|fj(x+ δ1,θ2)− fi(x+ δ1,θ2)| − |fj(x+ δ1,θ1)− fi(x+ δ1,θ1)|
∣∣∣ (14)

Combining (9)-(13), we have

∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ ≤ Aθ∥θ1 − θ2∥, (15)

where Aθ = 2
∑

i∈S+
yiLθ.

B.2 Proof of Theorem 4.4

Proof. Given (1), ∇θL is computed as

∇θL(x,θ) = −
K−1∑
i=0

yi

[
∇θfi(x,θ)−

∑
j exp(fj(x,θ))∇θfj(x,θ)∑

j exp(fj(x,θ))

]

=

∑
j exp(fj(x,θ))∇θfj(x,θ)∑

j exp(fj(x,θ))
−

K−1∑
i=0

yi∇θfi(x,θ)

def
=

K−1∑
j=0

hj(x,θ)∇θfj(x,θ)−
K−1∑
i=0

yi∇θfi(x,θ)

(16)

The second equality is based on the fact that {yi}K−1
i=0 is in a simplex. To simplify the notation, the last

equation is based on the definition that {hj}K−1
j=0 is the result of softmax function applied to {fj}K−1

j=0 ,

i.e., hj(x,θ) =
exp(fj(x,θ))∑
k exp(fk(x,θ))

. Therefore, we have
∑K−1

j=0 hj(x,θ) = 1 and ∀j, hj(x,θ) > 0.

According to the triangle inequality, we have:

∥∇θ1
L(x+ δ1,θ1)−∇θ2

L(x+ δ2,θ2)∥
≤∥∇θ1

L(x+ δ1,θ1)−∇θ1
L(x+ δ2,θ1)∥+ ∥∇θ1

L(x+ δ2,θ1)−∇θ2
L(x+ δ2,θ2)∥

(17)

Plug (16) to the first term on the right hand side of (17), we obtain:

∥∇θ1
L(x+ δ1,θ1)−∇θ1

L(x+ δ2,θ1)∥ ≤
K−1∑
i=0

yi ∥∇θ1
fi(x+ δ1,θ1)−∇θ1

fi(x+ δ2,θ1)∥

+

∥∥∥∥∥∥
K−1∑
j=0

hj(x+ δ1,θ1)∇θfj(x+ δ1,θ1)−
K−1∑
j=0

hj(x+ δ2,θ1)∇θfj(x+ δ2,θ1)

∥∥∥∥∥∥
(18)

The first term can be bounded based on Assumption 4.1. The second term can be bounded as follows:

17

∥∥∥∥∥∥
K−1∑
j=0

hj(x+ δ1,θ1)∇θfj(x+ δ1,θ1)−
K−1∑
j=0

hj(x+ δ2,θ1)∇θfj(x+ δ2,θ1)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
K−1∑
j=0

hj(x+ δ1,θ1)∇θfj(x+ δ1,θ1)

∥∥∥∥∥∥+
∥∥∥∥∥∥
K−1∑
j=0

hj(x+ δ2,θ1)∇θfj(x+ δ2,θ1)

∥∥∥∥∥∥
≤

K−1∑
j=0

hj(x+ δ1,θ1)

∥∥∥∥max
k

∇θfk(x+ δ1,θ1)

∥∥∥∥+ K−1∑
j=0

hj(x+ δ2,θ1)

∥∥∥∥max
k

∇θfk(x+ δ2,θ1)

∥∥∥∥
≤2Lθ

(19)

Note that the bound on the right of (19) is tight. The first inequality is based on the triangle inequality.
The second inequality and the third inequality can be achieved asymptotically when the equality of
first-order Lipschitz continuity in Assumption 4.1 is achieved and the following condition is satisfied.

∃k1 ∈ argmax
i

L
(i)
θ , hk1(x+ δ1,θ1) → 1,max

j ̸=k1

hj(x+ δ1,θ1) → 0

∃k2 ∈ argmax
i

L
(i)
θ , hk2(x+ δ2,θ1) → 1,max

j ̸=k2

hj(x+ δ2,θ1) → 0
(20)

Note that k1 and k2 are not always the same, since there may exist more than one biggest first-order
Lipschitz constant.

Combining (18) and (19) together, we obtain:

∥∇θ1L(x+ δ1,θ1)−∇θ1L(x+ δ2,θ1)∥ ≤ 2Lθ + Lθx∥δ2 − δ1∥ (21)

Similarly, we have:

∥∇θ1L(x+ δ2,θ1)−∇θ2L(x+ δ2,θ2)∥ ≤ 2Lθ + Lθθ∥θ2 − θ1∥ (22)

Combing the two inequalities above, we have:

∥∇θL(x+ δ1,θ1)−∇θL(x+ δ2,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+Bθθ (23)

where
Aθθ = Lθθ; Bθθ = 4Lθ + Lθx∥δ1 − δ2∥ (24)

C Theoretical Analysis of Soft Labels and Trade-off Loss Function

We have the following proposition about soft labels:
Proposition C.1. (Soft label improves Lipschitz continuity) Based on Theorem 4.2, given a hard
label vector yh ∈ {0, 1}K and a soft label vector ys ∈ (0, 1)K , we have Aθ(ys) ≤ Aθ(yh).

Proof. For hard label yh ∈ {0, 1}K , let that the j-th elements of yh be 1 and the rest be 0. By the
definition of Aθ in Theorem 4.2, we have

Aθ(yh) = 2Lθ. (25)

It is known that
∑K−1

i=0 hi(x,θ) = 1, which means ∃j, hj(x + δ1,θ2) ≤ hj(x + δ1,θ1). Then,
for soft label ys ∈ (0, 1)K , we have |S+| < K where S+ = {i | yi > 0, hi(x + δ1,θ2) >
hi(x+ δ1,θ1)}. Thus, it holds

Aθ(ys) = 2
∑
i∈S+

y(i)s Lθ ≤ Aθ(yh). (26)

The equality can be achieved asymptotically if
∑

i/∈S+
y
(i)
s → 0.

18

Proposition C.1 indicates that soft labels lead to a reduced first-order Lipschitz constant, thereby
enhancing the Lipschitz continuity of the adversarial loss function.

Then, we have the following proposition about trade-off loss function:

Proposition C.2. (Trade-off loss function improves Lipschitz smoothness) If Assumption 4.1 and
4.3 hold, we have:

∥∇θLϵ,α(x,θ1)−∇θLϵ,α(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+B′
θδ (27)

The constants Aθθ = Lθθ and B′
θδ = αLθx∥δ1 − δ2∥ + 2(1 + α)Lθ where δ1 ∈

argmaxδ∈Sϵ(x) L(x+ δ,θ1) and δ2 ∈ argmaxδ∈Sϵ(x) L(x+ δ,θ2).

Proof. By the definition of Lϵ,α in Section 4.3, we have

∥∇θ1Lϵ,α(x,θ1)−∇θ2Lϵ,α(x,θ2)∥
≤ (1− α)∥∇θ1L(x,θ1)−∇θ1L(x,θ2)∥+ α∥∇θ1Lϵ(x,θ1)−∇θ1Lϵ(x,θ2)∥

(28)

According to (22) in the proof of Theorem 4.4, the first term of the right hand side of (28) can be
derived as

∥∇θ1L(x,θ1)−∇θ2L(x,θ2)∥ ≤ Lθθ∥θ1 − θ2∥+ 2Lθ. (29)

According to Theorem 4.4, the second term of the right hand side of (28) satisifies

∥∇θ1
Lϵ(x,θ1)−∇θ2

Lϵ(x,θ2)∥ ≤ Lθθ∥θ1 − θ2∥+ Lθx∥δ1 − δ2∥+ 4Lθ. (30)

Combining (28), (29) and (30), we have

∥∇θ1
Lϵ,α(x,θ1)−∇θ2

Lϵ,α(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+B′
θδ, (31)

where Aθθ = Lθθ and B′
θδ = αLθx∥δ1 − δ2∥+ 2(1 + α)Lθ.

According to Proposition C.2, the trade-off loss function Lϵ,α enhances the second-order smoothness
of adversarial loss objective function. Furthermore, compared with l1, l2 and l∞ cases, the trade-off
loss function is particularly useful and necessary in the l0 case. This is supported by the analyses
in Section 4.1 and Appendix E, which demonstrate that ∥δ1 − δ2∥ is much larger in l0 bounded
perturbations than other cases. Therefore, we expect the trade-off loss function Lϵ,α can help mitigate
CO by improving smoothness.

Similar to Theorem 4.4, Proposition C.2 can be straightforwardly extended to the networks with
non-smooth activations, where Assumption 4.3 is not strictly satisfied. We provide a more detailed
analysis in Appendix D to demonstrate the generality of our conclusions.

D Theoretical Analysis of ReLU Networks

Similar to [48], we first make the following assumptions for the functions {fi}K−1
i=0 represented by a

ReLU network.

Assumption D.1. ∀i ∈ {0, 1, ...,K − 1}, the function fi satisfies the following conditions:

∀x,θ1,θ2, ∥fi(x,θ1)− fi(x,θ2)∥ ≤ Lθ∥θ1 − θ2∥, (32)
∀θ,x1,x2, ∥fi(x1,θ)− fi(x2,θ)∥ ≤ Lx∥x1 − x2∥, (33)

∀x,θ1,θ2, ∥∇θfi(x,θ1)−∇θfi(x,θ2)∥ ≤ Lθθ∥θ1 − θ2∥+ Cθθ, (34)
∀θ,x1,x2, ∥∇θfi(x1,θ)−∇θfi(x2,θ)∥ ≤ Lθx∥x1 − x2∥+ Cθx. (35)

Compared to Assumption 4.1 and 4.3, we modify the the second-order smoothness assumptions by
adding two constants Cθθ and Cθx, respectively. They denote the upper bound of the gradient differ-
ence in the neighborhood at non-smooth point. Thus, they quantify how drastically the (sub)gradients
can change in a sufficiently small region in the parameter space.

Based on Assumption D.1, we have the following corollary:

19

Corollary D.2. If Assumption D.1 is satisfied, it holds

∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ ≤ Aθ∥θ1 − θ2∥, (36)
∥∇θLϵ(x,θ1)−∇θLϵ(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+Bθδ + Cθθ + Cθx. (37)

The Lipschitz constant Aθ = 2
∑

i∈S+
yiLθ, Aθθ = Lθθ and Bθδ = Lθx∥δ1 − δ2∥+ 4Lθ where

δ1 ∈ argmaxδ∈Sϵ
L(x+ δ,θ1) and δ2 ∈ argmaxδ∈Sϵ

L(x+ δ,θ2).

The proof is similar to that of Theorem 4.2 and 4.4. Corollary D.2 indicates a more craggy loss
landscape in the adversarial training of networks with non-smooth activations.

Additionally, the Proposition C.2 can be easily extended to accommodate Assumption D.1.
Corollary D.3. If Assumption D.1 holds, then we have

∥∇θLϵ,α(x,θ1)−∇θLϵ,α(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+B′
θδ + Cθθ + Cθx. (38)

The Lipschitz constant Aθθ = Lθθ and B′
θδ = αLθx∥δ1 − δ2∥ + 2(1 + α)Lθ where δ1 ∈

argmaxδ∈Sϵ
L(x+ δ,θ1) and δ2 ∈ argmaxδ∈Sϵ

L(x+ δ,θ2).

E Discussion of the Upper Bound of ∥δ1 − δ2∥

We define the lp adversarial budget for the perturbation δ ∈ Rd as S(p)
ϵ = {δ | ∥δ∥p ≤ ϵ, 0 ≤

x + δ ≤ 1}. Therefore, we have ∥δ1 − δ2∥p ≤ 2ϵ, and ∀i, 0 ≤ |δ(i)1 − δ
(i)
2 | ≤ 1 where δ

(i)
1 and

δ
(i)
2 are the i-th element of δ1 and δ2, respectively. For convenience, we denote δ1 − δ2 as ∆δ and
δ
(i)
1 − δ

(i)
2 as ∆δi in the following.

Assume that ϵ ≪ d for l0, l1 and l2 bounded perturbations, and ϵ ≪ 1 for the l∞ bounded perturbation.
Then, ∀q ≥ 1, we have

l0 budget:
∑
i

|∆δi|q ≤ 2ϵ,

l1 budget:
∑
i

|∆δi|q ≤ D1 + (2ϵ−D1)
q,

l2 budget:
∑
i

|∆δi|q ≤ D2 + (4ϵ2 −D2)
q
2 ,

l∞ budget:
∑
i

|∆δi|q ≤ d× (2ϵ)q,

(39)

where D1 = ⌊2ϵ⌋ and D2 = ⌊4ϵ2⌋. The derived upper bounds are tight because

(1) l0 budget: The equality achieves when the location of non-zero elements in δ1 and δ2 has no
overlap, and the magnitude of their non-zero elements reaches ±1.

(2) l1 budget: Since 0 ≤ |∆δi| ≤ 1, the equality achieves when there exists at most one ∆δk such
that |∆δk| < 1 and ∀j ̸= k, |∆δj | = 1. The maximum number of ∆δj is ⌊2ϵ⌋. Then, according to
∥∆δ∥1 ≤ 2ϵ, we have |∆δk| = 2ϵ− 1× ⌊2ϵ⌋.

(3) l2 budget: The derivation is similar to that of the l1 case.

(4) l∞ budget: The equality achieves when δ1 = −δ2.

On popular benchmark CIFAR-10, d = 32 × 32 × 3 = 3072, and the commonly used values of
ϵ in the l0, l1, l2 and l∞ cases are 360, 24, 0.5 and 8/255, respectively [5, 23, 41, 19]. Substitute
these into (39), we can easily get that ∀q ≥ 1, the upper bound of

∑
i |∆δi|q is significantly larger

in the l0 case than the other cases. For instance, (2ϵ − D1)
q, (4ϵ2 − D2)

q
2 and (2ϵ)q reach their

respective maximum values when q = 1, since all of them are smaller than 1. Then, the upper bounds
of
∑

i |∆δi|1 in the l0, l1, l2 and l∞ cases are 720, 24, 1 and 49152/255 ≈ 192.8, respectively.

Furthermore, the lq norm of ∆δ is defined as follows:

∥∆δ∥q =

(∑
i

|∆δi|q
) 1

q

. (40)

20

0 20 40 60 80 100
Epoch t

0
1
2
3
4
5
6
7

||
t

|| 2

1e6

20-step sAT
20-step sAT w/o ES

(a) Gradient Norm

0 20 40 60 80 100
Epoch t

0

5

10

15

20

25

Te
st

 ro
bu

st
 a

cc
ur

ac
y

(%
) 20-step sAT

20-step sAT w/o ES

(b) Test Robust Accuracy
Figure 4: Relationship between craggy loss landscape and CO. (a) Gradient norm ∥∇θtLϵ∥2. (b)
Test robust accuracy against sAA (ϵ = 20). The results are obtained from PreactResNet-18 trained on
CIFAR-10 with ϵtrain = 40. Since the training of 20-step sAT w/o ES diverges under ϵtrain = 120,
the results are presented under ϵtrain = 40 instead.

Since the upper bound of
∑

i |∆δi|q in the l0 case is larger than 1 for all q ≥ 1, we can also derive
that ∀q ≥ 1, the upper bound of ∥∆δ∥q is always significantly larger in the l0 case than the other
cases.

F More Experimental Results

F.1 Early Stopping in Multi-step Adversarial Training Avoids Catastrophic Overfitting

In Figure 4, we compare the cases with and without ES in terms of gradient norm and robust accuracy
on the test set by sAA. We can observe that 20-step sAT without ES still suffers from CO and the
corresponding gradient magnitude during training indicates a craggy loss landscape.

F.2 Distances between Gradients Induced by 1-step and Multi-step Attacks

Table 6: Average l2 distances between gradients induced by 1-step and multi-step attacks, represented
by ∥∇θLϵ(x + δone) − ∇θLϵ(x + δmulti)∥2. The gradients are calculated of the training set of
CIFAR-10 [25]. The l0, l1, l2 and l∞ models are obtained by 1-step sAT [23], Fast-EG-l1 [19], 1-step
PGD [38] and GradAlign [37], respectively. The 1-step and multi-step l0 attacks are 1-step and
10000-step sPGD [23], respectively. The 1-step and multi-step l1 attacks are 1-step Fast-EG-l1 and
100-step APGD [41], respectively.The 1-step and multi-step attacks for other norms are 1-step PGD
[5] and 100-step APGD [3], respectively.

Model l0 (ϵ = 1) l1 (ϵ = 24) l2 (ϵ = 0.5) l∞ (ϵ = 8/255)

l2 distance 15.8 9.1× 10−4 3.6× 10−4 6.7× 10−4

Based on the Lipschitz smoothness assumption in Inequality (6), the gradient difference arising from
approximated adversarial perturbations is bounded by Lθx∥δ1 − δ2∥ where δ1 is the perturbation
generated by 1-step attack and δ2 is the optimal perturbation. Based on the same reason that l0 norm
is not a proper norm, ∥δ1 − δ2∥ is significantly larger in l0 cases than l∞, l2 and l1 cases, which
makes 1-step adversarial training more challenging in l0 cases. To corroborate this, we compare
the distance between gradients induced by 1-step and multi-step attacks. As presented in Table 6,
the average distance between gradients induced by 1-step and multi-step l0 attacks is 5 orders of
magnitude greater than those in the l1, l2 and l∞ cases, even when a single pixel is perturbed. This
finding indicates that the loss landscape of l0 adversarial training is significantly more craggy than
other cases in the input space.

F.3 Comparison with Other Smoothing Approaches

In this section, we undertake a more comprehensive comparison between our proposed Fast-LS-l0 and
other smoothing approaches (label smoothing (LS) [54], AdvLC [31], MART [32] and SWA [33]).
Note that all baselines are tuned by a thorough hyperparameter search. As demonstrated in Table 7,
our method achieves the strongest robustness against sAA. First, naive LS turns out ineffective under

21

Table 7: Comparison with other smoothing approaches in robust accuracy (%) by sAA. The target
sparsity level ϵ = 20. We compare PreAct ResNet-18 [24] models trained on CIFAR-10 [25]. The
italic numbers indicate catastrophic overfitting (CO) happens.

Method LS AdvLC MART TRADES+SWA Ours Ours+ SWA

Robust Acc. 0.0 59.6 48.0 45.0 63.0 59.1

the l0 setting. The performance of AdvLC, MART, and SWA is not as good as the method we use.
Additionally, the combination of our method with SWA harms robustness due to over-smoothing.

F.4 More Results of Section 5.2
Table 8: Robust accuracy (%) of various models on different attacks that generate l0 bounded
perturbations, where the sparsity level ϵ = 10. The models are PreAct ResNet-18 trained on CIFAR-
100 [25] with ϵ = 60. Note that the results of vanilla sAT and sTRADES are obtained from [23],
CornerSearch (CS) is evaluated on 1000 samples due to its high computational complexity.

Model Time
Cost Clean Black-Box White-Box sAACS RS SAIF sPGDproj sPGDunproj

Multi-step

sAT 4h 27m 67.0 44.3 41.6 60.9 56.8 58.0 41.6
+S&N 4h 58m 64.3 53.0 52.9 61.2 59.2 59.6 52.8

sTRADES 5h 10m 70.9 52.8 50.3 65.2 64.0 63.7 50.2
+S&N 5h 40m 63.8 56.5 55.6 61.2 60.5 59.0 55.3

One-step

Fast-LS-l0 (T) 1h 05m 65.3 54.5 54.3 60.4 55.6 54.4 52.2
Fast-LS-l0 (F) 1h 26m 65.0 56.2 54.6 60.8 54.9 54.9 52.3

Table 9: Robust accuracy (%) of various models on different attacks that generate l0 bounded
perturbations, where the sparsity level ϵ = 12. The models are PreAct ResNet-18 trained on GTSRB
[52] with ϵ = 72. All methods are evaluated on 500 samples, and CornerSearch (CS) is not evaluated
here due to its high computational complexity.

Model Time
Cost Clean Black-Box White-Box sAACS RS SAIF sPGDproj sPGDunproj

Multi-step

sAT 1h 3m 98.4 - 43.2 92.4 96.0 96.2 43.2
+S&N 1h 2m 98.4 - 77.8 97.4 96.8 95.4 77.6

sTRADES 1h 6m 97.8 - 67.6 94.0 95.6 95.0 67.4
+S&N 1h 7m 95.6 - 75.4 93.6 92.6 91.2 75.2

One-step

Fast-LS-l0 (T) 7m 97.8 - 75.2 89.2 74.4 74.4 63.2
Fast-LS-l0 (F) 9m 98.6 - 80.4 94.2 75.0 79.8 67.8

The results on CIFAR-100 and GTSRB datasets are presented in Table 8 and 9, respectively. The
findings are consistent with those observed in Table 5(a), further validating the effectiveness of the
proposed methods across different datasets. In contrast to the settings in [23], we resize the images in
GTSRB to 32× 32 instead of 224× 224 and retrain the models from scratch. The model are trained
with ϵ = 72 and evaluated for robustness with ϵ = 12. It is important to note that due to the smaller
search space resulting from low-resolution images, the attack success rate of the black-box Sparse-RS
(RS) under this setting is significantly higher than that reported in [23].

F.5 Standard Deviation of Robust Accuracy against Sparse-AutoAttack of Table 5(a)

To better validate the effectiveness of our method, we report the standard deviations of robust accuracy
against sAA in Table 10. We calculate these standard deviations by running the experiments three
times with different random seeds. The configurations are the same as in Table 5(a). It can be

22

Table 10: Average robust accuracy against sAA [23] obtained from three runs, where the sparsity
level ϵ = 20. The variances are shown in brackets. The configurations are the same as in Table 5(a).
Note that we do not include the results of vanilla sAT and sTRADES since their results are obtained
from [23].

Model sAT + S&N sTRADES + S&N Fast-LS-l0 (T) Fast-LS-l0 (F)

Acc. 61.2 (± 0.2) 65.5 (± 0.7) 63.0 (± 0.7) 62.1 (± 0.6)

observed that the fluctuation introduced by different random seeds does not outweigh the performance
gain from the evaluated approaches.

F.6 Robustness under Feature-space Attacks

Table 11: Robust accuracy (%) of cominations of our method under feature-space attacks. The model
is the ResNet-18 trained with Fast-LS-l0 on CIFAR-10.

ϵ = 60 Clean Acc. σ-zero sPGDp sPGDu RS sAA

Fast-LS-l0 84.9 64.2 76.6 73.5 58.5 58.3

We train a ResNet with our method in feature space with ϵtrain = 360 and evaluate its robustness
under different attacks with ϵ = 60. To accommodate the feature-space sparsity, we modify the
shape of perturbation mask in sPGD from (b, 1, h, w) to (b, c, h, w). Since RS is unable to generate
feature-space perturbations, we set its pixel-space adversarial budget to ϵ/c to ensure the equivalent
feature-space budget as other attacks. As presented in Table 11, our method can also achieve
robustness in this setting. In addition, we notice that σ-zero outperforms sPGD in feature-space
attacks. Nevertheless, sAA is still the most comprehensive and reliable robustness evaluation method.

F.7 Effectiveness in Improving Fast l1, l2 and l∞ Adversarial Training

Table 12: Robust accuracy (%) of cominations of our method with fast l1, l2, and l∞ adversarial
training methods. The results are obtained through the AutoAttack for corresponding norms.

l1 (ϵ = 12) l2 (ϵ = 0.5) l1 (ϵ = 8/255)

Fast-EG-l1 45.4 GradAlign 60.2 39.4
+ Ours 49.2 + Ours 63.1 42.4

We combine our method with fast l1, l2, and l∞ adversarial training methods. Specifically, we use
Fast-EG-l1 [19] for l1 cases and GradAlign [27] for l2 and l∞ cases. The results in Table 12 show that
our method enhances robustness in all cases. Overall, these findings demonstrate the effectiveness of
our method in enhancing robustness against different attacks.

F.8 Evaluation on Different Networks

Table 13: Robust accuracy (%) of various networks against sAA on CIFASR-10, where the sparsity
level ϵ = 20. The networks are adversarially trained with different methods, including 1-step sAT,
1-step sTRADES and the proposed Fast-LS-l0.

PRN-18 ConvNeXt-T Swin-T

1-step sAT 0.0 0.8 0.1
1-step sTRADES 31.0 71.0 43.2

Fast-LS-l0 63.0 78.6 58.9

Despite the effectiveness of our method on PreActResNet-18 (PRN-18) and ResNet-34, the per-
formance of our Fast-LS-l0 and its ablations on different networks remains unexplored. In this
regard, we further evaluate our method on two popular architectures, i.e., ConvNeXt [55] and Swin
Transformer [56]. Note that we adopt their tiny versions for CIFAR-10, which have a similar number
of parameters as ResNet-18, and we follow the training settings of their CIFAR-10 implementations.
The other experimental settings are the same as those described in Section 5.1. As shown in Table

23

13, vanilla adversarial training results in CO on all networks, and our method produces the best
robust accuracy against sAA, demonstrating the effectiveness of our method on different networks.
Notably, ConvNeXt shows surprisingly strong robustness against sAA, suggesting that advanced
architecture design and dedicated hyperparameter tuning can provide additional performance gains.
However, as Transformers has struggled to perform well on small datasets without pretraining [57],
Swin Transformer also underperforms CNN-based networks in this scenario.

F.9 Loss Landscape of one-step sAT with Different ϵ

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

10

20

30

40

50

(a) L(0)
ϵ , ϵ = 20

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

20

40

60

80

(b) L(0)
ϵ , ϵ = 40

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

20

40

60

(c) L(0)
ϵ , ϵ = 120

Figure 5: Loss landscape of 1-step sAT [23] with different ϵ values on the training set of CIFAR-10
[25]. The architecture of the model is PreactResNet-18. (a) Landscape of L(0)

ϵ (x,θ + α1v1 + α2v2)
with ϵ = 20, where v1 and v2 are the eigenvectors corresponding to the top 2 eigenvalues of the
Hessian matrices, respectively. (b) Landscape of L(0)

ϵ with ϵ = 40. (c) Landscape of L(0)
ϵ with

ϵ = 120.

As supplementary of Figure 3, we visualize the loss landscapes of 1-step sAT [23] with different
ϵ, including 20, 40 and 120, in Figure 5. It can be observed that the l0 adversarial loss exhibits a
drastic increase in response to relatively minor alterations in the θ-space. Moreover, the degree of
non-smoothness increases in proportion to ϵ, which is consistent with the observation in Figure 3 (a).

F.10 Smoother Loss Landscape Induced by Soft Label and Trade-off Loss Function

The effectiveness of soft label and trade-off loss function in improving the performance of l0
adversarial training is demonstrated in Section 5.1 and 5.2. Additionally, we visualize the curves of
top-10 eigenvalues of Hessian matrices of the different methods discussed in Section 5.1 and their
respective loss landscapes in Figure 6. Note that since N-FGSM results in a larger upper bound of
∥δ1 − δ2∥, it is not considered here to make a fair comparison. Figure 6 (a) shows that sTRADES
induces considerably smaller eigenvalues of Hessian matrices compared to sAT, while the difference
between sTRADES (T) and sTRADES (F) is negligible. SAT, on the other hand, has only a marginal
effect on the eigenvalues. However, as illustrated in Figure 6 (b)-(f), SAT plays a crucial role in
smoothing the loss landscape, which relates to the change rate of loss, i.e., the first-order smoothness.
These observations align with the theoretical derivation presented in Section 4.3, indicating that soft
label improves the first-order smoothness, while trade-off loss function contributes to the second-order
smoothness.

F.11 Ablation Studies

In this section, we conduct more ablation studies on the results in Section 5.1. Specifically, we focus
on the best configuration in Table 4: Fast-LS-l0 (T) (i.e., 1-step sTRADES (T) + SAT & N-FGSM).
Unless specified, we adopt the same training settings as in Table 4.

Table 14 presents a performance comparison of the model when SAT is enable in different training
phases. We can see that the performance achieves the best when enabling SAT at the 50-th epoch.
This observation demonstrates that the best performance in 1-step sTRADES is achieved when SAT
is enabled at the intermediate epoch where the learning rate is relatively low.

In Table 15, we compare the performance when using different momentum factor in SAT. We can see
that the default setting in [40], i.e., 0.9, provides the best performance.

24

0 2 4 6 8
Index

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

1e5

A
T(T)
T(F)

T(T)+S
T(F)+S

(a) Eigenvalues of ∇2
θL

(0)
ϵ

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

20

40

60

(b) 1-step sAT

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

10

20

30

40

(c) 1-step sTRADES (T)

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

10

20

30

40

50

(d) 1-step sTRADES (F)

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

5

10

15

(e) 1-step sTRADES (T) + SAT

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

5

10

15

(f) 1-step sTRADES (F) + SAT

Figure 6: Smoothness visualization of different methods with ϵ = 120 on the training set of CIFAR-10
[25]. The architecture of the model is PreactResNet-18. (a) Top-10 eigenvalues of ∇2

θL
(0)
ϵ (x,θ) of

different methods. A and T denote 1-step sAT and 1-step sTRADES, respectively. T and F in the
brackets are two respective versions of sTRADES indicated in Sec. 5.1. (b) Loss landscape of 1-step
sAT. (c) Loss landscape of 1-step sTRADES (T). (d) Loss landscape of 1-step sTRADES (F). (e)
Loss landscape of 1-step sTRADES (T) + SAT. (f) Loss landscape of 1-step sTRADES (F) + SAT.

In Table 16, we compare the performance when using different balance factor β in TRADES. It can
be observed that β = 3 and 6 induce similar results, indicating the default setting in [30], i.e., 6, is
the optimal.

In Table 17, we compare the performance when using different ϵtrain. It can be observed that when
ϵtrain = 120, our method achieves the best performance, which is consistent with the observations in
[23]. Notably, with the assistance of our method, CO does not appear in all settings.

Table 14: Ablation study on the epoch of en-
abling SAT. The evaluated attack is sAA, where
the sparsity level ϵ = 20.

SAT epoch 30 50 70

Robust Accuracy 60.2 63.0 62.8

Table 15: Ablation study on the momentum fac-
tor of SAT. The evaluated attack is sAA, where
the sparsity level ϵ = 20.

SAT momentum 0.5 0.7 0.9

Robust Accuracy 55.4 60.4 63.0

Table 16: Ablation study on the balance factor β
in TRADES loss function. The evaluated attack
is sAA, where the sparsity level ϵ = 20.

TRADES β 1 3 6

Robust Accuracy 58.7 63.0 63.0

Table 17: Ablation study on ϵtrain. The eval-
uated attack is sAA, where the sparsity level
ϵ = 20.

ϵtrain 20 40 120

Robust Accuracy 61.4 62.1 63.0

G Implementation Details

Generally, the epoch of enabling SAT is 1/2 of the total epochs. For N-FGSM, the random noise for
augmentation is the random sparse perturbation with sparsity level ranging from 0 to 2ϵ, where ϵ is
the sparsity level of adversarial perturbations. The interpolation factor α in trade-off loss function is
set to 0.75. The balance factor β in TRADES loss function is set to 6. The optimizer is SGD with a
momentum factor of 0.9 and a weight decay factor of 5× 10−4. The learning rate is initialized to

25

0.05 and is divided by a factor of 10 at the 1/4 and 3/4 of the total epochs. The specific settings for
different datasets are listed as follows:

• CIFAR-10, CIFAR-100 [25] and GTSRB [52]: The adopted network is PreAct ResNet-18 [58]
with softplus activation [59]. The training batch size is 128. We train the model for 100 epochs.

• ImageNet-100 [51]: The adopted network is ResNet-34 [24]. The training batch size is 48. We
train the model for 50 epochs.

Unless specified, the hyperparameters of attacks and other configurations are the same as in [23].

26

	Introduction
	Related Works
	Unique Challenges in Fast l0 Adversarial Training
	Catastrophic Overfitting in l0 Adversarial Training
	Unique Cause of CO in l0 Adversarial Training: Sub-optimal Perturbation Location

	Fast l0 Adversarial Training Requires Loss Smoothing
	Theoretical Analysis
	Numerical Validation
	Recipe: Soft Label and Trade-off Loss Function Smooth Loss Landscape

	Experiments
	Approaches to Improving 1-Step l0 Adversarial Training
	Comparison with Multi-Step Adversarial Training

	Conclusion
	Algorithm Details
	Proofs
	Proof of Theorem 4.2
	Proof of Theorem 4.4

	Theoretical Analysis of Soft Labels and Trade-off Loss Function
	Theoretical Analysis of ReLU Networks
	Discussion of the Upper Bound of ||delta1-delta2||
	More Experimental Results
	Early Stopping in Multi-step Adversarial Training Avoids Catastrophic Overfitting
	Distances between Gradients Induced by 1-step and Multi-step Attacks
	Comparison with Other Smoothing Approaches
	More Results of Section 5.2
	Standard Deviation of Robust Accuracy against Sparse-AutoAttack of Table 5(a)
	Robustness under Feature-space Attacks
	Effectiveness in Improving Fast l1, l2 and l Adversarial Training
	Evaluation on Different Networks
	Loss Landscape of one-step sAT with Different epsilon
	Smoother Loss Landscape Induced by Soft Label and Trade-off Loss Function
	Ablation Studies

	Implementation Details

