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Abstract

Although large language models (LLMs) have001
been largely successful in generating function-002
ally correct programs, conditioning models to003
produce efficient solutions while ensuring cor-004
rectness remains a challenge. Further, unre-005
liability in benchmarking code efficiency is006
a hurdle across varying hardware specifica-007
tions for popular interpreted languages such008
as Python. In this paper, we present ECCO,009
a reproducible benchmark for evaluating pro-010
gram efficiency via two paradigms: natural lan-011
guage (NL) based code generation and history-012
based code editing. On ECCO, we adapt and013
thoroughly investigate the three most promis-014
ing existing LLM-based approaches: in-context015
learning, iterative refinement with execution or016
NL feedback, and fine-tuning conditioned on017
execution and editing history. While most meth-018
ods degrade functional correctness and moder-019
ately increase program efficiency, we find that020
adding execution information often helps main-021
tain functional correctness, and NL feedback022
enhances more on efficiency. We release our023
benchmark to support future work on LLM-024
based generation of efficient code.025

1 Introduction026

The ability to write efficient code is a cornerstone of027

software development (Li et al., 2022). While large028

language models (LLMs) have shown remarkable029

progress in generating functionally correct code030

(Roziere et al., 2023; Guo et al., 2024), the ability to031

generate solutions that are both correct and efficient032

remains elusive (Shypula et al., 2021, 2024).033

Current methods for optimizing program effi-034

ciency improve performance measured by execu-035

tion time. However, this apparent success often036

comes at the cost of severely decreasing the func-037

tional correctness (Shypula et al., 2024). An exam-038

ple of this issue is illustrated in Figure 1: When op-039

timizing the program on the left, models sometimes040

perform spurious optimizations that, although they041

reduce the runtime, make the program no longer 042

functionally correct so that it fails all test cases. 043

On the other hand, a correct optimization (bottom 044

right) — that improves efficiency while maintain- 045

ing functional correctness — is often harder to 046

achieve for current LMs. This spurious optimiza- 047

tion is certainly undesirable in practice, and can 048

even increase debugging time for software devel- 049

opers (Li et al., 2022; Cummins et al., 2023a). To 050

achieve the goal of real and robust program opti- 051

mization, we ask: Can LMs improve program effi- 052

ciency without sacrificing functional correctness? 053

In this work, we curate an efficiency-oriented 054

programming benchmark ECCO, short for 055

Ensuring Correctness in Code Optimizations, 056

which enables program evaluation in three aspects: 057

execution correctness, runtime efficiency, and mem- 058

ory efficiency. ECCO supports two optimization 059

paradigms: (i) history-based code editing: based 060

on a previous version of the program, test if an LM 061

can further optimize the code while maintaining 062

its correctness, and (ii) NL-based code generation: 063

test the efficiency of a program generated by an LM 064

given a programming problem described in NL. We 065

collect over 50k Python solution pairs, where each 066

pair consists of a slower and faster version written 067

by the same user for a given problem. These pairs 068

span 1.3k competitive programming problems from 069

IBM CodeNet (Puri et al., 2021), with an average 070

of 3.1 public and 20.0 private test cases to support 071

reliable execution-based evaluations of correctness 072

and efficiency. 073

Further, to perform reliable and reproducible 074

executions, we introduce an evaluation setup using 075

a cloud-hosted code execution engine, JUDGE0 076

(Došilović and Mekterović, 2020), which produces 077

stable execution output on correctness, runtime, 078

and memory usage, thanks to its agnostic nature 079

to local hardware specifications. It supports up to 080

66 programming languages (PLs), allowing future 081

work to extend to other languages. 082
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# Program to search for a number
def search(list, target):
 for i, element in 
enumerate(list):
   if element == target:
     return i
 return -1

Problem: Write a program to search for a 
number in a list # Program to search for a number

def search(list, target):
 left, right = 0, len(list) - 1
 while left <= right:
   mid = (left + right) // 2
   if list[mid] == target: return mid
   elif list[mid] < target: 

left = mid - 1 # Bug
   else: right = mid + 1 # Bug
 return -1

spurious 
optimization

# Program to search for a number
def search(list, target):
 left, right = 0, len(list) - 1
 while left <= right:
   mid = (left + right) // 2
   if list[mid] == target: return mid
   elif list[mid] < target: 

left = mid + 1 # Fixed
   else: right = mid - 1 # Fixed
 return -1

correct optimization

500 ms pass test
120 ms fail test 150 ms pass test

Figure 1: Correctness-preserving versus spurious optimization when optimizing a linear search algorithm with
binary search on a sorted list. Spurious optimization can reduce runtime, but add errors that cause the program to be
incorrect. In contrast, a true optimization reduces runtime and remains correct, as we emphasized in ECCO.

To explore various correctness-preserving pro-083

gram optimization methods, we evaluate three084

classes of methods on ECCO— in-context learn-085

ing, iterative refinement, and fine-tuning, across a086

suite of open-source language models pre-trained087

on code — which previous works have used to088

attempt to improve efficiency, while however over-089

looking their effects on correctness. We find that ex-090

ecution information and fine-tuning help maintain091

functional correctness, and NL-involved prompt-092

ing often yields higher efficiency improvements.093

However, we broadly reconfirm findings that no ex-094

isting methods can improve time/space efficiency095

without sacrificing functional correctness. We hope096

ECCO can serve as a solid testbed for program op-097

timization, and call for more efforts in advancing098

correctness-preserving program optimizations.099

2 Related Work100

Benchmarks for Code Efficiency Some works101

have proposed benchmarks for optimizing pro-102

gram assembly code (Bunel et al., 2016; Shypula103

et al., 2021; Shi and Zhang, 2020; Cummins et al.,104

2023b). More recently, Shypula et al. (2024) target105

C++ program speedups, and Huang et al. (2024)106

evaluate the efficiency of Python solutions for107

LeetCode coding interview problems (Niu et al.,108

2024). Although most efforts on LLM-based code109

generation focus on evaluating functional correct-110

ness (e.g., Chen et al. 2021), some works evalu-111

ate code efficiency (Moudgalya et al., 2023; Sikka112

et al., 2020; Jeon et al., 2023; Baik et al., 2024)113

by classifying the time complexity of programs.114

However, these works are limited in their single-115

reference evaluation paradigm, assembly language116

support, or by the limited problem space on Leet-117

Code (Coignion et al., 2024). Our work supports118

reliable evaluation across arbitrary coding prob-119

lems and the widely-used Python language.120

Evaluating Program Efficiency It is challeng- 121

ing to robustly evaluate program efficiency, due 122

to varying hardware platforms and setups. Previ- 123

ous works have evaluated the efficiency of code 124

by executing code in a local software environment 125

(Singhal et al., 2024; Huang et al., 2024) or us- 126

ing Docker containerized environments on local 127

hardware (Khan et al., 2023), but this can result 128

in varying runtime and memory usage across hard- 129

ware, thus causing unreliable and irreproducible 130

efficiency evaluations. An alternative approach 131

is to use an architecture simulator (Shypula et al., 132

2024) which ensures the execution of each program 133

is exactly simulated at the hardware level on the 134

x86 architecture, but is limited to compiled lan- 135

guages such as C++. For more popular interpreted 136

languages such as Python and Java (JVM), some 137

use LeetCode’s execution engine (Niu et al., 2024; 138

Coignion et al., 2024), but with a restricted space of 139

testable problems. In our work, we propose an eval- 140

uation setup using an accessible cloud computing 141

instance that ensures consistent virtual hardware 142

and reliable benchmarking. 143

Program Optimization Approaches To start, 144

some works explore in-context learning to optimize 145

program efficiency (Shypula et al., 2024; Huang 146

et al., 2024). Beyond vanilla prompting, iterative 147

prompting methods (Madaan et al., 2024; Shinn 148

et al., 2024; Ridnik et al., 2024) have been explored 149

to improve specific aspects of generation, by incor- 150

porating feedback or reflection from an LM or ex- 151

ternal modules. Meanwhile, Shypula et al. (2024) 152

propose fine-tuning with self-play synthetic data, 153

with retrieved in-context examples via a nearest 154

neighbor search. However, none of these methods 155

have been rigorously studied in the correctness- 156

preserving optimization setup. We fill in this gap 157

and provide systematic studies of all methods. 158
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3 The ECCO Benchmark159

In this section, we first introduce our evaluation160

platform (§3.1), then describe the construction pro-161

cess of our ECCO benchmark (§3.2), and lastly,162

introduce our two task formulations with corre-163

sponding evaluation metrics (§3.3).164

3.1 Evaluation Platform165

To reliably evaluate program efficiency in both run-166

time and memory usage, we need to first establish a167

robust and reproducible evaluation platform. How-168

ever, evaluating program efficiency is challenging,169

as resource usage statistics vary greatly across hard-170

ware and setups (Singhal et al., 2024; Huang et al.,171

2024).172

To ensure stable execution for interpreted lan-173

guages such as Python, we propose to use a repro-174

ducible cloud compute instance that ensures the175

same virtual hardware, as illustrated in Figure 2.176

Specifically, we use an EC2 instance (detailed in177

§B), and execute the code within a code execution178

engine JUDGE0 (Došilović and Mekterović, 2020).179

Note that our recipe can easily extend to over 60180

programming languages that the JUDGE0 engine181

supports. This is set up as a sandboxed Docker con-182

tainer within the instance, which thus ensures an183

isolated setup for secure and reproducible code ex-184

ecution. Our platform is similar to evaluating gen-185

erated code on LeetCode execution console (Niu186

et al., 2024; Coignion et al., 2024), but applies187

to arbitrary coding problems and is not limited to188

questions available on LeetCode.1189

# Search for a number
def search(list, target):
  for i, element in 
enumerate(list):
    if element == target:
      return i
  return -1

HTTP Request
Test1: [1, 2], 1
Test2: [5, 6, 7], 1

Execution Results
Test 1: ✔  Test2: ❌

⏱  200ms 
💾 172 KB

AWS EC2 instance
(m7i.large)

Judge0 
(Sandboxed
and Isolated)

Figure 2: Our evaluation platform using JUDGE0.

3.2 Benchmark Construction190

Our goal is to collect programming problems, each191

with an NL description, and multiple functionally-192

correct solutions at varied efficiency levels.193

Problem Selection We collect programming194

problems from the IBM CodeNet dataset (Puri195

1We make the Amazon Machine Image (AMI) for the
setup available to enable reproducible benchmarks. We leave
evaluations in other languages for future work.

et al., 2021), which contains competitive program- 196

ming problems with NL descriptions, user program 197

submissions, and other metadata, scraped from the 198

AIZU and AtCoder online judging systems. Co- 199

deNet problems mostly require algorithmic tech- 200

niques such as data structure optimization. 201

Specifically, we first convert CodeNet to ∼187k 202

(slow, fast) Python code pairs following Shypula 203

et al. (2024), where each pair of programs has two 204

solutions for the same coding problem. We con- 205

verted all Python 2 solutions to Python 3 using 206

lib2to3.2 Lastly, we filter out spurious program 207

pairs in which the ‘fast’ code was in fact slower 208

when evaluated on our setup.3 209

Next, we split the pairs and group programs by 210

their associated problem ID. We filter out all prob- 211

lems with less than two solutions to ensure that 212

each NL problem description has multiple asso- 213

ciated solutions, to enable program optimization 214

based on code editing history. We then remove the 215

programs that are repetitive or cannot successfully 216

execute due to syntax errors or test case failures. 217

Our curated dataset was partitioned into three 218

subsets: train, validation, and test, with each split 219

consisting of a distinct set of problems. In the end, 220

the process yields 1,387 unique problems in ECCO 221

in total. 222

Test Case Collection To evaluate functional cor- 223

rectness, we require test cases. We collect (i) the 224

original test cases for each problem from CodeNet, 225

and (ii) the additional tests from the AlphaCode 226

project (Li et al., 2022). Each test case contains the 227

program inputs as well as expected outputs when 228

executing canonical program solutions on these in- 229

puts. With these two sets of test cases, we simulate 230

a realistic coding setting where one can refer to 231

(i) as the public test cases for debugging or other 232

accuracy-improving purposes, Tpublic, and (ii) as 233

private test cases to conduct final execution-based 234

evaluations on the programs, Tprivate. 235

3.3 Task Formulation and Evaluation 236

We propose two formulations for the program op- 237

timization task, namely NL-instructed generation 238

and history-based program editing. In this section, 239

we introduce the data we use for each formulation, 240

and our evaluations of program correctness, run- 241

time, and memory usage. 242

2https://docs.python.org/3/library/2to3.html
3Speed statistics reported in CodeNet may be inconsistent.
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3.3.1 History-Based Program Editing243

Our first paradigm follows previous work on pro-244

gram optimization (Shypula et al., 2024), where we245

facilitate a history-based editing paradigm. Con-246

cretely, we give a previous, presumably slow, ver-247

sion of the solution program, pin. We then prompt248

LMs to edit the code to generate a more efficient249

version pout, denoted as CodeLM(pin) → pout,250

where pout is expected to run faster than pin.251

Evaluating Speedup and Memory Reduction252

Using the (slow, fast) program pairs remaining af-253

ter post-processing in §3.2, we evaluate the rela-254

tive speedup and memory reduction of the model-255

generated program against the input program on256

private test cases Tprivate.257

We adopt the speedup metric introduced by Shy-258

pula et al. (2024), which is formulated as:259

Speedup =
Runtime of pin
Runtime of pout

(1)260

Similarly, to evaluate improvement in memory261

usage, we introduce a memory reduction metric as:262

Memory Reduction =
Memory of pin
Memory of pout

(2)263

# Program to search for a number
def search(list, target):
 for i, element in 
enumerate(list):
   if element == target:
     return i
 return -1

Problem: Write a program to search for a 
number in a listin

pu
t

ou
tp

ut

# Program to search for a number
def search(list, target):
 for i, element in 
enumerate(list):
   if element == target:
     return i
 return -1

Problem: Write a program to search for a 
number in a list

in
pu

t
ou

tp
ut

# Program to search for a number
def search(list, target):
 left, right = 0, len(list) - 1
 while left <= right:
   mid = (left + right) // 2
   if list[mid] == target: return mid
   elif list[mid] < target: 

left = mid + 1
   else: right = mid - 1
 return -1

slow

fast

Figure 3: Illustration of history-based editing.

3.3.2 NL-Instructed Generation264

In addition, we support the most common NL-to-265

code generation setup: given the NL description266

d of a problem, we ask the LM to generate the267

program solution p, as CodeLM(d) → p. Our268

goal is for the code LM to generate an efficient and269

correct solution p. We execute p on the public test270

cases to evaluate its performance4.271

4We evaluate the NL-instructed generation paradigm on
public test cases due to resource limitations

# Program to search for a number
def search(list, target):
 for i, element in 
enumerate(list):
   if element == target:
     return i
 return -1

Problem: Write a program to search for a 
number in a listin

pu
t

ou
tp

ut

Figure 4: Illustration of NL-based generation.

Solution Program Spectrum To evaluate rela- 272

tive runtime and memory efficiency, we measure 273

where a model-generated program lies on the spec- 274

trum of all user-submitted programs to that prob- 275

lem. We use the JUDGE0 evaluation platform (§3.1) 276

to measure the runtime and memory usage. 277

Evaluating Percentile over the Spectrum We 278

introduce runtime and memory percentile to mea- 279

sure the efficiency of the model-generated program 280

over the solution spectrum for a given problem as: 281

Runtime% =
# Slower user programs
Total # of user programs (3) 282

283

Memory % =
# Programs w/ more memory

Total # of user programs
(4) 284

3.3.3 Evaluating Functional Correctness 285

To measure if program correctness is preserved, a 286

key metric is the functional correctness of model- 287

generated programs. We adopt the pass@1 metric 288

introduced by Chen et al. (2021), which samples 289

one program from the model and measures whether 290

the generated program passes all test cases. 291

3.4 ECCO Feature Analysis 292

After filtering the problem description dataset, we 293

split the dataset into train, test, and validation sets 294

for experiments. We ensure that no problem IDs 295

overlap across these splits, to avoid data contamina- 296

tion. As shown by the detailed statistics of ECCO 297

in Table 1, ECCO contains 1.3k problems and over 298

50k program pairs for code optimization evaluation. 299

Split # Problems # Pairs # Avg. Test Cases
Public Private

Train 1262 48386 3.14 20
Test 56 881 3.29 20
Val 69 2359 3.17 20

Table 1: ECCO dataset statistics. 300
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4 Efficiency-Improving Approaches301

We explore various top-performing code generation302

approaches to improve program efficiency, while303

maintaining functional correctness, including in-304

context learning (§4.1), iterative refinement (§4.2),305

and fine-tuning (§4.3).306

4.1 In-Context Learning307

We explore two mainstream prompting strategies:308

instruction prompting and few-shot learning.309

Instruction prompting Many LMs perform bet-310

ter when incorporating instructions (Ouyang et al.,311

2022; Wei et al., 2022). We use two prompts: Igen312

for NL-based generation which instructs models to313

generate correct and efficient programs; and Ieff314

for history-based editing which instructs models to315

optimize the input program. Ieff is adapted from316

PIE (Shypula et al., 2024) and Self-Refine (Madaan317

et al., 2024). See §C for details.318

Few-Shot Learning We add few-shot example319

demonstrations (Brown et al., 2020): for the NL-320

based setting, using (NL, fastest program) pairs;321

for history-based editing, using (slow program, fast322

program) pairs. We randomly sample examples323

from the train set as the few-shot examples.324

4.2 Iterative Refinement325

We explore three methods to iteratively improve326

and refine the generated code to be more efficient,327

which intuitively aligns with the way that humans328

continuously refine code (Madaan et al., 2024).329

Self-Refine with NL Feedback We adopt self-330

refine (Madaan et al., 2024) that prompts LMs to331

iteratively examine the output and refine it. More332

concretely, (1) we first prompt the LM to generate333

a candidate solution; (2) we ask the same model334

to produce NL reasoning about why the code is335

incorrect and/or inefficient; and (3) we input the336

original input and the feedback from (2) to the337

model and ask it to generate an updated solution.338

Exec-Refine with Interpreter Feedback We339

propose an alternative refinement strategy that ob-340

tains deterministic execution feedback from the341

interpreter, by running the program over public test342

cases.5 If test cases are passed, the execution result343

provides the runtime and memory information; oth-344

erwise, this feedback provides interpreter error logs.345

5Models do not have access to the private test cases we
finally evaluate on.

Both correctness and efficiency can be informed 346

via this feedback. 347

NL+Exec Refine: NL Feedback on Interpreter 348

Results To allow feedback both in the forms of 349

NL and execution outputs, we ground the LM feed- 350

back on execution results, inspired by the Reflexion 351

feedback paradigm (Shinn et al., 2024). Specifi- 352

cally, we first obtain the execution results as in 353

exec-refine, then ask the LM to write NL feedback 354

on the incorrect/inefficient parts in the code, and 355

use this as additional input in the refinement turn. 356

4.3 Fine-tuning 357

We also explore three fine-tuning methods beyond 358

prompting-alone approaches. 359

Vanilla Fine-tuning In this vanilla training set- 360

ting, we leverage (NL, program) pairs and (slow 361

program, fast program) pairs to train models in- 362

dependently for each paradigm. We format the 363

data for both similarly to the in-context learning 364

prompts (§4.1), and finetune on a causal language 365

modelling task on the formatted data for each of 366

the two paradigms independently. 367

Execution Conditioned Fine-tuning Beyond 368

fine-tuning with basic contexts, we posit that fur- 369

ther conditioning on execution results could help. 370

Therefore, we include execution results of PASS/- 371

FAIL status, runtime, and memory usage for each 372

public test case for the input program. 373

Trajectory Conditioned Fine-tuning For 374

history-based editing, we further propose 375

trajectory-conditioned fine-tuning, by adding a 376

trajectory history of programs written by the same 377

user for the given problem in context. We first 378

collect all problems with at least three programs 379

submitted by the same user, and treat the series 380

of programs as a trajectory. From each qualified 381

trajectory, we designate the fastest code as the 382

target output, and sample three other intermediate 383

programs at the 0th, 33rd, and 66th percentile steps 384

to use as inputs. We aim to allow the model to learn 385

from the step-by-step improvements that led to the 386

optimal solution, capturing the problem-solving 387

process in addition to just the inputs and targets. 388

5 Experiments 389

5.1 Experimental Setup 390

Models We experiment with several best- 391

performing LMs pre-trained on code. Specifi- 392
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Model Setting History-based Editing NL-instructed Generation
pass@1 speedup memory reduction pass@1 runtime% memory%

StarCoder2 instruct 49.4 1.49 1.24 3.5 67.3 63.7
few-shot 49.8 1.70 1.07 3.5 55.3 63.6

CodeGemma instruct 42.5 1.43 1.10 21.4 57.2 49.0
few-shot 43.9 1.07 1.06 21.4 52.7 52.0

WizardCoder instruct 34.2 1.58 1.18 17.8 61.9 63.7
few-shot 27.4 1.38 1.12 17.8 67.0 56.1

CodeLLaMa instruct 57.5 1.44 1.11 7.1 76.9 66.8
few-shot 22.5 1.63 1.26 10.7 84.1 58.2

DeepseekCoder instruct 29.8 2.11 1.28 23.2 42.9 60.3
few-shot 35.2 2.26 1.20 21.4 70.7 59.3

GPT-4o instruct 66.6 1.64 1.10 53.5 56.4 52.4
few-shot 65.8 1.62 1.12 48.2 65.1 58.9

Table 2: Generation results using in-context learning approaches (instruction-prompting and few-shot examples).

cally, we evaluate CodeLlama-13B (Roziere et al.,393

2023), DeepSeekCoder-7B (Guo et al., 2024),394

CodeGemma-7B (Team et al., 2024), WizardCoder-395

13B-Python (Luo et al., 2023), StarCoder2-15B396

(Lozhkov et al., 2024). We use the instruction-397

tuned versions of all of these open-checkpoint mod-398

els unless indicated otherwise. We also use the pro-399

prietary GPT-4o model for no-training methods.400

5.2 Results and Analysis401

5.2.1 In-Context Learning402

As shown in Table 2, all methods either reduce403

pass@1 by a large margin (in editing mode) or ob-404

tain low pass@1 (generation mode). Comparing405

the two paradigms, history-based editing results in406

a substantially higher pass@1 by referring to a base407

correct program, compared to NL-instructed gener-408

ation which lacks a base program to start from.409

History-based editing While in-context learning410

can effectively speed up the program by 7–126%,411

it also degrades correctness by 42.5–77.5 from the412

100% pass@1 in base programs, and uses more413

memory. Few-shot shows this trend more explicitly414

than instruct. Besides the limitations of LMs, this415

may be caused by the sampled few-shot demon-416

strations being algorithmically less relevant to the417

problem at hand.418

NL-instructed generation In this paradigm, in-419

struction and few-shot examples are comparably420

helpful in all three evaluated dimensions for most421

models. While WizardCoder and CodeLlama ob-422

tain 7–35 higher pass@1 with instruct, Deepseek-423

Coder few-shot pass@1 is higher by 5.4 points.424

Nonetheless, this trend does not generalize to425

the two efficiency dimensions, suggesting that no 426

method or model is an overall winner. 427

5.2.2 Iterative Refinement 428

Table 3 shows all results with iterative refinement 429

methods. As a reference for the refinement ap- 430

proaches, we measure the LM-generated code in 431

the first attempt at optimization without any refine- 432

ment, and denote this method as pre-refine. 433

History-based editing paradigm While all 434

methods can effectively speed up the program, 435

methods that involve NL feedback (self-refine and 436

nl+exec refine) achieve the highest speedup across 437

models. exec-refine consistently yields the highest 438

pass@1 for all models, by 3.4–38.8 points more 439

than the other two methods. We conjecture that 440

execution outputs are better representations to in- 441

form functional correctness than NL descriptions. 442

Although it is easier to convey high-level optimiza- 443

tion strategies in NL, conveying the functional cor- 444

rectness is harder. Overall, although the models 445

are instructed to emphasize both correctness and 446

efficiency, there seems to be an implicit trade-off 447

between them. Additional analysis of the same is 448

detailed in §A. 449

NL-instructed generations We observe similar 450

patterns as the editing mode, that exec-refine best 451

maintains functional correctness, and two other 452

NL-involved approaches improve runtime/memory 453

efficiency by a larger margin. Compared to the 454

in-context learning results in Table 2, iterative re- 455

finement yields 21.2–38.1 percentile higher in the 456

program runtime spectrum, which is reasonable 457

with the additional prompting efforts. 458
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Model Setting History-based Editing NL-instructed Generation
pass@1 speedup memory reduction pass@1 runtime% memory%

StarCoder2

pre-refine 49.4 1.49 1.24 3.5 67.3 63.7

self-refine 26.7 1.55 1.30 1.7 3.8 75.6
exec-refine 39.5 1.49 1.23 1.7 3.8 41.2
nl+exec refine 26.1 2.13 1.26 1.7 95.5 50.1

CodeGemma

pre-refine 42.5 1.43 1.10 21.4 57.2 49.0

self-refine 15.1 2.08 1.15 12.5 44.7 56.8
exec-refine 33.2 1.59 1.12 21.4 50.1 52.3
nl+exec refine 29.8 1.54 1.14 17.8 54.3 41.1

WizardCoder

pre-refine 34.2 1.58 1.18 17.8 61.9 63.7

self-refine 8.5 2.16 1.23 12.5 83.1 60.1
exec-refine 20.9 1.60 1.13 17.8 76.5 54.7
nl+exec refine 18.3 2.90 1.30 16.0 64.6 61.9

CodeLLaMa

pre-refine 57.5 1.44 1.11 7.1 76.9 66.8

self-refine 15.8 2.02 1.22 3.5 100.0 59.4
exec-refine 54.6 1.51 1.12 5.3 47.8 60.5
nl+exec refine 16.2 1.37 1.02 5.3 99.8 49.9

DeepseekCoder

pre-refine 29.8 2.11 1.28 23.2 42.9 60.3

self-refine 13.6 2.73 1.35 12.5 81.0 60.3
exec-refine 27.4 2.34 1.24 19.6 63.6 50.3
nl+exec refine 19.6 3.54 1.37 16.0 45.9 69.3

GPT-4o

pre-refine 66.6 1.64 1.10 53.5 56.4 52.4

self-refine 47.8 2.72 1.25 41.1 72.2 46.9
exec-refine 60.8 2.19 1.22 60.7 63.0 50.7
nl+exec refine 58.8 2.39 1.22 57.1 53.1 44.1

Table 3: Generation results with iterative refinement approaches for two optimization paradigms.

GPT-4o obtains much higher pass@1 than all459

other models in both paradigms. However, it under-460

performs on time and memory efficiency aspects,461

implying its limited ability to achieve both goals.462

5.2.3 Fine-tuning463

We perform parameter-efficient fine-tuning on464

CodeLLaMa-7B and DeepseekCoder-7B, the best-465

performing models on the correctness and effi-466

ciency metrics in our prompting experiments6.467

History-based editing As shown in Table 4, fine-468

tuning is the most effective method in maintaining469

correctness in the editing paradigm. Especially for470

DeepseekCoder, compared to the highest prompt-471

6We finetune CodeLLaMa 7B instead of 13B due to com-
putational constraints

Model Method pass@1 speedup mem.red.

CodeLLaMa-7B
Vanilla 43.0 1.11 1.01
Execution 45.0 1.41 1.04
Trajectory 70.2 1.01 1.00

DeepseekCoder
Vanilla 42.1 1.11 1.01
Execution 43.0 1.16 1.02
Trajectory 69.8 1.01 1.00

Table 4: Fine-tuning results for history-based editing.

ing results 35.2 using few-shot examples, vanilla 472

and execution-conditioned tuning improves by 6.9 473

and 7.8 points, and trajectory-conditioned tuning 474

further gains a 34.6 point increase overall. This 475

suggests that adding user-specific coding trajecto- 476

ries can help ground models into the optimization 477

mode and substantially improve output correctness. 478

NL-instructed generation Similarly for NL- 479

instructed generation in Table 5, fine-tuning is ef- 480

fective in maintaining correctness, yet does not 481

optimize the program by a large extent, in either 482

time or space dimensions. 483

However, fine-tuning results in a much less effi- 484

ciency improvement than prompting-based meth- 485

ods for both paradigms, possibly due to the limited 486

power of parameter efficient fine-tuning. 487

Model Method pass@1 runtime% mem%

CodeLLaMa-7B
Pre-trained 7.1 96.6 43.5
Finetuned 14.2 71.0 57.2

Deepseek
Pre-trained 23.2 42.9 60.3
Finetuned 23.2 80.5 64.6

Table 5: Fine-tuning results for NL-based generation.
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Figure 5: Performance of DeepseekCoder over multiple iterations of refinement. The improvement in efficiency is
outweighed by the consistent drop in pass@1.

6 Additional Analysis488

Does instruction tuning help in-context learn-489

ing? As instruct model versions are expected to490

be better at in-context learning than their base coun-491

terparts, we compare base and instruct model ver-492

sions in the editing paradigm. In Table 6, the base493

versions get much higher correctness albeit at lower494

efficiency, showing that base and instruct versions495

lie at different points on the correctness-efficiency496

trade-off. As we emphasize both correctness and497

efficiency aspects in the NL instruction, we conjec-498

ture the instruct models take more hints from the499

input format and emphasize efficiency, while base500

models primarily emphasize correctness.501

Model Version pass@1 speedup mem.red.

CodeLlama
Instruct 22.5 1.63 1.26
Base 46.4 1.02 1.00

DeepseekCoder
Instruct 35.2 2.26 1.20
Base 45.4 1.04 1.00

CodeGemma
Instruct 43.9 1.07 1.06
Base 48.2 1.01 1.00

StarCoder2
Instruct 49.8 1.70 1.07
Base 41.5 1.03 1.00

Table 6: Comparing base and instruct model versions
with in-context learning methods.

Does multi-iteration refinement help? Multiple502

refinement iterations may improve results by allow-503

ing more turns for models to refine. To verify this,504

we evaluate the iterative refinement method using505

1–4 iterations. While self-refine and exec-refine im-506

prove program speedup over iterations (Figure 5b),507

all methods continuously degrade the pass@1 to508

various extents. For memory usage (Figure 5c),509

exec-refine consistently reduces memory usage, yet510

other methods exhibit big fluctuations. In general,511

more iterations can speed up the program, yet fur-512

ther sacrifice correctness, thus has limited gains in513

terms of correctness-preserving optimization.514

Can iterative prompting fix incorrect solutions? 515

To study whether models can recover from incor- 516

rect starting solutions in the history-based editing 517

paradigm, we evaluate on a collection of 157 pairs 518

of programs, ECCO-FIX, where the input code is 519

almost correct: one that passed all public test cases 520

but fails a few private test cases. As shown by Ta- 521

ble 7, we show that exec-refine can fix incorrect 522

programs to pass all public and private test cases, 523

with access to only the PASS/FAIL status of public 524

test cases. In comparison, self-refine breaks the cor- 525

rectness of more programs. Aligning with our find- 526

ings in earlier sections and §A, exec-refine, with 527

execution information in contexts, can encourage 528

models to generate functionally correct programs. 529

Model Instruct Self-Refine Exec-Refine

StarCoder2 12.1 9.5 8.9
CodeGemma 10.8 3.1 10.8
WizardCoder 20.3 1.9 14.6
CodeLlama 17.1 7.6 36.9
DeepseekCoder 12.7 5.7 15.2

Table 7: Pass@1 of iterative refinement strategies for
models on ECCO-FIX, under the editing paradigm.

7 Conclusion 530

In this paper, we introduce the ECCO bench- 531

mark that enables two paradigms for Python pro- 532

gram optimization, using JUDGE0, a language and 533

platform-agnostic execution framework. We find 534

that execution information and fine-tuning help 535

LLMs maintain code correctness, and prompting 536

with natural language often yields higher efficiency 537

gains. However, we broadly reconfirm findings that 538

no existing method can improve efficiency with- 539

out sacrificing functional correctness. We hope 540

ECCO can serve as a testbed for program opti- 541

mization, and we call for more efforts in advancing 542

correctness-preserving program optimizations. 543
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Limitations544

Our benchmark establishes a solid foundation for545

rigorously evaluating the ability to generate effi-546

cient solutions, however, we also note that there547

are limitations to our work.548

First, ECCO only includes Python problems so549

far, but our JUDGE0 evaluation platform and our550

benchmark curation recipe if fully reproducible and551

could extend to other programming languages of552

interest. Second, our benchmark currently focuses553

on competitive programming problems. It is also554

possible to extend our benchmark to other types555

of programming problems from more real-world556

software engineering scenarios.557

Due to both limitations, our results may not558

be comprehensive enough to reflect the quality of559

model-generated programs on the full spectrum of560

all programming languages and problems. When561

using ECCO in practice, we recommend the read-562

ers examine the model outputs, in addition to the563

quantitative results produced by our framework.564
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A Iterative Refinement Analysis738

Following Shypula et al. (2024), we also evaluate739

runtime and memory efficiency as a percentage of740

pairs where the generated code pout is faster/uses741

lesser memory than pin, in addition to the speedup742

and memory reduction metrics described in §3.3.1.743

In Table 8, these percentage optimized metrics744

clearly indicate that exec-refine is the most consis-745

tent iterative refinement method as it achieves the746

best pass@1, % runtime optimized and % memory747

optimized across all models. Contrasting these re-748

sults to Speedup and Memory Reduction in Table749

3, we note that while natural language feedback750

(in self-refine and NL+Exec refine) aids in signif-751

icantly improving the runtime and memory usage752

for a few cases (while breaking test cases for oth-753

ers), exec-refine improves runtime and memory in754

more cases albeit to a smaller degree.755

B Implementation Details756

Generation We use a maximum length of 1024757

tokens, and a temperature of t = 0.4. We provide758

two examples for all in-context few-shot experi-759

ments760

Hardware We run all our experiments on a mix761

of A6000 and L40 GPUs. Specifically for the762

prompting iterative prompting and in-context learn-763

ing approaches, we use 1-2 GPUs of the type and764

utilize the vLLM library (Kwon et al., 2023) primar-765

ily for generating programs efficiently. We perform766

finetuning on 4 A6000 GPUs.767

For JUDGE0 evaluation virtual hardware setup,768

we use an m7i.large EC2 instance which has 2769

vCPU cores of the 4th Generation Intel Xeon Sap-770

phire Rapids, with 8GB of RAM.771

Fine-tuning We adopt parameter-efficient fine-772

tuning with LoRA (Hu et al., 2022) due to resource773

limitations and implement this using the Hugging-774

Face Transformers library 7. We optimize the fine-775

tuning using Deepspeed 8 ZeRo stage 2 with a776

LoRA rank of 8, alpha of 16 and a per-device batch777

size of 2. We use the AdamW optimizer, with a778

learning rate of 1e-3 and a warmup of 100 steps.779

We train the models on the history-based editing780

task for a single epoch and fine-tune models for 10781

epochs on the NL-instructed generation task.782

7https://github.com/huggingface/transformers
8https://github.com/microsoft/DeepSpeed

C Prompt Details 783

We illustrate and detail all of the prompts used for 784

the experiments below. 785
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Model Setting History-based Editing
pass@1 % Runtime Opt % Mem. Opt.

StarCoder2
self-refine 26.7 22.5 27.0
exec-refine 39.5 25.5 30.3
nl+exec refine 26.1 22.6 27.0

CodeGemma
self-refine 15.1 18.2 29.3
exec-refine 33.2 25.5 34.5
nl+exec refine 29.8 21.0 31.3

WizardCoder
self-refine 8.5 16.1 24.4
exec-refine 20.9 20.0 27.2
nl+exec refine 18.3 17.1 26.9

CodeLLaMa
self-refine 15.8 15.6 24.5
exec-refine 54.6 27.4 39.6
nl+exec refine 16.2 16.8 23.2

DeepseekCoder
self-refine 13.6 26.8 35.8
exec-refine 27.4 31.4 40.0
nl+exec refine 19.6 29.7 36.5

GPT-4o
self-refine 47.8 42.5 42.3
exec-refine 60.8 48.8 51.1
nl+exec refine 58.8 48.6 48.1

Table 8: Comparing iterative refinement approaches on % Optimization metrics. Exec-Refine is the best performing
approach across all models and metrics

Optimize the python program below to be functionally equivalent
but run faster and use less memory.

Here are a few examples:

### Program:
{slow_code_example}

### Optimized (Runtime and Space) version of Program above:
{fast_code_example}

### Program:
[src_code]

### Optimized (Runtime and Space) version of Program above:

Figure 6: Prompt for Instruction prompting Ieff along with in-context examples
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Your solution was functionally {CORRECT/INCORRECT}

Here are the run time and memory stats of your code for each test case
-- Stats for test case 0 --
Correct: {PASSED/FAILED}
Run time: 0.009 s
Memory: 3352.0 KB
-- Stats for test case 1 --
Correct: {PASSED/FAILED}
Run time: 0.009 s
Memory: 3316.0 KB

Figure 7: Example of Execution Feedback on public test cases used for Exec-Refine and Execution Conditioned
Fine-tuning

Write a python solution for the problem below which is
correct and efficient (runtime and memory).

##Problem Name:
{problem_name}

##Problem Description:
{In detail description of the task}

## Sample Inputs:
{input_test_cases}

##Sample Outputs:
{Expected Output}

Figure 8: Prompt for NL-instructed generation Igen

### Candidate solution:
{previous_code_attempt}

### Feedback for incorrectnes/inefficiency and how it can be improved:
{self-feedback / execution-feedback / reflection}

### Optimized/Corrected solution based on feedback:

Figure 9: Prompt used for refining code in Self-Refine, Exec-Refine and NL+Exec-Refine

13



Based on the execution results, reflect on why the code solution
below was incorrect or inefficient and how the program can be fixed.

{generated code solution}

## Execution Results:
{Execution Feedback for the previous attempt}

### Reflection on incorrectnes/inefficiency and how it can be improved:

Figure 10: Prompt used for NL+Exec-Refine to reflect on Execution results

##1 iteration program:
{slowest program in trajectory}

##2 iteration program:
{33 percentile fastest program in trajectory}

##3 iteration program:
{66 percentile fastest program in trajectory}

### Final iteration program:

Figure 11: Format of Trajectory-Conditioned Fine-tuning data

14


	Introduction
	Related Work
	The ECCO Benchmark
	Evaluation Platform
	Benchmark Construction
	Task Formulation and Evaluation
	History-Based Program Editing
	NL-Instructed Generation
	Evaluating Functional Correctness

	ECCO Feature Analysis

	Efficiency-Improving Approaches
	In-Context Learning
	Iterative Refinement
	Fine-tuning

	Experiments
	Experimental Setup
	Results and Analysis
	In-Context Learning
	Iterative Refinement
	Fine-tuning


	Additional Analysis
	Conclusion
	Iterative Refinement Analysis
	Implementation Details
	Prompt Details

