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Abstract

Genome and protein foundation models (gFMs and pFMs) are designed to encode
intricate patterns in nucleotide and amino acid sequences, respectively. While exist-
ing models are often trained on a single data modality, recent findings suggest that
joint training on both nucleotide and amino acid sequences can improve a model’s
versatility. However, due to the limited availability of multimodal datasets, training
and evaluating models across modalities pose a significant challenge. To address
this gap, we introduce GENO-PROT, a new benchmark formed from matched gene
and protein sequences mapped to nine attributes that capture structural, functional,
and biomedical characteristics of the human proteome. The benchmark poses
questions, such as: Do proteins A and B interact? Do they co-localize in the same
subcellular region? Do they bind a common ligand? Using GENO-PROT, we evalu-
ate leading gFMs, pFMs, and multimodal foundation models, along with ensembles
that combine them. Our comprehensive analysis shows that, across all prediction
tasks, ensembles tend to match or outperform the individual models they contain.
Ultimately, GENO-PROT serves as a vital tool for model assessment, highlighting
the predictive benefits of integrating both genomic and proteomic data. The code
for this benchmark is available at https://github.com/LLNL/geno-prot.

Biomolecular foundation models (bioFMs) are trained on biological sequences (e.g., proteins, DNA,
and RNA) and have become powerful tools for scientists working on personalized medicine [1, 2, 3],
drug discovery [4, 5], and protein engineering [6, 7]. Like traditional language models, bioFMs
represent sequences with tokens. For example, they may tokenize DNA sequences on a per-nucleotide
basis or protein sequences on a per-amino-acid basis. These tokens are later used as input to a
self-attention model [8].

The majority of existing bioFMs are unimodal, meaning they are specifically trained on one type of
biological data modality (e.g., either DNA or protein sequences, but not both) [9, 10]. However, the
central dogma of molecular biology links DNA and proteins, and jointly training on both sequence
types can yield valuable insights [11, 12]. Assessing how well bioFMs capture the central dogma is
difficult, as most training and evaluation datasets are also unimodal. Meanwhile, protein-to-DNA
translation is unreliable due to codon degeneracy and ambiguity regarding introns. DNA-to-protein
translation is also challenging; sequencing technologies generate short, randomly positioned DNA
reads that may not align with complete protein-coding regions.

To address this gap, we present GENO-PROT, a benchmark suite for evaluating genome foundation
models (gFMs) and protein foundation models (pFMs) in a cross-modal setting. Using sequences and
annotations from RefSeq [13] and UniProt [14], GENO-PROT matches each gene’s complete DNA
sequence (from the annotated start codon to the stop codon, including introns) with its corresponding
protein sequence. GENO-PROT includes nine modality-flexible downstream prediction tasks, relevant
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to DNA sequences, protein sequences, or both. The prediction tasks are organized into three groups:
(i) structure and localization, (ii) functional relationships, and (iii) biomedical associations.
Using GENO-PROT, we evaluate bioFMs ranging from 6.6 million to seven billion parameters in
size. We also compare these models to general-purpose large language models (LLMs), which likely
exceed one trillion parameters in size. The key findings from our evaluations are as follows:

(1) Ensembles of gFMs and pFMs tend to exceed or match the performance of the individual
models they contain. This result suggests that ensembles of bioFMs offer a robust approach
for generating biological predictions.

(2) On our benchmarks, gFMs perform poorly compared to even much smaller pFMs. This
observation is consistent with the findings of Ref. [15]. In GENO-PROT, the results may be
influenced by the protein-relevant prediction tasks; on more gene-centric tasks, gFMs may
still achieve competitive performance.

(3) State-of-the-art language models, like GPT-4.1 and GPT-4o, are not well suited for the
biological tasks in GENO-PROT without further adaptation.

Overall, GENO-PROT serves as a valuable resource for developing cross-modal bioFMs and rigorously
evaluating claims related to the central dogma of molecular biology.

The GENO-PROT Benchmark

The GENO-PROT benchmark organizes human proteins into positive and negative classes to support
comparisons of unimodal bioFMs, multimodal bioFMs, and general-purpose LLMs. In all cases, the
prediction task is to distinguish positive examples (labeled with 1) from negative examples (labeled
with 0). Positive and negative classes are assigned based on nine attributes, described below. The
attributes are organized into three thematic areas.

Structure and Localization

(1) Shared Pfam Label. Proteins are labeled based on whether they share a common Pfam
domain [16]. We load the Pfam labels for human proteins with available sequences [14]. The
proteins are organized into pairs. Protein pairs with shared Pfam domains are assigned to
the positive class, while others are assigned to the negative class. To assess the classification
performance of general-purpose LLMs, we ask: “Do proteins A and B share a common
Pfam label?”

(2) Shared Subcellular Location. Proteins are annotated with their subcellular locations. Pairs
of proteins that share at least one location are assigned to the positive class, while others are
assigned to the negative class. We ask general-purpose LLMs: “Do proteins A and B reside
in at least one common subcellular location?”

(3) Shared Anatomical Location. Proteins are annotated with their anatomical expression sites,
such as organs and tissues [14]. We parse annotations for anatomical locations using named
entity recognition (NER). We use the spaCy model for NER, trained on the BioNLP13CG
corpus [17]. Protein pairs that share at least one anatomical location are assigned to the
positive class, while others are assigned to the negative class. We ask general-purpose LLMs:

“Do proteins A and B reside in at least one common anatomical location?”

Functional Relationships

(4) Protein Function Similarity. Protein function is represented using Gene Ontology (GO)
annotations and GO2Vec embeddings [14, 18]. Each protein is represented by a set of GO
embeddings. To quantify functional similarity between proteins, we apply a variant of the
modified Hausdorff distance (MHD) to their GO embeddings, following Ref. [18]. The
form of the MHD that we use leverages cosine similarities, such that greater values indicate
more similar protein pairs. Protein pairs with MHDs above the median value are assigned to
the positive class, while others are assigned to the negative class. We ask general-purpose
LLMs: “Do proteins A and B share similar functions?”

(5) Protein-Protein Interaction. Protein-protein interactions are reported and scored in the
STRING database [19]. Protein pairs with reported interactions are assigned to the positive
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class, while others are assigned to the negative class. We ask general-purpose LLMs: “Do
proteins A and B interact?”

(6) Shared Biochemical Pathway. Proteins are annotated with associated biochemical path-
ways in Reactome [20]. We isolate proteins associated with at least one biochemical pathway.
Pairs of proteins sharing a pathway are assigned to the positive class, while others are as-
signed to the negative class. We ask general-purpose LLMs: “Are proteins A and B involved
in at least one common biochemical pathway?”

Biomedical Associations

(7) Shared Drug Binding. Protein-ligand interactions (PLIs) are reported in ChEMBL [21].
Heinzke et al. extract clinically relevant PLIs from the database [22]. Based on the filtered
PLIs, we assign protein pairs to the positive class if they share at least one common ligand
and to the negative class if they do not. Negative examples are restricted to proteins with at
least one known interaction. We ask general-purpose LLMs: “Do proteins A and B bind at
least one common ligand?”

(8) Shared Disease Implication. Mendelian Inheritance in Man (MIM) codes provide disease
annotations for proteins [23]. We isolate proteins associated with at least one MIM code [14],
then assign pairs of proteins to the positive class if they share at least one MIM code and
to the negative class if they do not. We ask general-purpose LLMs: “Are proteins A and B
implicated in at least one common disease?”

(9) Melanoma Gene Dependency. Using CRISPR knockout screens, gene dependency scores
are obtained for melanoma cancer cell lines [24, 25]. Each dependency score indicates the
relative fitness of tumor cells before and after a gene is knocked out. More negative scores
indicate a stronger dependency on the gene. We binarize the dependency scores according
to a threshold value of -0.5. Essential genes (with scores below the threshold) are assigned
to the positive class, while less essential genes (with scores at or above the threshold) are
assigned to the negative class. We ask general-purpose LLMs: “Are melanoma tumor cells
strongly dependent on protein A?”

Most prediction tasks involve pairs of proteins. For these tasks, we concatenate embeddings for the
proteins to represent the pair. For all tasks and bioFMs, we train separate fully connected prediction
heads to generate binary outcomes (see Fig. 1). To prevent data leakage, we partition genes into
non-overlapping but functionally equivalent training and evaluation folds. We train the prediction
heads using the training folds and score model performance with the evaluation folds (see Sec. B.2 in
the Appendix for more details). All folds of the datasets include a balanced number of positive and
negative cases, sampled from the available examples.

Figure 1: Prediction pipeline. (A) BioFMs embed gene or protein sequences, then embeddings are
concatenated to represent protein pairs. For each embedding type and prediction task, a prediction
head is prepared to generate binary outcomes. (B) The prediction head includes three dense hidden
layers with 512, 128, and 64 nodes, followed by a single-node output layer. The prediction head is
trained for 50 epochs with early stopping (patience=5).
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Model Evaluations

We evaluate the performance of individual bioFMs, multimodal ensembles, and general-purpose
LLMs using GENO-PROT. Our comparison includes prominent gFMs and pFMs from 2023 to 2025,
many claiming state-of-the-art performance. The bioFMs included in our study are listed below:

• gFMs: hyena-160k, hyena-450k, and hyena-1m variants of HyenaDNA [9]; Evo [26];
evo2-7b variant of Evo2 [27]

• pFMs: Enzyme Commission (EC) number, GO, and Pfam variants of ProteInfer [28]; esmc-
300m and esmc-600m variants of Evolutionary Scale Modeling Cambrian (ESMC) [29]

• Multimodal bioFM: LucaOne [30]

Details about these models are provided in Sec. C.1 of the Appendix. We form ensembles from
Evo2, esmc-600m, all ProteInfer variants, and LucaOne. To mitigate biases, we use the same set
of models in all ensembles. We implement five ensembling strategies: (1) S-ENSEM computes the
mean of softmax probabilities; (2) H-ENSEM uses majority class voting; (3) W-ENSEM averages
probabilities, weighting each model by its accuracy on a validation fold; (4) Med-ENSEM takes the
median probability across models; and (5) Max-ENSEM selects the maximum probability per class.
To provide a baseline, we evaluate GPT-4.1 and GPT-4o in a zero-shot setting, framing prediction
tasks as True/False questions. The system prompt is shown in Listing C.1.

Results and Discussion

We plot the performance of gFMs, pFMs, and ensembles in Fig. 2.

Figure 2: Performance of models on prediction tasks. Bars indicate average accuracy on the
associated prediction task across ten evaluation samples. Error bars indicate standard deviation in
accuracy across the evaluation samples. The performance of each model on individual evaluation
samples is plotted in Fig. 7 in the Appendix. Bars are colored based on the class of foundation models
they represent, with tones corresponding to specific models. We exclude Hyena models from the
Shared Disease Implication evaluation due to a high frequency of out-of-memory errors observed
with the examples.
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Figure 3: LLM performance. Zero-shot accuracies of GPT-
4.1 and GPT-4o on GENO-PROT prediction tasks.

The results suggest that no single
model dominates all tasks, but pFMs
generally outperform gFMs on most
GENO-PROT prediction tasks. For the
“melanoma gene dependency” predic-
tion task, top gFMs and pFMs per-
form comparably. Ensembles consis-
tently match or outperform the indi-
vidual models they contain, though
improvements are minor. However,
the reliable performance of ensembles
across the prediction tasks suggests
that combining predictions from sev-
eral bioFMs can lead to more robust
results.

We then evaluate the zero-shot perfor-
mance of GPT-4.1 and GPT-4o on the
biological prediction tasks in GENO-
PROT. To do so, we represent the
tasks using natural language prompts,
specifying proteins with their UniProt
identifiers or sequences. The perfor-
mance of the LLMs on the prediction
tasks is reported in Fig. 3.

Without fine-tuning, LLMs achieve near-random performance on most prediction tasks. One notable
exception is the 82.9% accuracy of GPT-4.1 with amino acid sequences on the “shared Pfam label”
prediction task; this unexpected result warrants further investigation. However, more generally, the
results suggest that LLMs should be used in conjunction with bioFMs for biomolecular predictions.
This combined approach has already shown promise, as demonstrated in Refs. [31, 32].

Summary

Existing bioFM benchmarks are primarily unimodal, limiting head-to-head comparisons of gFMs
and pFMs. In response, we present GENO-PROT, a cross-modal dataset of matched DNA and protein
sequences mapped to nine biologically relevant prediction tasks. With GENO-PROT, we compare
gFMs, pFMs, and ensembles that combine them. We find that pFMs generally outperform gFMs
on our prediction tasks, while multimodal ensembles consistently match or exceed the performance
of the individual models they contain. The results suggest that ensembles may enhance robustness,
removing the need for model selection. We also translate prediction tasks into natural language
prompts to evaluate the zero-shot performance of GPT-4.1 and GPT-4o. We find that bioFMs typically
outperform the general-purpose LLMs. Overall, using our novel benchmark for comparing bioFMs,
we highlight the value of multimodal ensembles in enhancing biological predictions.
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A Background and Related Work

DNA sequences form a “biological language” that encodes cellular structure and function. Although
composed of just four types of nucleotides, this language is complex and encompasses diverse
phenotypes. Triads of nucleotides form codons, which map to amino acids. Amino acids with distinct
physicochemical properties interact with their environment and fold into proteins. Proteins function
as “molecular machines” that provide structure or catalyze reactions. Despite its critical importance
to all life, the biological language remains poorly understood.

Since the Human Genome Project, billions of DNA and protein sequences have been measured and
made publicly available. Hundreds of millions of these sequences are annotated with functional
information. This vast amount of data, alongside recent advances in artificial intelligence, creates a
new opportunity to decipher the genetic code. gFMs and pFMs leverage architectures and training
strategies from natural language processing (NLP) to learn complex patterns in DNA and protein
sequences. These models have proven their versatility across applications in biology and medicine.

DNABERT, Nucleotide Transformer, and Evo2 (with its predecessors Evo and HyenaDNA) represent
groundbreaking gFMs [2, 33, 27, 26, 9]. These models demonstrate remarkable abilities to predict
both functional and regulatory outcomes, including chromatin profiles, effects of clinical variants,
and gene dependencies. While DNABERT and Nucleotide Transformer are based on transformer
architectures, Evo2 uses a specialized StripedHyena architecture, which leverages long convolutions
to support a broader context window [34, 35]. pFMs like ESMC and LucaProt are trained on
functional regions of the genome and excel at tasks like protein structure prediction and function
annotation [29, 36]. Multimodal foundation models can achieve greater predictive performance by
drawing information from both DNA and protein sequences. For example, LucaOne is concurrently
trained on multimodal inputs and excels in tasks like taxonomic classification, subcellular protein
localization, and non-coding RNA family detection [30].

Given the variety of gFMs and pFMs available, benchmarks are critical for comparing model
performance. NLP offers several examples of effective benchmarks for ranking models. For example,
Hendrycks et al. developed the Massive Multitask Language Understanding dataset, providing 57
tasks to evaluate NLP model performance across subject areas [37]. For bioFMs, Marin et al. and
Patel et al. developed benchmarks for nucleotide-scale prediction tasks relating to gene regulation,
epigenetic modifications, and variant effects [38, 15]. Notin et al. published the ProteinGym dataset,
a benchmark of protein fitness scores associated with around 1.8 million mutations obtained from
deep mutational scanning assays [39]. Here, we introduce the GENO-PROT benchmark, focusing
on protein-relevant regions of the genome and enabling simultaneous evaluations of gFMs and
pFMs [40]. We use our benchmark to compare single bioFMs with ensembles.
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The use of ensembles in computational biology represents an emerging strategy for improving
predictive performance. Cao et al. review supervised and unsupervised ensembling approaches,
focusing on applications in bioinformatics [41]. Qu et al. leverage ensembles of pFMs to predict
the effects of mutations reported in the ProteinGym dataset [42, 39, 43]. Mollaysa et al. evaluate
several fusion strategies for combining DNA, RNA, and protein embeddings generated by Nucleotide
Transformer, RNA-FM, and ESM-2, respectively [44, 33, 45, 10, 46]. The group evaluates their
models on benchmarks mapping messenger RNA (mRNA) sequences to phenotypic outcomes across
species and applications [47, 48]. In this work, we advance the development and evaluation of
multimodal ensembles of bioFMs by including more advanced models and designing benchmarks
that relate DNA and protein sequences to attributes in humans.

B Detailed Specifications of GENO-PROT

The GENO-PROT benchmark includes matched gene and protein sequences for human proteins listed
in UniProt. We map the sequences to binary outcomes, creating nine prediction tasks used to compare
gFMs, pFMs, and multimodal models. In the subsections below, we describe the sources of our data
and the methods with which we organize them into prediction tasks.

B.1 DNA and Protein Sequences

Our benchmark characterizes human gene and protein sequences derived from the GRCh38.p13
version of the human genome reference assembly [49]. Using annotations provided by RefSeq,
we extract amino acid sequences associated with each gene [13]. Fig. 4 plots the distribution of
sequence lengths and the proportion of DNA sequences that encode amino acids. We map RefSeq
protein accessions to UniProt IDs, then load experimentally verified GO annotations for each gene
[14, 50, 51]. We isolate genes with available ProtT5 embeddings [52]. ProtT5 embeddings are used
to partition our dataset into roughly equivalent folds (see Sec. B.2). Ultimately, we store the UniProt
ID, RefSeq accessions, nucleotide sequences, amino acid sequences, and GO annotations associated
with 12,448 distinct proteins, which we reference for the prediction tasks.

Figure 4: Features of sequences in the dataset. (A) Distributions of DNA and protein sequence
lengths, excluding outliers beyond 1.5 × IQR from the first or third quartile (Tukey rule). To enable
visualization on a common scale, DNA sequence lengths are divided by 1,000 and protein sequence
lengths are divided by 10. (B) Distribution of coding nucleotide fractions in DNA sequences.
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B.2 Data Partitioning

To evaluate prediction tasks, we train prediction heads that take embeddings from gFMs or pFMs
and predict binary labels. We isolate a subset of the human proteome for the purpose of training the
prediction heads. This subset includes 8,448 proteins, leaving a non-overlapping subset of 4,000
proteins reserved for evaluation. To ensure that the training and evaluation subsets are equivalent, we
embed the proteins using ProtT5 [52], then partition the proteins according to Algorithm 1.

Algorithm 1 Partitioning the human proteome into non-overlapping training and evaluation subsets.
Inputs:

• ProteinList: List of UniProt IDs for human proteins
• EmbeddingMap: Map from UniProt ID to ProtT5 embedding
• N: Desired number of proteins in the evaluation subset

Outputs:
• TrainFold: Set of proteins for training
• EvalFold: Set of proteins for evaluation

Pseudocode:

1: Initialize EvalFold← ∅
2: Initialize TrainFold← ProteinList
3: Randomly select a protein P0 from TrainFold
4: Add P0 to EvalFold
5: Remove P0 from TrainFold

6: while len(EvalFold) < N do
7: Initialize empty list MinDists
8: for each protein Pi in TrainFold do
9: Compute squared Euclidean distances from Pi to each protein in EvalFold using ProtT5 embeddings

from EmbeddingMap
10: Let di be the minimum of these squared distances
11: Append di to MinDists
12: end for
13: Normalize MinDists to form a probability distribution π over TrainFold, where πi ∝ di
14: Sample a protein Psample from TrainFold according to probabilities π
15: Add Psample to EvalFold
16: Remove Psample from TrainFold
17: end while
18: return TrainFold, EvalFold

After partitioning the proteins into training and evaluation subsets, we verify that the UMAP projec-
tions of the ProtT5 embeddings for proteins in each subset approximately represent the full dataset
(see Fig. 5). We also verify that feature vectors encoding the probability distributions of subcellular
locations, anatomical locations, and biochemical pathways are well correlated.

Figure 5: UMAP projections of ProtT5 embeddings for proteins in the training and evaluation
subsets of the dataset. The consistency between the UMAP projections suggests that the training
and evaluation subsets are representative of the full dataset.
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To mitigate data leakage, we prepare separate training and evaluation datasets for each prediction
task from the corresponding protein subsets. To ensure class balance within each benchmark dataset,
we randomly select some number of positive and negative examples according to Tab. 1, based on the
prevalence of the minority class.

Table 1: Dataset Sizes. An equal number of random examples were drawn from the positive and
negative classes in each benchmark dataset. The values reported in this table represent the number of
examples drawn from each class. Each evaluation dataset is sampled 10 times, enabling quantification
of variability in scored model performance. Evaluation dataset sizes are reported on a per-sample
basis.

Prediction Task Training Evaluation
Shared Pfam 25,000 150
Shared Subcell. Loc. 100,000 150
Shared Anatom. Loc. 100,000 150
Prot. Funct. Sim. 100,000 150
Prot.-Prot. Interact. 50,000 150
Shared Biochem. Path. 100,000 150
Shared Drug Binding 35,000 150
Mel. Gene Dep. 800 100
Shared Disease Implic. 400 20

The full data partitioning process is depicted in Fig. 6. To estimate the uncertainty in each model’s
performance, we randomly sample each evaluation dataset 10 times and evaluate the accuracies
across these samples.

Figure 6: Partitioning training/evaluation datasets. We randomly partition proteins into roughly
equivalent training and evaluation subsets. We separately sample pairs of proteins to form each
benchmark from the training and evaluation folds to mitigate information leakage.

C Experiments and Discussions

We use GENO-PROT to compare individual bioFMs, ensembles of bioFMs, and general-purpose
LLMs. Most evaluations were performed on a machine using AMD MI-250X GPUs with 128 GB of
memory. However, since Evo and Evo2 required CUDA-specific drivers, evaluations involving those
models were run on a machine using H100 GPUs with 80 GB of memory.
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C.1 Model Details

Descriptions of the models included in our evaluation are listed below and summarized in Tab. 2.

C.1.1 Gene Foundation Models

1. HyenaDNA [9]: HyenaDNA processes long DNA sequences, up to one million nucleotides
in length, using the efficient Hyena operator [53], which replaces attention with fast long
convolutions and gating. This design enables the model to learn and understand genetic
information faster and with less computing power than previous bioFMs. We evaluate
three versions of HyenaDNA, each with eight layers but different context sizes: small (160
thousand tokens), medium (450 thousand tokens), and large (one million tokens). We label
these models “hyena-160k,” “hyena-450k,” and “hyena-1m,” respectively.

2. Evo [26]: Evo is a gFM developed by the Arc Institute that leverages a novel StripedHyena
architecture to efficiently process long sequences (up to 131 thousand bases in length).
The model is trained on trillions of nucleotides from diverse organisms, enabling accurate
predictions of genetic functions and mutations across domains of life.

3. Evo2 [27]: Evo2 is a recently published state-of-the-art gFM building on Evo. The model
is trained on over 9.3 trillion nucleotide tokens from more than 128 thousand genomes.
Evo2 demonstrates impressive capabilities in zero-shot gene function prediction, gene
essentiality assessment, and CRISPR system design. The model’s architecture includes
layers categorized into Short Explicit (SE), Medium Regularized (MR), and Long Implicit
(LI), allowing it to handle extensive genomic data effectively. Evo2 represents a significant
advancement in genomic AI, providing researchers with a powerful tool for exploring
and manipulating genetic information across diverse organisms. We use the seven-billion
parameter variant of Evo2, denoted “evo2-7b.”

C.1.2 Protein Foundation Models

1. ProteInfer [28]: ProteInfer is developed by Google Research to predict functions directly
from protein sequences. The model leverages deep convolutional neural networks trained on
protein sequences and annotations. We use three variants of ProteInfer trained on different
annotation types: EC numbers, GO terms, and Pfam labels. We denote these variants as
“proteinfer_ec,” “proteinfer_go,” and “proteinfer_pfam,” respectively.

2. ESMC [29]: ESMC is a pFM trained on massive protein sequence data in an unsupervised
manner. The model captures important biological patterns to predict protein structure and
function. ESMC is an embedding-focused counterpart to ESM3, a state-of-the-art pFM that
has been used to design fluorescent proteins with chain-of-thought reasoning [7]. We use two
publicly available variants of ESMC: the 300-million-parameter and 600-million-parameter
versions. We refer to these models as “esmc-300m” and “esmc-600m,” respectively.

C.1.3 Multimodal Model

1. LucaOne [30]: LucaOne is a unified bioFM trained on DNA, RNA, and protein sequences
from over 169 thousand species. The model uses an enhanced transformer with token-type
embeddings to distinguish biomolecular modalities, which has enabled it to encode the
central dogma of molecular biology. LucaOne supports few-shot learning and achieves
strong performance across diverse genomic and proteomic tasks.

C.1.4 Ensembles of BioFMs

We combine the predictions of leading gFMs and pFMs to incorporate multimodal information. All
ensembles leverage Evo2, esmc-600m, proteinfer_ec, proteinfer_go, proteinfer_pfam, and LucaOne
to make predictions. Below, we describe five strategies for combining predictions.

1. Soft Voting (S-ENSEM): To perform soft voting, we convert logits to probabilities using
a softmax function, then average probabilities across models. The final class prediction is
selected based on the highest average probability. This method considers model confidence
and typically offers smoother predictions.
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2. Hard Voting (H-ENSEM): In hard voting, each model contributes a single class label, and
the final prediction corresponds to the majority class. This approach does not account for
prediction confidence and assigns equal weight to all models. Hard voting is most effective
when the individual models tend to produce consistent predictions.

3. Weighted Voting (W-ENSEM): In weighted voting, each model is assigned a weight based
on its performance on a validation fold of each benchmark dataset. Class probabilities are
averaged according to these weights, and the class with the greatest probability is selected for
the prediction. This approach extends soft voting by incorporating model-specific weightings
for each task. In Tab. 3, we report the weights assigned to individual models for each task.

4. Median Voting (Med-ENSEM): In median voting, the median predicted probability across
all models is determined for each class. The class with the greatest median probability is
selected. This approach reduces the impact of outliers or overconfident models, enhancing
robustness.

5. Max Voting (Max-ENSEM): In max voting, the maximum predicted probability across all
models is determined for each class, and the class with the greatest maximum probability
is selected. This approach prioritizes the most confident model, favoring high-certainty
predictions.

Table 2: Model specifications. LucaOne and ESMC can process long sequences by batching
and aggregating embeddings. ProteInfer variants use convolutional architectures without a context
window, relying on fixed-size filters.

Model Name Size Context Type

hyena-160k - 160k gFM
hyena-450k - 450k gFM
hyena-1m 6.6M 1M gFM
evo 7B 131k gFM
evo2-7b 7B 1M gFM
esmc-300m 300M 2048 pFM
esmc-600m 600M 2048 pFM
proteinfer_ec - - pFM
proteinfer_go - - pFM
proteinfer_pfam - - pFM
lucaone 1.8B 1280 gFM, pFM

Table 3: W-ENSEM weights. For the weighted voting ensemble, the class probabilities of individual
models are aggregated with a weighted average. The weight of each model is selected according
to its performance on a validation fold associated with each prediction task. Weights for individual
models and prediction tasks are listed below.

Task esmc-600m evo2-7b proteinfer_ec proteinfer_go proteinfer_pfam lucaone

Shared Pfam 0.166 0.158 0.167 0.166 0.174 0.165
Shared Subcell. Loc. 0.172 0.154 0.166 0.181 0.161 0.164
Shared Anatom. Loc. 0.174 0.162 0.169 0.173 0.159 0.160
Prot. Funct. Sim. 0.163 0.166 0.160 0.191 0.160 0.158
Prot.-Prot. Interact. 0.175 0.152 0.164 0.179 0.164 0.163
Shared Biochem. Path. 0.177 0.161 0.157 0.183 0.158 0.161
Shared Drug Binding 0.175 0.158 0.162 0.165 0.167 0.170
Mel. Gene Dep. 0.176 0.174 0.159 0.165 0.159 0.164
Shared Disease Implic. 0.164 0.166 0.155 0.172 0.164 0.176
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Listing C.1 System prompt for evaluating LLMs on GENO-PROT prediction tasks.

SYSTEM_PROMPT = """
You are a bioinformatics model trained to assess relationships or properties of

proteins. You will be given one or two protein identifiers or amino acid
sequences in fill-in-the-blank format, where <UNIPROT:####...#> indicates a
UniProt ID and <SEQ:####...#> indicates an amino acid sequence. You will also
receive a question that communicates the true/false prediction task.

Your response must follow these strict rules:
- Only return the answer in pure JSON format, with a single key "result" and a

boolean value (true or false).
- Do not explain your answer or include any other text.
- Do not describe the sequences, IDs, or the question.
- Do not provide any formatting, logging, or annotation.
- Your output must be machine-readable and strictly JSON-only.

Input format (examples):

Are proteins <UNIPROT:P19086> and <UNIPROT:P60880> involved in at least one common
biochemical pathway?

Do proteins <UNIPROT:P12345> and <UNIPROT:Q67890> share at least one common Pfam
label?

Are melanoma tumor cells strongly dependent on protein <UNIPROT:Q9Y6K9>?

Do proteins <SEQ:MVLSPADKTNVKAA...W*> and <SEQ:MKVIFLAGKQLEDGR...T*> share similar
functions?

Expected output format:
{"result": true}
or
{"result": false}
"""
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Figure 7: Model performance across evaluation samples. We plot the accuracy of each model
across ten samples from our evaluation dataset.
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