
Adversarial Attacks on Transformers-Based Malware
Detectors

Yash Jakhotiya∗
Department of Computer Engineering,

College of Engineering, Pune
jakhotiyays16.comp@coep.ac.in

Heramb Patil
Department of Computer Engineering,

College of Engineering, Pune
herambnp16.comp@coep.ac.in

Jugal Rawlani
Department of Computer Engineering,

College of Engineering, Pune
rawlanijr16.comp@coep.ac.in

Dr. Sunil B. Mane
Department of Computer Engineering,

College of Engineering, Pune
sunilbmane.comp@coep.ac.in

Abstract

Signature-based malware detectors have proven to be insufficient as even a small
change in malignant executable code can bypass these signature-based detectors.
Many machine learning-based models have been proposed to efficiently detect a
wide variety of malware. Many of these models are found to be susceptible to
adversarial attacks - attacks that work by generating intentionally designed inputs
that can force these models to misclassify. Our work aims to explore vulnerabilities
in the current state of the art malware detectors to adversarial attacks. We train
a Transformers-based malware detector, carry out adversarial attacks resulting in
a misclassification rate of 23.9% and propose defenses that reduce this misclassi-
fication rate to half. An implementation of our work can be found at https://
github.com/yashjakhotiya/Adversarial-Attacks-On-Transformers.

1 Introduction

Malware is software written to steal credentials of computer users, damage computer systems, or
encrypt documents for ransom, among other nefarious goals. In Q1 of 2021 alone, around 87.6
million new types of malware and 2.51 million new types of ransomware were detected, summing the
total number of malware detected till 2021 to more than 1.51 billion and these figures keep growing
constantly [Beek et al., 2021].

A prevalent way used in commercial antivirus products is using signature-based malware detection
with signatures extracted by expert analysts but it has a small room for variation and is susceptible
to evasion by obfuscation [Canfora et al., 2015]. Many machine learning-based malware analysis
methods have been proposed [Schultz et al., 2001] [Kolter and Maloof, 2004] [Dai et al., 2009]
[Baldangombo et al., 2013] that automatically derive features from malware executables that are
generalizable enough to counter current obfuscation techniques and can extend to new types of
malware.

These machine learning-based approaches work by deriving static features to categorize malware.
However, focusing only on static features may not represent the full semantic meaning of an ex-
ecutable [Aghakhani et al., 2020]. Deep learning-based approaches that can automatically learn
representational feature space mappings from malware executable code have been proposed in an
effort to have better generalizability [Saxe and Berlin, 2015] [Kalash et al., 2018] [Tobiyama et al.,

∗Corresponding author

ML Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/yashjakhotiya/Adversarial-Attacks-On-Transformers
https://github.com/yashjakhotiya/Adversarial-Attacks-On-Transformers


2016]. In recent years, the advancement in deep learning has enabled it to provide performance at
par with what humans can do on several tasks [Silver et al., 2017] resulting in growing faith in such
real world deployed systems [Tesla, 2020] [Apple, 2020] [Grigorescu et al., 2020]. However, deep
learning systems are found to be vulnerable to adversarial attacks [Szegedy et al., 2013], which are
malicious inputs specially designed to confuse a trained model to wrongly classify the output.

2 Related Work

Rule-based signature-based approaches require a cybersecurity researcher to manually set up rules,
or categorize a binary as malware and mark its signature. This would require researchers to know
how every new malware works and is not a scalable approach. [Saxe and Berlin, 2015] propose a
deep learning based approach to help solve this problem. [Stokes et al., 2017] describe using deep
learning for malware detection as a double-edged sword, where deep learning could be really helpful
in identifying new, yet unknown malware, but miscreants can also come up with ways to fool the
neural networks by creating adversarial samples with small perturbations that do not change the
sample’s original function, but rather fools the network into classifying it into some other class.

[Kalash et al., 2018] used CNNs to classify binaries as malware or benign files where binaries
converted to an image representation were used. The authors were able to achieve best accuracy of
98.52% for the Malimg dataset [Nataraj et al., 2011], and best accuracy of 98.99% for the Microsoft
Malware Dataset [Ronen et al., 2018]. [Chen et al., 2019] evaluated various methods of conducting
adversarial attacks on CNN based malware detectors. The success rate of white-box attacks for the
Fast Gradient Sign Method (FGSM) was really low around 3%, whereas for the Bit-Flip Attack (BFA)
it was around a mean of 20%.

After the success which recurrent neural networks have shown for other tasks, they have been tried
for the task of malware detection [Beek et al., 2021]. [Tobiyama et al., 2016] used a combination of
convolutional neural networks and recurrent neural networks for the purpose of malware detection.
RNNs were used for feature extraction and CNNs were used for feature classification. They obtain a
best case AUC score of 0.96. With the use of RNN for malware detection, it became known that even
they are susceptible to adversarial samples due to the general susceptibility of neural networks to
adversarial attacks [Hu and Tan, 2017]. To simulate the more realistic black-box nature of attacks,
[Hu and Tan, 2017] first trained a substitute RNN to simulate the behavior of the detector to be
attacked. Another RNN was trained to create adversarial samples from malware inputs.

Previous methods did not look at the whole meaning of the assembly code, but rather looked
at different chunks of the assembly language instructions. To overcome this, Transformer-based
neural networks for malware detection were proposed by [Li et al., 2021]. These Transformer-
based approaches achieve better accuracy than previous approaches ([Moskovitch et al., 2008],
[Baldangombo et al., 2013], [Saxe and Berlin, 2015], [Mourtaji et al., 2019]) in all experiments.

3 Training a Transformer for malware detection

In this section we list down the details of training a competitive Transformers-based malware detector
on which we will carry out an adversarial attack in section 5, and evaluate defenses against the attack
in section 6.

3.1 System Design and Architecture

Our malware detection system is mainly divided into 3 parts: 1. Assembly Module - The assembly
module consists of a disassembler, a tokenizer and a Transformer. The input to the assembly module
is an exe file, which is fed directly to the disassembler. The assembly module is responsible to
calculate assembly language features, which would be used for final classification. 2. Static Feature
Module - The static feature module consists of a DLL extractor, and a string extractor. The input to
this is the same as that to the assembly module, an exe file. The DLL extractor extracts PE imports
from the file, and the string extractor extracts all the printable strings from the given input file. The
static feature module outputs two set of vectors, one from the DLL extractor, and the other from
string extractor. The output from the static feature module will be used for final classification. 3.
Neural Network Module - The neural network module consists of a neural network, which takes in

2



Figure 1: System Architecture

assembly language features from the assembly module, and PE import features and string features
from the static feature module, and performs a binary classification on whether the file is malicious
or benign.

3.2 Features

The feed-forward NN also takes input static features extracted from the PE binaries. The static features
include 1. PE Imports : PE Imports are the DLL files imported by the given PE binary. This helps
to capture the external function calls, and imports, and hence helps in categorizing suspicious files
based on import patterns from the existing malware binaries [Saxe and Berlin, 2015]. 2. Printable
strings : All printable strings (only ASCII characters) of size greater than or equal to 6 are extracted
from the given binary and used as another feature to train the vanilla NN.

The final feature set is thus formed by combining 1. the feature vector obtained from the Transformer,
2. the DLL feature vector obtained from Static Feature Extractor, and 3. the string feature vector
obtained from Static Feature Extractor. The final feature vector is then fed to the fully connected
neural network for classifying files as malicious or benign.

3.3 Dataset and Results

We performed our expermients by collecting a total of 2985 malware samples from VirusTotal and
2215 benign executables from a fresh Windows 10 installation. We used objdump to disassemble
binary executables into .asm files. and tokenized strings to create a vocabulary which was eventually
fed to the transformer. We were able to classify malware and benign files with a test set accuracy of
92.5%.

4 Adversarial attacks

Machine learning models are vulnerable to misclassification when provided with a set of inputs
that come from a different distribution than they were trained on. These inputs can be modified
with special techniques to force misclassification. Such generated inputs are known as adversarial
examples.

Notable examples of demonstrated adversarial attacks include McAfee’s fooling of Tesla autonomous
vehicle by just adding 2 black strips on a speed limit sign making the Tesla AV go 50 miles per hour
past the limit [Barrett, 2020]. Dresswear that can fool face detection systems or license plates that
can fool automatic license number capture systems use adversarial examples to make such models
misclassify [Seabrook, 2020].

Adversarial attacks can be classified into two broad types of Evasion attacks and Poisoning attacks.
An evasion attack is used when the attacker does not have access to the model during the training
phase. In this work, we consider evasion attacks as we consider that to be a generalized case where an
attacker does not have access to the training of the model. Evasion attacks can be broadly divided into
the two steps of estimation of sensitivity for each direction of perturbation and selection of directions
for perturbation.

Some of the algorithms used for the estimation of sensitivity are -

3



• L-BFGS - Introduced by [Szegedy et al., 2013], this method tries to solve the minimization
problem of finding the minimum perturbation that can force misclassification with the
L-BFGS optimization method.

arg min r f(x+ r) = l (x+ r) ∈ D (1)

where l is not equal to the target label h(x).
• FGSM - [Goodfellow et al., 2014] introduced the Fast Gradient Sign Method that can solve

the equation above computationally efficiently.

X∗ = X + ε ∗ sign(∇xC(X,Ytrue) (2)

Here C is the cost function used in the model. X∗ is the adversarial counterpart of the input
X . ε is the amount of perturbation. ∇x is the gradient of the cost function.

• Jaccobian Method - [Papernot et al., 2015] determined sensitivity in each dimension by
finding out Jacobian of the trained model, i.e. it’s derivative in a forward way and then
perturbed input in most sensitive dimensions.

5 Attacking our trained Transformer

We used the Fast Gradient Sign Method by [Goodfellow et al., 2014] to craft out adversarial samples
to fool the Transformer-based malware detector trained in section 3. FGSM can be implemented in
two ways, either by using the target class directly or by using the iterative method. We used the target
class directly to generate our adversarial samples by substituting Ytrue with Ytarget in equation 2
above.

X∗ = X + ε ∗ sign(∇xC(X,Ytarget) (3)
We perturbed all possible dimensions and achieved a misclassification rate of 23.9% with the Fast
Gradient Sign Method.

6 Defenses against adversarial attacks

With the increase in adversarial attacks on commercial systems, many defenses have been proposed
against them. Although these defenses do not provide complete immunity against adversarial samples,
they act as deterrents. Some defenses are listed below.

• Training on adversarial samples - This is a brute force approach where the input distri-
bution of the model is expanded. Although this defense is not very useful in the case of
black-box attacks as shown by [Narodytska and Kasiviswanathan, 2017], it is still widely
used as a practical defensive approach against adversarial samples.

• Masking the gradient of the model - Many attack methods including FGSM depend on the
derivative of the trained model. Nearest neighbor classifiers or decision trees-like models
can effectively deter such an adversarial attack. However, these methods often underperform
when compared to neural architectural methods.

• Reducing feature space - Developed by [Xu et al., 2018], this method reduces the number
of features and with it the number of dimensions to add perturbations to declines naturally.

• Transferability block - Adversarial attacks are successful in many cases due to the transfer-
ability property of neural networks. [Hosseini et al., 2017] block transferability by training
models to output NULL to peturbed inputs.

In our approach, we set up defenses for our model with two defenses from the ones listed above. With
the most practical adversarial training, the misclassification rate dropped to 11.2%. With reducing the
feature space, we did not get promising results, and the misclassification rate reduced by a mere 2.4%
to 21.5%.

7 Conclusion and Future Scope

The use of deep learning techniques for the task of malware detection has given promising results and
is in use at a few of the most sought after anti-malware products [Kaspersky Enterprise Cybersecurity,

4



2017]. But due to the inherent nature of such deep learning techniques, these malware detectors are
prone to adversarial attacks. We have implemented an avant-garde machine learning detector using
Google’s Transformer neural network architecture, demonstrated an adversarial attack on the same,
and proposed defenses against such adversarial attacks. The future scope in this directoin could aim
at demonstrating more types of adversarial attacks on such malware detectors and propose better
defenses that do not need access to the trained model.

References
H. Aghakhani, Fabio Gritti, Francesco Mecca, Martina Lindorfer, Stefano Ortolani, Davide Balzarotti, Giovanni

Vigna, and Christopher Kruegel. When malware is packin’ heat; limits of machine learning classifiers based
on static analysis features. In NDSS, 2020.

Apple. About face id advanced technology. https://support.apple.com/en-au/HT208108, 2020.

Usukhbayar Baldangombo, Nyamjav Jambaljav, and Shi-Jinn Horng. A static malware detection system using
data mining methods. CoRR, abs/1308.2831, 2013. URL http://arxiv.org/abs/1308.2831.

Brian Barrett. A tiny piece of tape tricked teslas into speeding up 50 mph | wired. https://www.wired.com/
story/tesla-speed-up-adversarial-example-mgm-breach-ransomware/, 2020.

Christiaan Beek, Mo Cashman, John Fokker, Melissa Gaffney, Steve Grobman, Tim Hux, Niamh Mini-
hane, Lee Munson, Chris Palm, Tim Polzer, Thomas Roccia, Raj Samani, and Craig Schmugar. Mcafee
labs threats report, june 2021. https://www.mcafee.com/enterprise/en-us/assets/reports/
rp-threats-jun-2021.pdf, 2021.

Gerardo Canfora, Andrea Di Sorbo, Francesco Mercaldo, and Corrado Aaron Visaggio. Obfuscation techniques
against signature-based detection: A case study. In 2015 Mobile Systems Technologies Workshop (MST),
pages 21–26, 2015. doi: 10.1109/MST.2015.8.

Bingcai Chen, Zhongru Ren, Chao Yu, Iftikhar Hussain, and Jintao Liu. Adversarial examples for cnn-based
malware detectors. IEEE Access, 7:54360–54371, 2019. doi: 10.1109/ACCESS.2019.2913439.

Jianyong Dai, Ratan K Guha, and Joohan Lee. Efficient virus detection using dynamic instruction sequences. J.
Comput., 4(5):405–414, 2009.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples,
2014. URL https://arxiv.org/abs/1412.6572.

Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A survey of deep learning techniques
for autonomous driving. Journal of Field Robotics, 37(3):362–386, 2020.

Hossein Hosseini, Yize Chen, Sreeram Kannan, Baosen Zhang, and Radha Poovendran. Blocking transferability
of adversarial examples in black-box learning systems, 2017. URL https://arxiv.org/abs/1703.04318.

Weiwei Hu and Ying Tan. Black-box attacks against RNN based malware detection algorithms. CoRR,
abs/1705.08131, 2017. URL http://arxiv.org/abs/1705.08131.

Mahmoud Kalash, Mrigank Rochan, Noman Mohammed, Neil D. B. Bruce, Yang Wang, and Farkhund Iqbal.
Malware classification with deep convolutional neural networks. In 2018 9th IFIP International Conference
on New Technologies, Mobility and Security (NTMS), pages 1–5, 2018. doi: 10.1109/NTMS.2018.8328749.

Kaspersky Enterprise Cybersecurity. Machine learning for malware detection. https://media.kaspersky.
com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf, 2017.

Jeremy Z. Kolter and Marcus A. Maloof. Learning to detect malicious executables in the wild. In Proceedings
of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04,
page 470–478, New York, NY, USA, 2004. Association for Computing Machinery. ISBN 1581138881. doi:
10.1145/1014052.1014105. URL https://doi.org/10.1145/1014052.1014105.

Miles Q. Li, Benjamin C.M. Fung, Philippe Charland, and Steven H.H. Ding. I-MAD: Interpretable malware
detector using galaxy transformer. Computers & Security, 108:102371, sep 2021. doi: 10.1016/j.cose.2021.
102371. URL https://doi.org/10.1016%2Fj.cose.2021.102371.

Robert Moskovitch, Clint Feher, Nir Tzachar, Eugene Berger, Marina Gitelman, Shlomi Dolev, and Yuval
Elovici. Unknown malcode detection using opcode representation. In Daniel Ortiz-Arroyo, Henrik Legind
Larsen, Daniel Dajun Zeng, David Hicks, and Gerhard Wagner, editors, Intelligence and Security Informatics,
pages 204–215, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-89900-6.

5

https://support.apple.com/en-au/HT208108
http://arxiv.org/abs/1308.2831
https://www.wired.com/story/tesla-speed-up-adversarial-example-mgm-breach-ransomware/
https://www.wired.com/story/tesla-speed-up-adversarial-example-mgm-breach-ransomware/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-threats-jun-2021.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-threats-jun-2021.pdf
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1703.04318
http://arxiv.org/abs/1705.08131
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://doi.org/10.1145/1014052.1014105
https://doi.org/10.1016%2Fj.cose.2021.102371


Youness Mourtaji, Mohammed Bouhorma, and Daniyal Alghazzawi. Intelligent framework for malware detection
with convolutional neural network. In Proceedings of the 2nd International Conference on Networking,
Information Systems Security, NISS19, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450366458. doi: 10.1145/3320326.3320333. URL https://doi.org/10.1145/3320326.
3320333.

Nina Narodytska and Shiva Kasiviswanathan. Simple black-box adversarial attacks on deep neural networks. In
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1310–1318,
2017. doi: 10.1109/CVPRW.2017.172.

L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. Malware images: Visualization and automatic
classification. In Proceedings of the 8th International Symposium on Visualization for Cyber Security,
VizSec ’11, New York, NY, USA, 2011. Association for Computing Machinery. ISBN 9781450306799. doi:
10.1145/2016904.2016908. URL https://doi.org/10.1145/2016904.2016908.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings, 2015. URL https://arxiv.org/abs/1511.07528.

Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour Ahmadi. Microsoft malware
classification challenge. CoRR, abs/1802.10135, 2018. URL http://arxiv.org/abs/1802.10135.

Joshua Saxe and Konstantin Berlin. Deep neural network based malware detection using two dimensional binary
program features. CoRR, abs/1508.03096, 2015. URL http://arxiv.org/abs/1508.03096.

Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and S. Stolfo. Data mining methods for detection of new
malicious executables. Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001, pages 38–49,
2001.

John Seabrook. Dressing for the surveillance age | the new yorker. https://www.newyorker.com/magazine/
2020/03/16/dressing-for-the-surveillance-age, 2020.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge.
nature, 550(7676):354–359, 2017.

Jack W. Stokes, De Wang, Mady Marinescu, Marc Marino, and Brian Bussone. Attack and defense of dynamic
analysis-based, adversarial neural malware classification models. CoRR, abs/1712.05919, 2017. URL
http://arxiv.org/abs/1712.05919.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks, 2013. URL https://arxiv.org/abs/1312.6199.

Tesla. Future of driving, 2020. https://www.tesla.com/en_AU/autopilot.

Shun Tobiyama, Yukiko Yamaguchi, Hajime Shimada, Tomonori Ikuse, and Takeshi Yagi. Malware detection
with deep neural network using process behavior. In 2016 IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), volume 2, pages 577–582, 2016. doi: 10.1109/COMPSAC.2016.151.

Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep neural
networks. In Proceedings 2018 Network and Distributed System Security Symposium. Internet Society, 2018.
doi: 10.14722/ndss.2018.23198. URL https://doi.org/10.14722%2Fndss.2018.23198.

6

https://doi.org/10.1145/3320326.3320333
https://doi.org/10.1145/3320326.3320333
https://doi.org/10.1145/2016904.2016908
https://arxiv.org/abs/1511.07528
http://arxiv.org/abs/1802.10135
http://arxiv.org/abs/1508.03096
https://www.newyorker.com/magazine/2020/03/16/dressing-for-the-surveillance-age
https://www.newyorker.com/magazine/2020/03/16/dressing-for-the-surveillance-age
http://arxiv.org/abs/1712.05919
https://arxiv.org/abs/1312.6199
https://www.tesla.com/en_AU/autopilot
https://doi.org/10.14722%2Fndss.2018.23198

	Introduction
	Related Work
	Training a Transformer for malware detection
	System Design and Architecture
	Features
	Dataset and Results

	Adversarial attacks
	Attacking our trained Transformer
	Defenses against adversarial attacks
	Conclusion and Future Scope

