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Abstract

The recent success of transformer models in language, such as BERT, has motivated
the use of such architectures for multi-modal feature learning and tasks. However,
most multi-modal variants (e.g., VILBERT) have limited themselves to visual-
linguistic data. Relatively few have explored its use in audio-visual modalities,
and none, to our knowledge, illustrate them in the context of granular audio-visual
detection or segmentation tasks such as sound source separation and localization.
In this work, we introduce TriBERT - a transformer-based architecture, inspired by
VILBERT, which enables contextual feature learning across three modalities: vision,
pose, and audio, with the use of flexible co-attention. The use of pose keypoints is
inspired by recent works that illustrate that such representations can significantly
boost performance in many audio-visual scenarios where often one or more persons
are responsible for the sound explicitly (e.g., talking) or implicitly (e.g., sound
produced as a function of human manipulating an object). From a technical
perspective, as part of the TriBERT architecture, we introduce a learned visual
tokenization scheme based on spatial attention and leverage weak-supervision to
allow granular cross-modal interactions for visual and pose modalities. Further, we
supplement learning with sound-source separation loss formulated across all three
streams. We pre-train our model on the large MUSIC21 dataset and demonstrate
improved performance in audio-visual sound source separation on that dataset as
well as other datasets through fine-tuning. In addition, we show that the learned
TriBERT representations are generic and significantly improve performance on
other audio-visual tasks such as cross-modal audio-visual-pose retrieval by as much
as 66.7% in top-1 accuracy.

1 Introduction

Multi-modal audio-visual learning [57]], which explores and leverages the relationship between visual
and auditory modalities, has started to emerge as an important sub-field of machine learning and
computer vision. Examples of typical tasks include: audio-visual separation and localization, where
the goal is to segment sounds produced by individual objects in an audio and/or to localize those
objects in a visual scene [[15} 16,142 [55]]; and audio-visual correspondence, where the goal is often
audio-visual retrieval [23] 147] [53]. Notably, some of the most recent audio-visual methods [[15]]
leverage human pose keypoints, or landmarks, as an intermediate or contextual representation. This
tends to improve the overall performance of sound separation, as pose and motion are important cues
for characterising both the type of instrument being played and, potentially, over time, the rhythm of
the individual piece [15]. It can also serve as an intermediate representation when generating video
from acoustic signals [8, 44] for example.
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Most of the existing architectures tend to extract features from the necessary modalities using
pre-trained backbones (e.g., CNNs applied to video frames [S5]], object regions [16]], and audio spec-
trograms; and/or graph CNN for human pose [[15]) and then construct problem-specific architectures
that often utilize simple late fusion for cross-modal integration in decoding (e.g., to produce spectro-
gram masks [15} 164 |55]]). This is contrary to current trends in other multi-modal problem domains,
where over the past few years, approaches have largely consolidated around generic multi-modal
feature learning architectures that are task agnostic to produce contextualized feature representations
and then fine-tune those representations to a variety of tasks (e.g., visual question answering (VQA)
or reasoning (VCR)) and datasets. Examples of such architectures include VILBERT [33]], VL-BERT
[46], and Unicoder-VL [31]], all designed specifically for visual-linguistic tasks.

Audio-visual representation learning has, in comparison, received much less attention. Most prior
works [51]] assume a single sound source per video and rely on audio-visual alignment objectives.
Exceptions include [39], which relies on proposal mechanisms and multiple-instance learning [49]
or co-clustering [25]. These approaches tend to integrate multi-modal features extracted using
pre-trained feature extractors (e.g., CNNs) at a somewhat shallow level. The very recent variants
[6}1281135] leverage transformers for audio-visual representation learning through simple classification
[6] and self-supervised [28] or contrastive [35] learning objectives while only illustrating performance
on video-level audio-visual action classification. To the best of our knowledge, no audio-visual
representation learning approach to date has explored pose as one of the constituent modalities; nor
has shown that feature integration and contextualization at a hierarchy of levels, as is the case for
BERT-like architectures, can lead to improvements on granular audio-visual tasks such as audio-visual
sound source separation.

To address the aforementioned limitations, we formulate a human-centric audio-visual representation
learning architecture, inspired by VILBERT [33]] and other transformer-based designs, with an explicit
goal of improving the state-of-the-art in audio-visual sound source separation. Our transformer model
takes three streams of information: video, audio, and (pose) keypoints and co-attends among those
three modalities to arrive at enriched representations that can then be used for the final audio-
visual sound separation task. We illustrate that these representations are general and also improve
performance on other auxiliary tasks (e.g., forms of cross-modal audio-visual-pose retrieval). From a
technical perspective, unlike VILBERT and others, our model does not rely on global frame-wise
features nor an external proposal mechanism. Instead, we leverage a learned attention to form
visual tokens, akin to [42]], and leverage weakly supervised objectives that avoid single sound-source
assumptions for learning. In addition, we introduce spectrogram mask prediction as one of our
pre-training tasks to enable the network to better learn task-specific contextualized features.

Contributions: Foremost, we introduce a tri-modal VilBERT-inspired model, which we call TriBERT,
that co-attends among visual, pose keypoint, and audio modalities to produce highly contextualized
representations. We show that these representations, obtained by optimizing the model with respect
to uni-modal (weakly-supervised) classification and sound separation pretraining objectives, produce
features that improve audio-visual sound source separation at large and also work well on other
downstream tasks. Further, to avoid reliance on the image proposal mechanisms, we formulate
tokenization in the image stream in terms of learned attentional pooling, which is learned jointly. This
alleviates the need for externally trained detection mechanisms, such as Faster R-CNN and variants.
We illustrate competitive performance on a number of granular audio-visual tasks both by using the
TriBERT model directly, using it as a feature extractor, or by fine-tuning it.

2 Related works

Audio-visual Tasks. There exists a close relationship between visual scenes and the sounds that
they produce. This relationship has been leveraged to complete various audio-visual tasks. Based
on [57]’s survey of audio-visual deep learning, these tasks can be categorized into four subfields,
three of which are addressed in this paper and described in the following three subsections.

Audio-visual Sound Source Separation and Localization. Sound source separation and the related
task of sound source localization have been studied quite extensively. Previous works studying
separation, also known as the cocktail party problem [19]], leverage multi-modal audio-visual infor-
mation [[11}[14] to help improve performance with respect to their audio-only counterparts [26, [34].
Examples include learning correlations between optical flow and masked frequencies [9, |13]], using



graphical models [21]], detecting salient motion signals that correspond to audio events [30, 40|, and
extracting pose keypoints to model human movements [15]]. A close connection between separation
and localization has also been illustrated [40l 4355, 156]. For example, [[16} 42] both formulate the
task as one of auditory and visual co-segmentation, either with pre-trained object regions obtained by
the detector [16] or directly from the image [42]]. All of these approaches contain highly specialized
architectures with custom fusion schemes. We aim to leverage the flexibility of transformer models
to create generalized multi-modal representations that improve on audio-visual tasks.

Audio-visual Representation Learning. The goal is typically to learn aligned representations. The
quality of these representations has been shown to greatly impact the overall performance of tasks
downstream [4]. A common strategy for representation learning is to introduce a proxy task. In the
audio-visual space, past works [1} 2, 138] have trained networks by having them watch and listen to
a large amount of unlabeled videos containing both positive samples of matching audio and visual
pairs and negative samples of mismatched pairs; the proxy task is binary classification of whether
or not the audio and visual match each other. Other proxy tasks include determining whether or
not an audio-visual pair is time synchronized [27]; and [29] uses a classification task to identify the
correct visual clip or audio stream from a set with negative samples. However, these works rely on the
assumption that only one main sound source occurs at a time and everything else is background noise.
Our model uses a weakly supervised proxy objective to learn representations for multiple sources of
sound (two in experiments) occurring simultaneously and also learns to incorporate pose features.

Audio-visual Correspondence Learning. One of the fundamental tasks in correspondence learning
related to our work is cross-modality retrieval. Most prior works focus on audio-visual retrieval [24]
36, 48] and propose learning a joint embedding space where both modalities can be mapped to. In this
space, semantically related embeddings are close to each other and thus retrieval can be performed by
selecting the closest embedding to the query from the alternate modality. In our work, we demonstrate
that enhanced feature representations obtained by our pretrained model capture aligned semantics
and lead to much better cross-modal retrieval than baseline representations.

Visiolinguistic Representation Learning. Our model is inspired by the recent successes of visiolin-
guistic representations. Most such approaches leverage a combination of uni-modal and cross-modal
transformer modules to pre-train generic visiolinguistic representations on masked language and/or
multi-modal alignment tasks. For example, [33] proposes separate streams for each modality that
communicate with each other through co-attention, while [46] uses a single-stream model that takes
both visual and linguistic embeddings as input. In our work, we also leverage co-attention modules
to learn joint representations between audio, pose, and vision modalities. However, in addition to
extending co-attention, we also focus on reformulating image tokenization and demonstrate the ability
to learn with weakly-supervised classification objectives as opposed to masked token predictions.

3 Approach

We introduce TriBERT, a network that learns a joint representation of three modalities: vision, pose,
and audio. We briefly review VILBERT, the architecture that inspired TriBERT, in Section [3.1} We
then describe our TriBERT architecture in Section [3.2] including pretraining tasks and objectives.

3.1 Reviewing Vision-and-Language BERT (ViLBERT)

Motivated by the recent success of the BERT architecture for transfer learning in language modeling,
Lu et al. [33] proposed VILBERT to represent text and visual content jointly. VILBERT is a two-
stream model for image regions and text segments. Each stream is similar to the BERT architecture,
containing a series of transformer blocks (TRM) [50]. Given an image I with corresponding
regions-of-interest (Rols) or bounding boxes vy, v1, ...vx and an input sentence S with word tokens
wo, w1, ...wr, the final output representations are hyg, hy1, ..., by and hyyg, By, --., Ay for the
visual and linguistic features, respectively. To exchange information between the two modalities,
the authors introduced a co-attentional transformer layer which computes query (Q), key (K), and
value (V') pairs like a standard transformer block. The keys and values from each modality are then
fed to the multi-headed attention block of the other modality. The attention block in each stream
generates attention-pooled features conditioned on the other modality and outputs a multi-modal joint
representation which outperforms single-stream models across multiple vision-and-language tasks.



Weakly supervised
__Classification _

" Weakly supervised
Classification _

1 4

Classification

T T T

] O e () ) o (e (]

Vision, Pose & Audio BERT

- W -
[ T —

Visual Segmentation Network

SOs

<MASK> | ¢ |<MASK>

Input Pose Feature from Graph CNN

Input Audio
Mixture

-y M
STFT l

hay hap hag

Vggish Feature

Spectrogram

7] Vi

Input video frames ~al | Vay
v

‘ __| Audio-visual- |__
pose Fusion

attention
ion
attention

Figure 1: Our TriBERT Architecture. We train TriBERT on the MUSIC21 dataset under two
training tasks: (1) Classification and (2) Sound separation. We introduce an end-to-end segmentation
network for visual embeddings which takes consecutive RGB frames as input and outputs detected
object features to feed into vision BERT. Following [15], we use graph CNN to generate pose
embeddings as input to pose BERT. For audio, we consider the mixed spectrogram of two audio
sources and use a VGGish network to generate audio embeddings to feed into audio BERT. We use
classification loss to train individual modalities. Due to the lack of annotation for individual objects,
we use a weakly supervised classification loss to train TriBERT for the vision and pose streams.
Following prior works on sound separation, we utilize attention U-net [37], which takes a mixed
audio spectrogram as input and predicts a spectrogram mask guided by audio-visual-pose features.

Predicted Mask

3.2 TriBERT Architecture

The architecture of our proposed TriBERT network is illustrated in Figure(l| Inspired by the recent
success of VILBERT in the vision-and-language domain, we modify its architecture to a three-stream
network for vision, pose, and audio. Similar to VILBERT [33]], we use a bi-directional Transformer
encoder [50]] as the backbone network. However, TriBERT also introduces integral components that
differentiate its architectural design. First, instead of using bounding box visual features generated by
a pre-trained object detector [33] or CNN feature columns [[7], TriBERT uses a jointly trained weakly
supervised visual segmentation network. Our end-to-end segmentation network takes a sequence of
consecutive frames to detect and segment objects, and the corresponding features are pooled and fed
as tokens to the visual stream. Second, the pose tokens are characterized by per-person keypoints
encoded using a Graph CNN, and the audio token is produced by the VGGish Network [22] applied
to an audio spectogram. All three types of tokens form the input to TriBERT, which refines them
using tri-modal co-attention to arrive at the final multi-modal representations.

Training TriBERT requires the definition of proxy/pretraining tasks and the corresponding losses (see
Section [3.2.1). Specifically, while we adopt token masking used in VILBERT and others, we are
unable to define classification targets per token in our visual and pose streams. This is because we
only assume per-video labels (e.g., of instruments played) and no access to how those map to attended
sounding regions or person instances involved. To address this, we introduce weakly-supervised
classification losses for those two streams. Since only one global audio representation is used, this is
unnecessary in the audio stream and standard cross-entropy classification can be employed. Finally,
motivated by recent works that show that multi-task pretraining is beneficial for VILBERT [32], we
introduce an additional spectrogram mask prediction pretraining task which predicts spectrogram
masks for each individual audio source from the input spectrogram (bottom block, Figure [I)).

Visual Representations. Unlike [33], we consider input video frames instead of detected ob-
ject/bounding box features as our visual input and propose an end-to-end approach to detect and
segment objects from each individual frame. Figure [2] illustrates our visual segmentation net-
work which takes in RGB frames as input. To extract global features, we use ResNet50 [20]
as the backbone network followed by a 3 x 3 convolution to generate H x W visual spatial
features which are then fed into the segmentation network. Following [54], we use a decou-
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Figure 2: Visual Segmentation Network. We consider ResNet50 [20] followed by a 3 x 3 convolu-

tion as our backbone network. It outputs a H x W spatial visual feature (V.) fed into the segmentation

network. Class specific attention map (A,,) is generated by the segmentation network and used to
pool top two detected object features. We consider the features as visual embeddings for TriBERT.

Input RGB Frames

pled spatial neural attention structure to detect and localize discriminative objects simultaneously.
The attention network has two branches: (1) Expansive attention detector, which aims to detect
object regions and generate the expansive attention map Sz € RE*#*W (top branch of Fig-
ure 2)); and (2) Discriminative attention detector, which aims to predict discriminative regions
and generate the discriminative attention map Sp € RE*H*W (bottom branch of Figure [2).
The expansive attention detector contains a drop-out layer followed by a 1 x 1 convolution, an-
other drop-out layer, a non-linear activation, and a spatial-normalization layer, defined as follows:
AG
Gy = FOWIVL(ig) +69), () i) = S Z(V’é)AC , )
i 245 Mig)

where ¢ € C and F(-) denote number of classes and the non-linear activation function, respectively.
The final attention map (A,,) is generated as : A,, = Sg ® Sp, where ® denotes element-wise
multiplication. A spatial average pooling is applied on A, to generate a classification score for
each corresponding class and pooled-out top two class features from spatial-visual feature (V). The
resultant 3 x 2 x 1024 visual embeddings are used to train our proposed TriBERT architecture, where
3 corresponds to the number of frames and 2 to the number of "objects" per frame.

Keypoint (pose) Representations. Our goal is to capture human body and finger movement through
keypoint representations. Therefore, we extract 26 keypoints for body joints and 21 keypoints for
each hand using the AlphaPose toolbox [12]. As a result, we identify the 2D (x, y) coordinates and
corresponding confidence scores of 68 body joints. Following [[15], we use Graph CNN to generate
semantic context comprising of those joints. Similar to prior work [52] on action recognition, we
construct a Spatial-Temporal Graph Convolutional Network G = {V, E'} where each node v; € {V'}
corresponds to the body joint’s keypoint and each edge e; € { E'} the natural connectivity between
those keypoints. We use 2D coordinates of the detected body joints with confidence scores as input
to each node and construct a spatial-temporal graph by: (1) connecting human body joints within a
single frame according to body structure; and (2) connecting each joint with the same joint from the
consecutive frames. This way, multiple layers of spatial-temporal graph convolutions are constructed
to generate higher-level features for human keypoints. We use publicly available cod to re-train
their model on our dataset and extract body joint features of size 2 x 256 x 68 before the final
classification layer (corresponding to two person instances). We apply a linear layer to transform
these to 3 x 2 x 1024 input embeddings for pose BERT where 3 corresponds to the number of visual
frames and 2 to maximum number of persons per frame.

Audio Representations. Consistent with prior works, we use a time-frequency representation of the
input audio. We apply STFT [18] to generate the corresponding spectrogram and then transform the
magnitudes of the spectrogram into the log-frequency scale for further processing. The size of the
final input audio spectrogram is 1 x 256 x 256 and is used in two ways: (1) as an audio embedding
for audio BERT; and (2) as the input audio for attention U-net for the task of sound source separation,
which predicts individual audio spectrogram masks (see Figure|[I). Before passing to audio BERT,
we use a VGGish Network [22] to extract global features for input audio embedding.
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Tri-modal Co-attention. Recent works [3} [33]] propose co-attentional transformer layers to generate
effective representations of vision conditioned on language and vice versa.

In this paper, we introduce a tri-modal co-
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3.2.1 Training Tasks

We pre-train TriBERT jointly on two tasks: instrument classification and sound source separation. Our
proposed architecture has three separate streams and each stream performs an individual classification
task. To train our TriBERT model, we use the MUSIC21 dataset [56], which contains 21 instruments.

Weakly-supervised Visual and Pose Classification. Our visual segmentation network generates
attention features for input video frames. We then apply a spatial pooling, and the resulting feature
vector is fed into the visual BERT. We use a special <SOS> token at the beginning of the input frame
sequence to represent the entire visual input. Following [33]], we apply masking to approximately
15% of the input image regions (see Figure[)). The output of the visual BERT is a sequence of hidden
representations h.,q, hy1, --hyny conditioned on the pose and audio modalities. We use mean pooling
of all hidden representations to perform classification for the detected objects. Similarly, pose BERT
generates a sequence of hidden representations hy, hp1, ..hpn conditioned on the visual and audio
modalities, and we apply classification based on the mean pooling of all hidden states. Due to the
lack of instance annotations, we cannot use region/pose level supervision. Following [J5], we use a
weakly-supervised approach to perform region selection and classification.

Audio Classification. Since we do not have a sequence of audio embeddings, we artificially create
an audio sequence for computational convenience by repeating the VGGish audio feature to generate
a sequence of hidden representations hgg, hq1, ..-hen conditioned on the visual and pose modalities.
This is done purely for engineering convenience to allow consistent use of tri-modal co-attention
across modalities. We then apply audio classification on the mean feature of all hidden representations.

Multi-modal Sound Source Separation. We consider sound source separation as one of our initial
tasks and follow the "Mix-and-Separate" framework [[11} (16, [17, 38} 55]], a well-known approach
to solve this problem. The goal is to mix multiple audio signals to generate an artificially complex
auditory representation and then learn to separate individual sounds from the mixture.

Given two input videos V; and V, with accompanying audio A; (¢) and As(t), we mix A; and As to
generate a complex audio signal mixture A (t) = A1(t) + A2(t). Suppose V; has two objects 01’
and 0;” with accompanying audio ay and a1” while V5 has one object 0y’ with audio as’. The goal
is to separate sounds a1’, a1”, and as’ from the mixture A,,(¢) by predicting spectrogram masks
using attention U-net [37]], which takes in the mixed spectrogram as input. Attention U-net contains 7
convolutions and 7 de-convolutions with skip connections. The skip connections use attention gates
(AG) comprise simple additive soft attentions to highlight relevant regions of the audio spectrograms.
The overhead of attention U-Net over U-Net is fairly minimal. Specifically, in terms of the number
of parameters, attention U-Net contains a modest 9% more parameters as compared to U-Net and
the inference speed is only 7% slower [37]]. The attention U-net outputs the final magnitude of the
spectrogram mask (bottom branch in Figure 1)) guided by audio-visual-pose features. Following [[15]],
we adopt a self-attention based early fusion between the bottle-neck of attention U-net with the fused
features (i.e. concatenation of features) corresponding to the <SOS> tokens of three BERT streams.



We combine the predicted magnitude of the spectrogram mask from attention U-net with the phase of
the input spectrogram and then use inverse STFT [[18] to get back the wave-form of the prediction.

Training Objective. We consider weakly-supervised classification for the visual and pose modalities.
Following [5]], we use two data streams from the hidden state of each modality. The first stream
corresponds to a class score (8.4s5) for each individual region to perform recognition. This is
achieved by a linear layer followed by a softmax operation (see Eq.[3). The second stream computes
a probability distribution (34e¢) for performing a proxy detection. This is done by using another
linear layer followed by another softmax operation (see EqH) as follows:

he. he.
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where h¢ € RE*IEl pd ¢ REXIEl and C denotes the number of classes. We then aggregate
the recognition and detection scores to predict the class of all image regions as follows: 7 =
Betass () © Baet (h?), where © denotes an element-wise product of the two scoring metrics. Finally
we apply BCE-loss [[10] to train visual and pose BERT. For audio classification, we consider a
classification layer to predict audio classes and similarly apply BCE-loss to train audio BERT.

For the sound separation task, our goal is to learn separate spectrogram masks for each individual
object. Following [55]], we use a binary mask which effectively corresponds to hard attention and use
per-pixel sigmoid cross entropy loss (BCE-loss) to train the network.

Implementation Details. We used PyTorch to implement our networkﬂ We consider threeE] random
consecutive frames with size 224 x 224 x 3 as our input sequence for visual and pose BERT and use
pre-trained ResNet50 [20] to extract global visual features for further processing. For the pose stream,
we first predict 2D coordinates of body and finger key points of each frame using AlphaPose [12] and
then use graph CNN [52]] to generate feature vectors for each keypoint. Similar to prior works [[15}155],
we sub-sample audio signals to 11KHz to reduce the computational cost and then select approximately
6s of audio by random cropping. To follow the "Mix-and-Separate" framework [[11} 116, |17, 38} 55,
we mix audio inputs and generate a time-frequency audio spectrogram using STFT with a Hann
window size of 1022 and a hop length of 256. We then transform the spectrogram into the log-
frequency scale to obtain the final 256 x 256 time-frequency representation. The transformers for
visual/pose and audio have a hidden state size of 1024 and 512, respectively, with 8 attention heads.
We use the Adam optimizer with an initial learning rate of 1e~> and batch size of 12 to train the
network on 4 GTX 1080 GPUs for 6k epochs. Training takes approximately 192 hours.

3.2.2 Runtime Inference

We use the MUSIC21 dataset [56] to train our network on two pretraining tasks: classification and
sound source separation. We can use this network directly for sound separation on MUSIC21. We
also fine-tune the pre-trained TriBERT on the MUSIC dataset [S5] with 11 audio classes, which is a
sub-set of the MUSIC21 dataset. We follow a fine-tuning strategy where we modify the classification
layer from each pre-trained stream and then train our proposed model end-to-end with a learning rate
of 1e~7 for 1500 epochs while keeping the rest of the hyper-parameters the same as the initial task.

4 Experiments

Datasets. We consider the MUSIC21 dataset [[56], which contains 1365 untrimmed videos of musical
solos and duets from 21 instrument classes for the initial training of our TriBERT architecture.
For fine-tuning, we use the MUSIC dataset [55]], which is a subset of MUSIC21, containing 685
untrimmed videos of musical solos and duets from 11 instrument classes.

2https://github.com/ubc-vision/TriBERT

’BERT-based architectures, including ours, require large GPU memory and longer training time. Therefore,
we use only three frames to reduce computational cost, but the number of frames can be easily increased with
the same architecture (if resources allow). Further, we would like to highlight that a pose feature for one frame,
actually takes into account T=256 frames of poses using a Spatial-Temporal Graph Convolutional Network.
Therefore long-term contextual pose information is taken into account [52].



Table 1: Sound separation results on the MUSIC21 test set. SDR / SIR / SAR are used to report
performance. Separation accuracy is captured by SDR and SIR; SAR only captures the absence of

artifacts.
Single-Source Multi-Source
Methods SDR(T) SIR(T) SAR() | SDR(1) SIR(f) SAR()
Sound-of-Pixels [55] 6.57 12.82 10.78 5.73 12.11 10.10
MUSIC-Gesture [15] 8.08 15.27 11.29 6.72 14.03 9.68
Ours 10.09 17.45 12.80 7.66 14.54 11.06

Table 2: Sound separation results on the MUSIC test set. We use TriBERT with pre-trained
weights from the MUSIC21 dataset and then fine-tune this model using the MUSIC train set.

Methods SDR (1) SIR(T) SAR()
NME-MFCC [45]] 0.92 5.68 6.84
AV-Mix-and-Separate [[16] 3.23 7.01 9.14
Sound-of-Pixels [55]] 7.26 12.25 11.11
CO-SEPARATION [16] 7.64 13.8 11.3
Mask Co-efficient with seg net [42] 9.29 15.09 12.43
Ours (after fine-tune) 12.34 18.76 14.37

4.1 Experiments for Sound Separation

Evaluation Metrics. We use three common metrics to quantify the performance of sound separation:
Signal-to-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR), and Signal-to-Artifact Ratio
(SAR). We report all of the results with the widely used mir_eval library [41].

Baselines. The MUSIC21 dataset contains 1365 untrimmed videos, but we found 314 of those to
be missing. Moreover, the train/val/test split was unavailable. As a result, for fair comparison, we
trained our baselines [[15}155] with the available videos using an 80/20 train/test split. We use publicly
available cod to train "Sound-of-Pixels" [S5]. For "MUSIC-Gesture" [[15], we re-implemented the
model by extracting pose features using Graph CNN [52]]. Our reproduced results are comparable
with those reporte% For the MUSIC dataset, we follow the experimental protocol from [42] and
consider their reported results as our baselines.

Quantitative and Qualitative Results. Table [T|shows the quantitative results for the sound separa-
tion pre-training task on the MUSIC21 dataset. Here, we include the performance of our method
and baselines when we use only single-source videos (solos) or multi-source (solos+duets) to train
all models. Our TriBERT outperforms (10.09 vs 8.08 for single-source in SDR) baseline models in
all evaluation metrics. We then fine-tune our model on the MUSIC dataset with a train/val/test split
from [16] (see Table[2). Our model again outperforms all baselines in all metrics (12.34 vs 9.29 in
SDR). Figure [3]illustrates the corresponding qualitative results. The Ist, 2nd, and 3rd columns show
the mixed video pairs and accompanying audio mixture, respectively. Columns 4 and 5 illustrate the
ground-truth spectrogram mask while columns 6/7 and 8/9 show the predicted spectrogram mask
by [15] and our method, respectively. Finally, the ground truth spectrogram, predicted spectrogram
by [15]], and our method are illustrated in columns 10/11, 12/13, and 14/15, respectively. It is clear that
TriBERT, both quantitatively and qualitatively, outperforms the state-of-the-art in sound separation.

4.2 Multi-modal Retrieval

Retrieval Variants. In this experiment, we analyze the semantic alignment between the 3 modalities
that TriBERT learns to encode. This is done through cross-modal retrieval, where given a single
or a pair of modality embeddings, we attempt to identify the matching embedding from a different
modality. We consider 5 variants: audio — vision, vision — audio, audio — pose, pose — audio,
and vision+audio — pose. Throughout this section, we refer to the embedding we have as the query

“https://github. com/hangzhaomit/Sound-of -Pixels

>The reported SIR score in [15] is 15.81, which is close to our reimplementation of their method which
achieves a score of 15.27. Our reproduced SDR score is a bit lower, compared to the 10.12 reported in [15].
However, this is perhaps expected given that 23% of the dataset was missing.
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Figure 3: Qualitative sound separation results on the MUSIC21 test set. Here, we show a
comparison between our results and Music-Gesture [15]. See text for details.

embedding and the embedding we want to retrieve as the result embedding. We train and evaluate on
the MUSIC21 dataset, using the same 80-20 train-test split used to learn TriBERT.

We consider 2 types of embeddings for the 3 modalities. First, we use the transformer-based
embeddings, consisting of the concatenations of the hidden representations hyo...v3, hpo...p3, and
hao...a3 for visual, pose, and audio, respectively. Additionally, we establish a baseline by training
with the embeddings used as input to the three BERT streams. This baseline can be viewed as an
ablation study for the transformer layers.

Retrieval Training. Similar to [33], we train using an n-way multiple-choice setting. Here, n
depends on the variant of the retrieval task, where n = 4 for the vision+audio to pose variant and
n = 3 for the four remaining single-modality variants. In either case, one positive pair is used and
n — 1 distractors are sampled. Further details are provided in the Supplemental Materials. We use an
MLP that takes as input a fusion representation of both the query and result embeddings, computed as
the element-wise product of the two. The module then outputs a single logit, interpreted as a binary
prediction for whether the query and result embeddings are aligned. For the vision+audio — pose
variant, an additional MLP, based on [[15], is used to combine the vision and audio embeddings before
the final element-wise product with the pose embedding. Additionally, since both the transformer-
based and pre-transformer embeddings are not consistent in shape across the three modalities, we also
use linear layers as required to transform them to a consistent one. This overall retrieval network is
trained end-to-end. For each multiple choice, the network computes an alignment score, after which
a softmax is applied across all n scores. We train using a cross-entropy loss for 750 epochs with a
batch size of 64 using the Adam optimizer with an initial learning rate of 2e-5.

Retrieval Results. Figure [ shows the qualitative results for two variants of retrieval. Additionally,
Table 3| shows quantitative results for the 5 retrieval variants using the transformer-based representa-
tion, the baseline pre-transformer representation, and also a model that simply selects randomly from
the pool. We see that retrieval using the transformer-based embeddings results in significantly better
performance than the pre-transformer ones. This shows that the tri-modal co-attention modules are an
integral component in learning a semantically meaningful relationship between the three modalities.

Notably, in Table [3|, we can see that vision+audio — pose is worse than audio — pose in top-1
accuracy. The performance of the two models is not necessarily directly comparable. Specifically,
there are two issues that should be considered:

- The input dimensionality and number of parameters of the vision+audio retrieval model is signifi-
cantly larger, with an additional MLP layer used for fusion. This means that the vision+audio
model is more prone to over-fitting, exhibited in the lower performance for top-1. Note that the
top-5 and top-10 performance of vision+audio — pose is better.

- The number of distractors (n — 1) is different in the two settings. For single-modality retrieval
variants, we use two distractors (negative pairings); while for the two-modality variant, we
use three distractors. This may also marginally affect the performance, since in the n-way
classification, having more distractors puts more focus on the negatives.

However, we want to stress that the goal of these experiments is not to compare which modality or
combination of modalities are best for retrieval. Instead, the goal is to illustrate the effectiveness of the
TriBERT representations. Each of the five retrieval models is simply an instance of a retrieval task. We
can use any alternative (more sophisticated) models for retrieval here. The key observation is that in
all five cases, TriBERT representations perform significantly better in retrieval compared with baseline
representations (used as input to TriBERT). This is strong evidence that TriBERT representations are



Table 3: Multi-modal retrieval on the MUSIC21 test set. Top-k accuracy results for 5 retrieval
variants. For each variant, retrieval on both the transformer-based (bolded) and pre-transformer
(unbolded) embeddings were evaluated. Also shown is the accuracy of a random selection model.

Top-1 Accuracy | Top-5 Accuracy | Top-10 Accuracy
Retrieval Variant (random = 0.48) | (random = 2.38) (random = 4.76)
Audio — Vision 68.10 1.43 93.81 | 1048 | 98.57 17.62
Vision — Audio 59.52 4.76 89.52 | 18.57 | 92.38 31.90
Audio — Pose 63.81 2.38 86.67 6.67 94.29 10.95
Pose — Audio 54.29 1.90 85.24 9.05 86.67 14.29
Vision 4+ Audio — Pose | 54.29 3.33 90.00 9.05 96.19 15.24

effective. We make no claims with regards to optimality of the retrieval formulation or objective; it is
simply used as a proxy for evaluating TriBERT representations.

Query Ground Truth Top 1 Result Top 2 Result Top 3 Result Top 4 Result Top 5 Result
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Figure 4: Qualitative cross-modal retrieval results on the MUSIC21 test set. The similarities
(same instrument class) between results in the top-5 retrieval pool show that our transformer-based
representations have learned a semantically meaningful relationship between the modalities.

5 Conclusion

In this paper, we introduce TriBERT, a three-stream model with tri-modal co-attention blocks to
generate a generic representation for multiple audio-visual tasks. We pre-train our model on the
MUSIC21 dataset and show that our model exceeds state-of-the-art for sound separatiorﬂ We also
find that TriBERT learns more generic and aligned multi-modal representations, exceeding on the
cross-modal audio-visual-pose retrieval task. In this work, we limit ourselves to two datasets and
fundamental audio-visual tasks. In the future, we plan to consider using more datasets and expanding
to a broader set of tasks (e.g., generation). The role of positional embeddings should also be explored.
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