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Abstract
Many improvements on GNNs can be deemed
as operations on the spectrum of the underly-
ing graph matrix, which motivates us to directly
study the characteristics of the spectrum and their
effects on GNN performance. By generalizing
most existing GNN architectures, we show that
the correlation issue caused by the unsmooth
spectrum becomes the obstacle to leveraging
more powerful graph filters as well as develop-
ing deep architectures, which therefore restricts
GNNs’ performance. Inspired by this, we pro-
pose the correlation-free architecture which nat-
urally removes the correlation issue among dif-
ferent channels, making it possible to utilize
more sophisticated filters within each channel.
The final correlation-free architecture with more
powerful filters consistently boosts the perfor-
mance of learning graph representations. Code is
available at https://github.com/qslim/
gnn-spectrum.

1. Introduction
Although graph neural network (GNN) communities are in
a rapid development of both theories and applications, there
is still a lack of a generalized understanding of the effects
of the graph’s spectrum in GNNs. As we can see, many
improvements can finally be unified into different opera-
tions on the spectrum of the underlying graph, while their
effectiveness is interpreted by several well-accepted iso-
lated concepts: (Wu et al., 2019; Zhu et al., 2021; Klicpera
et al., 2019a;b; Chien et al., 2021; Balcilar et al., 2021) ex-
plain it in the perspective of simulating low/high pass filters;
(Ming Chen et al., 2020; Xu et al., 2018; Liu et al., 2020; Li
et al., 2018) interpret it as ways of alleviating oversmooth-
ing phenomenon in deep architectures; (Cai et al., 2021)
adopts the conception of normalization operation in neural
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networks and applies it to graph data. Since these improve-
ments all indirectly operate on the spectrum, it motivates us
to study the potential connections between the GNN perfor-
mance and the characteristics of the graph’s spectrum. If we
can find such a connection, it would provide a deeper and
generalized insight into these seemingly unrelated improve-
ments associated with the graph’s spectrum (low/high pass
filter, oversmoothing, graph normalization, etc), and further
identify potential issues in existing architectures. To this
end, we first consider the simple correlation metric: cosine
similarity among signals, and study the relations between it
and the graph’s spectrum in the graph convolution operation.
It provides a new perspective that in existing GNN architec-
tures, the distribution of eigenvalues of the underlying graph
matrix controls the cosine similarity among signals. An
ill-posed unsmooth spectrum would easily make signals
over-correlated which is evidence of information loss.

Compared with oversmoothing studies (Li et al., 2018; Oono
& Suzuki, 2020; Rong et al., 2019; Huang et al., 2020), the
correlation analysis associated with the graph’s spectrum fur-
ther indicates that the correlation issue is essentially caused
by the graph’s spectrum. In other words, for graph topolo-
gies with an unsmooth spectrum, the issue can appear even
with a shallow architecture, and a deep model further makes
the spectrum less smooth and eventually exacerbates this
issue. Meanwhile, the correlation analysis also provides
a unified interpretation of the effectiveness of various ex-
isting improvements associated with the graph’s spectrum
since they all implicitly impose some constraints on the
spectrum to alleviate the correlation issue. However, these
improvements are trade-offs between alleviating the correla-
tion issue and applying more powerful graph filters: since
a filter implementation directly reflects on the spectrum, a
more appropriate filter for relevant signal patterns may cor-
respond to an ill-posed spectrum, which in return will not
gain performance improvements. Hence, in general GNN
architectures, the correlation issue becomes the obstacle to
applying more powerful filters. As we can see, although
one can approximate more sophisticated graph filters by
increasing the order k of the polynomial theoretically (Shu-
man et al., 2013), in the popular models, simple filters, e.g.
low-pass filter (Kipf & Welling, 2017; Wu et al., 2019), or
the fixed filter coefficients (Klicpera et al., 2019a;b) serve
as the practical applicable choice.

https://github.com/qslim/gnn-spectrum
https://github.com/qslim/gnn-spectrum
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With all the above understandings, the key solution is to
decouple the correlation issue from the filter design, which
results in our correlation-free architecture. In contrast to
existing approaches, it allows to focus on exploring more
sophisticated filters without the concern of the correlation
issue. With this guarantee, we can improve the approxi-
mation abilities of polynomial filters to better approximate
the desired more complex filters (Hammond et al., 2011;
Defferrard et al., 2016). However, we also find that it cannot
be achieved by simply increasing the number of polyno-
mial bases as the basis characteristics implicitly restrict the
number of available bases in the resulting polynomial filter.
For this reason, commonly used (normalized) adjacency
or Laplacian matrix where its spectrum serves as the ba-
sis cannot effectively utilize high-order bases. To address
this issue, we propose new graph matrix representations,
which are capable of leveraging more bases and learnable
filter coefficients to better respond to more complex signal
patterns. The resulting model significantly boosts perfor-
mance on learning graph representations. Although there
are extensive studies on the polynomial filters including
the fixed coefficients and learnable coefficients (Defferrard
et al., 2016; Levie et al., 2019; Chien et al., 2021; He et al.,
2021), to the best of our knowledge, they all focus on the
coefficients design and use the (normalized) adjacency or
Laplacian matrix as a basis. Therefore, our work is well
distinguished from them. Our contributions are summarized
as follows:

• We show that general GNN architectures suffer from
the correlation issue and also quantify this issue with
spectral smoothness;

• We propose the correlation-free architecture that de-
couples the correlation issue from graph convolution;

• We show that the spectral characteristics also hinder
the approximation abilities of polynomial filters and
address it by altering the graph’s spectrum.

2. Preliminaries
Let G “ pV, Eq be an undirected graph with node set V
and edge set E . We denote n “ |V| the number of nodes,
A P Anˆn the adjacency matrix and H P Rnˆd the node
feature matrix where d is the feature dimensionality. h P Rn
is a graph signal that corresponds to one dimension of H .

Spectral Graph Convolution (Hammond et al., 2011;
Defferrard et al., 2016). The definition of spectral graph
convolution relies on Fourier transform on the graph domain.
For a signal h and graph Laplacian L “ UΛUJ, we have
Fourier transform x̂ “ UJx and inverse transform x “ Ux̂.
Then, the graph convolution of a signal h with a filter gθ is

gθ ˚ h “ U
``

UJgθ
˘

d
`

UJh
˘˘

“ UĜθ1UJh, (1)

where Ĝθ1 denotes a diagonal matrix in which the diagonal
corresponds to spectral filter coefficients. To avoid eigende-
composition and ensure scalability, Ĝθ1 is approximated by
a truncated expansion in terms of Chebyshev polynomials
TkpΛ̃q up to the k-th order (Hammond et al., 2011), which
is also the polynomials of Λ,

Ĝθ1pΛq «
k
ÿ

i“0

θ1iTipΛ̃q “
k
ÿ

i“0

θiΛ
i, (2)

where Λ̃ “ 2
λmax

Λ´ In. Now the convolution in Eq. 1 is

UĜθ1UJh « U

˜

k
ÿ

i“0

θiΛ
i

¸

UJh “
k
ÿ

i“0

θiL
ih. (3)

Note that this expression is k-localized since it is a k-order
polynomial in the Laplacian, i.e., it depends only on nodes
that are at most k hops away from the central node.

Graph Convolutional Network (GCN) (Kipf & Welling,
2017). GCN is derived from 1-order Chebyshev polynomi-
als with several approximations. The authors further intro-
duce the renormalization trick D̃´

1
2 ÃD̃´

1
2 with Ã “ A`In

and D̃ii “
ř

j Ãij . Also, GCN can be generalized to multi-
ple input channels and a layer-wise model:

Hpl`1q “ σ
´

D̃´
1
2 ÃD̃´

1
2HplqW plq

¯

, (4)

where W is learnable matrix and σ is nonlinear function.

Graph Diffusion Convolution (GDC) (Klicpera et al.,
2019b). A generalized graph diffusion is given by the diffu-
sion matrix:

H “

8
ÿ

k“0

θkT
k, (5)

with the weight coefficients θk and the generalized transition
matrix T . T can be Trw “ AD´1, Tsym “ D´

1
2AD´

1
2 or

others as long as they are convergent. GDC can be viewed as
a generalization of the original definition of spectral graph
convolution, which also applies polynomial filters but not
necessarily the Laplacian.

3. Revisiting Existing GNN Architectures
We first generalize existing spectral graph convolution as
follows

H “ σ
`

pγpSqfΘpHq
˘

, (6)

where S is the graph matrix, e.g. adjacency or Laplacian
matrix and their normalized forms. pγ : Rnˆn Ñ Rnˆn is
the polynomial of graph matrices with coefficients γ P Rk
for a k-order polynomial. fΘ : Rd Ñ Rd1

is the feature
transformation neural network with the learnable parame-
ters Θ. In SGC (Wu et al., 2019), GDC (Klicpera et al.,
2019b), SSGC (Zhu & Koniusz, 2020), and GPR (Chien
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Table 1. A summary of pγ in Eq. 6 in general graph convolutions.

GCN SGC APPNP GCNII GDC SSGC GPR ChebyNet CayleNet BernNet

Poly-basis General General Residual Residual General General General Chebyshev Cayle Bernstein

Poly-coefficient Fixed Fixed Fixed Fixed Fixed Fixed Learnable Fixed Learnable Learnable

et al., 2021), pγ is implemented as the general polynomial,
i.e. pγpSq “

řk
i“0 γiS

i. Their differences are identified
by the coefficients γ. For example, SGC corresponds to
a very simple form with γi “ 0, i ă k and γk “ 1. By
removing the nonlinear layer in GCNII (Ming Chen et al.,
2020), APPNP (Klicpera et al., 2019a) and GCNII share the
similar graph convolution layer as

Hplq “ p1´ αqSHpl´1q ` αZ,Hp0q “ Z,Z “ fΘpXq,

where α P p0, 1q and X P Rnˆd is the input node fea-
tures. By deriving its closed-form, we reformulate it with
Eq. 6 as pγpSq “

řk´1
i“0 αp1 ´ αqiSi ` p1 ´ αqkSk. In

ChebyNet (Defferrard et al., 2016), CayleNet (Levie et al.,
2019) and BernNet (He et al., 2021), pγ corresponds to
Chebyshev, Cayle and Bernstein polynomials respectively.
GPR, CayleNet and BernNet apply learnable coefficient
γ, where γ is learned as the coefficients of general, Cayle
and Bernstein basis respectively. Therefore, with our for-
mulation in Eq. 6, general graph convolutions are mainly
different from pγ as summarized in Tab. 11.

3.1. Correlation Analysis in the Lens of Graph’s
Spectrum

Based on the generalized formulation of Eq. 6, we conduct
correlation analysis on existing graph convolution in the
perspective of the graph’s spectrum. We denote S “ pγpSq
for simplicity. h P Rn denotes one channel in fΘpHq.
Then the convolution on h is represented as Sh. The cosine
similarity between h and the i-th eigenvector pi of S is

cos
`

xh,piy
˘

“
hJpi

b

řn
j“1

`

hJpj
˘2
“

αi
b

řn
j“1 α

2
j

. (7)

αi “ h
Jpi is the weight of h on pi when representing h

with the set of orthonormal bases pi, i P rns. The cosine
similarity between Sh and pi is

cos
`

xSh,piy
˘

“
αiλi

b

řn
j“1 α

2
jλ

2
j

. (8)

1Here, we follow the naming convention in GCNII called initial
residual connection. GCN and GCNII interlace nonlinear compu-
tations over layers, making them difficult to reformulate all layers
with Eq. 6. But one can represent them with the recursive form
as Hplq “ σ

`

pγpSqfΘpH
pl´1q

q
˘

. For example, in GCN, we have
pγpSq “ S and fΘpH

pl´1q
q “ Hpl´1qΘ with S “ D̃´

1
2 ÃD̃´

1
2 .

The detailed derivations of Eq. 7 and Eq. 8 are given in
Appendix A.

Eq. 8 builds the connection between the cosine similarity
and the spectrum of the underlying graph matrix. We say
the spectrum is smooth if all eigenvalues have similar mag-
nitudes. By comparing Eq. 7 and Eq. 8, it shows that the
graph convolution operation with the unsmooth spectrum,
i.e., dissimilar eigenvalues, results in signals correlated (a
higher cosine similarity) to the eigenvectors corresponding
to larger magnitude eigenvalues and orthogonal (a lower co-
sine similarity) to the eigenvectors corresponding to smaller
magnitude eigenvalues. In the case where 0 eigenvalue is
involved in the spectrum, signals would lose information in
the direction of the corresponding eigenvectors. In the deep
architecture, this problem would further be exacerbated:

Proposition 3.1. Assume S P Rnˆn is a symmetric matrix
with real-valued entries. |λ1| ě |λ2| ě, . . . ,ě |λn| are n
real eigenvalues, and pi P Rn, i P rns are corresponding
eigenvectors. Then, for any given h,h1 P Rn, we have
(i) | cospxSk`1h,p1yq| ě | cospxSkh,p1yq| and
| cospxSk`1h,pnyq| ď | cospxSkh,pnyq| for
k “ 0, 1, 2, . . . ,`8;
(ii) If |λ1| ą |λ2|, lim

kÑ8
| cospxSkh,p1yq| “

lim
kÑ8

| cospxSkh,Skh1yq| “ 1, and the convergence

speed is decided by |λ2

λ1
|.

We prove Proposition 3.1 in Appendix B. Proposi-
tion 3.1 shows that a deeper architecture violates the
spectrum’s smoothness, which therefore makes the in-
put signals more correlated to each other. 2 Finally,
Rankpph1,h2, . . . ,hdqq “ 1, and the information within
signals would be washed out. Note that all the above analy-
sis does not impose any constraint to the underlying graph
such as connectivity.

Revisiting oversmoothing via the lens of correlation is-
2Here, nonlinearity is not involved in the propagation step.

This meets the case of the decoupling structure where a multi-
layer GNN is split into independent propagation and prediction
steps (Liu et al., 2020; Wu et al., 2019; Klicpera et al., 2019a; Zhu
& Koniusz, 2020; Zhang et al., 2021). The propagation involving
nonlinearity remains unexplored due to its high complexity, except
for one case of ReLU as nonlinearity (Oono & Suzuki, 2020).
Most convergence analyses (such as over-smoothing) only study
the simplified linear case (Cai et al., 2021; Liu et al., 2020; Wu
et al., 2019; Klicpera et al., 2019a; Zhao & Akoglu, 2020; Xu et al.,
2018; Ming Chen et al., 2020; Zhu & Koniusz, 2020; Klicpera
et al., 2019b; Chien et al., 2021).
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sue. In the well-known oversmoothing analysis, the conver-
gence is considered as limkÑ8 Ã

k
symH

p0q “ Hp8q where
each row of Hp8q only depends on the degree of the corre-
sponding node, provided that the graph is irreducible and
aperiodic (Xu et al., 2018; Liu et al., 2020; Zhao & Akoglu,
2020; Chien et al., 2021). Our analysis generalizes this re-
sult. In our analysis, the convergence of the cosine similarity
among signals does not limit a graph to be connected or
normalized that is required in the oversmoothing analysis
analogical to the stationary distribution of the Markov chain,
and even does not require a model to be necessarily deep : it
is essentially caused by the bad distributions of eigenvalues,
while the deep architecture exacerbates it. Interestingly, in-
spired by this perspective, the correlation problem actually
relates to the specific topologies since different topologies
correspond to different spectrum. There exists topologies in-
herently with bad distributions of eigenvalues, and they will
suffer from the problem even with a shallow architecture.
Also, by taking the symmetry into consideration, Proposi-
tion 3.1(i) shows that the convergence of cosine similarity
with respect to k is also monotonous. In contrast that ex-
isting results only discuss the theoretical infinite depth case,
this provides more concrete evidence in the practical finite
depth case that a deeper architecture can be more harmful
than a shallow one.

Revisiting graph filters via the lens of correlation issue.
The graph filter is approximated by a polynomial in the the-
ory of spectral graph convolution (Hammond et al., 2011;
Defferrard et al., 2016). Although theoretically, one can
approximate any desired graph filter by increasing the order
k of the polynomial (Shuman et al., 2013), most GNNs can-
not gain improvements by enlarging k. Instead, the simple
low-pass filter studied by many improvements on spectral
graph convolution acts as the practical effective choice (Shu-
man et al., 2013; Wu et al., 2019; NT & Maehara, 2019;
Muhammet et al., 2020; Klicpera et al., 2019b). Although
there are studies involving high-pass filters to better process
high-frequency signals recently, the low-pass is always re-
quired in graph convolution (Zhu & Koniusz, 2020; Zhu
et al., 2021; Balcilar et al., 2021; Bo et al., 2021; Gao et al.,
2021). This can be explained in the perspective of correla-
tion analysis. As we have shown, the graph convolution is
sensitive to the spectrum. A more proper filter to better re-
spond to relevant signal patterns may result in an unsmooth
spectrum, making different channels correlated to each other
after convolution. In contrast, although a low-pass filter has
limited expressiveness, it corresponds to a smoother spec-
trum, which alleviates the correlation issue.

4. Correlation-free Architecture
The correlation analysis via the lens of graph’s spectrum
shows that in general GNN architectures, the unsmooth

spectrum leads to correlation issue and therefore acts as
the obstacle to developing deep architectures as well as
leveraging more expressive graph filters. To overcome this
issue, a natural idea is to assign the graph convolution in
different channels of fΘpHqwith different spectrums, which
can be viewed as a generalization of Eq. 6 as follows

H “ fΨ

`“

pΓ1
pSqfΘ1

pHq, . . . , pΓd1 pSqfΘd1 pHq
‰˘

. (9)

Both fΘ : Rd Ñ Rd1

and fΨ : Rd1

Ñ Rd2

are the feature
transformation neural networks with the learnable parame-
ters Θ and Ψ respectively. pΓi is the i-th polynomial with
the learnable coefficients Γi P Rk. fΘipHq P Rn is the i-th
channel of fΘpHq P Rnˆd1

. We denote hi “ fΘipHq for
simplicity. Then the convolution operation on hi in Eq. 9 is

pΓipSqhi “
k
ÿ

j“0

Γi,jS
jhi “ U

k
ÿ

j“0

Γi,jΛ
jUJhi (10)

with the filter diagpgΓiq “
řk
j“0 Γi,jΛ

j . We denote λ “
`

λ1, λ2, . . . , λn
˘J
P Rn. Then,

gΓi “

k
ÿ

j“0

Γi,jλ
j “

`

λ1,λ2, . . . ,λk
˘

ˆ Γi “ V ˆ Γi,

(11)
where V “

`

λ1,λ2, . . . ,λk
˘

P Rnˆk. If λi ‰ λj for any
i ‰ j, i.e., the algebraic multiplicity of all eigenvalues is
1, V is a Vandermonde matrix with RankpV q “ minpn, kq.
Vj “ λ

j , j P rks serve as a set of k bases, where each filter
gΓi is a linear combination of Vj . Hence, a larger k helps
to better approximate the desired filter. When k “ n, V
is a full-rank matrix and gΓi is sufficient to represent any
desired filter with proper assignments of Γi. Note that n is
much smaller in real-world graph-level tasks than that in
node-level tasks, making k “ n more tractable.

By considering the columns of a Vandermonde matrix, i.e.
λj , j P rks as bases, we can see that when increasing k (aka
applying more bases), λki with |λi| ăă 1 goes diminishing
and λki with |λi| ąą 1 goes divergent. To balance the di-
minishing and divergence problems when applying a larger
k, we need to carefully control the range of the spectrum
close to 1 or ´1. General approaches have λ P r0, 1sn 3.
Although there is no concern of divergence problems, λki ,
especially for a small λi, inclines to 0 when increasing k,
making the higher-order basis ineffective in the practical
limited precision condition.

On the other hand, general approaches are less likely to
learn the coefficients of polynomial filters in a completely

3General approaches use the (symmetry) normalized A, i.e.
D̃´

1
2 ÃD̃´

1
2 , D̃´1Ã to guarantee its spectrum is bounded by

r´1, 1s (Kipf & Welling, 2017; Klicpera et al., 2019b) or the
(symmetry) normalized L, i.e. I ´ D̃´

1
2 ÃD̃´

1
2 to ensure the

boundary [0, 2] and then rescale it to r0, 1s (He et al., 2021).
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free manner (Klicpera et al., 2019b; He et al., 2021). The
specially designed coefficients to explicit modify spectrum,
i.e. Personalized PageRank (PPR), heat kernel (Klicpera
et al., 2019b), etc or the coefficients learned under the con-
strained condition, i.e. Chebyshev (Defferrard et al., 2016),
Cayley (Levie et al., 2019), Bernstein (He et al., 2021) poly-
nomial, etc act as the practical applicable filters. This is
probably because the polynomial filter relies on sophisti-
cated coefficients to maintain spectral properties. Learning
them from scratch would easily fall into an ill-posed fil-
ter (He et al., 2021). However, by modifying the filter bases,
it would relax the requirement on the coefficients, making it
more suitable for learning coefficients from scratch.

Finally, although the new architecture in Eq. 9 decouples
the correlation issue from developing more powerful filters,
general filter bases are less qualified for approximating more
complex filters. Hence, we still need to explore more ef-
fective filter bases to replace existing ones. To this end, we
will introduce two different improvements on filter bases in
the following sections whose effectiveness will serve as a
verification of our analysis.

4.1. Spectral Optimization on Filter Basis

One can directly apply a smoothing function on the spectrum
of S, which helps to narrow the range of eigenvalues close
to 1 or -1. There can be various approaches to this end, and
in this paper, we propose the following eigendecomposition-
based method for a symmetric matrix S “ PΛPJ 4

Sρ “ PdiagpfρpλiqqP
J, fρpλq “

"

´p´λqρ, λ ă 0
λρ, λ ě 0,

(12)
where i P rns. ρ P p0, 1q, λρ “ eρ lnλ. Sρ serves as the
polynomial bases in Eq. 10. Unlike general spectral ap-
proaches, S is not required to be a bounded spectrum. It can
leverage more bases while alleviating both the diminishing
and divergence problems by controlling ρ¨k in a small range.
Therefore, Sρ can be considered as a basis-augmentation
technique as shown in Fig. 1.

Figure 1. Assume λ ą 0 and ρ “ 0. 93.

There can be other transformations on the spectrum, e.g.,
P
`

Sigmoid
`

Λ
˘

` ρ
˘

PJ, which have a similar effect to
Sρ. Note that the injectivity of fρ also influences the ap-
proximation ability, which is discussed in more details in
Appendix C.

4Although the computation of Sρ requires eigendecomposition,
S is always a symmetric matrix and the eigendecomposition on it
is much faster than a general matrix.

4.2. Generalized Normalization on Filter Basis

Eq. 12 directly operates on the spectrum, which can achieve
an accurate control on the range of the spectrum but requires
eigendecomposition. To avoid eigendecomposition, we al-
ternatively study the effects of graph normalization on the
spectrum. We generalize the normalized adjacency matrix
as follows

D̃εÃD̃ε “ pD ` ηIqεpA` ηIqpD ` ηIqε, (13)

where ε P r´0.5, 0s is the normalization coefficient and
η P r0, 1s is the shift coefficient. Widely-used D̃´

1
2 ÃD̃´

1
2

corresponds to ε “ ´0.5 and η “ 1.

Proposition 4.1. Let λ1 ě λ2 ě ¨ ¨ ¨ ě λn be the spectrum
of A and µ1 ě µ2 ě ¨ ¨ ¨ ě µn be the spectrum of pD `
ηIqεpA` ηIqpD ` ηIqε, then for any i P rns, we have

pλi ` ηqpdmax ` ηq
2ε ď µi ď pλi ` ηqpdmin ` ηq

2ε,

where dmin and dmax are the minimum and maximum de-
grees of nodes in the graph.

We prove Proposition 4.1 in Appendix D. Proposition 4.1
extends the results in (Spielman, 2007), showing that the
normalization has a scaling effect on the spectrum: a smaller
ε is likely to lead to a smaller µi, while a larger ε is likely
to lead to a larger µi. When ε “ 0, the upper and lower
bounds coincide with µi “ λi ` η.

To further investigate the effects of the normalization on
the spectrum, we fix η “ 0 and empirically evaluate ε as
shown in Fig. 2. When fixing ε, D̃εÃD̃ε shrinks the spec-
trum of A with different degrees on different eigenvalues.
For eigenvalues with small magnitudes (in the middle area
of the spectrum), it has a small shrinking effect, while for
eigenvalues with large magnitudes, it has a relatively large
shrinking effect. Hence, D̃εÃD̃ε can be used as a spectral
smoothing method. Also, different ε results in different
shrinking effects, which is consistent with the results in
Proposition 4.1. Widely-used D̃´

1
2 ÃD̃´

1
2 with the spec-

trum bounded by r´1, 1s may not be a good choice since
the diminishing problem. Intuitively, to utilize more bases,
we should narrow the range of the spectrum close to 1 (or
-1) to avoid both the diminishing and divergence problems
in higher-order bases. This can vary from different datasets
and we should carefully balance ε and k.

5. Related Work
Many improvements on GNNs can be unified into the spec-
tral smoothing operations, e.g. low-pass filter (Wu et al.,
2019; Zhu et al., 2021; Klicpera et al., 2019a;b; Chien
et al., 2021; Balcilar et al., 2021), alleviating oversmooth-
ing (Ming Chen et al., 2020; Xu et al., 2018; Liu et al., 2020;
Li et al., 2018), graph normalization(Cai et al., 2021), etc,
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Figure 2. We use the metric λ
D̃εÃD̃ε

λ
Ã

to evaluate the shrinking effects of D̃εÃD̃ε on the spectrum. We randomly sample 5 graphs in each
of three datasets ZINC, MolPCBA and NCI1 respectively. In the first three figures, we use the fixed ε “ ´0.3 on all 5 graphs. In the
fourth figure, we use ε “ ´0.1,´0.2,´0.3,´0.4,´0.5 respectively on one graph, which corresponds to the 5 lines from top to bottom.
More visualization results on other datasets can be found in Appendix E.

our analysis on the relations of the correlation issue and the
spectrum of underlying graph’s matrix provides a unified
interpretation on their effectiveness.

ChebyNet (Defferrard et al., 2016), CayleNet (Levie et al.,
2019), APPNP (Klicpera et al., 2019a), SSGC (Zhu & Ko-
niusz, 2020), GPR (Chien et al., 2021), BernNet (He et al.,
2021), etc explore various polynomial filters and use the
normalized adjacency or Laplacian matrix as basis. We
improve the approximation ability of polynomial filters by
altering the spectrum of filter bases. The resulting bases
allow leveraging more bases to approximate more sophisti-
cated filters and are more suitable for learning coefficients
from scratch.

We note that the concurrent work (Jin et al., 2022) has
also pointed out the overcorrelation issue in the infinite
depth case, without further discussion on the reason (e.g.
graph’s spectrum) behind this phenomenon. In contrast, we
show that correlation is inherently caused by the unsmooth
spectrum of the underlying graph filter, and also quantify
this effect with spectral smoothness. It allows to analyze the
correlation across all layers instead of only the theoretical
infinite depth.

6. Experiments
We conduct experiments on TUDatasets (Yanardag &
Vishwanathan, 2015; Kersting et al., 2016), OGB (Hu
et al., 2020) which involve graph classification tasks and
ZINC (Dwivedi et al., 2020) which involves graph regres-
sion tasks. Then, we evaluate the effects of our proposed
new graph convolution architecture and two filter bases.

6.1. Results

Settings. We use the default dataset splits for OGB and
ZINC. For TUDatasets, we follow the standard 10-fold
cross-validation protocol and splits from (Zhang et al., 2018)
and report our results following the protocol described in

Table 2. Results on TUDatasets. Higher is better.

dataset NCI1 NCI109 ENZYMES PTC MR

GK 62.49˘0.27 62.35˘0.3 32.70˘1.20 55.65˘0.5
RW - - 24.16˘1.64 55.91˘0.3
PK 82.54˘0.5 - - 59.5˘2.4

FGSD 79.80 78.84 - 62.8
AWE - - 35.77˘5.93 -

DGCNN 74.44˘0.47 - 51.0˘7.29 58.59˘2.5
PSCN 74.44˘0.5 - - 62.29˘5.7

DCNN 56.61˘1.04 - - -
ECC 76.82 75.03 45.67 -
DGK 80.31˘0.46 80.32˘0.3 53.43˘0.91 60.08˘2.6

GraphSag 76.0˘1.8 - 58.2˘6.0 -
CapsGNN 78.35˘1.55 - 54.67˘5.67 -
DiffPool 76.9˘1.9 - 62.53 -

GIN 82.7˘1.7 - - 64.6˘7.0
k-GNN 76.2 - - 60.9

Spec-GN 84.79˘1.63 83.62˘0.75 72.50˘5.79 68.05˘6.41
Norm-GN 84.87˘1.68 83.50˘1.27 73.33˘7.96 67.76˘4.52

(Xu et al., 2019; Ying et al., 2018). Following all base-
lines on the leaderboard of ZINC, we control the number
of parameters around 500K. The baseline models include:
GK (Shervashidze et al., 2009), RW (Vishwanathan et al.,
2010), PK (Neumann et al., 2016), FGSD (Verma & Zhang,
2017), AWE (Ivanov & Burnaev, 2018), DGCNN (Zhang
et al., 2018), PSCN (Niepert et al., 2016), DCNN (Atwood
& Towsley, 2016), ECC (Simonovsky & Komodakis, 2017),
DGK (Yanardag & Vishwanathan, 2015), CapsGNN (Xinyi
& Chen, 2019), DiffPool (Ying et al., 2018), GIN (Xu et al.,
2019), k-GNN (Morris et al., 2019), GraphSage (Hamilton
et al., 2017), GAT (Veličković et al., 2018), GatedGCN-
PE (Bresson & Laurent, 2017), MPNN (sum) (Gilmer et al.,
2017), DeeperG (Li et al., 2020), PNA (Corso et al., 2020),
DGN (Beani et al., 2021), GSN (Bouritsas et al., 2020),
GINE-VN (Brossard et al., 2020), GINE-APPNP (Brossard
et al., 2020), PHC-GNN (Le et al., 2021), SAN (Kreuzer
et al., 2021), Graphormer (Ying et al., 2021). Spec-GN
denotes the proposed graph convolution in Eq. 9 with the
smoothed filter basis by spectral transformation in Eq. 12.
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Figure 3. A visualization of the learned filters on ZINC. We tested on three bases with each basis randomly sampling 9 filters. Dots
represent the eigenvalues of each basis. More visualization results on other datasets can be found in Appendix F.

Norm-GN denotes the proposed graph convolution in Eq. 9
with the smoothed filter basis by graph normalization in
Eq. 13.

Table 3. Results on ZINC (Lower is better) and MolPCBA (Higher
is better).

method ZINC MAE MolPCBA AP

GCN 0.367˘0.011 p505kq 24.24˘0.34 p2.02mq

GIN 0.526˘0.051 p510kq 27.03˘0.23 p3.37mq

GAT 0.384˘0.007 p531kq -
GraphSage 0.398˘0.002 p505kq -

GatedGCN-PE 0.214˘0.006 p505kq -
MPNN 0.145˘0.007 p481kq -

DeeperG - 28.42˘0.43 p5.55mq

PNA 0.142˘0.010 p387kq 28.38˘0.35 p6.55mq

DGN 0.168˘0.003 NA 28.85˘0.30 p6.73mq

GSN 0.101˘0.010 p523kq -
GINE-VN - 29.17˘0.15 p6.15mq

GINE-APPNP - 29.79˘0.30 p6.15mq

PHC-GNN - 29.47˘0.26 p1.69mq

SAN 0.139˘0.006 p509kq -
Graphormer 0.122˘0.006 p489kq -

Spec-GN 0.0698˘0.002 p503kq 29.65˘0.28 p1.74mq

Norm-GN 0.0709˘0.002 p500kq 29.51˘0.33 p1.74mq

Results. Tab. 2 and 3 summarize performance of our ap-
proaches comparing with baselines on TUDatasets, ZINC
and MolPCBA. For TUDatasets, we report the results of
each model in its original paper by default. When the results
are not given in the original paper, we report the best test-
ing results given in (Zhang et al., 2018; Ivanov & Burnaev,
2018; Xinyi & Chen, 2019). For ZINC and MolPCBA, we
report the results of their public leaderboards. TUDatasets
involves small-scale datasets. NCI1 and NCI109 are around
4K graphs. ENZYMES and PTC MR are under 1K graphs.
General GNNs easily suffer from overfitting on these small-
scale data, and therefore we can see that some traditional
kernel-based methods even get better performance. How-
ever, Spec-GN and Norm-GN achieve higher classification
accuracies by a large margin on these datasets. The results
on TUDatasets show that although Spec-GN and Norm-GN
achieve more expressive filters, it does not lead to overfitting

on learning graph representations. Recently, Transformer-
based models are quite popular in learning graph repre-
sentations, and they significantly improve the results on
large-scale molecular datasets. On ZINC, Spec-GN and
Norm-GN outperform these Transformer-based models by a
large margin. And on MolPCBA, they are also competitive
compared with SOTA results.

6.2. Ablation Studies

We perform ablation studies on the proposed architecture
and the filter bases Ãρ (by setting S “ Ã in Eq. 12) and
D̃εÃD̃ε on ZINC. We use “idp” and “shd” to respectively
represent the correlation-free architecture (also known as
independent filter architecture) in Eq. 9 and the general
shared filter architecture in Eq. 6. Both architectures learn
the filter coefficients from scratch.

Correlation-free architecture and different filter bases.
In Fig. 3, we visualize the learned filters in the correlation-
free on three bases, i.e. D̃´

1
2 ÃD̃´

1
2 , Ãρ and D̃εÃD̃ε. The

visualizations show that each channel indeed learns a differ-
ent filter on all three bases. D̃´

1
2 ÃD̃´

1
2 has the bounded

spectrum r´1, 1s that is slightly close to 1 due to the in-
volvement of self-loop. The filters learn a similar response
on all range which corresponds to different frequencies in
frequency domain. Ãρ and D̃εÃD̃ε have the spectrum close
to 1 or ´1 while the filters learn diverse responses on these
areas, which corresponds to more complex patterns on dif-
ferent frequencies. Tab. 4 shows that the correlation-free
always outperforms the shared filter by a large margin on
all tested bases. Both D̃´

1
2 ÃD̃´

1
2 and D̃´1Ã have the

bounded spectrum r´1, 1s and they have similar perfor-
mance. Ãρ and D̃εÃD̃ε narrow the range of the spectrum
close to 1 or ´1 through completely different strategies,
but they have similar performance that is much better than
D̃´

1
2 ÃD̃´

1
2 and D̃´1Ã. This validates our analysis on the

filter basis. Meanwhile, Ãρ achieves more accurate control
on the spectrum, and correspondingly, it slightly outper-
forms D̃εÃD̃ε.

Do more bases gain improvements? In Fig. 4, we sys-
tematically evaluate the effects of the number of bases on
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Table 4. Ablation study results on ZINC with different settings.

Architecture Basis test MAE valid MAE
shd idp D̃´

1
2 ÃD̃´

1
2 D̃´1Ã Ãρ D̃εÃD̃ε

3 3 0.1415˘0.00748 0.1568˘0.00729
3 3 0.1439˘0.00900 0.1569˘0.00739
3 3 0.1061˘0.01018 0.1294˘0.01454
3 3 0.1133˘0.01711 0.1316˘0.02057

3 3 0.0944˘0.00379 0.1100˘0.00787
3 3 0.0982˘0.00417 0.1172˘0.00666
3 3 0.0698˘0.00200 0.0884˘0.00319
3 3 0.0709˘0.00176 0.0929˘0.00445

5 10 15 20 25
k

0.075

0.100

0.125

0.150

0.175

0.200

Te
st

 M
AE

5 10 15 20 25
k

0.075

0.100

0.125

0.150

0.175

0.200

Va
lid

 M
AE

shd+D1
2AD1

2

idp+D1
2AD1

2

idp+A = 1/3

idp+A = 1/6

idp+A = 1/7

idp+A = 1/8

Figure 4. Ablation study results on ZINC with different number of bases k.

learning graph representations, including D̃´
1
2 ÃD̃´

1
2 and

our Ãρ with ρ “ 1{3, 1{6, 1{7, 1{8. The shared filter case,
i.e. shd`D̃´

1
2 ÃD̃´

1
2 cannot well leverage more bases (a

larger k) as the MAE stops decreasing at 0.150 which is
also reported by several baselines in Tab. 3. In contrast,
both correlation-free cases idp`D̃´

1
2 ÃD̃´

1
2 and idp`Ãρ

outperform the shared filter case by a large margin and they
continuously gain improvements when increasing k. The
MAE of idp`D̃´

1
2 ÃD̃´

1
2 stops decreasing at the test MAE

close to 0.09 and the valid MAE close to 0.11. By replac-
ing D̃´

1
2 ÃD̃´

1
2 with Ãρ, the best test MAE is below 0.07,

and the best valid MAE is close to 0.088. The bases in Ãρ
are controlled by both ρ and k. We use the tuple pρ, kq to
denote a combination of ρ and k. By fixing ρ, the curves
corresponding to ρ “ 1{3 and ρ “ 1{6 show that increasing
k gains improvements. By fixing the upper bound of ρˆ k
to be 1, p1{6, 6q involves 3 more bases than p1{3, 3q and
outperforms p1{3, 3q. The same results are also reflected
in the comparison of p1{6, 12q and p1{3, 6q. For the com-
parison of p1{6, 18q and p1{3, 9q, both settings achieve the
lowest MAE and the difference is less obvious.

The effects of model depth. Fig.5 shows the performance
comparisons between correlation-free and shared filter as
depth increases. Each architecture is tested with the de-
fault basis D̃

1
2 ÃD̃

1
2 and our proposed Ãρ. We set the

same number of bases in all resulting models, and each
model is tested with the number of layers (depth) equal to
t5, 10, 15, 20, 25u. The results show that the correlation-
free can preserve the performance as depth increases. The
shared filter cases perform quite unstable and drop dra-

matically when depth ą 20. Also, across all depths, the
correlation-free almost always outperforms the shared filter
and has low variance among different runs. In Appendix G,
we also test cosine similarities of different layers in a deep
model.

Stability. We also found that the correlation-free is more
stable in different runs than the shared filter case as reflected
in the standard deviation in Tab. 4. This is probably be-
cause different channels may pose different patterns, which
causes interference among each other in the shared filter
case. While the correlation-free well avoids this problem.
Also, the results of Ãρ and D̃εÃD̃ε are more stable than
D̃´

1
2 ÃD̃´

1
2 and D̃´1Ã in different runs. For D̃´

1
2 ÃD̃´

1
2

and D̃´1Ã, the difference between the best and the worst
runs can be more than 0.02. While for Ãρ and D̃εÃD̃ε,
this difference is less than 0.01. More results are given in
Appendix H. The instability of D̃´

1
2 ÃD̃´

1
2 and D̃´1Ã is

probably because learning filter coefficients from scratch
without any constraints is difficult to maintain spectrum
properties and therefore easily falls into an ill-posed fil-
ter (He et al., 2021). In contrast, Ãρ and D̃εÃD̃ε inherently
with smoother spectrum alleviate this problem and make
them more appropriate in the scenario of learning coeffi-
cients from scratch.

7. Conclusion
We study the effects of spectrum in GNNs. It shows that in
existing architectures, the unsmooth spectrum results in the
correlation issue, which acts as the obstacle to developing
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Figure 5. Ablation study results on ZINC with different number of layers.

deep models as well as applying more powerful graph filters.
Based on this observation, we propose the correlation-free
architecture which decouples the correlation issue from fil-
ter design. Then, we show that the spectral characteristics
also hinder the approximation abilities of polynomial filters
and address it by altering the graph’s spectrum. Our exten-
sive experiments show the significant performance gain of
correlation-free architecture with powerful filters.
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A. Derivations of Eq. 7 and Eq. 8
Since S P Rnˆn is a symmetric matrix, assume the eigendecomposition S “ PΛPJ with P “

`

p1,p2, . . . ,pn
˘

and
}pi} “ 1, i P rns.

cos
`

xh,piy
˘

“
hJpi
}h}}pi}

“
hJpi
}h}

“
hJpi
?
hJh

“
hJpi

a

pPJhqJPJh

“
hJpi

b

řn
j“1

`

pJj h
˘2

“
hJpi

b

řn
j“1

`

hJpj
˘2

“
αi

b

řn
j“1 α

2
j

.

cos
`

xSh,piy
˘

“

`

Sh
˘J
pi

}Sh}}pi}

“

`

Sh
˘J
pi

b

`

Sh
˘JSh

“

`

PΛ
`

PJh
˘˘J

pi
b

`

PΛ
`

PJh
˘˘J`

PΛ
`

PJh
˘˘

“

`

PJh
˘J

ΛPJpi
b

`

PJh
˘J

Λ2
`

PJh
˘

“

`

pJ1 h, . . . ,p
J
i h, . . . ,p

J
nh

˘

¨

˚

˚

˚

˚

˚

˚

˝

λ1

. . .
λi

. . .
λn

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

pJ1
...
pJi
...
pJn

˛

‹

‹

‹

‹

‹

‹

‚

`

pi
˘

b

`

PJh
˘J

Λ2
`

PJh
˘

“
pJi hλi

b

řn
j“1

`

pJj h
˘2
λ2
j

“
hJpiλi

b

řn
j“1

`

hJpj
˘2
λ2
j

“
αiλi

b

řn
j“1 α

2
jλ

2
j



A New Perspective on the Effects of Spectrum in Graph Neural Networks

B. Proof of Proposition 3.1
Proof. (i) As Sk “ PΛkPJ and Eq. 8, for k “ 0, 1, 2, . . . ,`8, we have
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Similarly, we can prove that | cospxSkh,pnyq| ě | cospxSk`1h,pnyq|.

(ii) Since | cospxSkh,pnyq| monotonously increases with respect to k and has the upper bound 1, | cospxSkh,pnyq| must
be convergent.
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Then,
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C. More Discussions of Spectral Optimization on Filter Basis
We use EpS,λq to denote the eigenspace of S associated with λ such that EpS,λq “ tv : pS ´ λIqv “ 0u.

Proposition C.1. Given a symmetric matrix S P Rnˆn with S “ PΛPJ where Λ “ diagpλ1, λ2, . . . , λnq, and P can be
any eigenbasis of S, let Sφ “ PφpΛqPJ, where φp¨q is an entry-wise function applied on Λ. Then we have
(i) EpS,λiq Ď EpSφ,φpλiqq, i P rns;
(ii) Meanwhile, if φp¨q is injective, EpS,λiq “ EpSφ,φpλiqq and FφpSq “ PφpΛqPJ is injective.

Proof. Let P “ pp1,p2, . . . ,pnq. S “ PΛPJ is equivalent to Spi “ λipi, i P rns. For any i P rns, the geometric
multiplicity of any λi is equal to its algebraic multiplicity, and EpS,λiq “ Spanptpk|λk “ λi, k P rnsuq. Sφ “ PφpΛqPJ

and Sφpi “ φpλiqpi, i P rns. Similarly, for any i P rns, EpSφ,φpλiqq “ Spanptpk|φpλkq “ φpλiq, k P rnsuq. Note
that tpk|λk “ λi, k P rnsu Ď tpk|φpλkq “ φpλiq, k P rnsu for any i P rns. Hence Spanptpk|λk “ λi, k P rnsuq Ď
Spanptpk|φpλkq “ φpλiq, k P rnsu. As a result, EpS,λiq Ď EpSφ,φpλiqq for any i P rnsq.

If φp¨q is injective, tpk|λk “ λi, k P rnsu “ tpk|φpλkq “ φpλiq, k P rnsu for any i P rns. Thus EpS,λiq “ EpSφ,φpλiqq.

We use σpSq to denote the generalisation of the set of all eigenvalues of S (Slso known as the spectrum of S). Let
S “ PΛ1P

J and B “ QΛ2Q
J. Suppose S ‰ B, to prove Sφ “ FφpSq ‰ Bφ “ FφpBq, we discuss two cases

respectively.

Case 1: σpSq ‰ σpBq

Then σpSφq ‰ σpBφq. The characteristic polynomials of Sφ and Bφ are different. Therefore, Sφ ‰ Bφ.

Case 2: σpSq “ σpBq

Then Λ1 “ Λ2 “ Λ. We prove the equivalent proposition ”Sφ “ Bφ ñ S “ B”. If Sφ “ Bφ, PφpΛqPJ “

QφpΛqQJ. For any λi with geometric multiplicity k, we can find the corresponding eigenvectors p1,p2, . . . ,pk ac-
cording to PφpΛqPJ. Similarly, we can find the corresponding eigenvectors q1, q2, . . . , qk according to QφpΛqQJ.
Note that the eigen-decomposition is unique in terms of eigenspaces. Thus, EpSφ,φpλiqq “ Spanpp1,p2, . . . ,pkq “
Spanpq1, q2, . . . , qkq “ EpBφ,φpλiqq. Therefore, for any λi, EpS,λiq “ EpB,λiq (As given in Proposition C.1). Correspond-
ingly, S “ PΛPJ “ QΛQJ “ B.

Proposition C.1 shows that the eigenspace of Sφ involves the eigenspace of S. Therefore, Sφ is invariant to the choice of
eigenbasis, i.e., Sφ “ PφpΛqPJ “ P 1φpΛqP 1J for any eigenbases P and P 1 of S. Hence, Sφ is unique to S for a given
φp¨q. Consistently, we denote the mapping FφpSq “ FφpPΛPJq “ PφpΛqPJ.

When Fφ is injective, FφpSq and S share the same algebraic multiplicity. Otherwise, FφpSq has a larger algebraic
multiplicity on the corresponding eigenvalues, which may weaken the approximation ability based on the understanding
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of Vandermonde matrix. Also, the injectivity of Fφ serves as a guarantee that the transformation is reversible with no
information loss.

Fφp¨q is also equivariant to graph isomorphism. For any two graphs G1 and G2 with matrix representations S1 and S2 (e.g.,
adjacency matrix, Laplacian matrix, etc.), G1 and G2 are isomorphic if and only if there exists a permutation matrix M such
that MS1M

J “ S2. We denote IpSq “MSMJ. Then

Claim 1. Fφp¨q is equivariant to graph isomorphism, i.e. FφpIpSqq “ IpFφpSqq.

Proof.
FφpIpSqq “ FφpMSMJq

“ FφpMpPΛPJqMJq

“ FφppMP qΛpMP qJq

“ pMP qφpΛqpMP qJ

“MpPφpΛqPJqMJ

“ IpFφpSqq

Hence, for a specific GNN model fGNN, fGNNpFφpIpSqqq “ fGNNpIpFφpSqqq “ fGNNpFφpSqq. The learned representation
is invariant to graph isomorphism (also known as permutation invariance (Zaheer et al., 2017; Murphy et al., 2019)) when
introducing Fφp¨q.

D. Proof of Proposition 4.1
Proof. Let Å “ pD ` ηIqεpA` ηIqpD ` ηIqε. According to Courant-Fischer theorem,

µi “ min
dimpSq“i

max
xPS

xJÅx

xJx
.

Let y “ pD ` ηIqεx. As the change of variables y “ pD ` ηIqεx is non-singular, this is equivalent to

µi “ min
dimpT q“i

max
yPT

yJpA` ηIqy

yJpD ` ηIq´2εy
.

Therefore,

µi “ min
dimpT q“i

max
yPT

yJpA` ηIqy

yJpD ` ηIq´2εy

ě min
dimpT q“i

max
yPT

yJpA` ηIqy

pdmax ` ηq´2εyJy

“ pdmax ` ηq
2ε
`

min
dimpT q“i

max
yPT

yJAy

yJy
` η

˘

“ pλi ` ηqpdmax ` ηq
2ε.

Similarly, we can prove µi ď pλi ` ηqpdmin ` ηq
2ε.

E. Visualizations of the Effects of the Normalization D̃εÃD̃ε on the Spectrum
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Figure 6. We randomly sample 5 graphs in each of three datasets NCI109, ENZYMES and PTC MR respectively. And we use the fixed
ε “ ´0.3 to see the effects of the normalization on all graphs.

F. Visualizations of the Learned Filters
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Figure 7. Visualizations of the learned filters on MolPCBA, NCI1, NCI109, ENZYMES and PTC MR.

G. The Correlation Issue of Deep Models
We test the absolute value of cosine similarities in different layers for a depth=25 model. For each graph, we compute the
mean of all hidden signal pairs. The final visualized results in Fig.8 are the mean of all graphs within a randomly selected
batch. To be consistent with the definition of spectral graph convolution as well as our correlation analysis, the test runs do
not utilize edge features of ZINC.

The results show that on both bases, the cosine of the shared filter case converges to 1, while the correlation-free converges
to 0.8 for D̃

1
2 ÃD̃

1
2 and 0.7 for Ãρ. (We also found that it easily leads to a large cosine similarity on ZINC, which is mainly

because graphs are small such that n ăă d, where n is the number of nodes and d is the number of hidden features.)
These results do show that general GNNs suffer from the correlation issue as depth increases, while our correlation-free
architecture enjoys a relatively stable performance.
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H. More Results
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Figure 9. The curves of 5 runs on ZINC with the number of basis k “ 9, 18, 21, 24.


