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Abstract

The rapid increase in the number of Computed Tomography (CT) scan examinations has
created an urgent need for automated tools, such as organ segmentation, anomaly classifica-
tion, and report generation, to assist radiologists with their growing workload. Multi-label
classification of Three-Dimensional (3D) CT scans is a challenging task due to the vol-
umetric nature of the data and the variety of anomalies to be detected. Existing deep
learning classification methods, relying on standard Convolutional Neural Networks or Vi-
sion Transformers, do not explicitly model the radiologist’s navigational behavior while
scrolling through CT scan slices. In this study, we present CT-Scroll, a novel glocal-
local attention model specifically designed to emulate the scrolling behavior of radiologists
during the analysis of 3D CT scans. Our approach is evaluated on two public datasets,
demonstrating its efficacy through comprehensive experiments and an ablation study that
highlights the contribution of each model component.

Keywords: Multi-label classification, Computed-Tomography, Attention Mechanism.

1. Introduction

Computed Tomography (CT) provides detailed imaging of the human body, enabling radiol-
ogists to thoroughly examine various anatomical regions, identify abnormalities, and guide
patient care from initial diagnosis to follow-up (Mazonakis and Damilakis, 2016). How-
ever, the growing number of CT scans (Broder and Warshauer, 2006) and the associated
workload for radiologists have created a pressing need for automated methods to assist in
analyzing these volumes (Chen et al., 2022). In medical imaging, and particularly in CT
scans, substantial progress has been made in leveraging deep learning techniques to support
radiologists in tasks such as segmentation (Gu et al., 2022), image restoration (Yuan et al.,
2023), classification (Draelos et al., 2021), and more recently, report generation (Hamamci
et al., 2024b). As illustrated in Figure 1, multi-label anomaly classification from Three-
Dimensional (3D) CT volumes remains a challenging task due to the significant variability
in the anomalies that need to be detected.
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CardiomegalyPleural EffusionArterial Wall Calcific. Lung Opacity

Figure 1: Examples of 4 axial CT scan slices with anomalies of varying sizes from the CT-
RATE dataset.

To process volumetric data and extract meaningful visual features, early approaches
predominantly relied on 3D convolutional neural networks (CNNs) to capture spatial de-
pendencies within volumetric data effectively (Singh et al., 2020). Alternatively, some stud-
ies adopted conventional 2D architectures by treating a volume as a sequence of slices and
subsequently fusing the extracted features (Draelos et al., 2021). CNNs excel at capturing
local spatial features, and their hierarchical structure facilitates the progressive learning
of features, from low-level patterns to high-level semantic representations. More recently,
attention mechanisms (Vaswani et al., 2023), initially introduced in Natural Language Pro-
cessing, have demonstrated exceptional performance across diverse text-related tasks (Tou-
vron et al., 2023). This paradigm has been adapted to visual data, including 2D and 3D
imaging, by representing images as sequences of 1D tokens derived from flattened 2D or 3D
patches. In particular, Vision Transformers (ViTs) (Dosovitskiy et al., 2021) leverage atten-
tion mechanisms to model global context by enabling interactions across different regions of
an image. This capability is particularly advantageous for applications requiring a compre-
hensive understanding of global contexts, making ViTs a promising alternative for complex
medical imaging tasks. However, the local receptive fields of CNNs limit their ability to
capture global contextual information across large 3D volumes, while ViTs can be compu-
tationally expensive when applied to high-dimensional volumetric data and often require
large-scale pre-training on extensive datasets to achieve competitive performance (Hamamci
et al., 2024c). When radiologists analyze a CT scan, they typically navigate through axial
slices to have a global understanding of the volume before focusing on specific anatomical
regions of interest (Goergen et al., 2013). If an area appears abnormal, the radiologist of-
ten revisits the same slices repeatedly, carefully examining the local context to confirm the
diagnosis. Inspired by this diagnostic approach and leveraging the strengths of alternating
attention (Warner et al., 2024), originally introduced in NLP, we present a novel alternating
global-local attention module, termed the Scrolling Block (SB), illustrated in Figure 2. This
module integrates both global and local information through a Sliding Window Attention
(SWA) (Child et al., 2019; Beltagy et al., 2020) mechanism specifically designed for 3D CT
volumes. Our contributions are summarized as follows:

• The introduction of a global-local attention model designed to imitate radiology nav-
igation in 3D CT scans, enhancing multi-label anomaly classification while being
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Figure 2: The CT-Scroll architecture consists of three main components. (1) Axial slices of the
volume are grouped into triplets and processed by a ResNet followed by a GAP layer,
producing a vector representation per triplet. (2) The Scrolling Block then refines these
embedded visual tokens using both global and local attention mechanisms. (3) Finally,
the aggregated representations are fed into a classification head to predict anomalies.

achievable with limited computational resources (single GPU, < 24-hour training
time).

• An extensive evaluation on two public datasets for a multi-label anomaly classification
task using chest 3D CT scans.

• A comprehensive ablation study to assess the contribution of each component.

2. Related Work

2.1. 3D Visual Encoder for Medical Imaging

In the domain of 3D feature extraction, significant efforts have been made across vari-
ous application areas such as remote sensing, robotic manipulation, and autonomous driv-
ing (Sarker et al., 2024). In medical imaging, particularly with 3D CT scans, conventional
3D convolutional neural networks have been widely employed for segmentation (Ilesanmi
et al., 2024) and classification (Ho et al., 2021) tasks. Given the computational complexity
of 3D convolutional operations, CT-Net (Draelos et al., 2021) proposes grouping consecu-
tive slices of a CT volume into triplets, which are then passed through a ResNet (He et al.,
2015) followed by a small 3D CNN to extract a compact vector representation, subsequently
fed into a classification head. The adaptation of Vision Transformers (Chen et al., 2021)
and Swin Transformers (Yang et al., 2023) to 3D volumes has enabled the interaction of
visual tokens corresponding to different patches of the volume via self-attention mecha-
nisms. Positional embeddings are used to preserve spatial information, facilitating better
understanding of the volume structure. More recently, CT-ViT (Hamamci et al., 2024c) was
introduced as a 3D-CT Vision Transformer used to generate 3D CT volumes from free-form
medical text prompts. CT-ViT learns compact latent representations of 3D volumes by
leveraging self-attention and causal attention mechanisms to address the challenges posed
by CT scans with varying cranio-caudal coverage.
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2.2. Global and Local Attention

Global Attention In both Natural Language Processing (NLP) and computer vision,
Transformer-based models leverage global attention (Luong et al., 2015), where each em-
bedded token interacts with all other tokens through the self-attention mechanism. This
allows for comprehensive contextualization, capturing long-range dependencies and inte-
grating global semantic information into the token representations (Devlin et al., 2019).

Local Attention Despite its effectiveness, global attention suffers from quadratic complex-
ity with respect to sequence length, making it computationally expensive for long sequences
in NLP (Beltagy et al., 2020). To address this, local attention mechanisms such as windowed
attention were introduced, restricting each token’s receptive field to a local neighborhood,
thereby improving efficiency while preserving essential contextual information. In computer
vision, local attention has been successfully adapted in models like Swin Transformer (Liu
et al., 2021), where image patches interact within localized windows. This hierarchical
approach enables efficient processing of high-resolution images and enhances the model’s
ability to handle objects with varying scales.

Alternating Attention Recent advancements in large language models (LLMs) (Touvron
et al., 2023) have demonstrated the benefits of alternating global and local attention to im-
prove efficiency and contextual modeling. For instance, ModernBERT (Warner et al., 2024)
integrates architectural innovations inspired by recent LLMs (Team et al., 2024), alternating
between global and local attention layers to balance long-range context aggregation with
fine-grained local dependencies.

3. Dataset

CT-RATE dataset. We leverage the publicly available CT-RATE dataset (Hamamci
et al., 2024a) to train and evaluate our proposed method. This dataset comprises 3D non-
contrast chest CT scans, annotated with 18 anomalies extracted from radiology reports
using a RadBERT classifier (Yan et al., 2022). The dataset is partitioned as follows: 17,799
unique patients corresponding to 34,781 CT volumes for the train set, 1,314 unique pa-
tients, corresponding to 3,075 CT volumes for the validation set and 1,314 unique patients,
corresponding to 3,039 CT volumes for the test set.

Rad-ChestCT dataset. To extend our evaluation, we utilize the Rad-ChestCT dataset (Drae-
los et al., 2021), which consists of 1,344 3D non-contrast chest CT scans annotated with 83
anomalies extracted using a SARLE labeler from radiology reports. Among these anomalies,
we evaluate our method on the 11 anomalies shared with the CT-RATE dataset.

Processing. For both datasets, all CT volumes are preprocessed to ensure uniformity and
consistent input characteristics across datasets, enabling robust training and evaluation.
Each volume is either center-cropped or padded to achieve a resolution of 240× 480× 480
with an in-plane resolution of 0.75 mm and 1.5 mm in the z-axis. Hounsfield Unit (HU)
values are clipped to the range [−1000, +200], before normalization to [−1, 1].

4. Method

When a radiologist navigates along the longitudinal axis of a CT volume (Patel and De Je-
sus, 2024), they scroll through axial slices to detect anomalies. Initially, they perform a
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global assessment to develop a comprehensive understanding of the volume before revisiting
specific slices that may contain abnormalities. Upon identifying a potential anomaly, radiol-
ogists frequently scroll back and forth across adjacent slices to incorporate local contextual
information, refining their assessment by leveraging both global structure and local details.
As illustrated by Figure 2, we propose a method that extracts vector representations from
triplets of slices and models their interactions using global and local attention blocks. These
attention mechanisms are designed to imitate the scrolling behavior of radiologists, captur-
ing global and local contextual relationships across adjacent slices. The extracted features
are then fused to predict the presence of anomalies effectively.

4.1. Triplet Slices Embedding

Similar to CT-Net (Draelos et al., 2021), the slices of the initial volume x ∈ R240×480×480

are grouped in triplets, where each triplet consists of three consecutive slices. This results
in a 4D tensor with dimensions (80 × 3 × 480 × 480). For each triplet xti ∈ R3×480×480

(i ∈ {1, . . . , 80}), a feature map is extracted using a ResNet (He et al., 2015) pre-trained
on ImageNet (Russakovsky et al., 2015), noted fResNet, and passed through a Global Average
Pooling (GAP) layer fGAP to obtain a vector representation for the triplet, noted hi ∈ R512

(i ∈ {1, . . . , 80}), such that:

hi = (fGAP ◦ fResNet)(x
t
i), ∀ i ∈ {1, . . . , 80} . (1)

We employ Global Average Pooling instead of a linear projection or a 3D reducing
convolutional layer to significantly reduce the total number of trainable parameters while
preserving the local information encoded in the feature maps (Li et al., 2023).

4.2. Scrolling Block

These vector representations h = {hi}80i=1, considered as visual tokens associated with the
triplet slices, are then fed into a Scrolling Block (SB), denoted as fSB. A Scrolling Block
consists of three Transformer encoders (Vaswani et al., 2023). The first encoder, denoted
as fG, employs global self-attention, enabling each token to aggregate information from
the entire volume. The second and third encoders, denoted as fCAU→CRA and fCRA→CAU,
use Caudal-Cranial and Cranial-Caudal Sliding Window Attention, respectively, emulating
the radiologist’s scrolling behavior along the longitudinal axis to focus on local contextual
information. For each triplet slice, the corresponding visual token can only interact with
visual tokens associated with q ∈ N+ slices above it (for Caudal-Cranial modeling) or below
it (for Cranial-Caudal modeling) along the longitudinal axis, as illustrated by Figure 3. Our
method leverages both global attention, capturing long-range dependencies across slices, and
local attention, refining contextual representations within localized regions. This design
effectively models both short- and long-range interactions along the cranial-caudal axis,
mirroring the way radiologists navigate through CT scans for clinical assessment. Each
Transformer encoder is followed by a residual connection (He et al., 2015), a normalization
layer (Ba et al., 2016), and a FeedForward Network leveraging GeGLU, a Gated Linear Unit
(GLU)-based activation function that has demonstrated consistent empirical improvements
over standard activation functions (Shazeer, 2020). This Scrolling Block module generates

5



Di Piazza Lazarus Nempont Boussel

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

Causal Attention

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

Caudal-Cranial SWA

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

Cranial-Caudal SWA

Longitudinal axis: Caudal to Cranial Scroll direction

Figure 3: Causal and Sliding Window Attention Masks. A mask of shape (n, n) preventing
attention to certain positions. 1 indicates that the corresponding position is allowed to
attend, 0 otherwise. Example with n = 5 triplet slices and a sliding window of size q = 3.

updated visual tokens with a dimension of 512, denoted as {hui }80i=1, such that:

hu = {hu1 , . . . , hu80} = fSB(h) = (fCRA→CAU ◦ fCAU→CRA ◦ fG)(h) . (2)

Aggregation. The resulting vector representations are aggregated through summation
and passed to a classification head, implemented as a lightweight Multilayer Perceptron,
denoted as Ψ, which predicts a logit vector ŷ ∈ R18, such as:

ŷ = Ψ

(
80∑
i=1

hui

)
. (3)

The model is trained for multi-label classification using a binary cross-entropy loss func-
tion (Goodfellow et al., 2016).

5. Implementation Details

The model was trained for 50,000 steps with a batch size of 4, using the AdamW optimizer
and a cosine scheduler with a warm-up phase of 20,000 steps and a maximum learning rate
of 10−4. Training was conducted on a GPU with 48GB of memory.

6. Experimental Results

6.1. Quantitative results

We evaluate the model’s performance using standard metrics: AUROC, F1-Score, precision,
and accuracy. For classification, we determine the threshold that maximizes the F1-Score
for each of the 18 labels on the validation set, as F1-Score is the harmonic mean of precision
and recall (Rainio et al., 2024). On the test set, we compute the average of each metric
across all labels, as well as the weighted average based on label frequencies in the test
set. Reported mean and standard deviation metrics were computed over five independent
runs with different random seeds to ensure robustness. As shown in Table 1, our method
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Dataset Method AUROC Accuracy F1 Score Weighted F1 Score Precision
C
T
-R

A
T
E

Random Predictions 49.88 ± 0.62 49.89 ± 0.31 27.78 ± 0.51 33.13 ± 0.33 49.85 ± 1.12

3D CNN 76.49 ± 0.28 73.22 ± 0.50 46.86 ± 0.31 51.70 ± 0.27 38.46 ± 0.54

CT-ViT 73.92 ± 1.17 70.83 ± 0.17 45.01 ± 0.85 49.65 ± 0.88 35.59 ± 0.46

Swin3D 79.94 ± 0.15 75.95 ± 0.25 50.64 ± 0.25 54.68 ± 0.21 42.07 ± 0.56

CT-Net 79.37 ± 0.27 77.37 ± 0.40 51.39 ± 0.50 56.37 ± 0.32 43.51 ± 0.68

CT-Scroll (ours) 81.80 ± 0.22 79.49 ± 0.45 53.97 ± 0.21 58.08 ± 0.28 48.34 ± 1.49

R
a
d
-C

h
es
tC

T

Random Predictions 50.49 ± 0.75 50.47 ± 0.37 32.71 ± 0.66 42.48 ± 0.79 27.95 ± 0.45

3D CNN 66.53 ± 0.58 60.67 ± 1.01 44.37 ± 0.32 55.44 ± 0.26 39.77 ± 0.86

CT-ViT 66.68 ± 0.86 63.72 ± 1.75 47.07 ± 0.74 59.40 ± 0.34 38.94 ± 0.41

Swin3D 70.71 ± 0.41 63.63 ± 1.01 48.29 ± 0.56 58.71 ± 0.53 40.92 ± 0.80

CT-Net 70.77 ± 0.38 64.46 ± 2.01 48.73 ± 0.83 59.14 ± 0.67 41.75 ± 1.07

CT-Scroll (ours) 73.07 ± 0.54 66.84 ± 0.52 49.94 ± 0.49 59.57 ± 0.53 44.29 ± 0.58

Table 1: Quantitative evaluation on the CT-RATE and Rad-CT-Chest test sets. Re-
ported mean and standard deviation metrics were computed over 5 independant runs.
Best results are in bold, second best are underlined.

achieves an F1-Score of 53.97 (+∆5.02% over CT-Net) and an AUROC of 81.80 (+∆3.06%
over CT-Net) on the CT-RATE test set. On the Rad-ChestCT test set, CT-Scroll achieves
a ∆+9.58% improvement in AUROC over CT-ViT, a ∆+3.34% increase over Swin3D and a
∆+3.24% increase compared to CT-Net. A paired t-test between our method and CT-Net
on all metrics yielded p-values below 0.01, demonstrating the statistical significance of these
improvements.

6.2. Ablation study

Impact of the Scrolling Block module. To evaluate the effectiveness of the proposed
Scrolling Block, we compare its performance against various traditional modules by re-
placing the Scrolling Block with these alternatives. Table 2 presents the performance of
our models and the contribution of each architectural component. Replacing a small 3D
convolutional layer (Draelos et al., 2021) with a Global Average Pooling layer (Li et al.,
2023) for dimensionality reduction yields a +∆2.39% improvement in AUROC while sig-
nificantly reducing inference time. Introducing self-attention through Transformer En-
coders (Vaswani et al., 2023) to allow interactions between visual tokens corresponding
to triplet slices achieves an F1-score of 53.32, marking a ∆+1.25% increase, compared to
not using self-attention. Integrating local attention via a standard Sliding Window At-
tention mechanism (Beltagy et al., 2020), after an initial global attention module, leads
to a ∆+0.64% improvement in AUROC and a ∆+0.62% increase in F1-score compared
to the global-attention-only configuration. Introducing local attention limits the interac-
tion between CT scan slices within the same spatial neighborhood, which could enable the
model to learn more fine-grained feature representations, ultimately enhancing anomaly
classification performance. Finally, incorporating the Scrolling Block leads to an AUROC
of 81.80 (+∆0.68% increase over global-attention-only configuration) and an F1-score of
53.97 (+∆1.22% increase over global-attention-only configuration), all while maintaining
low computational complexity.
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Method Feat. Extractor Reduction Interactions AUROC F1 Score Params (M) FLOPs (T) Infer. Time (ms)

3D CNN - - - 76.49 ± 0.28 46.86 ± 0.31 0.3 0.388 1.58 ± 1.02

CT-ViT - - - 73.92 ± 1.17 45.01 ± 0.85 37 0.500 13.66 ± 2.34

Swin3D - - - 79.94 ± 0.15 50.64 ± 0.25 28 0.905 14.79 ± 1.91

CT-Net ResNet-18 3D Conv. None 79.37 ± 0.27 51.39 ± 0.50 15 1.344 16.54 ± 2.32

- ResNet-18 GAP None 81.21 ± 0.40 52.66 ± 0.41 12 1.335 3.65 ± 0.75

- ResNet-18 GAP Tr. Enc. (causal attention) 81.45 ± 0.21 52.98 ± 0.44 16 1.337 5.11 ± 0.92

- ResNet-18 GAP Tr. Enc. (global attention) 81.25 ± 0.07 53.32 ± 0.22 16 1.337 5.57 ± 0.98

- ResNet-18 GAP Tr. Enc. (global + local) 81.77 ± 0.06 53.65 ± 0.39 16 1.337 5.26 ± 1.15

CT-Scroll ResNet-18 GAP Scrolling Block 81.80 ± 0.22 53.97 ± 0.21 16 1.337 5.46 ± 1.55

Table 2: Comparison of performance across different modules. We use traditional Trans-
former Encoders with matching layer counts and computational costs to ensure fair com-
parisons across setups. The Params column corresponds to the number of trainable param-
eters (in millions, M). FLOPs (T) column refers to the number of floating-point operations
(in tera, T). Infer. Time (ms) corresponds to the average inference time per sample (in
milliseconds, ms), estimated with a NVIDIA RTX A6000 GPU.

Impact of the Sliding Window Size. To determine the optimal window size for contex-
tual understanding, we systematically vary the window size q of the SWA and measure its
impact on performance. Table 3 presents the model’s performance across various window
sizes. CT-Scroll with a window size of 16 yields a ∆+0.68% improvement both in AUROC
and in Accuracy, and a ∆+1.22% enhancement in F1-Score compared to global attention.

Window size AUROC Accuracy F1 Score Precision Infer. Time (ms)

4 81.54 ± 0.09 78.94 ± 0.37 53.47 ± 0.03 46.99 ± 0.48 5.42 ± 0.87

8 81.45 ± 0.25 79.02 ± 0.26 53.93 ± 0.30 47.46 ± 0.54 5.42 ± 1.01

16 81.80 ± 0.22 79.49 ± 0.85 53.97 ± 0.21 48.34 ± 1.49 5.46 ± 1.55

32 81.53 ± 0.14 79.42 ± 0.19 53.50 ± 0.17 47.59 ± 0.51 5.54 ± 0.92

64 81.46 ± 0.14 79.42 ± 0.72 53.37 ± 0.27 47.75 ± 0.84 5.54 ± 0.90

Global 81.25 ± 0.07 78.95 ± 0.66 53.32 ± 0.22 46.85 ± 0.48 5.57 ± 0.98

Table 3: Impact of the sliding window size. The sliding window size, denoted as q, corresponds
to the number of triplet slices considered during the computation of the attention mecha-
nism. Global indicates global attention, where each token attends to all others across the
full set of 80 tokens.

7. Conclusion

In this work, we introduce CT-Scroll, a hybrid model for 3D CT Volumes that extracts
triplet slices embeddings through a 2D convolutional network and facilitates interactions
between these representations using both global and local attention mechanisms, imitat-
ing the radiologist’s behavior. CT-Scroll is trained on a multi-label classification task and
evaluated on two public datasets, with a focus on chest CT volumes. In addition to en-
hancing multi-label anomaly classification performance (+∆19.91% increase over CT-ViT,
+∆6.58% increase over Swin3D and +∆5.02% increase over CT-Net in F1-Score), CT-Scroll
demonstrates low computational complexity. Future work could explore the integration of
region-specific information to further enhance classification performance or the incorpora-
tion of a lightweight 3D CNN module to take full advantage of the third dimension.
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Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre
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