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Abstract001

The Transformer model has been increasingly002
applied across various domains, driven by the003
self-attention mechanism, which offers robust004
data processing capabilities and has substan-005
tially contributed to the advancement of the006
model. In the self-attention mechanism, three007
core matrices from the same data batch are008
computed together to determine correlations009
between input elements. Drawing inspiration010
from the efficiency and stability conferred by011
negative feedback structures in predictive con-012
trol systems, the concept of vertical training013
was introduced to integrate data from mul-014
tiple batches. Accordingly, this paper pro-015
poses an autoregressive with exogenous inputs016
(ARX) approach for the self-attention mecha-017
nism, transforming the Encoder block into a018
negative feedback predictive control system. A019
network architecture based on this method is020
also proposed, enabling the autoregressive with021
exogenous inputs for self-attention to transmit022
data from batches at previous time points. The023
effectiveness of the proposed approach is vali-024
dated through comparative experimental evalu-025
ations.026

1 Introduction027

In recent years, neural network research had grad-028

ually become central to advancements in artificial029

intelligence(Voulodimos et al., 2018; Zhao et al.,030

2024; González-Sabbagh and Robles-Kelly, 2023).031

Computer Vision (CV) and Natural Language Pro-032

cessing (NLP) had also assumed significant roles033

in daily life(Fanni et al., 2023; Khurana et al.,034

2023). Among the developments in these fields,035

the emergence of self-attention (SA) mechanisms036

and Transformer networks had addressed the lim-037

itations imposed by short memory in traditional038

attention mechanisms(Vaswani et al., 2017). The039

application of SA to the CV domain had similarly040

enhanced network performance(Li et al., 2023; Sun041

et al., 2023). However, existing research on SA042

mechanisms primarily concentrated on improving 043

computational efficiency and optimizing perfor- 044

mance(Zaheer et al., 2020; Hassani et al., 2023). 045

For instance, the Swin Transformer significantly 046

reduced computational overhead by minimizing 047

less relevant correlations in the SA mechanism, 048

yielding improved performance on several bench- 049

mark datasets(Liu et al., 2021; Dong et al., 2022). 050

These computational optimizations were generally 051

predicated on the importance of pixel correlation 052

calculations. While these methods reduced com- 053

putational load for distant pixel relationships, they 054

concurrently strengthen the correlation between 055

neighboring pixels. Some approaches also low- 056

ered the computational complexity by reducing the 057

dimensionality of low-rank core matrices, effec- 058

tively adjusting the image size(Shen et al., 2021; 059

Mayer et al., 2022). Although these techniques had 060

undeniably optimized the SA mechanism, there 061

remained a notable lack of a robust theoretical 062

foundation for SA and Transformer models. As 063

a result, the tuning of Transformer parameters and 064

architectures continued to rely heavily on empirical 065

experimentation. 066

To enhance the controllability of neural net- 067

works, several studies had explored the integration 068

of neural networks with control theory, beginning 069

with common residual blocks, in an effort to un- 070

cover underlying patterns(Chen et al., 2018; Zhang 071

et al., 2021; Chien and Chen, 2021; Chen et al., 072

2024). Control theory, having evolved rapidly over 073

the past decades from a branch of mathematics into 074

a distinct and widely applied discipline, was capa- 075

ble of integrating principles from numerous fields. 076

Predictive control theory, in particular, offered the 077

advantage of improving both control performance 078

and efficiency by forecasting future system behav- 079

iors and optimizing control inputs(Maciejowski 080

and Huzmezan, 2007; Babayomi et al., 2023). In 081

pursuit of imparting controllability to neural net- 082

works, this study examines the self-attention mech- 083
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anism from the perspective of predictive control084

systems. It is observed that the modified SA mech-085

anism can be conceptualized as an autoregressive086

with exogenous inputs (ARX) model(Huang et al.,087

2023).088

To introduce predictability into certain neural089

networks, this paper re-evaluates the connections090

between the self-attention mechanism and vari-091

ous blocks within Transformers. By integrating092

the residual structure in the Encoder block with a093

modified SA mechanism, a method has been devel-094

oped that enhances training accuracy with minimal095

additional computational cost. Specifically, the096

proposed method, termed autoregressive with ex-097

ogenous inputs for self-attention (ARXSA), gains098

temporal characteristics by constructing the self-099

attention mechanism through core matrices gener-100

ated at different time points. These matrices are101

combined with the current matrix through a recur-102

rent process, imparting temporal characteristics to103

the exogenous inputs as well. To assess the feasi-104

bility of this approach, the autocorrelation function105

(ACF) is employed to validate its autoregressive106

properties(Podulka et al., 2023; Wu et al., 2023).107

The results confirm that the ARXSA method ex-108

hibits autocorrelation, aligning it with the ARX109

model. This suggests that ARXSA can adjust net-110

work outputs based on historical data. To distin-111

guish between conventional training methods and112

those incorporating historical data, the concept of113

unit time in the training process is introduced, de-114

fined based on batches. Consequently, training115

methods are classified into horizontal and vertical116

training, depending on the unit time. By employing117

the vertical training concept, the ARXSA method118

transforms the Encoder block into a negative feed-119

back predictive control system. The feedback path120

of ARXSA improves both the efficiency and ro-121

bustness of the overall network(Wu et al., 2020;122

Wang et al., 2017, 2020). Furthermore, ARXSA is123

integrated into Transformers to enhance their oper-124

ational efficiency. The resulting Transformer can125

be interpreted as a predictive control system with126

autoregressive properties. Extensive experiments127

on several widely-used benchmark datasets demon-128

strate the efficacy of the proposed Transformer in129

image classification and object detection tasks. Ad-130

ditionally, its generality is validated in networks131

similar to Swin Transformer. The contributions are132

summarized as follows:133

• The concept of vertical training is introduced,134

differentiating it from traditional training 135

methodologies. This approach enables the 136

concurrent computation of data across multi- 137

ple batches, significantly improving both the 138

robustness and efficiency of the network. 139

• A novel theory is proposed to transform the 140

self-attention mechanism into an autoregres- 141

sive (AR) model, unveiling the strong connec- 142

tion between the SA mechanism and predic- 143

tive control systems. This theory not only pro- 144

vides a robust explanation for the performance 145

improvements achieved by the ARXSA mech- 146

anism in Transformers but also establishes a 147

theoretical foundation for the SA mechanism. 148

• Leveraging the insights gained from the 149

ARXSA perspective, a Transformer backbone 150

network grounded in predictive control theory 151

is developed. This backbone network, named 152

ARXFormer, integrates principles from both 153

disciplines, offering a theoretically driven and 154

highly effective approach. 155

2 Method 156

This section will systematically introduce predic- 157

tive control theory, the ARX model, and the ACF, 158

detailing the relationship between predictive con- 159

trol and the ARX model through illustrative ex- 160

amples. Next, the concept of unit time, which 161

is defined in relation to batch processing in neu- 162

ral network training, will be introduced. The unit 163

time will be followed by a description of two dis- 164

tinct training methods based on the unit time con- 165

cept. Subsequently, the integration of the ARX 166

model with the self-attention mechanism to form 167

the ARXSA method will be explained, and its au- 168

tocorrelation properties will be validated by ACF. 169

Lastly, a comprehensive overview of the network 170

architecture incorporating the ARXSA method into 171

the Transformer will be provided. 172

2.1 Control Systems and ARX Model 173

In practical applications, control systems exhibit 174

considerable diversity, with varying methods em- 175

ployed across different systems(Gong et al., 2020; 176

Huang et al., 2024). Furthermore, control prob- 177

lems in real-world scenarios are often continuous, 178

as systems require ongoing feedback from their out- 179

puts(Esterhuizen et al., 2020; Zhang et al., 2022; 180

Tang et al., 2018). However, solving continuous 181
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problems is highly complex. It not only requires ex-182

tensive computations but also involves cases where183

no solutions exist at extremum points. To miti-184

gate the impact of solving continuous functions on185

algorithms and neural networks, we analyze the186

problem from a discrete perspective, leveraging the187

independence of batches. As a kind of statistical188

model, the autoregressive model is a prediction189

method based on time series(Dijk et al., 2002). The190

basic form of the model is as follows:191

yt = a1yt−1 + a2yt−2 + ...+ anyt−n + et, (1)192

where yt−i(i = 1, 2, ..., n.) is the output of the193

system at time t− i ai(i = 1, 2, ..., n.) is the coef-194

ficient of the output and et is the error term. There-195

fore, the output of the AR model at time t is the196

weighted sum of the outputs of multiple historical197

moments.198

The ARX model is one of the predictive control199

methods, combining the AR part and the exogenous200

input (X) part. Its model can be represented as:201

yt = a1yt−1 + a2yt−2 + ...+ anyt−n202

+ b1ut−1 + b2ut−2 + ...+ bmut−m203

+ et, (2)204

where yt−i(i = 1, 2, ..., n− 1) is the output of the205

system at time t − i, ut−j(j = 1, 2, ...,m − 1) is206

the exogenous input of the system at time t, and207

et is the error term. Meanwhile, i and j are the208

autoregressive order (AR order) and the exogenous209

variable order (X order) of the model. Based on AR210

model, ARX model adds exogenous input which211

also has autoregressiveness.212

2.2 Autocorrelation Function213

The autocorrelation function is applied to deter-214

mine whether there is correlation at different time215

lags in a time-dependent sequence. Specifically,216

the ACF assesses whether there is autocorrelation217

by inputting the historical data of a variable itself.218

The basic form of the ACF is as follows:219

ρh =
Cov(Xt, Xt−h)√

V ar(Xt)V ar(Xt−h)
, (3)220

where Xi(i = 1, 2, ..., n)represents the time se-221

ries being evaluated, and h represents the lag order.222

Since the epochs of neural networks are often nu-223

merous, the sample autocorrelation function can224

also be employed. The expression is as follows:225

ρh =
E[(Xt+h − µ)(Xt − µ)]

E[(Xt − µ)2]
, (4)226

Network Layer

𝑓(𝑥𝑡)𝑥𝑡
+

𝑦𝑡

Figure 1: Residual structure of neural network.

where µ is the sample mean and E[] is the mathe- 227

matical expectation of the time series. 228

The purpose of the ACF is to determine whether 229

a time series exhibits autocorrelation. The neces- 230

sary and sufficient conditions for employing ACF 231

on a time series are as follows: 232

• The mean and variance of the time series must 233

be constant. 234

• There should be no missing values in the time 235

series data. 236

• The length of the time series must be suffi- 237

ciently long. 238

The calculated results range is (−1 ≤ ρh ≤ 1). 239

Meanwhile, there is a positive correlation when 240

(0 < ρh < 1), there is a perfect positive correla- 241

tionwhen ρh = 1, there is a negative correlation 242

when (−1 < ρh < 0), there is a perfect negative 243

correlation when ρh = −1. and it indicates that 244

there is no autocorrelation when ρh = 0. 245

2.3 Horizontal Training and Vertical Training 246

Currently, the residual structure has been adopted 247

by most neural networks(He et al., 2016). Recent 248

work has demonstrated that residual structure can 249

be regarded as a special dynamic system(Weinan, 250

2017; Meunier et al., 2022; Zhu et al., 2023). For 251

a basic residual block, it can be written as follows 252

during a batch of training: 253

yt = xt + f(xt), (5) 254

where xt is the input of the residual structure, f(xt) 255

is the method of parameter training in the residual 256

structure, and yt is the result of the sum of the 257

parameters after training and the input matrix of 258

the same shape. 259

The residual block in Fig 1 is the SA mechanism 260

in the Encoder block(Dosovitskiy et al., 2020; Liu 261

et al., 2021). In addition to the multi-head self- 262

attention (MHSA) layer, this block also includes a 263

layer normalization (LN) layer and a Dropout layer. 264
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Figure 2: Comparison between horizontal training and
vertical training based on the concept of unit time.

The LN is a normalization method that is inde-265

pendent of the input content, and its computations266

on the matrix are limited to scaling up or down267

proportionally. Additionally, the output matrix of268

the SA mechanism represents the significance of269

inter-pixel relationships, which is not affected by270

proportional scaling. Dropout is a method applied271

to prevent overfitting by effectively multiplying a272

randomly selected subset of parameters by zero.273

The randomness in parameter computation serves274

as a measure of the networks robustness. Within a275

controlled range, the randomness can be regarded276

as an error that follows a Gaussian distribution.277

Therefore, both the LN module and the dropout278

module do not affect the computation of the resid-279

ual block. For the residual structure in Fig 1, it can280

be written similarly to equation (5) as follows:281

yt = xt + fSA(xt), (6)282

where fSA(xt) compose LN, MHSA and Dropout283

layers.284

The residual structure effectively prevents accu-285

racy from decreasing when the network depth is286

expanded(He et al., 2016). However, the residual287

structures ability to adjust and trace network param-288

eters exists only within the computation process289

of a single batch. The time required for training290

each batch in the network is not always the same,291

so that real time cannot be defined as the unit of292

time to segment the training progress. Fortunately,293

except for the last batch, the size of each batch294

remains constant throughout the training process. 295

Therefore, the period from when first batch enters 296

the network to when the second batch enters the 297

network was defined as a unit of time, denoted as t. 298

In a typical network, input data is divided into 299

batches of equal size during the training process. 300

These batches form a sequence that waits and en- 301

ters the network sequentially for computation. The 302

distribution of the input data sequence during the 303

training process is shown in the upper figure of 304

Fig. 2. In the figure, the horizontal axis represents 305

the unit time, while the vertical axis represents 306

all the input data. Since the unit of time is de- 307

fined based on batches, the distribution of adjacent 308

batches during training appears as a linear function 309

with a near-zero constant term. However, batches 310

are independent of each other, and at the given time 311

t, only Batcht is processed by the network. We 312

define the direction of the sequence of independent 313

batches over time as the horizontal direction. The 314

training within one epoch is referred to as horizon- 315

tal training (HT). 316

Conversely, as shown in the lower figure of Fig 2, 317

when information from multiple batches is input 318

into the network simultaneously during training, 319

the batch sequences are combined. In the figure, 320

the horizontal axis still represents the unit time, 321

and the vertical axis represents all the input data. 322

The number of batches included at the same time 323

is referred to as the order. The below figure shows 324

the distribution of third-order input data at times 325

t− 1, t, and t+ 1. At time t, the information input 326

into the network consists of Batcht, Batcht−1 and 327

Batcht−2. At the sequence, the input data at any 328

given moment is distributed vertically. Therefore, 329

training within one epoch in this manner is referred 330

to as vertical training (VT). 331

2.4 Self-attention with ARX Model 332

In this section, the SA mechanism is employed 333

to integrate current and historical data, allowing 334

the networks training method to align with VT. 335

Then, when the AR order is set to 1, it will be 336

demonstrated that the Encoder block, employing 337

the ARXSA method, functions as a negative feed- 338

back predictive control system. Consequently, the 339

residual structure of the Encoder block is trans- 340

formed into an ARX model. 341

The self-attention mechanism can be represented 342

as: 343

SA = softmax(
QKT

√
dk

)V, (7) 344
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where the three matrices Q, K, and V are generated345

by the input data of the same batch(Vaswani et al.,346

2017).347

Algorithm 1 The process of insert Kt−1 matrix

Generate Qt, Kt, Vt from Batcht
if t! = 1 then
Lt = αKt + βKt−1

Kt−1 = Lt

else
Lt = αKt + βKt

Kt−1 = Lt

end if
SA = softmax(

QtLT
t√

dk
)Vt

The overall process of ARXSA is shown in Al-348

gorithm 1. Specially, when t = 1, the Kt−1 matrix349

does not participate in the computation. Mean-350

while, the matrix Kt−1 does not participate in back-351

propagation during the training process, but is only352

responsible for transferring the matrix K at time353

t − 1. Let the matrix obtained by adding Kt and354

Kt−1 be Lt, then Lt is expressed as:355

Lt = αKt + βKt−1 + et, (8)356

where et is the independent and identically noise357

in training process(Semenova et al., 2022; Kosson358

et al., 2024). α and β are the coefficients of Kt and359

Kt−1. From equation (8), it can be seen that with360

the addition of the Kt−1 matrix, the Lt matrix is361

obtained by weighting matrices containing infor-362

mation from both time t and t − 1. According to363

Section 2.3, the ARXSA method forms a VT setup364

in Fig 2 where information from two different time365

points appears simultaneously within the network.366

Based on the associative property of matrix mul-367

tiplication, Qt can be added after separately mul-368

tiplying with Kt and Kt−1. That process can be369

written as:370

QtL
T
t = αQtK

T
t + βQtK

T
t−1 + et, (9)371

where et is the independent and identically noise.372

Due to the tiny value of et in equation (8), multi-373

plying it with Qt does not significantly affect the374

overall system. Furthermore, Qt, Kt and Kt−1 are375

independent of each other. QtKt can be considered376

as the autoregressive term in the ARX model, while377

QtKt−1 can be considered as the exogenous input378

term.379

Therefore, the training process of the Encoder380

block according to Fig 1 is shown in Fig 3. The381
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Figure 3: Negative feedback structure of Encoder block
based on ARXSA.

figure illustrates the data transmission direction at 382

time t for an lag order of 1. Once the Lt−1 matrix 383

is generated at time t − 1, it is directly passed 384

to the data flow at time t without any additional 385

computation or backpropagation and is processed 386

together in the Encoder block. The Lt−1 matrix 387

serves as a feedback path that returns information 388

to the forward path entering the Encoder block. 389

Meanwhile, the upper and lower parts represent 390

the same Encoder Block. The "Encoder Block 391

x" in the figure can be any Encoder Block in the 392

network, because every Encoder Block performs 393

the same processing. The Lt−1 obtained after the 394

input data passes through the MHSA will be passed 395

to the input part of the MHSA at the next moment. 396

According to equation (2) and (6), the process of 397

Fig 3 can be expressed as: 398

yt = xt + fARXSA(xt) 399

= xt +Dropout(ARXSA(Linear(LN(xt)))) 400

= xt +ARXSA(Linear(xt)) 401

= xt +ARXSA(Qt,Kt,Kt−1, Vt) 402

= xt + softmax(
QtL

T
t√

dK
)Vt, (10) 403

where the Linear() function maps xt into Qt, Kt 404

and Vt through the parameters. Therefore, the as- 405

sumption that the Encoder block with the ARXSA 406

method aligns to the negative feedback predictive 407

control system has been validated. 408

Additionally, to prove that the ARXSA method 409

belongs to the ARX model category, the following 410

additional conditions must be verified: 411

• The input sequence must be stationary. 412
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• The model needs a definite AR order.413

• The error terms must be independent.414

• The input sequence must exhibit autocorrela-415

tion.416

Firstly, the Qt, Kt and Vt matrices generated by the417

input data through the fully connected layer con-418

form to the Kaiming normal distribution(He et al.,419

2015), thus ensuring that the matrices involved in420

the ARXSA method are stationary. Secondly, both421

the AR order and lag order of the ARXSA method422

are set to 1 in this work. Thirdly, most errors gener-423

ated during the computation of neural networks are424

independently and identically distributed Gaussian425

noise, whose impact on the network is within an426

acceptable range(Ghosh et al., 2017; Seltzer et al.,427

2013). Finally, to determine whether the ARXSA428

method meets the conditions of the ARX model,429

it is necessary to employ the ACF to prove the430

autocorrelation of the Kt matrix.431

Based on (4), the ACF of ARXSA can be written432

as:433

ρh =
E[(Lt+h − µ)(Lt − µ)]

E[(Lt − µ)2]
, (11)434

where h is the lag order of the ARXSA, µ is the435

mean of the input data and the textbfE[] function436

represented the function for finding the mathemati-437

cal expectation. With (8), the expected value of the438

numerator in (11) can be expanded as:439

E[(Lt+h − µ)(Lt − µ)]440

=E[(αKt+h + Lt+h−1 − µ)]441

∗E[(Lt + βKt−1 − µ)], (12)442

where α and β are the coefficients of Kt and Kt−1.443

Since the objects in each category of images in the444

database are similar, Kt+h is approximately equal445

to Kt. Moreover, Kt can be approximated as the446

mean vector K. The (12) can be divided as:447

E[(Lt+h − µ)(Lt − µ)]448

≈ E[(αK − µ)(αK − µ)]449

+ E[(αK − µ)(βKt−1 − µ)]450

+ E[(Lt+h−1 − µ)(αK − µ)]451

+ E[(Lt+h−1 − µ)(βKt−1 − µ)],
(13)

452

where the approximate value of K is within a rea-453

sonable range. Since K is a constant, the first term454

in the (13) is the variance of αK. The remaining455

three terms can be combined into one term based 456

on the linear property. The numerator of the ACF 457

can be simplified as: 458

Num(ρh) ≈ V ar(αK) 459

+ E[(Lt+h−1 − µ)(βKt−1 − µ)].
(14)

460

According to the calculation principle of variance, 461

both sides of the (8) is written as: 462

V ar(Lt) = V ar(αKt) 463

+ V ar(βKt−1) 464

+ 2Cov(αKt, βKt−1), (15) 465

where the Cov() is the covariance function. The 466

denominator of (11) can be simplified as: 467

Den(ρh) ≈ V ar(αK) + V ar(βKt−1). (16) 468

Therefore, the ACF formula (11) can be simplified 469

as: 470

ρh ≈ V ar(αK) + E[(Lt+h−1 − µ)(βKt−1 − µ)]

V ar(αK) + V ar(βKt−1)
.

(17) 471

Finally, when the lag order of the ACF is set to 1, 472

the calculation of the ACF can be further simplified 473

under the conditions of recurrence relationships 474

and data similarity, as follows: 475

ρ1 ≈
V ar(αK)

V ar(αK) + V ar(βKt−1)
. (18) 476

Since the first term in the numerator is the same as 477

the denominator, the range of the second term in the 478

denominator determines the range of ρ1. Besides, 479

the input data xt that applied to generate the Kt 480

matrix is normalized before being passed to the 481

Linear() function, the variance of the Kt matrix at 482

any given time is determined by the weight matrix. 483

Additionally, the variance of the weight matrices 484

at two consecutive time steps is nearly identical. 485

Therefore, ρ1 can be expressed as: 486

ρ1 ≈
α

α+ 1 ∗ β
, (19) 487

where the α and β are set to 1.3 and −0.3 re- 488

spectively. In the presence of Gaussian noise, 489

the ACF result of the ARXSA method is approx- 490

imately equal to 1. This result indicates that the 491

ARXSA method demonstrates perfect autocorre- 492

lation. Therefore, the Encoder block gains more 493

efficiency and accuracy within Transformers ro- 494

bustness(Bhojanapalli et al., 2021). 495
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Figure 4: The overall framework of the network with ARXSA method.

2.5 ARXFormer496

Based on the above arguments, the ARXSA method497

is incorporated into the Transformer network to498

form a neural network with autoregressive prop-499

erties. Given the high efficiency of patch-based500

computation, the normal Swin Transformer was501

selected as the backbone network.502

In the network, the interaction of a Stage module503

with information from adjacent time steps is illus-504

trated in Fig 4. In the ARXFormer with order 1, the505

input data is transformed into three matrices—Qt,506

Kt, and Vt—after passing through the embedding507

layer. The Qt and Vt matrices are directly for-508

warded to the MHSA module for subsequent com-509

putation. In contrast, the Kt matrix is first passed510

through the negative feedback path, where it is511

combined with Lt−1 matrix to produce a weighted512

sum, denoted as Lt. This Lt matrix is then also for-513

warded to the MHSA module to participate in the514

self-attention computation alongside the Qt and515

Qt matrices. The resulting attention values are516

passed to the next network layer, while the input517

information at time t is stored in the L matrix to518

be weighted with future information. Finally, the519

output for the target task is produced after passing520

through the MLP layer.521

3 Experiments522

In this section, we selected several popular vision523

benchmarks to verify the effectiveness of the pro-524

posed ARXFormer, including image classification, 525

object detection and text classification. Each set of 526

experiments is validated multiple times and we will 527

evaluate it by the average performance and the sin- 528

gle best performance. Since the ARXSA method 529

does not increase the number of parameters, the 530

number of parameters and FLOPs of the same net- 531

work will not change regardless of whether the 532

ARXSA method is used or not. 533

3.1 Image Classification 534

The pre-trained files were applied as base weights 535

in the experiments. Each experiment was set to 50 536

epochs, with the goal of evaluating the best per- 537

formance of different methods by comparing the 538

results obtained within a fixed number of epochs. 539

Each batch size was set to 64. To ensure that the 540

experimental results are more representative, three 541

methods were considered: MHSA, Compare, and 542

ARXSA. MHSA represents the multi-head self- 543

attention mechanism, while ARXSA is the pro- 544

posed method. Compare represents the method of 545

adding a K matrix without interacting information 546

with adjacent batches. 547

The upper table in Table 1 presents the average 548

precision obtained on different datasets employing 549

the basic Swin Transformer architecture with the 550

three different methods. The lower table in Table 1 551

shows the highest precision achieved in each set of 552

multiple experiments under the same configuration. 553
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Table 1: Average and highest accuracy of the same neural network utilizing different methods on different datasets.

Method Flower102 CUB200 CIFAR100 Dog120
MHSA 88.25 70.04 67.48 69.59
Compare 87.63 70.28 67.07 70.34
ARXSA(Ours) 88.54 70.79 68.03 70.40
Method Flower102 CUB200 CIFAR100 Dog120
MHSA 88.53 71.11 68.17 71.33
Compare 87.73 71.06 67.76 71.45
ARXSA(Ours) 90.00 71.66 68.46 71.36

Similarly, the models equipped with the ARXSA554

method consistently achieved near-optimal results555

in both average precision and highest precision. Be-556

cause the number of parameters and FLOPs do not557

change under different methods, the comparison558

of these two parameters is not given. For exam-559

ple, in Flower-102, the number of parameters and560

FLOPs in the network are 27.57 (M) and 4.37 (G)561

respectively.562

3.2 Object Detection563

Object detection subtask experiments were con-564

ducted on the VOC dataset, including the 2007 and565

2012 versions. MHSA, Compare group and ARX-566

Former were integrated into the same architecture567

as the backbone separately(Ren et al., 2015). To568

test the generalizability of ARXFormer, the settings569

of each group were always the same. The network570

employed the SGD optimizer with a weight de-571

cay of 0.0005, and pre-trained weights were also572

employed as initialization parameters.573

Table 2: Average and highest results of YOLO utilizing
different methods on the same dataset.

Method mAP AP50 AP75

MHSA 59.71 72.52 46.88
Compare 59.73 72.60 46.84
ARXSA(Ours) 59.87 72.64 47.12
Method mAP AP50 AP75

MHSA 59.90 72.70 47.10
Compare 60.21 72.90 47.50
ARXSA(Ours) 60.02 72.90 47.10

Comparative experiments were conducted em-574

ploying the YOLO architecture on the VOC575

dataset(Redmon et al., 2016). To eliminate the in-576

fluence of different settings within the architecture,577

all settings in the comparative experiments were578

kept consistent. The upper table of Table 2 presents579

the average results of multiple experiments, while580

another table shows the best results. It can be 581

observed that the architecture equipped with the 582

ARXSA method consistently provides the best per- 583

formance. 584

3.3 Text Classification 585

Text classification subtask experiments were con- 586

ducted on AG News, IMDb, and DBpedia datasets. 587

BERT was mainly used as the carrier network. Sim- 588

ilarly, the presets used in the parts other than the 589

SA module are the same. The pre-trained files used 590

are also the same. 591

Table 3: Results of BERT utilizing different methods on
the same dataset.

Method AG News IMDb DBpedia
MHSA 93.58 88.04 99.07
Compare 87.86 88.09 99.02
ARXSA(Ours) 94.03 88.11 99.07

4 Conclusion 592

With the recent prevailing trend of the Transformer, 593

we envisioned that integrating negative feedback 594

predictive control theory into the self-attention 595

mechanism to enhance the overall efficiency and 596

stability of the network. Thus, the concept of verti- 597

cal training and employed it to define the unit time 598

for network training was introduced. Consequently, 599

we proposed and validated the ARXSA method, 600

which transforms the Encoder block in the network 601

into a negative feedback predictive control system. 602

Finally, the ARXSA method was integrated into 603

different network frameworks to verify the applica- 604

bility and stability. In future work, we will study 605

the performance of ARXSA under different AR 606

orders and study the extension of such methods to 607

learning methods of non-SA mechanisms. 608
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Limitation609

The experiments demonstrated that the ARXSA610

method outperforms MHSA in Swin-like Trans-611

formers, and also proved that networks that employ-612

ing ARXFormer as the backbone exhibit higher613

stability and computational efficiency. However,614

ARXSA cannot be applied to ViT-like networks.615

Since the core matrices in ViT have a high proba-616

bility of having a determinant of zero, the matrices617

are almost always non-invertible. As the result,618

the autocorrelation between core matrices across619

different batches nearly be zero.620

References621

Oluleke Babayomi, Zhenbin Zhang, Tomislav Dragice-622
vic, Jiefeng Hu, and Jose Rodriguez. 2023. Smart623
grid evolution: Predictive control of distributed en-624
ergy resources—a review. International Journal of625
Electrical Power & Energy Systems, 147:108812.626

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glas-627
ner, Daliang Li, Thomas Unterthiner, and Andreas628
Veit. 2021. Understanding robustness of transform-629
ers for image classification. In Proceedings of the630
IEEE/CVF international conference on computer vi-631
sion, pages 10231–10241.632

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt,633
and David K Duvenaud. 2018. Neural ordinary dif-634
ferential equations. Advances in neural information635
processing systems, 31.636

Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Wei-637
wei Sun, and Dongsheng Li. 2024. Contiformer:638
Continuous-time transformer for irregular time series639
modeling. Advances in Neural Information Process-640
ing Systems, 36.641

Jen-Tzung Chien and Yi-Hsiang Chen. 2021.642
Continuous-time attention for sequential learning. In643
Proceedings of the AAAI Conference on Artificial644
Intelligence, volume 35, pages 7116–7124.645

Dick van Dijk, Timo Teräsvirta, and Philip Hans Franses.646
2002. Smooth transition autoregressive models—a647
survey of recent developments. Econometric reviews,648
21(1):1–47.649

Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weim-650
ing Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and651
Baining Guo. 2022. Cswin transformer: A general652
vision transformer backbone with cross-shaped win-653
dows. In Proceedings of the IEEE/CVF conference654
on computer vision and pattern recognition, pages655
12124–12134.656

Alexey Dosovitskiy, Lucas Beyer, Alexander657
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,658
Thomas Unterthiner, Mostafa Dehghani, Matthias659
Minderer, Georg Heigold, Sylvain Gelly, and 1660

others. 2020. An image is worth 16x16 words: 661
Transformers for image recognition at scale. arXiv 662
preprint arXiv:2010.11929. 663

Willem Esterhuizen, Karl Worthmann, and Stefan Streif. 664
2020. Recursive feasibility of continuous-time model 665
predictive control without stabilising constraints. 666
IEEE Control Systems Letters, 5(1):265–270. 667

Salvatore Claudio Fanni, Maria Febi, Gayane 668
Aghakhanyan, and Emanuele Neri. 2023. Natural 669
language processing. In Introduction to Artificial 670
Intelligence, pages 87–99. Springer. 671

Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. 672
2017. Robust loss functions under label noise for 673
deep neural networks. In Proceedings of the AAAI 674
conference on artificial intelligence, volume 31. 675

Xin Gong, Yukang Cui, Jun Shen, Zhiguang Feng, and 676
Tingwen Huang. 2020. Necessary and sufficient 677
conditions of formation-containment control of high- 678
order multiagent systems with observer-type proto- 679
cols. IEEE Transactions on Cybernetics, 52(7):7002– 680
7016. 681

Salma P González-Sabbagh and Antonio Robles-Kelly. 682
2023. A survey on underwater computer vision. 683
ACM Computing Surveys, 55(13s):1–39. 684

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and 685
Humphrey Shi. 2023. Neighborhood attention trans- 686
former. In Proceedings of the IEEE/CVF Conference 687
on Computer Vision and Pattern Recognition, pages 688
6185–6194. 689

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 690
Sun. 2015. Delving deep into rectifiers: Surpassing 691
human-level performance on imagenet classification. 692
In Proceedings of the IEEE international conference 693
on computer vision, pages 1026–1034. 694

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 695
Sun. 2016. Deep residual learning for image recog- 696
nition. In Proceedings of the IEEE conference on 697
computer vision and pattern recognition, pages 770– 698
778. 699

Yi Huang, Guo-Ping Liu, Yi Yu, and Wenshan Hu. 2024. 700
Data-driven distributed predictive tracking control for 701
heterogeneous nonlinear multi-agent systems with 702
communication delays. IEEE Transactions on Auto- 703
matic Control. 704

Zhelin Huang, Fan Xu, and Fangfang Yang. 2023. State 705
of health prediction of lithium-ion batteries based 706
on autoregression with exogenous variables model. 707
Energy, 262:125497. 708

Diksha Khurana, Aditya Koli, Kiran Khatter, and 709
Sukhdev Singh. 2023. Natural language process- 710
ing: state of the art, current trends and challenges. 711
Multimedia tools and applications, 82(3):3713–3744. 712

9



Atli Kosson, Dongyang Fan, and Martin Jaggi. 2024.713
Ghost noise for regularizing deep neural networks.714
In Proceedings of the AAAI Conference on Artificial715
Intelligence, volume 38, pages 13274–13282.716

Bonan Li, Yinhan Hu, Xuecheng Nie, Congying Han,717
Xiangjian Jiang, Tiande Guo, and Luoqi Liu. 2023.718
Dropkey for vision transformer. In Proceedings of719
the IEEE/CVF Conference on Computer Vision and720
Pattern Recognition, pages 22700–22709.721

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,722
Zheng Zhang, Stephen Lin, and Baining Guo. 2021.723
Swin transformer: Hierarchical vision transformer724
using shifted windows. In Proceedings of the725
IEEE/CVF international conference on computer vi-726
sion, pages 10012–10022.727

Jan M Maciejowski and Mihai Huzmezan. 2007. Pre-728
dictive control. In Robust Flight Control: A Design729
Challenge, pages 125–134. Springer.730

Christoph Mayer, Martin Danelljan, Goutam Bhat,731
Matthieu Paul, Danda Pani Paudel, Fisher Yu, and732
Luc Van Gool. 2022. Transforming model prediction733
for tracking. In Proceedings of the IEEE/CVF con-734
ference on computer vision and pattern recognition,735
pages 8731–8740.736

Laurent Meunier, Blaise J Delattre, Alexandre Araujo,737
and Alexandre Allauzen. 2022. A dynamical system738
perspective for lipschitz neural networks. In Inter-739
national Conference on Machine Learning, pages740
15484–15500. PMLR.741

Przemysław Podulka, Wojciech Macek, Beata Zima,742
Grzegorz Lesiuk, Ricardo Branco, and Grzegorz743
Królczyk. 2023. Roughness evaluation of turned744
composite surfaces by analysis of the shape of auto-745
correlation function. Measurement, 222:113640.746

Joseph Redmon, Santosh Divvala, Ross Girshick, and747
Ali Farhadi. 2016. You only look once: Unified,748
real-time object detection. In Proceedings of the749
IEEE conference on computer vision and pattern750
recognition, pages 779–788.751

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian752
Sun. 2015. Faster r-cnn: Towards real-time object753
detection with region proposal networks. Advances754
in neural information processing systems, 28.755

Michael L Seltzer, Dong Yu, and Yongqiang Wang.756
2013. An investigation of deep neural networks for757
noise robust speech recognition. In 2013 IEEE inter-758
national conference on acoustics, speech and signal759
processing, pages 7398–7402. IEEE.760

Nadezhda Semenova, Laurent Larger, and Daniel Brun-761
ner. 2022. Understanding and mitigating noise in762
trained deep neural networks. Neural Networks,763
146:151–160.764

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai765
Yi, and Hongsheng Li. 2021. Efficient attention:766
Attention with linear complexities. In Proceedings767

of the IEEE/CVF winter conference on applications 768
of computer vision, pages 3531–3539. 769

Weixuan Sun, Zhen Qin, Hui Deng, Jianyuan Wang, 770
Yi Zhang, Kaihao Zhang, Nick Barnes, Stan Birch- 771
field, Lingpeng Kong, and Yiran Zhong. 2023. Vicin- 772
ity vision transformer. IEEE Transactions on Pattern 773
Analysis and Machine Intelligence, 45(10):12635– 774
12649. 775

Xiaoming Tang, Li Deng, Na Liu, Shuang Yang, and 776
Jimin Yu. 2018. Observer-based output feedback 777
mpc for t–s fuzzy system with data loss and bounded 778
disturbance. IEEE transactions on cybernetics, 779
49(6):2119–2132. 780

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 781
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 782
Kaiser, and Illia Polosukhin. 2017. Attention is all 783
you need. Advances in neural information processing 784
systems, 30. 785

Athanasios Voulodimos, Nikolaos Doulamis, Anasta- 786
sios Doulamis, and Eftychios Protopapadakis. 2018. 787
Deep learning for computer vision: A brief re- 788
view. Computational intelligence and neuroscience, 789
2018(1):7068349. 790

Xiao Ling Wang, Housheng Su, Michael ZQ Chen, 791
Xiao Fan Wang, and Guanrong Chen. 2017. Reach- 792
ing non-negative edge consensus of networked dy- 793
namical systems. IEEE Transactions on Cybernetics, 794
48(9):2712–2722. 795

Xiaoming Wang, Xinyan Wang, Geyong Min, Fei Hao, 796
and CL Philip Chen. 2020. An efficient feedback 797
control mechanism for positive/negative information 798
spread in online social networks. IEEE transactions 799
on cybernetics, 52(1):87–100. 800

Ee Weinan. 2017. A proposal on machine learning via 801
dynamical systems. Communications in Mathemat- 802
ics and Statistics, 1(5):1–11. 803

Jian Wu, Xuemiao Chen, Qianjin Zhao, Jing Li, and 804
Zheng-Guang Wu. 2020. Adaptive neural dynamic 805
surface control with prespecified tracking accuracy 806
of uncertain stochastic nonstrict-feedback systems. 807
IEEE Transactions on Cybernetics, 52(5):3408– 808
3421. 809

Yuhui Wu, Licai Liu, and Shuqu Qian. 2023. A small 810
sample bearing fault diagnosis method based on vari- 811
ational mode decomposition, autocorrelation func- 812
tion, and convolutional neural network. The Interna- 813
tional Journal of Advanced Manufacturing Technol- 814
ogy, 124(11):3887–3898. 815

Manzil Zaheer, Guru Guruganesh, Kumar Avinava 816
Dubey, Joshua Ainslie, Chris Alberti, Santiago On- 817
tanon, Philip Pham, Anirudh Ravula, Qifan Wang, 818
Li Yang, and 1 others. 2020. Big bird: Transformers 819
for longer sequences. Advances in neural informa- 820
tion processing systems, 33:17283–17297. 821

10



Jing Zhang, Peng Zhang, Baiwen Kong, Junqiu Wei,822
and Xin Jiang. 2021. Continuous self-attention mod-823
els with neural ode networks. In Proceedings of824
the AAAI Conference on Artificial Intelligence, vol-825
ume 35, pages 14393–14401.826

Zeyu Zhang, Hongran Li, Heng Zhang, Jian Zhang,827
Zhaoman Zhong, and Weiwei Xu. 2022. Model-free828
predictive control of nonlinear systems under false829
data injection attacks. Computers and Electrical830
Engineering, 100:107977.831

Xia Zhao, Limin Wang, Yufei Zhang, Xuming Han,832
Muhammet Deveci, and Milan Parmar. 2024. A re-833
view of convolutional neural networks in computer834
vision. Artificial Intelligence Review, 57(4):99.835

Mai Zhu, Bo Chang, and Chong Fu. 2023. Con-836
volutional neural networks combined with runge–837
kutta methods. Neural Computing and Applications,838
35(2):1629–1643.839

11


	Introduction
	Method
	Control Systems and ARX Model
	Autocorrelation Function
	Horizontal Training and Vertical Training
	Self-attention with ARX Model
	ARXFormer

	Experiments
	Image Classification
	Object Detection
	Text Classification

	Conclusion

