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ABSTRACT

A major barrier to deploy current machine learning models lies in their sensitivity
to dataset shifts. To resolve this problem, most existing studies attempted to
transfer stable information to unseen environments. Among these, graph-based
methods causally decomposed the data generating process into stable and mutable
mechanisms. By removing the effect of mutable generation, they identified a
set of stable predictors. However, a key question regarding robustness remains:
which subset of the whole stable information should the model transfer, in order
to achieve optimal generalization ability? To answer this question, we provide a
comprehensive minimax analysis that fully characterizes conditions for a subset to
be optimal. Particularly in general cases, we propose to maximize over mutable
mechanisms (i.e., the source of dataset shifts), which is provable to identify the
worst-case risk over all environments. This ensures us to select the optimal subset
with the minimal worst-case risk. To reduce computational costs, we propose to
search over only equivalent classes in terms of worst-case risk, instead of over all
subsets. In cases when the searching space is still large, we turn this subset selection
problem into a sparse min-max optimization scheme, which enjoys the simplicity
and efficiency of implementation. The utility of our methods is demonstrated on
the diagnosis of Alzheimer’s Disease and gene function prediction.

1 INTRODUCTION

Current machine learning systems, which are commonly deployed based on their in-distribution
performance, often encounter dataset shifts Subbaswamy et al. (2019) such as covariate shift, label
shift, etc., due to changes in the data generating process. When such a shift exists in deployment
environments, the model may give unreliable prediction results, which can cause severe consequences
in safe-critical tasks such as healthcare (Hendrycks et al., 2021). At the heart of this unreliability
issue are stability and robustness aspects, which refer to the insensitivity of prediction behavior and
generalization errors over shifts, respectively.

For example, consider the system deployed to predict the Functional Activities Questionnaire (FAQ)
score, which is commonly adopted Mayo (2016) to measure the severity of Alzheimer’s Disease (AD).
During prediction, the system can only access biomarkers or volumes of brain regions with anonymous
demographic information for privacy consideration. However, the changes in demographics can cause
shifts in covariates. To achieve reliability for the deployed model, it is desired for its prediction to
be stable against demographic changes, and meanwhile to be constantly accurate over all different
populations. To incorporate both aspects, this paper targets at finding the most robust (i.e., min-max
optimal Müller et al. (2020)) predictor, among the set of stable predictors over all distributions.

To achieve this goal, many studies have proposed to learn invariance to transfer to unseen data.
Examples include ICP Peters et al. (2016) and (Arjovsky et al., 2019; Liu et al., 2021; Ahuja
et al., 2021) that assumed the prediction mechanism given causal features or representations to
be invariant; Anchor Regression Rothenhäusler et al. (2021) that explicitly attributed the variation
to exogenous variables. Particularly, the Subbaswamy & Saria (2020); Subbaswamy et al. (2019)
causally decomposed the joint distribution into mutable M and stable S sets, with respectively
changed and unchanged causal mechanisms. They then proposed to intervene on M to obtain a set of
stable predictors. Still, a question regarding robustness remains: which subset of stable information
should the model transfer, in order to be most robust against dataset shifts? The answer given by
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Figure 1: FAQ prediction in Alzheimer’s Disease. (a) Maximal mean square error (MSE) over test
environments; (b) Maximal MSE of predictors that are ranked in ascending order from left to right,
respectively according to the estimated worst-case risk of our method and the validation’s loss of the
graph surgery estimator Subbaswamy et al. (2019). As shown, our method is more reflective of the
maximal MSE than the graph surgery method.

Subbaswamy et al. (2019) was to simply search over all subsets in S and took the one with the
minimal validation loss. However, it lacks theoretical and practical guarantees for the validation’s
loss to reflect the worst-case risk, as shown by Fig. 1 (b).

To give a comprehensive answer, we first provide a graphical condition that is sufficient for the
whole stable set to be optimal. This condition can be easily tested via causal discovery. When
this condition fails, we prove that the worst-case risk can be identified by maximizing over the
generating mechanism of M , i.e., the only source of shift. This conclusion ensures us to select
the optimal subset in a more accurate way. Consider again the example of FAQ prediction in AD
diagnosis, Fig. 1 (b) shows that our method is more reflective of the maximal mean squared error
(MSE) than Subbaswamy et al. (2019), which explains our advantage in predicting FAQ across patient
groups shown in Fig. 1 (a). Besides, to reduce the searching cost, we propose to search over only
equivalent classes in terms of worst-case risk. We however find that in some cases such a search
can still be expensive. To improve efficiency in these cases, we turn this subset selection task into a
sparse min-max optimization scheme, which alternates between a gradient ascent step on the M ’s
generating function and a sparse optimization with Lasso-type penalty to detect the optimal subset.
We demonstrate the utility of our methods on a synthetic dataset and two real-world applications:
Alzheimer’s Disease diagnosis and gene function prediction.

Contributions. We summarize our contributions as follows:

1. We propose to identify the optimal subset of invariance to transfer, guided by a comprehen-
sive min-max analysis. To the best of our knowledge, we are the first to comprehensively
study the problem of which part among all sources of invariance should the model transfer,
in the literature of robust learning.

2. We introduce the concept of "equivalent relation" in terms of worst-case risk, in order to
analyze the computational complexity, and propose a sparse min-max optimization method
as a surrogate scheme to improve efficiency.

3. Our method can significantly outperform others in terms of subset selection and generaliza-
tion robustness, on Alzheimer’s Disease diagnosis and gene function prediction.

2 PRELIMINARIES AND BACKGROUND

Problem Setup & Notations. We consider the supervised regression scenario, where the system
includes a target variable Y ∈ Y , a multivariate predictive variable X := [X1, ..., Xd] ∈ Rd, and
data collected from heterogeneous environments. In practice, different “environments" can refer
to different groups of subjects or different experimental settings. We use {De|e ∈ ETr} to denote
our training data, with De :={(xe

k, y
e
k)}

ne

k=1 ∼i.i.d pe(x, y) being the data from environment e with
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sample size ne. The total number of training samples is n :=
∑

e ne. We say a predictor f : Rd → Y
is stable if it can be learned from the training environments ETr and transferred to a broader family of
environments E without any adjustment. We denote the stable predictor set as FS and the distribution
set as P := {P e(X, Y )}e∈E , with P e(X, Y ) the distribution over Rd × Y in environment e. For a
causal directed acyclic graph (DAG) G, we denote the parents, children, and descendants of the node
set V as Pa(V), Ch(V) and De(V), respectively. For a subset V′ ⊂ V, GV′ denotes the sub-graph
obtained by deleting edges pointing to any member of V′. We denote conditional independence and
d-separation by ⊥ and ⊥G, respectively.

Our goal is to find the most robust predictor f∗ among the stable predictor set FS using data from
ETr. A commonly used way Peters et al. (2016); Ahuja et al. (2021) to measure this robustness is
to investigate the predictor’s worst-case risk, which provides a safeguard for deployment in unseen
environments. That is, we want f∗ to have the following min-max property:

f∗(x) = argmin
f∈FS

max
Pe∈P

EP e [(Y, f(x))2]. (1)

Next, we introduce the causal model, Markovian and faithfulness assumptions that our methods are
based on. These assumptions are commonly made in the literature of causal inference and learning
Pearl (2009); Spirtes et al. (2000); Arjovsky et al. (2019).
Assumption 2.1 (Causal Model). We assume that P e(X, Y ) is entailed by an unknown DAG
G := (V,E) for all e ∈ E , where V := X ∪ Y denotes the node set and E denotes the edge set.
Each variable Vi ∈ V is associated with a structural equation gei : Vi←gei (Pa(Vi), Ui), where Ui

denotes the exogenous variable. Each edge in E represents a direct causal relationship (Pearl, 1995).
Assumption 2.2 (Markovian and Faithfulness). The Markovian means {Ui} are mutually independent.
Together with faithfulness, it means ∀ disjoint sets Vi,Vj ,Vk: Vi ⊥ Vj |Vk ⇐⇒ Vi ⊥G Vj |Vk.

Graph Surgery Estimator. Under assumptions 2.1, 2.2, the graph surgery estimator Subbaswamy
et al. (2019) causally decomposed the joint distribution pe(x, y) into disentangled generating factors:

pe(x, y) = p(y|pa(y))
∏
i∈S

p(xi|pa(xi))
∏
i∈M

pe(xi|pa(xi)), dS := |S|, dM := |M |, (2)

where S,M respectively denote stable and mutable sets such that XS :={Xi|∀e∈E , pe(xi|pa(xi)) ≡
p(xi|pa(xi))} contains variables with stable mechanisms and XM := {Xi|∃ e1 ̸= e2 ∈
E , pe1(xi|pa(xi)) ̸= pe2(xi|pa(xi))} contains those with unstable mechanisms. They then re-
moved the unstable mechanisms by intervening on XM and obtained a set of stable predictors FS :
{fS− := EP [Y |xS− , do(xM )]|S− ⊂ S} that are independent of e. In this regard, identifying f∗ in
Eq. 1 is equivalent to selecting the optimal subset S∗⊂S such that f∗ = fS∗ .

To identify S∗, they shown that the whole set S is optimal under the degeneration condition:
p(y|xS , do(xM )) = p(y|x′) for some X′ ⊂ X. In the general cases, they searched over all
S− ⊂ S and selected the best one with minimal held-out validation loss. However, this analysis
is theoretically incomplete and practically defective: i) it does not provide a procedure to test the
degeneration condition, making it inapplicable; ii) the selected subset may not be min-max optimal,
as the validation loss does not necessarily reflect the worst-case risk (Fig. 1 (b)); iii) the searching
cost is exponentially expensive w.r.t. dS , making it hard to be applied to large-scale scenarios. In the
next section, we will provide a comprehensive min-max analysis to remedy these issues.

3 METHODOLOGY

In this section, we introduce our method to identify S∗. Specifically, in Sec. 3.1, we first introduce a
comprehensive min-max analysis to identify the S∗, followed by the learning method in Sec. 3.2. We
then analyze the computational complexity in Sec. 3.3 via the lens of g-equivalence, and show that
its searching cost can still be exponentially expensive in some cases. To improve efficiency in these
cases, we in Sec. 3.4 introduce a sparse min-max optimization algorithm, which turns the subset
selection problem into a sparse optimization scheme that enjoys model selection consistency.

3.1 IDENTIFICATION WITH MIN-MAX ANALYSIS

In this section, we introduce our method to identify the min-max optimal subset S∗ with theoretical
guarantees. Our analysis is composed of two main results: Thm. 3.1 and Thm. 3.3. First, Thm.
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3.1 provides a testable graphical condition that is sufficient for S∗ = S. When this condition fails,
we show that the whole stable set S is not necessarily optimal via a counter-example. We then in
Thm. 3.3 provide a sufficient and necessary condition for a subset to be optimal in the general cases.

In the following, we first introduce the graphical condition for S∗ = S, which is equivalent to the
degeneration condition in Subbaswamy et al. (2019).
Theorem 3.1 (Graphical Condition for f∗ = fS). Suppose assumptions 2.1, 2.2 hold. Denote
X0

M :=XM ∩Ch(Y ) as mutable variables in Y ’s children, and K := De(X0
M )\X0

M as descendants
of X0

M . Then, p(y|xS , do(xM )) can degenerate to conditional distribution if and only if Y does not
point to any member of K. Further, under either of the two conditions, we have S∗ = S.
Example 1. To illustrate, consider the example shown in Fig. 2, where the graphical condition holds
when the dashed arrow from Y → K does not exist. To see its equivalence to the degeneration
condition, we can set K as stable variables. When Y ̸→ K, the path from Y to K can be blocked by
X0

M . We then have Y ⊥G
X0

M

K|X0
M and thus p(y|k, do(x0

M )) = p(y) according to the inference

rules in Pearl (2009). While when such a dashed arrow of Y → K holds, the K becomes a collider
on the path between Y and X0

M , making it incapable to remove "do" in p(y|k, do(x0
M )).

𝑌 𝐗!" 𝐊

Figure 2: Illustration of Thm. 3.1.

Compared to the degeneration condition, our graphical condi-
tion is more intuitive and can be easily tested via causal discov-
ery, as guaranteed by the following proposition.
Proposition 3.2. Under assumptions 2.1, 2.2, we have i) K is
identifiable, and ii) Y → K is testable from joint distribution
over training environments.

Thm. 3.1 also reminds us that the sufficient condition for S∗ =
S may not always hold. Indeed, we provide a counter-example
in Sect. B.3 in the appendix showing that the whole stable set
has a larger worst-case risk than some subsets.

To identify S∗ when the graphical condition fails, we turn to estimate the expected worst-case risk
of each subset S− ⊂ S from {De}e∈ETr . By noticing that the variation of unstable mechanisms in
XM is the only source of shifts in P e(X, Y ), we propose to parameterize these mechanisms and let
them vary arbitrarily, in order to explore the behavior of the worst-case environment. Specifically, we
consider a distribution family {PJ}J for any J : Pa(XM ) → XM and PJ :=P (Y,XS |do(XM =
J(Pa(XM ))). By maximizing the population risk of over J for each subset, we can obtain the
worst-case risk of this subset, as shown in Thm. 3.3.
Theorem 3.3 (Min-max Property). Denote h∗(S−) := maxJ EPJ

[(Y −fS−(x))
2] as the maximal

expected risk in PJ for subset S−. Then, we have h∗(S−) = maxP e∈P EP e [
(
Y − fS−(x)

)2
]. In

this regard, the optimal subset S∗ can be attained via S∗ := argminS−⊂S h∗(S−).

This theorem informs us to optimize EPJ
[(Y −fS−(x))

2] over J to obtain h∗ for S−, as it equals the
worst-case risk of using subset S−. With this theorem, it is sufficient to compare h∗ of each subset to
identify the optimal one. The following proposition ensures that the optimization is tractable, as each
component, i.e., Pa(XM ), PJ , fS− used in optimization is identifiable.
Proposition 3.4. Under assumptions 2.1, 2.2, the Pa(XM ), PJ , and fS− are identifiable.

3.2 LEARNING METHOD

According to the last section, we have S∗ = S if Y ̸→ K. Otherwise, we can simply search over all
subsets of S and compare their h∗ to identify the optimal one, as similarly adopted in Subbaswamy
et al. (2019). However, this exhaustive search can be redundant, as some subsets are equivalent in
terms of prediction. Formally speaking, we introduce g-equivalence, i.e., ∼G, as follows:
Definition 3.5 (g-equivalence). For two subsets Si, Sj , we say Si ∼G Sj if ∃Sij ⊆ Si ∩Sj such that
Y ⊥GXM

(XSi
∪XSj

\XSij
)|XSij

,XM . We call the elements of the quotient space Pow(S)/∼G

as g-equivalent classes, and denote NG := |Pow(S)/∼G | as the number of equivalent classes.

Under assumption 2.2, it is easy to see that if Si ∼G Sj , then we have P (Y |XSi
, do(XM )) =

P (Y |XSj , do(XM )) and thus Si, Sj have the same efficacy of robustness. In this regard, it suffices
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to search over Pow(S)/∼G to identify the optimal subset, rather than exhaustively searching the
Pow(S). To enable this searching, we provide a recovering algorithm that is provable to recover all
g-equivalent classes. For the reason of coherence and space-saving, we leave this algorithm and its
analysis to Sec. C.1 in the appendix. Equipped with Pow(S)/∼G, we are now ready to introduce
our algorithm to identify S∗.

Algorithm 1 Identification of the min-max optimal subset S∗ and predictor f∗.

INPUT: The training data {De|e ∈ ETr}.
1: Causal discovery to obtain the partially directed acylic graph (PDAG).
2: Detect K and whether Y → K.
3: if Y ̸→ K then
4: Set S∗ = S and estimate f∗ = fS . ◁ according to Thm. 3.1
5: else
6: Recover Pow(S)/∼G. ◁ with Alg. 6 in Sec. C.1.
7: Set hmin =∞, S∗ = ∅.
8: for SG ∈ Pow(S)/∼G do
9: Randomly pick a S− ∈ SG, estimate fS− and h∗(S−).

10: if h∗(S−) < hmin then
11: Set hmin = h∗(S−), S∗ = S−, f

∗ = fS− . ◁ according to Thm. 3.3
12: end if
13: end for
14: end if
15: return S∗ and f∗.

As the causal graph is unknown, Alg. 1 involves i) causal discovery to detect K and whether Y → K;
ii) estimation of fS− ; and iii) estimation of h∗(S−). In the following, we roughly introduce the main
ideas of our method and left the details to Sec. C in the appendix.

Causal discovery to detect K and examine whether Y → K. We first detect a partial directed
acyclic graph (PDAG) via the PC algorithm (Spirtes et al., 2000), followed by our method to detect
XM under the assistance of domain index variable E. Specifically, we have Xi ∈ XM iff E → Xi

in the detected PDAG, according to Huang et al. (2020). In a similar way, we can identify Pa(Xi),
Ch(Xi) for i ∈ M , which is sufficient to detect X0

M := XM ∩ Ch(Y ). Applying this method
iteratively, we can detect De(XM ) and Pa(Xi) for Xi ∈ De(XM ), which is sufficient to identify
K := De(X0

M ) \X0
M and have Y → K iff ∃Xi ∈ K such that Y ∈ Pa(Xi).

Estimate fS− . We adopt soft-intervention Eberhardt & Scheines (2007) to replace P e(XM |PA(XM ))
with P (XM ) and define P̄ (X, Y ) := P (Y |Pa(Y ))Πi∈S P (Xi|Pa(Xi))P (XM ). Then we have
fS−(x) = EP̄ [Y |xS− ,xM ]. Here we set p(xM ) :=

∑
e∈ETr

(
pe∑

e∈ETr
pe

)
pe(xM ), with pe ≈ ne/n.

To generate data from P̄ , we first permute XM in a sample-wise manner to generate data from
P (XM ). Then, we recursively regenerate data for each variable in De(XM ) from its parents in
GXM

, by estimating structural equations. This is tractable since De(XM ) and the parent nodes for
each variable in De(XM ) are identifiable, as mentioned earlier.

Estimate h∗(S−). We first learn h(S−, J) := EPJ
[(Y −fS−(x))

2]. As fS− can be estimated, we
only need to obtain data from PJ . As Pa(XM ) is identifiable, we iteratively regenerate data for XM

from J(Pa(XM )) and also for Xi ∈ Pa(XM ) from its parents, in order to obtain samples from pJ .
Then we maximize h(S−, J) over J to obtain h∗(S−).

3.3 COMPLEXITY ANALYSIS

In this section, we discuss the complexity of Alg. 1. Benefit from the testable condition in Thm. 3.1,
our algorithm enjoys a constant cost when Y does not point to any member of K. This situation
happens when the target variable of interest represents the effect of the predictive covariates, e.g., the
number of bike riding is decided by temperature, weather, etc.

When Y does point to K, e.g., Y represents the disease and K represents its symptoms or biomarkers,
Alg. 1 needs to search among g-equivalent classes and the complexity is O(NG). We will give some
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(a) (c)
𝑌 𝑌

(b)
𝑌

Figure 3: Examples of GXM
: (a) chain (b) skip-chain (c) knot.

examples to show that NG can be polynomial w.r.t. dS in some cases while can also exponentially
increase w.r.t. dS , depending on the number of edges in the graph. Before this, we first show
(Lemma. D.1 in appendix) that NG will not decrease (increase) if we add (delete) edges to (from) G.
Claim 3.6. For chain, we have NG = O(dS); for the skip-chain, we have NG = O(d2kS ), where k is
the number of added edges; for the knot graph, we have NG = O(cdS ) for some 1 < c < 2.

We first consider the chain graph, i.e., Y → XS,(1) → ... → XS,(dS) (where (1), ..., (dS) is a
permutation of 1, ..., dS according to the generating order in the chain) in Fig. 3 (a), in which we find
NG is polynomial as shown in Claim 3.6. This is simply because blocking XS,(i) will d-separate Y
and XS,(j) for any j > i, making {XS,(i)} g-equivalent to {{XS,(i), XS,(j1), ..., XS,(jk)} : i < j1 ≤
... ≤ jk for any k}. Next, we consider two cases of adding k edges to the chain: i) the skip-chain
graph (Fig. 3 (b)) where k does not increasing with dS . In this case, NG is still polynomial since the
number of paths between Y and any XS,(i) can be bounded; ii) the knot graph (Fig. 3 (c)) where k
increases with dS , in this case, NG is shown to exponentially increase w.r.t. dS , because the number
of paths between Y and XS,(i) can be exponentially large. Proof of Claim 3.6 and more examples are
left to Sec. C.1 in the appendix.

3.4 SPARSE MIN-MAX OPTIMIZATION

According to the previous discussion, the overall searching complexity can still be exponentially
large. To improve efficiency, we provide an alternative method that turns the subset selection problem
of Eq. 1 into the following sparse min-max optimization scheme:

min
α,β

max
θ

Ep̄(x,y|xM=Jθ(pa(xM )))

[(
y − fα(xSβ,xM )

)2
]
+ λ

∥∥β∥∥
1
, (3)

where we introduce the coefficient vector β and implement a lasso-type penalty on β with hyperparam-
eter λ > 0. This penalty regularizes β to be sparse and its support set, i.e., supp(β) := {i : β(i) ̸= 0}
is used to select the optimal subset. To optimize, we alternatively take a gradient ascent with respect to
θ, followed by the minimization over (α, β). Note that under irrepresentable and restricted convexity
conditions Zhao & Yu (2006), we have model selection consistency, i.e., the true support set of
β can be recovered and ℓ2-consistency properties when dS is fixed, according to Rejchel (2016).
When dS increases with n, under restricted convexity conditions, we showed that this lasso-type
estimator that belongs to a broader family of M -estimators Negahban et al. (2012), are ℓ2-consistent.
To further reduce the complexity in the minimization step, we propose to implement Linearized
Bregman Iteration (LBI) via differential inclusion, which enjoys the efficiency of generating a whole
regularization solution path. In each iteration, the original minimization step can be replaced by a
gradient descent step followed by a soft thresholding step. Details are left to Sec. E in the appendix.

4 EXPERIMENT

In this section, we evaluate our method on synthetic data and two real-world applications: diagnosis
of Alzheimer’s Disease which is one of the most common types of dementia among elder people, and
gene function prediction that can potentially help understand the human-disease progress Muñoz-
Fuentes et al. (2018).

Compared Baselines. We compare our methods with the following baselines: i) ICP (Peters et al.,
2016; Bühlmann, 2020) that assumed invariance of P (Y |Pa(Y )); ii) IC (Rojas-Carulla et al., 2018)
that extended the above assumption to features beyond Pa(Y ); iii) Anchor regression (Rothenhäusler
et al., 2021) that interpolated between ordinary least square (LS) and causal minimax LS, and
constrained the residue in the anchor subspace to be small; iv) IRM (Arjovsky et al., 2019) that
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learned an invariant representation to transfer; v) HRM (Liu et al., 2021) that extended IRM to
the case with unknown domain labels, by exploring the heterogeneity in data via clustering; vi)
IB-IRM (Ahuja et al., 2021) that leveraged the information bottleneck regularization to supplement
the invariance principle in IRM; and vii) Graph Surgery estimator Subbaswamy et al. (2019) that
used validation’s loss to identify the optimal subset.

Implementation Details. We leave implementation details to Sec. F in the appendix.

4.1 SIMULATION STUDY

𝑋! 𝑋" 𝑌

𝑋# 𝑋$

Figure 4: DAG with
XM := {X4}. Dotted
arrow exists in setting-2,3.

Data Generation. We follow Fig. 4 to generate XS := {X1, X2, X3}
and XM := {X4} via the following structural equations: x3 ← u3

with u3 ∼ N(−2, 1); x2 ← g2(x3) + u2 with u2 ∼ N(0, 1); y ←
gy(x2) + uy with uy ∼ N(0, 1); x4 ← βeg4(y) + u4 with βe = e− 5
varied in different domains, u4 ∼ N(0, 1); x1 ← g1(x4, y) + u1

with u1 ∼ N(0, 0.2). We consider three settings: i) g2(x3) = 0.5x3,
gy(x2)=−1.5x2, g4(y)=y, and g1(x4, y)=x4; ii) g1(·) is changed to
g1(x4, y)=x4 + 2.5y; iii) g2(x3)=10sinc(x3), gy(x2)=2tanh(x2),
g4(y) = −0.25y3 + y, and g1(x4, y) = Sigmoid(x4 + y). For each
setting, we generate 10 environments with e = 1, ..., 10, where ne =
200 for each environment. To remove the effect of randomness, we
repeat 10 times, and each time we randomly select five domains for
training and the rest for testing.

Causal Discovery and Complexity Analysis. We use F1 score, precision, and recall in terms of
directed edges, to assess our causal discovery algorithm. We repeat 10 times and the average results
are F1 = 0.99, precision = 1.00, and recall = 0.98, which suggests the validity of our algorithm.
Validations on larger graphs are left in the appendix. As for complexity, in setting-1, the condition in
Thm. 3.1 holds and we expect {X1, X2, X3} to be the optimal set. In setting-2,3, the condition is
violated and we need to compare h∗ of each equivalent class to find the optimal subset. There are
seven equivalent classes, as the only equivalent relation is {X2} ∼G {X2, X3}.

Table 1: Mean Squared Error (MSE) on simulation data.

Predictor Setting-1 Setting-2 Setting-3

h∗(S−) max MSE h∗(S−) max MSE h∗(S−) max MSE

Vanilla1 - 1.90±0.58 - .07±.00 - 1.72±0.72

∅ 5.24±2.83 4.61±.25 5.97±2.73 4.12±.25 4.27±.51 3.75±.18

{X1} 5.20±2.76 4.61±.25 .0003±.00 .0075±.00 6.84±.52 4.42±1.15

{X2} 1.08±.03 1.21±.06 1.37±.57 1.13±.07 1.16±.18 1.10±.05

{X3} 3.56±.66 4.01±.13 5.26±2.51 3.51±.28 3.10±.30 3.11±.11

{X1,2} 1.08±.03 1.21±.06 .06±.00 .07±.00 1.51±1.02 1.20±.13

{X1,3} 3.55±.65 4.00±.13 .01±.00 .02±.00 6.86±.55 4.39±1.15

{X2,3} 1.06±.03 1.19±.06 1.23±.26 1.14±.08 1.17±.20 1.10±.05

{X1,2,3} 1.06±.03 1.18±.06 .06±.00 .07±.00 1.17±.01 1.21±.13

1 Results of other baselines are left in the appendix.

Results Analysis. In Tab. 1, we report the estimated h∗ and the maximal mean squared error (MSE)
over test sets of each subset S− and the vanilla regression method. As shown, in setting-1, the
whole stable set enjoys the minimal max MSE, which agrees with Thm. 3.1; while in setting-2,3, the
subset ({X1} in setting-2, {X2} in setting-3) identified by minimal h∗ has minimal max MSE. This
suggests the effectiveness of our method in finding the optimal subset. Besides, we observe that h∗

can estimate the maximal MSE well in most cases, e.g., h∗({X1, X2}) = 0.06 vs 0.07 of max MSE
in setting-2, h∗({X3}) = 3.10 vs 3.11 of max MSE in setting-3. In addition, equivalent subsets have
similar performance, e.g., max MSE of {X2} and {X2, X3} in setting-3 are both 1.10, which verifies
the searching can be conducted only over equivalent space.

4.2 REAL-WORLD APPLICATIONS

Datasets. We consider the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Petersen et al. (2010)
dataset for Alzheimer’s Disease diagnosis, and the International Mouse Phenotyping Consortium
(IMPC) CRM workshop (2016) dataset for gene function prediction.
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• ADNI. The dataset includes n = 757 patients enrolled in ADNI-GO/1/2 periods. We apply the
Automatic Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002) and region index Young et al.
(2018) to partition the whole brain into 9 brain regions: frontal lobe (FL), medial temporal lobe
(MTL), parietal lobe (PL), occipital lobe (OL), cingulum (CIN), insula (INS), amygdala (AMY),
hippocampus (HP), and pallidum (PL). In addition to brain region volumes, we also include
gender (GED) and genetic information (number of ApoE-4 alleles (ApE)). With these covariates,
we predict the Functional Activities Questionnaire (FAQ) score Y for each patient. We split the
dataset into seven environments according to age (age <60, 60-65, 65-70, 70-75, 75-80, 80-85,
>85), which respectively contains ne = 27, 59, 90, 240, 182, 117, 42 samples. We repeat 15 times,
with each time four domains are randomly selected for training and the rest for testing.

• IMPC. The dataset contains the hematology phenotype of both wild-type and mutant mice with 13
kinds of single-gene knockout. To predict the function of the target gene, we knock it out and assess
the cell counts of monocyte (MON), with cell counts of neutrophil (NEU), lymphocyte (LYM),
eosinophil (EO), basophil (BA), and large unstained cell (LUC) as covariates. Each environment
corresponds to a kind of gene-knockout. We repeat 45 times: each time five randomly picked gene
knockouts and the wild-type are selected as training sets and the rest eight kinds are left for testing.

(a) (b)

Figure 5: Learned causal graphs on (a) ADNI and (b) IMPC.↔ to denote undirected edges.

Causal Discovery. We implement our causal discovery algorithm in Sec. 3.2 to learn PDAG
respectively shown in Fig. 5 (a,b). For ADNI, Fig. 5 (a) shows that the affection of AD, measured
by the FAQ score, firstly shows in the medial temporal lobe (MTL) and the hippocampus (HP),
then propagates to other brain regions, which echos existing studies that MTL and HP are early
degenerated regions (Barnes et al., 2009; Duara et al., 2008). Besides, we observe that the frontal lobe
(FL), pallidum (PAL), and hippocampus (HP) are mutable regions, which agrees with heterogeneity
across different age groups found in existing studies Cavedo et al. (2014); Fiford et al. (2018). For
IMPC, Fig. 5 (b) shows that the monocyte (MON) affects the number of lymphocytes (LYM) and
large unstained cells (LUC), which reflects the activation mechanisms of LYM (Carr et al., 1994)
and LUC (Lee et al., 2021). It also plays a role in the activation of basophil (BA) through the causal
chain MON→ LYM→ BA, as also found in existing study (Goetzl et al., 1984).

Complexity Analysis. On both ADNI and IMPC, the condition in Thm. 3.1 is violated, as Y (FAQ
on ADNI, MON on IMPC) points to K (MTL on ADNI, LYM on IMPC). So, we need to search over
g-equivalent classes and compare their h∗, as suggested by Thm. 3.3. The numbers of g-equivalent
classes are 98 (out of the 28 = 256 subsets) on ADNI and 12 (out of the 24 = 16 subsets) on IMPC.

Results Analysis. Fig. 1 (a) and Fig. 6 (a) report maximal MSE of our method and baselines.
As we can see, our methods significantly outperform the others (7.8% on ADNI, 9.7% on IMPC).
Besides, our sparse optimization is comparable to the searching method in Alg. 1. These results
demonstrate the utility of Thm. 3.3 in identifying the optimal subset, as well as the effectiveness of

8
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(a) (b)

Figure 6: Results on IMPC. (a) Maximal MSE over test environments. (b) Maximal MSE of predictors
that are ranked in ascending order from left to right, respectively according to h∗ of our method and
the validation’s loss of the graph surgery estimator.

sparse optimization when the searching cost is expensive. As for advantages over the graph surgery
estimator, Fig. 1 (b) and Fig. 6 (b) show that our h∗ well reflects the worst-case risk, as it increases
with the worst-case risk; while there is no such property for the validation’s loss in the surgery
estimator. Particularly, the top subsets ranked by our h∗ also have the minimal max MSE; while the
one selected fails to identify S∗. The improvements over ICP, IC, IRM, and their extensions are due
to our utilization of stable information beyond causal features/representations. The advantage over
Anchor regression may be due to the relaxation of the linearity assumption.

In addition, Fig. 7 shows that subsets in the same equivalent class have similar maximal MSE, which
further shows the validity of searching over only g-equivalent classes in Alg. 1.

(a) (b)

Figure 7: Max MSE of predictors in the same equivalent class on (a) ADNI and (b) IMPC datasets.

5 CONCLUSION

In this paper, we propose a minimax learning approach to identify the optimal subset of invariance to
transfer, in order to achieve robustness against dataset shift. Among all subsets of stable information,
we provide a sufficient and necessary condition for a subset to be min-max optimal. We analyze
the searching complexity by introducing the notion of graphical equivalence and propose a sparse
min-max optimization algorithm when the searching cost is expensive. The subset identified by
our method outperforms others in terms of robustness, on Alzheimer’s Disease diagnosis and gene
function prediction tasks. In the future, we are interested to study the scenarios where the DAG is
also allowed to vary across domains, which may happen when the number of environments is large.
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REPRODUCIBILITY STATEMENT

Data, code, and instructions to reproduce the main experimental results are provided. Specifically,
the ADNI data set is available at http://adni.loni.ucla.edu), the IMPC data set is ava-
iable at http://www.crm.umontreal.ca/2016/Genetics16/competition_e.php,
the codes are provided in the supplementary materials, the implementation instructions are provided
in Sect. F in the appendix.
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A RELATED WORKS

Causal learning for domain generalization. There have been emerging works that consider the
domain generalization problem from a causal perspective. One line of work Arjovsky et al. (2019);
Xie et al. (2020); Müller et al. (2020) promoted invariance as a key surrogate feature of causation
where the causal graph is more of a motivation. Another line of work Ilse et al. (2020); Lu et al. (2021);
Mahajan et al. (2020); Mitrovic et al. (2021) considered domain generalization for unstructured data
using specifically designed causal graphs to incorporate priors of the distribution shift, in which
the causal features are modeled as latent variables to be inferred for robust prediction. The works
most relevant to us pursued robust optimization by making invariance assumptions regarding causal
mechanisms Subbaswamy et al. (2019); Bühlmann (2020); Peters et al. (2016); Subbaswamy & Saria
(2020). Specifically, the Peters et al. (2016) assumed the generation of Y from its parents is invariant;
hence they only utilize Y ’s parents for transfer. The Subbaswamy et al. (2019); Subbaswamy & Saria
(2020) considered a selection diagram framework, in which mutable variables are children of the
selection variable. They then remove the unstable mechanism by intervening of XM and obtain a
set of stable covariates S. To obtain the optimal subset, they simply search over all subsets in S and
took the one with the minimal validation loss. However, their method is theoretically incomplete
and practically defective, as the selected subset may not be min-max optimal and the searching cost
is expensive in large-scale graphs. In contrast, we provide a comprehensive min-max analysis to
guarantee the identification of the optimal subset. For practical employment, we analyze the searching
complexity via the lens of g-equivalence. For those graph with expensive searching cost, we provide
a sparse min-max optimization scheme that can larger improve the efficiency.

Optimization-based domain generalization. There are emerging works that view the domain
generalization problem as an optimization problem. These methods directly formulate the objective
of out-of-distribution generalization and conduct optimization for min-max optimum. For example,
Distributional Robust Optimization (DRO) Duchi & Namkoong (2021) constrained the distance
between test and training distribution with f-divergence or Wasserstein distance and optimized over
the min-max objective. One of its popular extensions, GroupDRO Sagawa et al. (2019), provided
extra regularization (e.g., weight-decay or early stop) and allowed DRO models to achieve better
performances in large neural networks.

However, these methods heavily rely on data-driven optimization and lack analysis of the source
of distributional shifts. For this reason, they have to constrain the distributional shifts to a limited
extent, so as to achieve optimization convenience. Such a limitation affects their ability to generalize
to a broader distribution family, thus limiting their applications in the real-world. In contrast, we
consider domain generalization from a causal perspective. Benefiting from the causal framework
for distributional shifts, our method can identify the reasons behind distributional shifts and achieve
min-max optimum even when the distribution can vary arbitrarily.

Causal discovery in heterogeneous data. Our work also benefits from the recent progress in causal
discovery Mooij et al. (2020); Huang et al. (2020); Huang & Zhang (2019); Ghassami et al. (2018), a
field that focuses on identifying the causal relations from data. Our work shares a similar framework
with Huang et al. (2020) in formulating the distribution shift. However, they focused on recovering
the full causal graph to study relations among variables, we provide a local discovery procedure,
which aids the analysis of min-max properties and identification of robust predictors.

B APPENDIX FOR SEC. 3.1: IDENTIFICATION WITH MIN-MAX PROPERTY

B.1 PROOF FOR THM. 3.1: GRAPHICAL CRITERION FOR f∗ = fS

Theorem 3.1 (Graphical Criterion for f∗ = fS). Suppose assumptions 2.1,2.2 hold. Denote
X0

M :=XM ∩Ch(Y ) as mutable variables in Y ’s children, and K := De(X0
M )\X0

M as descendants
of X0

M . Then, p(y|xS , do(xM )) can degenerate to conditional distribution if and only if Y does not
point to any member of K. Further, under either of the two conditions, we have f∗ = fS .

Proof. Denote the causal DAG as G, the intervened graph that removes all arrowheads into V as GV.
Define X1

M := XM\X0
M ,K2 := (X\X0

M )\De(X0
M ).

We firstly prove the equivalence of the following conditions (1), (2), and (3):
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1. Y ⊥G
X0

M

K|K2;

2. Y and K are not adjacent in G 1;

3. p(y|xS , do(xM )) can degenerate to conditional distribution.

(1)→(2) If Y and K are adjacent, they are also adjacent in G
X0

M

because K∩X0
M = ∅, so Y and

K can not be d-separated by any variable in G
X0

M

, which contradicts with (1).

(2)→(3) Define

I := p(y|k,k2, do(x
0
M )) =

p(y|pa(y))
∏

Xj∈K p(xj |pa(xj))
∏

Xi∈K2
p(xi|pa(xi))∫

p(y|pa(y))
∏

Xj∈K p(xj |pa(xj))
∏

Xi∈K2
p(xi|pa(xi))dy

.

Since PA(Y ) ∩ {X0
M ,K} = ∅ and ∀Xi ∈ K2,PA(Xi) ∩ {X0

M ,K} = ∅, we have:

I =
p(y,k2)

∏
Xj∈K p(xj |pa(xj))∫

p(y,k2)
∏

Xj∈K p(xj |pa(xj)dy
.

If Y and K are not adjacent, then ∀Xj ∈ K, Y /∈ PA(Xj). Therefore, I = p(y,k2)∫
p(y,k2)dy

= p(y|k2).

(3)→(1) We will prove by contradiction. Specifically, we will show that if Y ̸⊥G
X0

M

K|K2, i.e.,

(1) does not hold, then pe(y|xS , do(xM )) can not degenerate to any conditional distribution, i.e., (3)
does not hold.

We firstly show Y ̸⊥G
X0

M

K|K2 ⇒ pe(y|xS , do(xM )) ̸= pe(y|k2, do(x
0
M )), then show

pe(y|xS , do(xM )) ̸= pe(y|k2, do(x
0
M )) ⇒ pe(y|xS , do(xM )) can not degenerate to any condi-

tional distribution.

Since Y /∈ PA(X1
M ), we have:

pe(y|xS ,x
1
M , do(x0

M )) =
pe(y,xS ,x

1
M |do(x0

M ))∫
pe(y,xS ,x1

M |do(x0
M ))dy

=
pe(y|pa(y))

∏
i∈S pe(xi|pa(xi))

∏
Xi∈X1

M
pe(xi|pa(xi))∫

pe(y|pa(y))
∏

i∈S pe(xi|pa(xi))
∏

Xi∈X1
M
pe(xi|pa(xi))dy

=
pe(y|pa(y))

∏
i∈S pe(xi|pa(xi))∫

pe(y|pa(y))
∏

i∈S pe(xi|pa(xi))dy

= pe(y|xS , do(xM ))

Since K ∪K2 = XS ∪X1
M , we have pe(y|xS , do(xM )) = pe(y|k,k2, do(x

0
M )). Thus, we can

prove: Y ̸⊥G
X0

M

K|K2 ⇒ pe(y|xS , do(xM )) = pe(y|k,k2, do(x
0
M )) ̸= pe(y|k2, do(x

0
M )).

Next, we prove pe(y|xS , do(xM )) ̸= pe(y|k2, do(x
0
M )) ⇒ pe(y|xS , do(xM )) can not degenerate

to any conditional distribution.

Suppose pe(y|xS , do(xM )) = pe(y|k′,k2, do(x
0
M )). We will show if k′ ̸= ∅, then the do-

operator can not be removed with either Rule 2 (action to observation) or Rule 3 (deletion of
action). To express do(x0

M ) explicitly, denote X0
M = {X0

M,i}ri=1 and pe(y|k′,k2, do(x
0
M )) =

pe(y|k′,k2, do(x
0
M,1), . . . , do(x

0
M,r)).

• Rule 2 can not remove the do-operator of any X0
M,i ∈ X0

M .

1Note the edge between Y and X ∈ K can only be Y → X .
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Recall Rule 2 states that “p(y|do(x), do(z),w) = p(y|do(x), z,w) if Y ⊥GXZ
Z|X,W for any

disjoint subsets of variables X,Y,Z, and W ".

If Rule 2 can remove the do-operator of X0
M,i ∈ X0

M , then

Y ⊥G
X0

M
\{X0

M,i}X0
M,i

X0
M,i|K′,K2,X

0
M\

{
X0

M,i

}
. (4)

As we have Z =
{
X0

M,i

}
,X = X0

M\X0
M,i,W = K′ ∪K2 in the notations of Rule 2.

In the following, we explain why Eq. 4 can not be true. Note X0
M,i ∈ Ch(Y ) and the direct edge

Y → X0
M,i is reserved in the intervend graph G

X0
M\{X0

M,i}X0
M,i

, which means that Y and X0
M,i can

not be d-separated by any set of variables in the intervened graph. Thus, Eq. 4 can not be true.

• Rule 3 can not remove the do-operator of all X0
M,i ∈ X0

M .

Recall Rule 3 states that “p(y|do(x), do(z),w) = p(y|do(x),w) if Y ⊥G
X,Z(W)

Z|X,W2for any
disjoint subsets of variables X,Y,Z, and W ". If Rule 3 can remove the do-operator of X0

M , then:

Y ⊥G
X0

M (K′∪K2)
X0

M |K′ ∪K2 (5)

because the notations in Rule 3 mean X = ∅,Z = X0
M ,W = K′ ∪K2. In the following, we will

show that when K′ ̸= ∅, Eq. 5 can not hold. When K′ ̸= ∅, note by definition K′ ⊂ De
(
X0

M

)
,

so An (K′) ∩ X0
M ̸= ∅. Therefore, X0

M (K′ ∪K2) = X0
M\ {An(K′) ∪K2} ≠ X0

M . That is
X0

M\X0
M (K′ ∪K2) ̸= ∅. Suppose X0

M,i ∈ X0
M\X0

M (K′ ∪K2), then the edge Y → X0
M,i is in

the intervened graph G
X0

M (K′∪K2)
, so Y and X0

M,i can not be d-separated by any variable set. So
Eq. 5 does not hold.

In summary, we have proved that when K′ ̸= ∅, the do-operator on X0
M can not be removed entirely

by Rule 2 and 3 .

Besides, according to Corollary 3.4.2 in Pearl (2009), the inference rules are complete in the sense
that if the intervention probability (with do ) can be reduced to a probability expression (without do
), the "reduction" can be realized by a sequence of transformations, each conforming to one of the
Inference Rules 1-3. Note that only Rule 2 and 3 are related to the disappearance of do-operator, so it
is sufficient to prove that Rule 2 and 3 can not remove the do-operator on X0

M .

We then prove under either of conditions (1), (2), or (3), f∗ = fS .

Given any one of the three conditions (1), (2), or (3), f∗(x) = EP e [Y |xS , do(xM )] satisfies the
following min-max property:

f∗(x) = argminf :X 7→Y maxP∈P EP [Y − f(x)]2.

Under any one of the conditions (1)-(3), we have pe(y|xS , do(xM )) = pe(y|k2) for P e ∈ P .

For P e ∈ P , let pe
(
x0
M

)
=

∑
Xi∈V \X0

M
pe(v) be the marginal distribution of X0

M . Define P̃ e as:

p̃e(v) = p (y|pa(y))
∏

Xi∈K

pe (xi|pa(xi))
∏

Xi∈K2

pe (xi|pa(xi)) p
e
(
x0
M

)
,

by replacing the term
∏

Xi∈X0
M
p (xi|pa(xi)) in pe(v) with pe

(
x0
M

)
.

(i) By the definition of P, P̃ e ∈ P and p̃e(y|x)= p̃e(y|xS ,x
1
M ,x0

M )= p̃e(y|xS ,x
1
M , do(x0

M ))=
p̃e(y|k2)

(ii) In the following, we will show p̃e (y,k2) = pe (y,k2).

2Z(W) is the set of Z-nodes that are not ancestors of any W -node in GX.
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First, note that K ⊂ De
(
X0

M

)
and X0

M ⊂ Ch(Y ), we have K ∪X0
M ⊂ De(Y ). Thus, PA(Y ) ∩{

K ∪X0
M

}
= ∅ because otherwise there would be a cycle.

Second, PA(K2) ∩
{
K ∪X0

M

}
= ∅ because if there exist Xi ∈ K ∪X0

M and also Xi ∈ PA(K2),
then K2 ∩De

(
X0

M

)
̸= ∅, which contradicts with the definition that K2 :=

(
X\X0

M

)
\De

(
X0

M

)
.

In summary, we have PA(K2 ∪ Y ) ∩
{
K ∪X0

M

}
= ∅, which leads to

pe (k2, y) =

∫
p(y|pa(y))ΠXi∈K2

pe (xi|pa(xi))ΠXi∈Kpe (xi|pa(xi))ΠXi∈X0
M
pe (xi|pa(xi)) dx

0
Mdk

= p(y|pa(y))ΠXi∈K2p
e (xi|pa(xi))

∫
ΠXi∈Kpe (xi|pa(xi))ΠXi∈X0

M
pe (xi|pa(xi)) dx

0
Mdk

= p(y|pa(y))ΠXi∈K2
pe (xi|pa(xi))

and

p̃e (k2, y) =

∫
p(y|pa(y))ΠXi∈K2p

e (xi|pa(xi))ΠXi∈Kpe (xi|pa(xi)) p
e
(
x0
M

)
dx0

Mdk

= p(y|pa(y))ΠXi∈K2
pe (xi|pa(xi))

∫
ΠXi∈Kpe (xi|pa(xi)) p

e
(
x0
M

)
dx0

Mdk

= p(y|pa(y))ΠXi∈K2p
e (xi|pa(xi))

Therefore, we have p̃e(k2, y) = pe(k2, y).

Note that K2 ⊂ X, we have

VarP e (Y |K2) = EP e [VarP e(Y |X)|K2] + VarP e [EP e(Y |X)|K2] ,

therefore

EP e [VarPe (Y |K2)] = EPe [VarPe(Y |X)] + EPe [VarPe [E(Y |X)|K2]] ,

and hence EPe [VarPe (Y |K2)] ≥ EP e [VarPe(Y |X)] .

(iii) Because p̃e (k2, y) = pe (k2, y) ,EP̃ e

[
VarP̃ e (Y |K2)

]
= EP e [VarP e (Y |K2)], we

have EP̃ e

[
VarP̃ e (Y |K2)

]
≥ EP e [VarP e(Y |X)] Besides, since p̃e(y|x) = p̃e (y|k2),

EP̃ e

[
VarP̃ e(Y |X)

]
= EP̃ e

[
VarP̃ e (Y |K2)

]
≥ EP e [VarP e(Y |X)] .

(iv) In summary, for each P e ∈ P , we may construct P̃ e such that

EP̃ e

[
Var P̃ e(Y |X)

]
≥ EPe [VarP e(Y |X)] .

Denote P̃ :=
{
P̃ e|P e ∈ P

}
and P ∗ := argmaxP∈P EP [VarP (Y |X)], then P ∗ ∈ P̃. Besides,

note that for any P̃ e ∈ P̃,EP̃ e [Y |x] = EP̃ e

[
Y |xS ,x

1
M , do

(
x0
M

)]
= EP̃ e [Y |xS , do(xM )], so

f∗(x) = EP∗ [Y |x] = EP∗ [Y |xS , do(xM )]. As EP e [Y |xS , do(xM )] is invariant for all P e ∈ P.
Therefore, we have f∗(x) = EP e [Y |xS , do(xM )].

B.2 PROOF FOR PROP. 3.2: TESTABILITY OF THM. 3.1

Proposition 3.2. Denote X0
M :=XM ∩ Ch(Y ) as mutable variables in Y ’s children, and K :=

De(X0
M )\X0

M as descendants of X0
M . Under assumptions 2.1, 2.2, the K is identifiable; besides,

we can determine whether Y → K from the joint distribution over training domains.

Proof. We firstly show K is identifiable. Since all variables in K are descendants of Y , we have
Y → Xi, Xi ∈ K iff Xi is adjacent to Y in the skeleton of DAG (which is identifiable under
assumption 2.2). Thus, we can determine whether Y → K.
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Algorithm 2 Detection of XM and construct the causal skeleton of G

1. Start with XM =∅. For Vi ∈ V, test if Vi ⊥ E or if there exist a subset Cvi,e ⊆ V such that
Vi ⊥ E|Cvi,e. If Vi ̸⊥ E and there exists no such Cvi,e, then include Vi, XM =XM ∪ Vi.

2. Start with an undirected graph G including edges for any two variables in V and the arrows
E → Vi for Vi ∈ XM . For each pair of {Vi, Vj}. If Vi ⊥ Vj or there exists a subset
Cvi,vj ⊂V such that Vi ⊥ Vj |Cvi,vj , we delete the edge Vi − Vj from G.

Note that K=(X\X0
M ) ∩ De(X0

M )=(X\X0
M ) ∩

{
De(X0

M ) ∪X0
M

}
. So it suffices to prove the

identifiability of X0
M ∪De(X0

M ), where X0
M := XM ∩ Ch(Y ). This can be accomplished by three

steps: (i) identification of XM , (ii) identification of X0
M , and (iii) identification of X0

M ∪De(X0
M ).

The following algorithm shows step (i), which is the same as Huang et al. (2020).

The following Alg. 3 shows the steps (ii) and (iii), which basically relies on the faithful assumption
(conditional independence in probability⇒ d-separation in graph).

Algorithm 3 Detection of X0
M and X0

M ∪De(X0
M )

2.1 Detect X0
M := XM ∩ Ch(Y ):

1: for Xi ∈ XM and adjacent to Y do
2: If Y ̸⊥ E|Cy,e ∪ {Xi}
3: then Xi ∈ XM ∩ Ch(Y )
4: end for

2.2 Detect {Ch(Y ) ∩XM} ∪De(Ch(Y ) ∩XM )

1: Start with A = B=Ch(Y ) ∩XM and visited(Xi) =FALSE
2: while B ̸= ∅ do
3: for Xj ∈ B do
4: for Xi ∈ Adj(Xj) do
5: if Xi ̸∈ XM and Xi ⊥ E|Ce,xi

∪ {Xj} \Dxi,e then
6: A=A ∪ {Xi}
7: if visited(Xi) =FALSE then
8: B = B ∪ {Xi}
9: end if

10: end if
11: if Xi ∈ XM and Xi ̸∈ Adj(Y ) and Xi ⊥ Y |Cxi,y ∪ {Xj} \Dy,xj

then
12: A=A ∪ {Xi}
13: if visited(Xi) =FALSE then
14: B = B ∪ {Xi}
15: end if
16: end if
17: end for
18: Let B = B \ {Xj}
19: end for
20: end while

Explanations for 2.2 :

• Line 1 in 2.2 : The set A is the final output. The set B only plays a part as an instrumental set that
starts with XM ∩Ch(Y ) and ends with ∅. During the process, B stores the nodes in XM ∩Ch(Y )
that has not been searched for the children. Once Xj ∈ B is searched, it is excluded from the set B
(Line 18 ) and the children of Xj are added to B if it has not been visited (Line 8 and 14), which is
essentially a breadth-first-search algorithm.

18



Under review as a conference paper at ICLR 2023

• Line 5 to 10 (the case when Xi ̸∈ XM ): The fact Xi ̸∈ XM means E and Xi are not adjacent.
Besides, note that Xj ∈ XM ∩ Ch(Y ), there is a structure in the form E → · · · → Xj − Xi

where Xi and E are not adjacent. In the notation Xi ⊥ E|Cxi,e ∪ {Xj} \De,xj
, Cxi,e denotes a

separating set such that Xi ⊥ E|Cxi,e and De,xj
denotes the set of variables along the directed

path between E → · · · → Xj . The existence of Cxi,e is guaranteed since Xi and E are not
adjacent, so a separating set has been found when constructing the skeleton. The set De,xj

is also
clear as it is determined in the breadth-first-search process.

• Line 11 to 19 (the case when Xi ∈ XM ): Firstly, we explain why it is unnecessary to consider the
case when Xi ∈ XM and Xi ∈ Adj(Y ). If Xi ∈ PA(Y ), Xi can not be in De(Ch(Y ) ∩XM ) ∪
{Ch(Y ) ∩XM} as it would induce a cycle in this way. If Xi ∈ Ch(Y ), it means Xi ∈ Ch(Y ) ∩
XM and has been identified in 2.1 and included in set A in the beginning.
So the remaining case is when Xi ∈ XM and Xi ̸∈ Adj(Y ). Note in this case Xj ∈ Ch(Y ) or
Xj ∈ De(Y ), there exists a structure Y → · · · → Xj − Xi, which is the same as E → · · · →
Xj −Xi in Line 5 to 10.

B.3 COUNTER EXAMPLE OF f∗ ̸= fS

𝑌 𝑋! 𝑋"
Figure 8: DAG of the counter example.

Consider the DAG in Fig. 8, in which we denote Y,Xs, Xm are binary variables. We will show that
in this scenario, there exists P (Y ), P (Xs|Xm, Y ) such that fS := E[Y |xs, do(xm)] is not min-max
optimal. We show this by proving that:

E [Y − E[Y |xs, do(xm)]]
2
> E [Y − E[Y |do(xm)]]

2
. (6)

Since we have that

E [Y − E[Y |xs, do(xm)]]
2
= E[Y 2] + E

[
E2[Y |xs, do(xm)]

]
− 2E[Y · E[Y |xs, do(xm)]],

and that E [Y − E(Y |do(xm))]
2
= E[Y 2]− E[Y ]2 due to that p(y|do(xm)) = p(y), the Eq. equa-

tion 6 is equivalent to that

E
[
E2[Y |xs, do(xm)]

]
> 2E[Y · E[Y |xs, do(xm)]]− E2[Y ]. (7)

Besides, we have

E
[
E2[Y |xs, do(xm)]

]
=

∑
xs,xm

[[∑
y

p(xs|xm, y)p(xm|y)p(y)

]
· E2[Y |xs, do(xm)]

]
, (8)

E [Y · E[Y |xs, do(xm)]] =
∑

xs,xm

[[∑
y

p(xs|xm, y)p(xm|y)p(y) · y

]
· E[Y |xs, do(xm)]

]
. (9)

Since we have p(y|xs, do(xm)) = p(y)p(xs|xm,y)∑
y p(y)p(xs|xm,y) , we have

E[Y |xs, do(xm)] =
p(y = 1)p(xs|xm, y = 1)∑

y p(y)p(xs|xm, y)
. (10)

Substituting Eq. equation 10 into Eq. equation 8, equation 9, we have
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E
[
E2[Y |Xs, do(Xm)]

]
=

∑
xs,xm

[[∑
y

p(xs|xm, y)p(xm|y)p(y)

]
·

[
p(y = 1)p(xs|xm, y = 1)∑

y p(y)p(xs|xm, y)

]2]
,

E [Y · E[Y |Xs, do(Xm)]]=
∑

xs,xm

[[∑
y

p(xs|xm, y)p(xm|y)p(y) · y

]
·

[
p(y = 1)p(xs|xm, y = 1)∑

y p(y)p(xs|xm, y)

]]

=
∑

xs,xm

[[∑
y

p(xs|xm, y=1)p(xm|y=1)p(y=1)

]
·

[
p(y=1)p(xs|xm, y=1)∑

y p(y)p(xs|xm, y)

]]
.

Denote ay := p(y = 1), p(xm = 1|y) := amy, p(xs = 1|xm, y) = asmy, then the left hand side in
Eq. equation 7 has

E
[
E2[Y |xs, do(xm)]

]
=1(xs=1, xm=1) (as11am1ay + as10am0(1− ay))

[
ayas11

ayas11 + (1− ay)as10

]2

+

1(xs=1, xm=0) [as11(1− am1)ay + as10(1− am0)(1− ay)]

[
ayas01

ayas01 + (1− ay)as00

]2

+

1(xs=0, xm=1) [(1− as11)am1ay + (1− as10)am0(1− ay)]

[
ay(1− as11)

ay(1− as11) + (1− ay)(1− as10)

]2

+

1(xs=0, xm=0) [(1−as01)(1−am1)ay + (1−as00)(1−am0)(1−ay)]

[
ay(1−as01)

ay(1−as01) + (1− ay)(1− as00)

]2

.

The right-hand side has

2E [Y E[Y |xs, do(xm)]]− E[Y 2] =2
[
1(xs = 1, xm = 1)

a2
ya

2
s11am1

ayas11 + (1− ay)as10
+

1(xs = 1, xm = 0)
a2
ya

2
s01(1− am1)

ayas01 + (1− ay)as00
+

1(xs = 0, xm = 1)
a2
y(1− as11)

2am1

ay(1− as11) + (1− ay)as10
+

1(xs = 0, xm = 0)
a2
y(1− as01)(1− am1)

ay(1− as01) + (1− ay)(1− as00)

]
− a2

y.

When ay ̸= 0, the term a2y can be removed. Then let ay → 0, the left-hand side approximates to:

a2s11am0

as10
+

a2s01(1− am0)

as00
+

(1− as11)
2am0

(1− as10)
+

(1− as01)
2(1− am0)

(1− as00)
;

and the right hand side approximates to:

2 ·
[
a2s11am1

as10
+

a2s01(1− am1)

as00
+

(1− as11)
2am1

(1− as10)
+

(1− as01)
2(1− am1)

(1− as00)

]
− 1

Then the Eq. equation 7 is equivalent to:

a2
s11(am0−2am1)

as10
+
a2
s01(2am1−am0−1)

as00
+
(1−as11)

2(am0−2am1)

(1−as10)
+
(1−as01)

2(2am1−am0 − 1)

(1−as00)
>−1.

Let as10 → 0, as11 → 1, as01 = as10 = 0.5 and am0 − 2am1 > 0, the above inequality holds.

B.4 PROOF FOR THM. 3.3: MIN-MAX PROPERTY

Theorem 3.3 (Min-max Property). Denote h∗(S−) := max
J

EPJ
[(Y −fS−(x))

2] as the maximal

expected loss over J for S−. Then, we have h∗(S−) = max
P e∈P

EP e [
(
Y − fS−(x)

)2
]. In this regard,

the optimal subset S∗ for f∗ = fS∗ can be attained via S∗ := argminS−⊂S h∗(S−).
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Proof. We show the maximum loss is attained when XM is a definite function of PA(XM )

Let fS−(xS− ,xM ) := E[Y |xS− , do(xM )] be an invariant predictor. Then

LP e(fS−) =

∫
x

∫
y

(y − fS−(xS− ,xM ))2p(y|pa(y))
∏
i∈S

p(xi|pa(xi))
∏
i∈M

pe(xi|pa(xi))dydx.

And the maximum loss

L∗
S−

= argmaxP eLP e(fS−) = argmax{pe(xi|pa(xi))|i∈M}LP e(fS−).

Let X′ :=X\(XM∪PA(XM )) and h(xM ,pa(xM )) :=
∫
x′(y−fS−(x))

2
∏

Xi∈X′ p(xi|pa(xi))dx′ ,
which does not rely on the mutable distribution {pe(xi|pa(xi))|i ∈ M}. Let m∗(pa(xM )) :=
argmaxxM

h(xM ,pa(xM ))).

Firstly, consider the case of XM = {XM}. Then

max
Pe

LPe(fS−)=max
Pe

∫
pa(xM )

∫
xM

h(xM ,pa(xM ))pe(xM |pa(xM ))dxM

 ∏
Xi∈PA(XM )

p(xi|pa(xi))dpa(xM )

=

∫
pa(xM )

max
Pe

∫
xM

h(xM , pa(xM ))pe(xM |pa(xM ))dxM

 ∏
Xi∈PA(XM )

p(xi|pa(xi))dpa(xM )

=

∫
pa(xM )

h(m∗(pa(xM )), pa(xM ))
∏

Xi∈PA(XM )

p(xi|pa(xi))dpa(xM ).

When XM is multivariate, we consider the maximization sequentially by the topologi-
cal order {XM,1, XM,2, · · · , XM,l}, where XM,j is a node that is not a parent of any
other nodes in {XM,i|i ≥ j} in the sub-graph over XM . That is, we firstly consider
maxpe(xM,1|pa(xM,1))

∫
xM,1

h(xM,1,paxM,1
)pe(xM,1|paxM,1

)dxm,1 and factorize maxP e{· · · } as

maxpe(xM,l|pa(xM,l)) · · ·maxpe(xM,2|pa(xM,2))maxpe(xM,1|pa(xM,1)){· · · }.

Note that the sub-graph on XM is always a DAG, so such a topological order always exists.

B.5 PROOF FOR PROP. 3.4: IDENTIFIABILITY IN THM. 3.3

Proposition 3.4. Denote PJ := p(y,xS |do(XM = J(pa(xM )))), and fS− := E [Y |xS− , do(xM )].
Under assumptions 2.1 and 2.2, we have PA(XM ), PJ , and fS− are identifiable.

Proof. To generate data distributed as PJ , we need to use J(PA(XM )) to regenerate XM ,
then regenerate De(XM ) with structural equations. To estimate fS− , we need to inter-
vene on XM , then regenerate De(XM ) with structural equations. So, it’s suffice to show
XM ,De(XM ),PA(XM ),PA(De(XM )) are identifiable.

Identification of XM has been shown in Alg. 2. We first show the identification of De(XM ).

• Line 5 to 10: this case is the same as Algorithm 3, which is based on (i) the structure E → · · · →
Xj −Xi and (ii) Xi and E are not adjacent.

• Line 11 to 19: In this case, we identify the direction between Xi and Xj by the “Independent
Causal Mechanism (ICM) Principle" following Huang et al. (2020), where ∆̂Xj→Xi and ∆̂Xi→Xj

are the estimated HSIC (see Eq. 17 in Huang et al. (2020) for the detailed formulation of ∆̂).

The ICM principle means that “the conditional distribution of each variable given its causes (i.e.,
its mechanism) does not inform or influence the other mechanisms.". That is, the changes of
P (Xi|PA(Xi)) does not influence the other mechanisms P (Xj |PA(Xj)) for j ̸= i. The ICM
principle is implied in the definition of “structural causal model" in Pearl (2009), where each
structural equation represents an autonomous physical mechanism.
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Algorithm 4 Detection of De(XM ) ∪XM

1: Start with A = B=XM and visited(Xi) =FALSE
2: while B ̸= ∅ do
3: for Xj ∈ B do
4: for Xi ∈ Adj(Xj) do
5: if Xi ̸∈ XM and Xi ⊥ E|Ce,xi ∪ {Xj} \Dxi,e then
6: A=A ∪ {Xi}
7: if visited(Xi) =FALSE then
8: B = B ∪ {Xi}
9: end if

10: end if
11: if Xi ∈ XM and ∆̂Xj→Xi < ∆̂Xi→Xj then
12: A=A ∪ {Xi}
13: if visited(Xi) =FALSE then
14: B = B ∪ {Xi}
15: end if
16: end if
17: end for
18: Let B = B \ {Xj}
19: end for
20: end while

We then show the identification of PA(XM ),PA(De(XM )).

Algorithm 5 PA(Xi) for Xi ∈ XM ∪De(XM ).

1: for Xj ∈ XM ∪De(XM ) do
2: for Xi ∈ Adj(Xj) do
3: if Xi ̸∈ XM then
4: Xi ∈ PA(Xj) if Xi ̸⊥ E|

{
Ce,xi \De,Xi ∪ {Xj}

}
5: else if Xj ∈ XM and Xi ∈ Xm then
6: Xi ∈ PA(Xj) when ∆̂Xj→Xi < ∆̂Xi→Xj .
7: else if Xj ∈ XM and Xi ̸∈ Xm then
8: Xi ∈ PA(Xj) when E ̸⊥ Xi|Cxi,e ∪ {Xj}
9: end if

10: end for
11: end for

• Line 4: this rule is based on the structure E → · · · → Xj −Xi and {Xi, E} are not adjacent.

• Line 6: this rule is based on the HSIC criterion in Huang et al. (2020).

• Line 8:this rule is based on the structure E → Xi −Xj and {E,Xj} are not adjacent.

C APPENDIX FOR SEC. 3.2: LEARNING METHOD

C.1 EQUIVALENT CLASSES AND ITS RECOVERY ALGORITHM

When the graphical condition in Thm. 3.1 fails, Alg. 1 needs to search over subsets of the stable set
and identify the optimal predictor. However, we find an exhaustive search of all subsets is redundant,
as some subsets are equivalent in the sense of predicting Y . Formally speaking,
Definition C.1 (p-equivalence). Two subsets Xi and Xj (the subscript S is omitted for simplic-
ity) of the stable set XS are probabilistical equivalent, i.e., Xi ∼P Xj , if P (Y |Xi, do(XM )) =
P (Y |Xj , do(XM )).
Remark C.2. It’s straight forward to see ∼P satisfies reflexivity (Xi ∼P Xi), symmetry (Xi ∼P

Xj ⇒ Xj ∼P Xi), and transitivity (Xi ∼P Xj ,Xj ∼P Xk ⇒ Xi ∼P Xk), thus is a legal
equivalent relation.
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Under the Markovian assumption, we can infer p-equivalence from structure of the causal graph, espe-
cially patterns of d-separations. In the following, we firstly give the notion of graphical equivalence,
then show how can we infer p-equivalence from it.

Definition C.3 (g-equivalence). Two subsets of vertex Xi and Xj are graphically equivalent w.r.t the
causal graph G, i.e., Xi ∼G Xj , if ∃Xij ⊆ Xi ∩Xj such that Y ⊥GXM

Xi ∪Xj\Xij |Xij ,XM .

It’s straight forward to see that ∼G satisfies reflexivity (Xi ∼G Xi) and symmetry (Xi ∼G Xj ⇒
Xj ∼G Xi). To prove it also satisfies transitivity (Xi ∼G Xj ,Xj ∼G Xk ⇒ Xi ∼G Xk), we need
to introduce two properties of the d-separation.

Lemma C.4 (Properties of d-separation). (i) If a path p can not be blocked by a vertex set Xi, then
any of p’s sub-path can not be blocked by Xi either. (ii) For two vertex sets Xi,Xj , and a path p, if p
can not be blocked by Xi and can be blocked by Xi ∪Xj , then, Xj must contain a non-collider in p.

Proof. The correctness of property-(i) is straightforward, so we focus on proving property-(ii).
Specifically, there are three possibilities about the path p:

1. all vertices in p are non-colliders. From ‘p can not be blocked by Xi’, we know all vertices in p
are not in Xi. From ‘p can be blocked by Xi ∪Xj’, we know at least a vertex in p is in Xj .

2. all vertices in p are colliders. From ‘p can not be blocked by Xi’, we know ∀X ∈ p, X ∈ Xi or
X has a descendant in Xi. So, ∀X ∈ p, X ∈ Xi ∪Xj or X has a descendant in Xi ∪Xj , which
means p can not be blocked by Xi ∪Xj neither.

3. vertices in p are colliders and non-colliders. From ‘p can not be blocked by Xi’, we know ∀X ∈ p,
if X is a non-collider, X ̸∈ Xi, if X is a collider, X or one vertex in Dec(X) is in Xi, thus in
Xi ∪Xj . So, Xj must contain a non-collider in p, otherwise, p can not be blocked by Xi ∪Xj .

Equipped with the above properties, we now show ∼G also satisfies transitivity, i.e., Xi ∼G

Xj ,Xj ∼G Xk ⇒ Xi ∼G Xk.

Proof. Because Xi ∼G Xj ,Xj ∼G Xk, by definition, ∃Xij ⊆ Xi ∩Xj such that Y ⊥G Xi ∪
Xj\Xij |Xij , and ∃Xjk ⊆ Xj ∩Xk such that Y ⊥G Xj ∪Xk\Xjk|Xjk. Different situation of
Xij and Xjk are discussed below:

1. Xij = Xij = X0. Then, we have Y ⊥G Xi ∪Xj ∪Xk\X0|X0. So, Y ⊥G Xi ∪Xk\X0|X0

and X0 ⊆ Xi ∩Xk. So, Xi ∼G Xk.

2. Xij ∩Xjk = ∅. As shown by Fig. 9 (a), we have Xjk ⊆ Xj\Xij , so, Y ⊥G Xjk|Xij . We also
have Xij ⊆ Xj\Xjk, so, Y ⊥G Xij |Xjk.

In the following, we show any path between Y and Xjk contains at least a collider. We prove
this by contradiction, i.e., assume there is a path p0 :< Y,X1, X2, ..., Xm > between Y and
Xjk (Xm ∈ Xjk) and every vertex in p0 is a non-collider in p0. Because Y ⊥G Xjk|Xij , so,
∃Xi, i ≤ m−1 in p0 such that Xi ∈ Xij . So, there is a path p1 :< X1, X2, ..., Xi > between Y and
Xij where every vertex is a non-collider. Because Y ⊥G Xij |Xjk, so again, ∃Xl, l ≤ i−1 in p1 such
that Xl ∈ Xjk. Iterating like this, we have either X1 ∈ Xij or X1 ∈ Xjk. Because X1 ∈ Neig(Y ),
Y ̸⊥G X1 given any subset, which contradicts with Y ⊥ Xj\Xjk|Xjk and Y ⊥ Xj\Xij |Xij .

Because any path between Y and Xjk (Xij can be similarly proved) contains at least a collider, we
have Y ⊥G Xij |∅ and Y ⊥G Xjk|∅.

In the following, we show any path between Y and Xi\Xij contains at least a collider. We prove
this by contradiction, i.e., assume there is a path p0 :< Y,X1, X2, ..., Xm > between Y and Xi\Xij

(Xm ∈ Xi\Xij) and every vertex in p0 is a non-collider in p0. Because Y ⊥G Xi\Xij |Xij , so,
∃Xi, i ≤ m − 1 in p0 such that Xi ∈ Xij . So, there is a path p1 :< X1, X2, ..., Xi > between Y
and Xij where every vertex is a non-collider, which contradicts with Y ⊥G Xij |∅.

Because any path path between Y and Xi\Xij contains at least a collider, we have Y ⊥G Xi\Xij |∅
and similarly Y ⊥G Xk\Xjk|∅. Considering Y ⊥G Xij |∅ and Y ⊥G Xjk|∅, we now have
Y ⊥G Xi|∅ and Y ⊥G Xk|∅. Because ∅ ⊆ Xi ∩ Xk and Y ⊥G Xi ∪ Xk\∅|∅, we have
Xi ∼G Xk.
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Figure 9

3. Xij ∩Xjk ̸= ∅. We first define A := Xij\Xij ∩Xjk and B := Xjk\Xij ∩Xjk, as shown by
Fig. 9 (b).

In the following, we show any path between Y and A can be blocked by Xij ∩Xjk. We prove this
by contradiction, i.e., assume there is a path p0 :< Y,X1, X2, ..., Xm > between Y and A such that
p0 can not be blocked by Xij ∩Xjk. Because A ⊆ Xj\Xjk, p0 can be blocked by Xjk. By Lemma
C.4, Xjk\Xij ∩Xjk (i.e., the subset B in Fig. 9 (b)) must contain a non-collider Xi, i ≤ m− 1 in
p. So, there is a path p1 :< Y,X1, X2, ..., Xi > between Y and Xjk\Xij ∩Xjk. Be Lemma C.4, as
p1 is a sub-path of p0, p1 can not be blocked by Xij ∩Xjk neither. Because Xi ∈ B ⊆ Xj\Xij , p1
can be blocked by Xij , so again, Xij\Xij ∩Xjk (i.e., the subset A in Fig. 9 (b)) must contain a
non-collider in p1. Iterating like this, we have X1 ∈ A or X1 ∈ B. Because X1 is adjacent with Y ,
we have either Y ⊥G Xj\Xjk|Xjk or Y ⊥G Xj\Xij |Xij not hold.

This contradiction means any path between Y and A (similarly B) can be blocked by Xij ∩Xjk.
Formally speaking, Y ⊥G Xij ∪Xjk\Xij ∩Xjk|Xij ∩Xjk.

Define C := Xij ∪Xjk\Xij ∩Xjk and D := Xi ∪Xj ∪Xk\Xij ∪Xjk, as shown by Fig. 9 (c).
We have already shown that any path between Y and C can be blocked by Xij ∩Xjk, we in the
following show any path between Y and D can also be blocked by Xij ∩Xjk.

Again, we prove this by contradiction, i.e., assume there is a path p0 :< Y,X1, X2, ..., Xm > between
Y and D such that p0 can not be blocked by Xij ∩Xjk. Because either Xm ∈ Xi ∪Xj\Xij or
Xm ∈ Xj ∪Xk\Xjk, we have p0 can be blocked by Xij or Xjk. Let’s assume p0 can be blocked by
Xij (as by Xjk has a similar analysis). By Lemma C.4, Xij\Xij ∩Xjk must contain a non-collider
Xi in p0. So, we have a path p1 :< Y,X1, X2, ..Xi > between Y and Xij\Xij ∩Xjk. Because p1
is a sub-path of p0, by Lemma C.4, p1 can not be blocked by Xij ∩Xjk either, which contradict with
Y ⊥G Xij ∪Xjk\Xij ∩Xjk|Xij ∩Xjk.

This contradiction means any path between Y and D can also be blocked by Xij ∩Xjk.

In conclusion, any path between Y and Xi ∪Xj ∪Xk\Xij ∩Xjk can be blocked by Xij ∩Xjk.
Formally speaking, Y ⊥G Xi∪Xj∪Xk\Xij∩Xjk|Xij∩Xjk. Because Xi∪Xk ⊆ Xi∪Xj∪Xk

and Xij ∩Xjk ⊆ Xi ∩Xk, we have Xi ∼G Xk.

To conclude, we have shown that ∼G satisfies reflexivity, symmetry, and transitivity. So, it is also a
legal equivalent relation.

Recall the Markovian assumption states for any disjoint sets Xi,Xj ,Xk, we have Xi ⊥G Xj |Xk ⇒
Xi ⊥ Xj |Xk. It builds a bridge from d-separation in graph to conditional independence in probability.
As a result, under this assumption, we can infer two subsets are equivalent in predicting Y if they are
graphical equivalent in the intervened graph GXM

3. Formally speaking,

Proposition C.5. For two subsets Xi and Xj of the stable set, if Xi ∼G Xj , then Xi ∼P Xj .

3The intervened graph means the graph after removing all edges into XM .
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Remark C.6. Note that the reverse claim Xi ∼P Xj ⇒ Xi ∼G Xj is not true even under the
faithfulness assumption. Consider the counter example of Y,X1, X2, and the structural equations
X1 ← Y +N(0, 1), X2 ← Y +N(0, 1). We have {X1} ∼P {X2}, but do not have {X1} ∼G {X2}.

Now that we know the definition of two subsets being equivalent and how to infer the equivalence
from causal graph, we are ready to introduce the notion of g-equivalent class. Denote the power
set of the stable variables XS as Pow(XS), then elements of the quotient spaces Pow(XS)/∼G are
called g-equivalent classes. Since all predictors in the same g-equivalent class have the same power in
predicting Y , the searching for optimal predictor in Alg. 1 should be conducted among g-equivalent
classes.

In the following, we introduce an algorithm to recover the Pow(XS)/∼G space. The algorithm takes
the stable graph4 GS as input and recursively explore stable variables in the order of their distance
to Y . In each step of exploration, it create sub-graphs to represent conditional independence after
including/excluding some stable subsets. We use the maximal ancestral graph (MAG) to construct
these sub-graphs, thanks to its ability to preserve conditional independence when included (selection)
or excluded (latent) variables exist. In the following, we omit the subscript S in GS and XS for
brevity.

Algorithm 6 PG = Recover(G)

Input: a causal graph G.
Output: the set of all g-equivalent classes PG.

1: Let X the covariate set of G
2: Find NeigG(Y )
3: if NeigG(Y ) = ∅ then
4: return {Pow(X)}
5: else
6: PG ← {}
7: for T in Pow(NeigG(Y )) do
8: S← T, L← NeigG(Y )\T, O← X\NeigG(Y )
9: G′ ← MAG(G,O,L,S)

10: PG′ ← Recover(G′)
11: for [Xi] in PG′ do
12: for Xj in [Xi] do
13: Xj ← Xj ∪T
14: end for
15: end for
16: PG ← PG ∪PG′

17: end for
18: return PG

19: end if

Algorithm 7 G′ = MAG(G,O,L,S)

Input: a causal graph G over X = O ∪ L ∪ S.
Output: a causal graph G′ over O.

1: for each pair of variables A,B ∈ O, A and B are adjacent in G′ if and only if there is an inducing
path relative to < L,S > between them in G.

2: for each pair of adjacent vertices A,B in G′, orient the edge between them as follows:
3: (a) orient it as A→ B in G′ if A ∈ AncG(B ∪ S) and B ̸∈ AncG(A ∪ S);
4: (b) orient it as B → A in G′ if A ̸∈ AncG(B ∪ S) and B ∈ AncG(A ∪ S);
5: (c) orient it as A↔ B in G′ if A ̸∈ AncG(B ∪ S) and B ̸∈ AncG(A ∪ S);
6: (d) orient it as A−B in G′ if A ∈ AncG(B ∪ S) and B ∈ AncG(A ∪ S);

Proposition C.7. Alg. 6 outputs the correct g-equivalent classes in causal graph G.

4The stable graph means the graph after removing all vertex in XM
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Proof. We firstly introduce some notions that will be used in the proof. Denote [Xi] := {Xj |Xj ∼G

Xi} the equivalent class with representative element Xi. Denote the set of all equivalent classes as
Pow(X)/ ∼G. Define length of a path the number of edges in it. In a causal graph G, we say Xi is
Y ’s w-order neighbour if the shortest path between Y and Xi has length w. As a special case, Xi is
called 0-order neighbour of Y if there is no path between Y and Xi. Let Ω(G) = 0 if Y does not
have any neighbour, let Ω(G) = 1, 2, 3, ... if Y has 1, 2, 3, ...-order neighbour, respectively.

Note that if we construct a MAG G′ over O by G′ = MAG(G,O,L,S), then, for any vertices sets
Vi,Vj ,Vk ⊆ O, we have Vi ⊥G Vj |Vk,S⇔ Vi ⊥G′ Vj |Vk. The proof is available at Sect. 2.3
in Zhang (2008).

In the following, we prove the proposition by induction on Ω(G).

Base. For any causal graph G with Ω(G) = 0, we have Neig(Y ) = ∅. So, for any Xi,Xj ⊆ X,
we have ∅ ⊆ Xi ∩ Xj such that Y ⊥G Xi ∩ Xj\∅|∅, which means Xi ∼G Xj . This means
Pow(X)/ ∼G = {[X]}, i.e., all subsets of the covariate set are equivalent and there is only one
equivalent class.

Induction Hypotheses. Assume any causal graph G≤w with Ω(G) ≤ w, Pow(X)/ ∼G≤w
=

Recover(G≤w).

Step. In the following, we show any causal graph Gw+1 with Ω(G) = w + 1, we have
Pow(X)/ ∼Gw+1

= Recover(Gw+1).

Denote covariates in NeigGw+1
(Y ) as {X1

1 , X
1
2 , ..., X

1
n1
}. Denote the power set

Pow({X1
1 , X

1
2 , ..., X

1
n1
}) as Q := {Q1,Q2, ...,Q2n1 }, where Q1 = ∅, Q2 = {X1

1}, ...,
Q2n1 = {X1

1 , X
1
2 , ..., X

1
n1
}.

Any Xi ⊆ X can be written as Xi = X1
i ∪Xother

i , where X1
i contains all 1-order covariates and

Xother
i contains the others. So, Pow(X) can be partitioned into 2n1 sets {R1,R2, ...,R2n1}, where

Ri := {Xi|X1
i = Qi}.

Now consider an element Xi ∈ Ri and an element Xj ∈ Rj , i ̸= j. Because X1
i ̸= X1

j and
X1

i ,X
1
j are connected with Y in the causal graph, we have Xi ̸∼G Xj . This property means

Pow(X)/ ∼Gw+1= ∪2
n1

i=1Ri/ ∼Gw+1 .

By the aforementioned property of MAG Zhang (2008), if we construct G′
i with Ω(G′

i) ≤ w
by G′

i := MAG(Gw+1,O = X\NeigGw+1
(Y),L = NeigGw+1

(Y )\Qi,S = Qi), then we
have Ri/ ∼Gw+1= Ri/ ∼G′

i
. So, we further have Pow(X)/ ∼Gw+1= ∪2n1

i=1Ri/ ∼Gw+1=

∪2n1

i=1Ri/ ∼G′
i
.

By the induction hypotheses, Ri/ ∼G′
i
= Recover(G′

i). So, the above equation can be further
written as Pow(X)/ ∼Gw+1

= ∪2n1

i=1Ri/ ∼Gw+1
= ∪2n1

i=1Ri/ ∼G′
i
= ∪2n1

i=1Recover(G
′
i). By de-

sign of Alg. 6 (line-18), we have ∪2n1

i=1Recover(G
′
i) = Recover(Gw+1). So, we eventually have

Pow(X)/ ∼Gw+1
= Recover(Gw+1).

Corollary C.8 (g-equivalent Classes in Sub-graphs). Denote the causal graph G, the covariate set
X. Let Z ⊆ X a subset of covariates. Denote covariates in Z as {Xz

1 , X
z
2 , ..., X

z
l }, and the power

set Pow({Xz
1 , X

z
2 , ..., X

z
l }) as Q := {Q1,Q2, ...,Q2l}, with Q1 = ∅,Q2 = {Xz

1}, ...,Q2l =
{Xz

1 , X
z
2 , ..., X

z
l }. Construct 2l sub-graphs G′

i, i = 1, 2, ..., 2l by G′
i := MAG(G,S = Qi,L =

Z\Qi,O = X\Z). Denote the number of G-equivalent classes in the causal graph G and sub-graph

G′
i as NG, NG′

i
,respectively. Then, we have NG ≤

∑2l

i=1 NG′
i
.

Proof. Because we do not restrict the set Z to Neig(Y ), an element Xi from Ri and an element Xj

from Rj may be graphical equivalent. So, the equal to mark in Prop. C.7 because a greater than or
equal to mark.

Indeed, the true causal DAG with complete orientation is not identifiable. What we can identify is a
partially directed acyclic graph (PDAG), representing all Markovian equivalent graphs of the true
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DAG. The following proposition, which states all the Markovian equivalent graphs have the same
g-equivalent classes, assures that our recovery algorithm can be applied to PDAG.
Proposition C.9. Under assumption 2.2, causal graphs in the same Markovian equivalent class have
the same g-equivalence.

Proof. By definition, causal graphs in the same Markovian equivalent class have the same probability
distribution. Under the Markovian and faithfulness assumptions, this means they have the same
set of d-separations. As g-equivalence is defined on d-separation, they also have the same g-
equivalence.

C.2 DETAILS OF CAUSAL DISCOVERY TO DETECT LOCAL COMPONENTS

In this section, we summarize our method to detect X0
M , De(X0

M ), XM , De(XM ), Blanket(Y ),
{PA(Xi)}Xi∈XM∪De(XM ), PC(Y ) := PA(Y ) ∪ Ch(Y ). The Blanket(Y ) denotes the Markovian
Blanket of Y .

The identification of X0
M ∪ De(X0

M ) are in Alg. 3. To distinguish X0
M and De(X0

M ), it suffices
to identify the direction of Xi − Xj in the case when both Xi and Xj are in X0

M , which can be
accomplished by comparing ∆̂Xi→Xj and ∆̂Xj→Xi (see Huang et al. (2020) for details). However,
it should be noted that distinguishing X0

M and De(X0
M ) for the estimation of h(S−, J) and fS− is

unnecessary. The identification of XM and PC(Y ) is in Alg. 2, where PC(Y ) can be obtained from
the undirected skeleton. Blanket(Y ) can be identified by Aliferis et al. (2003). The identification
of XM ∪ De(XM ) is in Alg. 4 and we can distinguish XM from De(XM ) using the way as in
{X0

M ,De(X0
M )}. The parents {PA(Xi)|Xi ∈ XM ∪De(XM )} can be identified by Alg. 5.

C.3 DETAILS OF ESTIMATING fS−

To estimate fS− , we adopt soft-intervention to replace P e(XM |PA(XM )) with P (XM ) and hence
define p′(x, y) = p(y|pa(y))Πi∈S p(xi|pa(xi))p(XM ). Then we have fS− = EP ′ [Y |xS− ,XM ].
To generate data from P ′, we first permute XM in a sample-wise manner to generate data from
P (XM ). We then regenerate data for XM ’s descendants in the intervened graph via estimating
structural equations 5, as summarized in Alg. 8.

Algorithm 8 Estimation of fS− .

INPUT: training data {x(k), y(k)}nk=1, S− ⊂ S, XM , De(XM ), and {PA(Xi)}Xi∈DeG
XM

(XM ).

OUTPUT: Trained fS− .

1: Shuffling {(xM )(k)}nk=1 by randomizing the indices.
2: For Xi ∈ DeGXM

(XM ) do
3: Regenerate {(xi)(k)}nk=1 as {gi(pa(xi)(k))}nk=1.
4: Train fS− over the regenerated samples.

Indeed, we only need to regenerate DeGXM
(XM ) ∩ Blanket(Y ) since p′(y|blanket(y)) = p′(y|x).

To maximally reduce the approximation error in regeneration, we consider intervene on another
variable set X∗

do := X0
M ∪ (De(X0

M )\Ch(Y )) and regenerate variables in DeG
X∗

do

(X∗
do). We prove

DeG
X∗

do

(X∗
do) is the minimum regeneration set in the following proposition.

Proposition C.10. Denote X∗
do := X0

M ∪ (De(X0
M ) \ Ch(Y )). Then:

1. For any admissible set Xdo, we have DeGXdo
(Xdo) ∩ Blanket(Y ) ⊃ DeG

X∗
do

(X∗
do);

2. X∗
do, DeG

X∗
do

(X∗
do), and {PA(Xi)}Xi∈DeG

X∗
do

(X∗
do)

are identifiable.

Proof. (1) Firstly, we prove that a set of variables Xdo is admissible means pdo(y|x) =
p(y|xS , do(XM ))⇔ {XM∩Ch(Y )} ⊂ Xdo and {XS∩Ch(Y )} ∩Xdo = ∅.

5This can be achieved because XM ,De(XM ), and their parents are identifiable, as shown in Alg. 5.
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Note that

p(y|xS , do(xM )) =
p(y|pa(y))

∏
Xi∈XS∩Ch(Y ) p(xi|pa(xi))∫

y
p(y|pa(y))

∏
Xi∈XS∩Ch(Y ) p(xi|pa(xi))dy

,

pdo(y|x) =
p(y|pa(y))

∏
Xi∈{X\Xdo}∩Ch(Y ) p(xi|pa(xi))∫

y
p(y|pa(y))

∏
Xi∈{X\Xdo}∩Ch(Y ) p(xi|pa(xi))dy

.

It can be seen pdo(y|x) = p(y|xS , do(XM )) ⇔ X\Xdo∩Ch(Y ) = XS∩Ch(Y ), which can be
rewritten as

{XM∩Ch(Y )∩XC
do} ∪ {XS∩Ch(Y )∩XC

do} = XS∩Ch(Y ).

The above equation holds if and only if {XM∩Ch(Y )} ⊂ Xdo and {XS∩Ch(Y )} ∩Xdo = ∅.

(2) Secondly, we prove that X∗
do is an admissible set and DeG

X∗
do

(X∗
do) = De(XM ∩ Ch(Y )) ∩

XS ∩ Ch(Y ). To simplify the notations, let X0 := X∗
do and X1 := DeG

X∗
do

(X∗
do).

The conditions {XM∩Ch(Y )}⊂X0 and {XS∩Ch(Y )}∩X0 = ∅ hold by definition.

(2.1) show DeGX0
(X0) ⊂ X1

Note X0⊂{XM∩Ch(Y )}∪{De(XM ∩Ch(Y ))}, we have De(X0)⊂De(XM∩Ch(Y )). Besides,
since DeGX0

(X0)=De(X0) \X0, Then

DeGX0
(X0)=De(X0) ∩XC

0 =De(X0) ∩ {XM∩Ch(Y )}C ∩ {De(XM∩Ch(Y ))\Ch(Y )}C

= De(X0) ∩ {XC
M∪Ch(Y )}} ∩ {De(XM∩Ch(Y ))C∪Ch(Y )}}

⊂ {De(XM∩Ch(Y ))} ∩ {XC
M∪Ch(Y )C}} ∩ {De(XM∩Ch(Y ))C∪Ch(Y )}}

= De(XM∩Ch(Y )) ∩XC
M ∩ Ch(Y ) = De(XM∩Ch(Y )) ∩XS ∩ Ch(Y ) ⊂ X1

(2.2) show X1 ⊂ DeGX0
(X0)

Since XM ∩ Ch(Y )⊂X0, De(XM ∩ Ch(Y )) ⊂ De(X0), so X1 ⊂De(XM ∩ Ch(Y ))⊂De(X0)
and hence X1\X0 ⊂ De(X0)\X0. Besides, note that X0∩X1 = ∅ such that X1\X0 = X0 and
DeGX0

(X0) = De(X0)\X1, we have X1 ⊂ DeGX0
(X0).

(3) given Xdo satisfying the two conditions, we have

XM∩Ch(Y ) ⊂ Xdo ⇒ De(XM∩Ch(Y )) ⊂ De(Xdo);

Xdo ⊂ {XS∩Ch(Y )}C ⇒ {XS∩Ch(Y )} ⊂ XC
do

.

Therefore,

De(XM∩Ch(Y )) ∩ {XS∩Ch(Y )} ⊂ De(Xdo) ∩XC
do,

Thus, X1⊂DeGXdo
(Xdo) for any Xdo satisfying XM∩Ch(Y )⊂Xdo and Xdo∩{XS∩Ch(Y )} = ∅.

(4) The identification of {PA(Xi)}Xi∈DeG
X∗

do

(X∗
do)

, X∗
do and DeG

X∗
do

(X∗
do) can be readily obtained

in Sec. C.2.

D APPENDIX FOR SEC. 3.3: COMPLEXITY ANALYSIS

In this section, we given some graphical examples and show the number of g-equivalent classes
(denoted by NG) over them.
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Lemma D.1 (Adding/Deleting Edges). In a causal graph G, adding edges does not decrease NG,
deleting edges does not increase NG.

Proof. 1. For any causal graph G0, add an edge in it and call the resulted graph as G1. We show
NG0

≤ NG1
. We show this by proving for any subsets Xi,Xj , if Xi ̸∼G0

Xj , then Xi ̸∼G1
Xj .

We prove this by contradiction. Suppose there are Xi,Xj such that Xi ̸∼G0
Xj and Xi ∼G1

Xj .
By Xi ∼G1 Xj , we have ∃Xij ⊆G1 Xi ∩Xj , Y ⊥G1 Xi ∪Xj\Xij |Xij . Because adding an edge
does not change the covariate sets, we have Xij ⊆G0 Xi ∩ Xj . Because Xi ̸∼G0 Xj , we have
Y ̸⊥G0 Xi ∪Xj\Xij |Xij . In other word, there is a path p in G0 between Y and Xi ∪Xj\Xij such
that p can not be blocked by Xij .

This means Xij does not contain any non-collider on p, and Xij contains every collider (or its
descendants) on p in G0. Because in G1, p is still a path between Y and Xi ∪Xj\Xij . Besides, any
collider Xc on p in G0 is still a collider on p in G1. Any variable Xd ∈ Dec(Xc), where Xc is a
collider on p in G0, is still a descendant of the collider on p in G1. Any non-collider Xn on p in G0

is still a non-collider on p in G1. We have the path p can not be blocked by Xij in G1, neither, which
contradicts with the claim that Y ⊥G1

Xi ∪Xj\Xij |Xij .

2. For any causal graph G1, delete an edge in it and call the resulted graph G0. It is straight forward
to prove NG1

≥ NG0
using the conclusion from 1.

𝑌 𝑌
(a) Chain (b) Star (c) Circle

𝑌 𝑌
(d) Knots

Figure 10

Example 2 (Chain). A chain graph is a graph whose skeleton is a chain, i.e., Y −Xn−Xn−1−...−X1.
For any chain graph with n covariates, NGn

= n+ 1.

Proof. We prove the claim by induction.

Base. When n = 1, NG1
= 2 = n+ 1 holds.

Induction Hypotheses. Suppose for chain graphs with n covariates, the NGn = n+ 1.

Step. When there is n + 1 covariates in the chain graph, i.e., Gn+1 has a skeleton Y − Xn+1 −
Xn−Xn−1− ...−X1. As NeigGn+1

(Y ) = {Xn+1}, we need to discuss the number of g-equivalent
classes when including and excluding Xn+1. If Xn+1 is a collider, then, when including Xn+1, the
induced MAG G′ has a skeleton Y −Xn −Xn−1 − ...−X1; when excluding Xn+1, skeleton of the
induce MAG becomes Y Xn−Xn−1− ...−X1. By induction hypotheses, NG = n+1+1 = n+2
holds. We can have similar conclusion if Xn+1 is a non-collider, .

Example 3 (Star). A star graph with k-branches is a graph whose skeleton is composite of k disjoint
chains. For any star graph with k-branches and n covariates, NGn

= O(nk).

Proof. A star graph is composite of k disjoint chain graphs, each containing n
k covariates. So, we

have NG = (nk + 1)k = O(nk).

Example 4 (Circle). A circle graph is a graph whose skeleton is a circle, i.e., Y−Xn−Xn−1−...−X1,
Y −X1. For any circle graph with n covariates, NGn = O(n2).

Proof. If Xn is a collider, then, when including Xn, the induced MAG will have a skeleton Y −
Xn−1− ...−X1, Y −X1, which is eventually a circle with n− 1 covariates; when excluding Xn+1,
skeleton of the induced MAG becomes a chain with n− 1 covariates Y −X1−X2− ...−Xn−1. So,
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we have NGn
= n+NG′

n−1
, which means {NGn

}n is an arithmetic sequence w.r.t. n. According to
the summation formula of arithmetic sequence, we have NGn

= O(n2).

𝑌
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𝑋$ 𝑋%
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𝑋%
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(a) The original DAG (b) The induced MAG when excluding 𝑋! (c) The induced MAG when excluding 𝑋!, 𝑋"

Figure 11: Recovering g-equivalence in knot graph.

Example 5 (Knots). A knots graph (shown in Fig. 11 (a)) is a generalized directed chain graphs,
where each knot contains 4 covariates. For a knot graph with n covariates, we have NGn

= O(cn),
for some constant 1 < c < 2.

Proof. We prove the claim by showing the recursion formula of NG w.r.t. the knot number k.

For the knot graph shown in Fig. 11 (a), the only neighbour of Y is X1. As X1 is a non-collider, when
including X1, Y will not have any neighbour in the induced MAG, so, the number of G-equivalent
classes in this sub-graph will be 1. When X1 is excluded, the induced MAG is shown in Fig. 11
(b), where Y is adjacent to three covariates X2, X3, X4. As a result, we need to consider 23 = 8
combinations of covariates including/excluding. Out of the 8 combinations, 4 of them (including X4)
will induce MAGs where Y has no neighbours while the other 4 combinations (excluding X4) will
induce the MAG as shown in Fig. 11 (c), which is eventually a knot graph with k − 1 knots.

So, we have the recursion formula of NG w.r.t. the knot number k to be NGk
= 1+ (4 + 4 ·NGk−1

).
This formula means NG increases exponentially w.r.t. the knot number k. Because k = n

4 , NG also
increases exponentially w.r.t. n.

𝑌 𝑋! 𝑋" 𝑋# 𝑋#$! 𝑋#$" 𝑋% 𝑌 𝑋! 𝑋" 𝑋# 𝑋#$" 𝑋% 𝑌 𝑋! 𝑋" 𝑋# 𝑋#$" 𝑋%

(a) The original DAG (b) The induced MAG when 𝑋!"# is blocked (c) The induced MAG when 𝑋!"# is open

Figure 12: Recovering g-equivalence in lollipop.

Example 6 (lollipop). A lollipop graph, as shown in Fig. 12 (a), is constructed by adding edges among
Y and the first m covariates in a chain graph. Sugar of the lollipop is made up of Y,X1, ..., Xm,
while the stick is Xm+1−Xm+2− ...−Xn. For any lollipop graph with n covariates, NGn

= O(n).

Proof. Note that covariates X1, X2, ..., Xm in the sugar part may play different roles (non-collider
or collider) on different paths through them. So, it can be troublesome to analyze Y ’s neighbourhood
as we did in the chain graph. Fortunately, covariates in the stick only belong to one path, so, we can
use them to construct a upper bound of NGn

.

Formally speaking, we can construct an upper bound of NGn with corollary C.8. Specifically, when
Xm+1 is blocked, number of g-equivalent classes in the induced MAG will be less than 2m; when
Xm+1 is open, the induced MAG G′ will be eventually a lollipop with n− 1 covariates, as shown in
Fig. 12 (c). So, we have the following inequation: NGn ≤ 2m +NG′

n−1
.

Recursively performing the analysis on G′
n−1, we have NGn

≤ 2m + 2m + NG
′′
n−2
≤ ... ≤

2m + 2m + ...+ 2m = 2m(n−m+ 1). As m is a constant number, we have NGn = O(n).
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Figure 13: Recovering g-equivalence in 2-lollipop.

Example 7 (k-lollipop). A lollipop with k sticks is called a k-lollipop. For any k-lollipop, we have
NGn

= O(nk).

Proof. Let’s firstly look at the number of g-equivalent classes in 2-lollipop, as shown in Fig. 13
(a). Following Example 6, we can construct an upper bound of NGn by performing Corollary C.8
on {Am+1, Bm+1}. There are 22 = 4 situations, specifically, (i) when Am+1 and Bm+1 are both
blocked, number of g-equivalent classes in the induced MAG will be less than 2m; (ii,iii) when one
of covariate in {Am+1, Bm+1} is blocked, the other is open, the induced MAG will be eventually
a 1-lollipop, as shown in Fig. 13 (b), so the number of equivalent classes in this situation will be
bounded by O(n2 ); (iv) when both Am+1 and Bm+1 are open, the induced MAG G′ is a 2-lollipop
with n − 2 covariates, as shown in Fig. 13 (c). To conclude, we have the following inequation:
NGn

≤ 2m +O(n2 ) +NG′
n−2

.

Recursively performing the analysis on G′
n−2, we have NGn ≤ 2m +O(n2 )+NG′

n−2 ≤ 2m +2m +

O(n−2
2 ) +NG′′

n−4
≤ ... ≤ 2m + ... + 2m + O(n2 ) + O(n−2

2 ) + ... + O(1) = O(2mn) + O(n2).
As m is a constant number, we have NGn = O(n2).

Inspired by this observation, we can analyze NGn
in k-lollipop by induction. Formally speaking,

Base. For 2-lollipop, NGn = O(n2) holds.

Induction Hypotheses. For k-lollipop, NGn
= O(nk) holds

Step. For k+1-lollipop, we can construct the upper bound of NGn by performing Corollary C.8 on
{X1

m+1, ..., X
k+1
m+1}, where Xi

m+1 is the left-most covariate on the i-th stick. There are 2k situations:
(i) when at least one of X1

m+1, ..., X
k+1
m+1 is blocked, the induced MAG will be a lollipop with less

than or equal to k sticks. According to the induction hypotheses, number of g-equivalent classes
in these sub-graphs will be at most O(nk). (ii) When all covariates of X1

m+1, ..., X
k+1
m+1 are open,

the induced G′ will be eventually a k+1-lollipop with n− k covariates. So, we have the following
inequation: NGn ≤ O(nk) +NG′

n−k
.

Recursively performing the analysis on G′
n−k, we have NGn

≤ O(nk)+NG′
n−k
≤ O(nk)+O((n−

k)k) + ...+O(1) = O(nk+1).

𝑌

(a) A skip chain with𝑚 = 1

𝑋!" 𝑋!"#"𝑋!"$" 𝑌 𝑋!" 𝑋!"#"𝑋!"$%

(b) Induced MAG when 𝑋!"$" is blocked

𝑌 𝑋!" 𝑋!"#"𝑋!"$%

(c) Induced MAG when 𝑋!"$" is open

Figure 14: Recovering g-equivalence in skip-chain with m = 1.

Example 8 (Skip Chain). A skip chain graph is constructed by adding skip connections among Y
and m covariates in a chain. For any m-skip chain with n covariates, NGm,n = O(n2m).

Proof. Let’s firstly look at the skip chain graph with m = 1, an example of which is shown in Fig.
14 (a). As we can see, this example is constructed by adding skip connections between Y and Xi1.
Following Example 6, we can construct an upper bound of NG1,n

by performing Corollary C.8 on
Xi1−1. When Xi1−1 is blocked, the induced MAG is a two branches star graph, as show in Fig. 14
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(a) A skip chain with𝑚 = 2
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(c) The induced MAG when 𝑋!"$" is blocked

Figure 15: Recovering g-equivalence in skip chain with m = 2.

(b). So, the number of g-equivalent classes in this sub-graph is O(n2). When Xi1−1 is open, the
induced MAG G′ will be eventually a skip chain with m = 1 and n−1 covariates, as shown in Fig. 14
(c). So, we have the following inequation: NG1,n

≤ O(n2) +NG′
1,n−1

. Recursively performing this
analysis, we have NG1,n

≤ O(n2) +NG′
1,n−1

≤ ... ≤ O(n2) +O((n− 1)2) + ...+O(1) = O(n3).

Now that we have analyzed the skip chain graph when m = 1, let’s look at the situation when m = 2,
an example of which is shown in Fig. 15 (a). Firstly, we can construct an upper bound for any skip
chain graph with m = 2 by adding extra connections among Y,Xi1, Xi2, until these three vertices
form a complete connection, as shown in Fig. 15 (b). Then, we again perform Corollary C.8 on
Xi1−1. When Xi1−1 is blocked, the induced MAG contains two disjoint branches, one of which is a
chain, the other is eventually a skip chain graph with m = 1. So, we have number of g-equivalent
classes in this sub-graph O(n3). When Xi1−1 is open, the induced MAG will be a skip chain with
m = 2 and n− 1 covariates. So, similarly by the inequation when m = 1, we have NG2,n

= O(n4).

Following the spirit of the above analysis, we show NGm,n = O(n2m) by induction.

Base. When m = 1, NG1,n
= O(n2) holds.

Induction Hypotheses. Suppose for any skip chain graph with m, we have NG1,n
= O(n2m).

Step. For skip chain graph with skip connections among Y and Xi1, ..., Xim+1
, firstly construct an

upper bound by adding extra connections among Y and Xi1, ..., Xim+1
, until these vertices form a

complete connection. Then, in the resulted graph, perform Corollary C.8 on Xi1−1. When Xi1−1

is blocked, the induced MAG contains two disjoint branches, one of which is a chain, the other is
eventually a skip chain graph with less than or equal to m. So, we have number of g-equivalent classes
in this sub-graph O(n2m+1). When Xi1−1 is open, the induced MAG will be a skip chain with m+1
and n− 1 covariates. So, similarly by the inequation when m = 1, we have NGm,n

= O(n2m+2).

Lemma D.2 (Property of Tree). A tree is an undirected graph in which any two vertices are connected
by exactly one path. If there are dL leaves and d≥3 vertices of degree at least three in the tree, then
dL ≥ d≥3 + 2.

Proof. Denote number of all vertices in the tree as dT , then by the handshaking lemma,

dL + 2(dT − dL − d≥3) + 3d≥3 ≤
dT∑
i=1

deg(Vi) = 2(dT − 1),

which indicates dL ≥ d≥3 + 2.

Proposition D.3. Complexity of Alg. 6 is Θ(NG).

Proof. Treat each call of the MAG(·) function in Alg. 7 as a unit operation.

1. In the recursion tree of Alg. 6, number of all vertices dT is the complexity of Alg. 6, while number
of leaves dL is NG.
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2. Each interval vertices in the recursion tree has degree at least three (one parent vertex in the tree
and at least two children vertices in the tree). By Lemma D.2, dT+1

2 ≤ dL ≤ dT , which indicates
dT = Θ(dL) and thus complexity of Alg. 6 is Θ(NG).

E APPENDIX FOR SEC. 3.4: SPARSE MIN-MAX OPTIMIZATION

In this section, we introduce theoretical analysis of the following empirical min-max optimization
problem and besides, a more efficient algorithm called Linearized Bregman Iteration (LBI).

min
α,β

max
θ

1

2n

n∑
i=1

[(
yi − fα(xi,Sβ,xi,M )

)2
]
+ λ

∥∥β∥∥
1
, (11)

where x1, ...,xn ∼i.i.d p̄(x, y|xm = Jθ(pa(xM ))). For simplicity, we use p̄ to denote p̄(x, y|xm =
Jθ(pa(xM ))) in the rest of this paper.

E.1 STATISTICAL CONSISTENCY

Denote ℓ(β, α, θ;x, y) :=
(
y − fα(xSβ,xM )

)2
. Suppose we can obtain the worst-case risk with

θ∗ := argmaxθ Ep̄[ℓ(β, α, θ;x, y)]. Then we denote

L(β, α) := 1

2n

n∑
i=1

ℓ(β, α, θ;xi, yi), (α
∗, β∗) := argmin

α,β
Ep̄[L(β, α)].

Based on this, we denote A := supp(β∗). In this regard, the optimization with respect to (α, β) is
Lasso with a general loss. Since our goal is to recover the optimal subset A and the predictor with
(α∗, β∗), we are interested in the model selection consistency and ℓ2-consistency properties:

• Model Selection Consistency: limn→∞ P (An) = P (A), where An := supp(β̂n).

• ℓ2-Consistency: limn ∥ζ̂n − ζ∗∥22 = 0, where ζ := (α⊤, β⊤)⊤.

Here, we denote ζ̂n := argminn L(ζ) + λn

n ∥β∥1. The model selection consistency can ensure us to
find the optimal subset and the ℓ2-consistency further guarantees the optimality of learned predictor.
In the following, we discuss two settings: i) fixed when |S| = d is fixed; ii) high-dimensional d
increases with n. We first introduce some assumptions, which are commonly made in Lasso Zhao &
Yu (2006); Negahban et al. (2012); Rejchel (2016):
Assumption E.1 (Restricted Strongly Convexity (RSC)). We assume that L is convex; L and Q :=
Ep̄[L] are twice differentiable and satisfies H := ∇2L(α∗, β∗) ⪰ γ ∗ I and H̄ := ∇2Q(α∗, β∗) ⪰
γ ∗ I for some γ > 0.
Assumption E.2 (Square-integrability of the gradient). We assume E

[
|∂ℓ(α, β)|2

]
<∞ for each

(α, β) in some neighborhood of (α∗, β∗).
Assumption E.3 (Irrepresentable condition). We assume that∥∥∥∥HAc,(α,A)H

†
(α,A),(α,A)

(
0

sign(β∗)

)∥∥∥∥
∞

< 1.

Remark E.4. The restricted strongly convexity condition has been widely assumed in variable
selection Negahban et al. (2012); Zhao & Yu (2006), especially in high-dimensional statistics to
ensure the identifiability of the oracle parameter. The irrepresentable condition was almost necessary
to recover the true signal set. For regularity, it was needed in general convex loss Niemiro (1992);
Rejchel (2016) to ensure asymptotic normality.

Now we are ready to introduce our results. We first introduce the model selection consistency with
fixed setting. Before that, we first introduce two lemmas in Rejchel (2016).
Lemma E.5 (Corollary 2.3 in Rejchel (2016)). Under assumptions E.1, E.2 and set λn such that
limn

λn

n = 0 and limn
λn√
n

, we have n
λn

(ζ̂n − ζ∗)→p ζ0 := argminζ V (ζ) with

V (ζ) =
1

2
ζ⊤H̄ζ +

∑
j∈A

ζjsign(ζ
∗
j ) +

∑
j ̸∈A

|ζj |.
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Lemma E.6 (Theorem 2.3 in Rejchel (2016)). Under the same conditions in Lemma. E.5, we have∑
|ζ−ζ∗|≤Man

a−1
n

∣∣∣∣∂L(θ)∂ζ
− ∂L(ζ∗)

∂ζ
− H̄(ζ − ζ∗)

∣∣∣∣→p 0.

With this lemma, we have the following model selection consistency results:
Theorem E.7. Under the same conditions in Lemma. E.5 and additionally assumption E.3, we have
that limn P (An) = P (A).

The proof is very similar to Corollary 2.4 in Rejchel (2016). We include it here for completeness.

Proof. Denote Lλn(ζ) := L(ζ) + λn/n. Note that if there exists j ∈ A, then we have P (j ̸∈ A) =
P ( ˆzetan(j) = 0)→ 0 according to Lemma. E.5. Thus we have P (A ⊂ An)→ 1. Next, we show
that P (An ⊂ A)→ 1. Otherwise, ∀n > 0, there exists j ∈ An but not belong to A. Recall that ζ̂n
minimizes Lλn(ζ), we have that

∂L(ζ̂n)
∂βj

+
λn

n
∂|βj | = 0.

Since βj ̸= 0, we have that

n

λn

∣∣∣∣∣∂L(ζ̂n)∂βj

∣∣∣∣∣ = 1.

Besides, we have that

n

λn

∂L(ζ̂n)
∂βj

=
n

λn

[
∂L(ζ̂n)
∂βj

− ∂L(ζ∗)
∂β∗

j

− H̄(ζ̂n − θ∗)

]
+

n

λn

∂L(ζ∗)
∂β∗

j

+
n

λn
H̄(ζ̂n − ζ∗).

According to Lemma. E.6, we have that the first term converges to 0 in probability; besides, due to
square-integrability and central limit theorem, we have that the second term also converges to 0 in
probability. From Lemma. E.5, the third term converges to H̄ζ0 in probability. Note that ζ0 satisfies
that:

H(α,A),(α,A)(α
0,⊤, β0,⊤

A )⊤ = (0⊤, (sign(β∗
A))

⊤)⊤,

HAc,(α,A)(α
0,⊤, ζ0,⊤A )⊤ =

∂∂∥β0
Ac∥1

∂β0
Ac

Therefore, we have |HAcζ0| < 1 since the irrepresentable condition holds. In this regard, we have
that ∣∣∣∣∣ nλn

∂L(ζ̂n)
∂βj

∣∣∣∣∣ < 1,

which contradicts to the fact that j ∈ An.

Next we show that in both fixed and high-dimensional settings, we have the following ℓ2-consistency,
which is a natural conclusion applying the results in M -estimator Negahban et al. (2012):
Theorem E.8. Under assumptions E.1 and suppose λn ≥ 2n∥∇L(ζ∗)∥∞. Then we have

∥ζ̂n − ζ∗∥22 = O

(
λ2
n

n2γ2
(|A|+ dim(α))

)
Proof. According to theorem 1 in Negahban et al. (2012), we have that

∥ζ̂n − ζ∗∥22 = O

(
λ2
n

n2γ2
Ψ2

)
,

if λn ≥ 2nR∗(∇L(ζ∗)) for some regularization funtion R, with R∗ denoting the conjugate function
of R and Ψ :=

∑
β ̸=0

R(β)
∥β∥ . In our setting, R(β) := ∥β∥1. Therefore, we have Ψ ≤

√
|A|+ dim(α).

The proof is completed by noting that R∗ = ∥∥∞.
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Remark E.9. According to square-integratility and the large law number theorem, we have that
∇L(ζ∗) →a.s. 0 and thus ∥∇L(ζ∗)∥∞ →a.s. 0. Therefore, as long as λn satisfies conditions in
Thm. E.7, λn can satisfy λn ≥ 2n∥∇L(ζ∗)∥∞. In this regard, both model selection consistency and
ℓ2-consistency in fixed setting can hold; while in high-dimensional setting, we have ℓ2-consistency,
which is our ultimate goal, i.e., identifying the minimax optimal predictor.

E.2 LINEARIZED BREGMAN ITERATION

In this section, we introduce an alternative algorithm, namely Linearized Bregman Iteration (LBI) to
replace the minimization step via Lasso. LBI was firstly proposed in Osher et al. (2005) in image
denoising. In Osher et al. (2016); Huang & Yao (2018), the authors established LBI’s statistical
model selection consistency from the perspective of differential inclusion. Such consistency holds
under nearly the same condition in linear model; however additionally requires restricted strongly
convexity to hold for each solution in the path, under general convex loss.

More importantly, LBI enjoys more efficiency in implementation, compared to Lasso. Specifically,
the condition on λn for model selection consistency and ℓ2-consistency is in an asymptotic form.
In practice, to select the optimal λ, Lasso has to set a sequence of hyperparameters and run an
optimization algorithm for each hyperparameter. In contrast, LBI can generate a whole regularization
solution path, with each iteration corresponding to a solution in the pat. Motivated by this property,
we proposed to replace the minimization step via LBI, which is composed of a gradient descent
followed by a soft-thresholding step.

Combined with the gradient ascent step, the algorithm is showed as follows:

Maximization step:
θk+1 = θk + δ∇θℓ(βk, αk, θk), gradient ascent w.r.t. θ

Linearized Bregman Iteration:
αk+1 = αk − κδ∇αℓ(βk, αk, θk), gradient descent w.r.t. α
zk+1 = zk − δ∇βℓ(βk, αk, θk), gradient descent w.r.t. β
βk+1 = κsign(zk+1)max(0, |zk+1| − 1). soft-thresholding to obtain β

Here, the δ is step size, z := ∥β∥1 + 1
2κ∥β∥

2
2, and κ > 0 denotes the damping factor which is

trade-off between efficiency and statistical properties. Specifically, Inverse Scale Space (ISS) which
can return unbiased solutions, is the limit of LBI as κ→∞; however, large κ leads to computation
inefficiency by noticing that δ and κ should satisfy δκ < 1/λmax(∇2ℓ) where λmax(A) denotes
the maximal eigenvalue of A. Instead of running an optimization algorithm in the minimization
step via Lasso, it only spends a gradient descent and a soft-thresholding steps, which is much more
efficient for implementation. However, a disadvantage of using LBI to replace Lasso lies in the lack
of statistical consistency guarantees, as the LBI alternates with the gradient ascent w.r.t. θ.
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F APPENDIX FOR SEC. 4: EXPERIMENT

Implementation of Baselines. Vanilla uses E[Y |x] to predict Y and is implemented by the same neu-
ral network as fS− (which will be introduced later). Other baselines are implemented by the authors’
official codes. Specifically, ICP (https://github.com/juangamella/icp); IC (https:
//github.com/mrojascarulla/causal_transfer_learning); Anchor regression
(https://github.com/rothenhaeusler/anchor-regression); IRM (https://
github.com/facebookresearch/InvariantRiskMinimization); HRM (https:
//github.com/LJSthu/HRM); IB-IRM (https://github.com/ahujak/IB-IRM); As
the Surgery Estimator did not provide official codes, we implement it following settings of our
method.

F.1 SIMULATION

Implementation Details. In all three settings, SGD is used for optimization. In Setting-1,2, the
structural equation x1 ← g1(x4, y) + u1 is estimated by a one-layer fully-connected neural network
(FC), with training iterations set to 1000, the learning rate set to 0.01. In Setting-3, the equation is
estimated by a two-layers FC with a sigmoid activation function in the hidden layer, with training
iteration set to 1000, the learning rate set to 0.01. In Setting-1: fS− is parameterized by a one-layer
FC, with training iterations set to 2000, the learning rate set to 0.001. Jθ is parameterized by the
same structure, with training iterations set to 2000, the learning rate set to 0.05. In Setting-2: fS− is
parameterized by a one-layer FC, with training iterations set to 1000, the learning rate set to 0.001.
Jθ is parameterized by the same structure, with training iterations set to 5000, the learning rate set to
0.05. In Setting-3: fS− is parameterized by a two-layers FC with a sigmoid activation function in the
hidden layer, with training iterations set to 5000, the learning rate set to 0.01. Jθ is parameterized by
the same structure, with training iterations set to 2000, the learning rate set to 0.01. The codes are
implemented with PyTorch 1.10 and run on a server with an Intel Xeon E5-2699A v4@2.40GHz
CPU.

Additional Results on Causal Discovery. We randomly generate DAGs according to the Erdos-
Renyi model Erdős et al. (1960). We consider three low dimensional settings of nodes number
{6, 8, 10} and a high dimensional setting with 100 nodes. For the low dimensional settings, we
generate 10 domains, where the number of mutable variables is set to {2, 3}, and the sample size ne

is set to 200 for each domain. For the high dimensional setting, the generated graphs are sparse. We
generate 20 domains, where the number of mutable variable is set to 20, and the sample size ne is set
to 500 for each domain. For the low dimensional settings, we implement the PC Spirtes et al. (2000)
algorithm to learn the undirected skeletons. For the high dimensional setting, PC-stable Colombo
et al. (2014) is used. Our algorithm is then used to determine local components. To remove the effect
of randomness, we repeat for 40 times. We report the F1 score, precision, and recall in Tab. 2. As we
can see, when the causal graphs are more complicated, our discovery algorithm can still give accurate
results, which further validates its effectiveness and stability.

Table 2: Performance of Causal Discovery.

Metrics

Nodes
6 8 10 100

F1 0.98 0.96 0.94 0.88

precision 0.97 0.96 0.94 0.86

recall 0.99 0.96 0.95 0.90

Comparison with Baselines. We report the maximal mean square error (max MSE) over the test sets
for our method and baselines in Tab. 3. Besides, we in Tab. 4 report the standard deviation of mean
square error (std. of MSE) over the test sets as a measure of transferring stability. As we can see, the
maximum and standard deviation of MSE of our method are both low. For example, max MSE is
0.0075, and std. of MSE is 0.0006 in setting-2. This verifies that our method is both robust and stably
transferable to distributional shifts. Besides, our method has a large improvement over baselines in
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the highly non-linear setting-3. As for the slight improvements over the baseline, it may be due to the
simulation settings being simple enough for the vanilla method to only exploit X2 for prediction.

F.2 ALZHEIMER’S DISEASE DIAGNOSIS

Implementation Details. The imaging data are acquired from structural Magnetic Resonance
Imaging (sMRI) scan. After data-preprocessing via Dartel VBM (Ashburner, 2007) and Statistical
Parametric Mapping (SPM) for segmentation, we partition the whole brain into 9 brain regions
according to Tab. 8 and Tab. 7. Data normalization (w.r.t. mean and standard deviation) is used.
All structural equations are estimated by a two-layers FC with a sigmoid activation function in the
hidden layer. For structural equations generating X2, X3, the training takes 5000 iterations, with
the learning rate set to 0.1. For those generating X4, X5, X6, X7, the training takes 2000 iterations,
with the learning rate set to 0.1. fS− is parameterized by a two-layers FC with a sigmoid activation
function in the hidden layer, with training iterations set to 5000, the learning rate set to 0.25 (decrease
to 0.1 at iteration 4000). Jθ is parameterized by the same structure, with training iterations set to
2000, the learning rate set to 0.25. SGD is used for optimization. For the sparsity-based optimization,
we set the training iterations to 350, with learning rate set to 0.05, and penalty weight set to 2. Adam
is used for optimization.

We pick four domains with more than 40 patients as the training domains and test on the rest three
domains. To remove the effect of randomness, we replicate over all the 15 possible train-test splits.

Additional Results. We firstly report std. of MSE over the test sets for our method and baselines in
Tab. 5. As we can see, our method outperforms other baselines by a significant margin. This result
demonstrates the utility of our method in learning stably transferable predictors. Then, we compare
the performance of all g-equivalent classes with more than one member in Fig. 18. As we can see,
most equivalent classes have similar performance (small deviations). As for the several classes with
large deviations, it may be due to the approximation error incurred during inferring the causal graph.
Next, we show the optimization curve of h(S−, Jθ) and max MSE for 100 randomly picked subsets
S− ⊂ S, in Fig. 16 and Fig. 17. As we can see, the optimization over Jθ is well converged, and
the performance of different subsets is consistent with our expectations. This observation again
suggests the utility of Thm. 3.5 in finding the optimal predictor. Finally, we show the loss curve of
sparsity-based optimization in Fig. 20. As we can see, the optimization over h∗ is well converged.

F.3 GENE FUNCTION PREDICTION

Implementation Details. Data normalization (w.r.t. mean and standard deviation) is used. Structural
equations generating X2, X4 are estimated by a two-layers FC with a sigmoid activation function in
the hidden layer, with training iterations set to 5000, the learning rate set to 0.01. fS− is parameterized
by a two-layers FC with a sigmoid activation function in the hidden layer, with training iterations
set to 20000, the learning rate set to 0.01. Jθ is parameterized by the same structure, with training
iterations set to 120000, the learning rate set to 0.05. SGD is used for optimization. For the sparsity-
based optimization, we set the training iterations to 350, with learning rate set to 0.05, and penalty
weight set to 0.1. Adam is used for optimization.

We use the wide-type mice and three kinds of gene knockouts in the training domains. To remove the
effect of randomness, we generate 45 replications, with each trial appending 2 out of the remaining
10 gene knockouts to the training domains and testing on the rest 8 gene knockouts.

Additional Results. Firstly, we report std. of MSE over the test sets for our method and baselines in
Tab. 6. Similarly, our method outperforms other baselines by a significant margin, which together with
the Alzheimer’s disease experiment, shows the utility of our method in learning stably transferable
predictors. Then, we show the optimization curve of h(S−, Jθ) and the loss curve of sparsity-based
optimization in Fig. 19 and Fig. 21, respectively. As we can see, the optimizations both well
converge.
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Table 3: Maximal MSE comparison on simulation data.

Vanilla ICP IC IRM AncReg HRM IB-IRM Surg Ours

setting-1 1.90±.58 2.17±1.20 1.68±.54 1.38±.10 1.34±.23 2.69±1.74 1.58±.91 1.18±.06 1.18±.06

setting-2 .07±.00 .17±.31 .06±.02 .06±.04 .0071±.00 .33±.77 .29±.81 .0075±.0006 .0075±.00

setting-3 1.72±.72 1.61±.71 1.54±.62 2.98±1.07 2.34±.65 1.75±1.42 1.71±.41 1.10±.05 1.10±.05

Table 4: Mean (over randomization) of std. (over test domains) of MSE on simulation data.

Vanilla ICP IC IRM AncReg HRM IB-IRM Surg Ours

setting-1 .36 .22 .27 .01 .16 .56 .14 .10 .10
setting-2 .0057 .0111 .0051 .0034 .0005 .0820 .0142 .0006 .0006
setting-3 .35 .14 .27 .59 .40 .24 .20 .09 .09

Table 5: Mean (over randomization) of std. (over test domains) of MSE on ADNI dataset.

Vanilla ICP IC IRM AncReg HRM IB-IRM Ours

0.267 0.270 0.252 0.166 0.161 0.294 0.244 0.018

Table 6: Mean (over randomization) of std (over test domains) of MSE on IMPC gene dataset.

Vanilla ICP IC IRM AncReg HRM IB-IRM Ours

0.257 0.274 0.302 0.319 0.275 0.278 0.259 0.017

Table 7: Brain regions partition.

Brain Region AAL Index

Frontal lobe (X1) 3,4,5,6,7,8,9,10,11,12,13,14,15,16
Medial temporal lobe (X2) 85,86,87,88
Parietal lobe (X3) 59,60,61,62
Occipital lobe (X4) 49,50,51,52,53,54
Cingulum (X5) 31,32,33,34,35,36
Insula (X6) 29,30
Amygdala (X7) 41,42
Hippocampus (X8) 37,38
Pallidum (X9) 75,76
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Table 8: Automatic Anatomical Labeling (AAL) indices for brain regions.

Brain Region AAL Index Brain Region AAL Index

Precentral_L 1 Precentral_R 2
Frontal_Sup_L 3 Frontal_Sup_R 4
Frontal_Sup_Orb_L 5 Frontal_Sup_Orb_R 6
Frontal_Mid_L 7 Frontal_Mid_R 8
Frontal_Mid_Orb_L 9 Frontal_Mid_Orb_R 10
Frontal_Inf_Oper_L 11 Frontal_Inf_Oper_R 12
Frontal_Inf_Tri_L 13 Frontal_Inf_Tri_R 14
Frontal_Inf_Orb_L 15 Frontal_Inf_Orb_R 16
Rolandic_Oper_L 17 Rolandic_Oper_R 18
Supp_Motor_Area_L 19 Supp_Motor_Area_R 20
Olfactory_L 21 Olfactory_R 22
Frontal_Sup_Medial_L 23 Frontal_Sup_Medial_R 24
Frontal_Mid_Orb_L 25 Frontal_Mid_Orb_R 26
Rectus_L 27 Rectus_R 28
Insula_L 29 Insula_R 30
Cingulum_Ant_L 31 Cingulum_Ant_R 32
Cingulum_Mid_L 33 Cingulum_Mid_R 34
Cingulum_Post_L 35 Cingulum_Post_R 36
Hippocampus_L 37 Hippocampus_R 38
ParaHippocampal_L 39 ParaHippocampal_R 40
Amygdala_L 41 Amygdala_R 42
Calcarine_L 43 Calcarine_R 44
Cuneus_L 45 Cuneus_R 46
Lingual_L 47 Lingual_R 48
Occipital_Sup_L 49 Occipital_Sup_R 50
Occipital_Mid_L 51 Occipital_Mid_R 52
Occipital_Inf_L 53 Occipital_Inf_R 54
Fusiform_L 55 Fusiform_R 56
Postcentral_L 57 Postcentral_R 58
Parietal_Sup_L 59 Parietal_Sup_R 60
Parietal_Inf_L 61 Parietal_Inf_R 62
SupraMarginal_L 63 SupraMarginal_R 64
Angular_L 65 Angular_R 66
Precuneus_L 67 Precuneus_R 68
Paracentral_Lobule_L 69 Paracentral_Lobule_R 70
Caudate_L 71 Caudate_R 72
Putamen_L 73 Putamen_R 74
Pallidum_L 75 Pallidum_R 76
Thalamus_L 77 Thalamus_R 78
Heschl_L 79 Heschl_R 80
Temporal_Sup_L 81 Temporal_Sup_R 82
Temporal_Pole_Sup_L 83 Temporal_Pole_Sup_R 84
Temporal_Mid_L 85 Temporal_Mid_R 86
Temporal_Pole_Mid_L 87 Temporal_Pole_Mid_R 88
Temporal_Inf_L 89 Temporal_Inf_R 90
Cerebelum_Crus1_L 91 Cerebelum_Crus1_R 92
Cerebelum_Crus2_L 93 Cerebelum_Crus2_R 94
Cerebelum_3_L 95 Cerebelum_3_R 96
Cerebelum_4_5_L 97 Cerebelum_4_5_R 98
Cerebelum_6_L 99 Cerebelum_6_R 100
Cerebelum_7b_L 101 Cerebelum_7b_R 102
Cerebelum_8_L 103 Cerebelum_8_R 104
Cerebelum_9_L 105 Cerebelum_9_R 106
Cerebelum_10_L 107 Cerebelum_10_R 108
Vermis_1_2 109 Vermis_3 110
Vermis_4_5 111 Vermis_6 112
Vermis_7 113 Vermis_8 114
Vermis_9 115 Vermis_10 116
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Figure 16: Optimization curves of h(S−, Jθ) on ADNI dataset.
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Figure 17: Optimization curves of h(S−, Jθ) on ADNI dataset.
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Figure 18: Performance of g-equivalent classes on ADNI.
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Figure 19: Optimization curves of h(S−, Jθ) on IMPC gene dataset.
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Figure 20: Loss curve of sparsity-based optimization on ADNI dataset
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Figure 21: Loss curve of sparsity-based optimization on IMPC gene dataset
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