
Published as a conference paper at ICLR 2024

IN-CONTEXT LEARNING LEARNS LABEL RELATION-
SHIPS BUT IS NOT CONVENTIONAL LEARNING

Jannik Kossen1∇ Yarin Gal1∆ Tom Rainforth2∆

1 OATML, Department of Computer Science, University of Oxford
2 Department of Statistics, University of Oxford

ABSTRACT

The predictions of Large Language Models (LLMs) on downstream tasks often
improve significantly when including examples of the input–label relationship in
the context. However, there is currently no consensus about how this in-context
learning (ICL) ability of LLMs works. For example, while Xie et al. (2022) liken
ICL to a general-purpose learning algorithm, Min et al. (2022b) argue ICL does
not even learn label relationships from in-context examples. In this paper, we
provide novel insights into how ICL leverages label information, revealing both
capabilities and limitations. To ensure we obtain a comprehensive picture of ICL
behavior, we study probabilistic aspects of ICL predictions and thoroughly exam-
ine the dynamics of ICL as more examples are provided. Our experiments show
that ICL predictions almost always depend on in-context labels and that ICL can
learn truly novel tasks in-context. However, we also find that ICL struggles to fully
overcome prediction preferences acquired from pre-training data and, further, that
ICL does not consider all in-context information equally.

1 INTRODUCTION

Brown et al. (2020) have shown that Large Language Models (LLMs) (Radford et al., 2019; Chowd-
hery et al., 2022; Hoffmann et al., 2022; Zhang et al., 2022a) can perform so-called in-context
learning (ICL) of supervised tasks. In contrast to standard in-weights learning, e.g. gradient-based
finetuning of model parameters, ICL requires no parameter updates. Instead, examples of the input–
label relationship of the downstream task are simply prepended to the query for which the LLM
predicts. This is sometimes also referred to as few-shot ICL to differentiate from other ICL variants
that do not use example demonstrations (Liu et al., 2023). Few-shot ICL is widely used, e.g. in all
LLM publications cited above, to improve predictions across a variety of established NLP tasks,
such as sentiment or document classification, question answering, or natural language inference.

However, there is currently no consensus on why ICL improves predictions, with prior work pre-
senting a large variety of often contradictory perspectives. For example, Brown et al. (2020) high-
light similarities between the behavior of ICL and finetuning of LLMs, such as improvements with
model size and number of examples. Since then, some have argued that ICL works because it im-
plements general-purpose learning algorithms such as Bayesian inference or gradient descent (Xie
et al., 2022; Huszár, 2023; Hahn & Goyal, 2023; Jiang, 2023; Zhang et al., 2023; Von Oswald et al.,
2023; Akyürek et al., 2023; Han et al., 2023). In contrast, others have highlighted practical short-
comings of ICL, suggesting ICL does not really ‘learn’ from examples in the way one expects (Liu
et al., 2022; Lu et al., 2022; Zhao et al., 2021; Chen et al., 2022; Agrawal et al., 2023; Chang & Jia,
2022; Razeghi et al., 2022; Li & Qiu, 2023; Wei et al., 2023). In particular, Min et al. (2022b) claim
their ‘findings suggest that [LLMs] do not learn new tasks at test time’ in the sense of ‘capturing the
input-label correspondence’. Clearly, these claims, if true, are not compatible with the behavior we
would expect from a general-purpose learning algorithm.

In this paper, we address the pressing need for an improved understanding of how information given
in-context affects ICL predictions. Concretely, we formulate a set of questions that encode our
beliefs about how an idealized conventional learning algorithm should incorporate label information
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Figure 1: ICL predictions generally depend on the conditional label distribution of in-context exam-
ples: when in-context labels are randomized, average log likelihoods of label predictions decrease
compared to ICL with default labels for LLaMa-2-70B across a variety of tasks. Results averaged
over 500 in-context datasets and thin lines are 99% confidence intervals. See §5 for details.

and then study ICL behavior in relation to this concept of a conventional learner. (1) Does ICL take
the input–label relationship of the in-context examples into account when predicting for test queries?
(2) Is ICL powerful enough to overcome prediction preferences originating from pre-training? (3)
Does ICL treat all information provided in-context equally? To study these questions rigorously,
we rephrase them as null hypotheses that we study empirically. Our results yield an improved
understanding of the similarities and differences between ICL and idealized conventional learners.

Unlike prior work, we study in detail how ICL predictions evolve as an increasing number of exam-
ples are provided, from no examples at all up to the maximum possible, across a range of LLMs and
tasks. We further show that using probabilistic metrics better highlights the resulting ICL dynam-
ics, often revealing large changes in the confidence of ICL predictions, even when accuracy metrics
barely change at all. These measures ensure we obtain a comprehensive picture of ICL behavior.

In our experiments, we first examine if ICL predictions depend on the labels of in-context examples
by studying how probabilistic metrics react to randomized in-context labels (§5, Fig. 1). Further,
we study ICL on a truly novel task the LLM cannot know from pre-training (§6). Both experiments
show that ICL typically considers in-context label relations. We then investigate if ICL is powerful
enough to overcome prediction preferences learned from pre-training data (§7). In our experiments,
we find this is typically not the case as ICL performance plateaus if label relations oppose pre-
training preference. Further, while additional prompting can improve ICL here, we ultimately do
not find prompts that lead to the desired behavior. Finally, we study if ICL treats all information
provided in-context equally (§8). This is important when the context contains multiple different
label relationships. By modifying label relations during ICL, we find it does not treat all in-context
information equally, and, instead, ICL preferentially makes use of information closer to the query.

In summary, our results suggest a new middle ground regarding the capabilities and limitations of
ICL. While ICL can learn from label information, it does so differently than an idealized learner. Our
findings thus contribute to a better understanding of information processing in ICL, which, in turn, is
crucial to our ability to deploy LLMs safely and effectively. For example, Bai et al. (2022b) suggest
to use ICL for alignment, which relies on ICL being able to sufficiently adjust LLM behavior.

2 BACKGROUND

A large and growing body of prior work studies ICL. We here highlight those studies that are most
relevant to our motivation, and discuss other related work later in §10.

Since its introduction by Brown et al. (2020), few-shot ICL has become an integral part of LLM eval-
uations: e.g. many recent publications rely on few-shot ICL tasks, such as the popular HELM bench-
mark (Liang et al., 2022), to evaluate their LLMs (Chowdhery et al., 2022; Hoffmann et al., 2022).

In the wake of ICL’s success, follow up work has speculated if ICL implements a general purpose
learning algorithm such as gradient descent (Von Oswald et al., 2023) or Bayesian inference (Xie
et al., 2022). This line of work implies that ICL captures not just how much LLMs have learned
during pre-training but, rather, how much LLMs have learned how to learn novel supervised tasks
in-context. However, so far arguments have been largely theoretical, lacking solid experimental
evidence in actual LLMs (Zhang et al., 2023; Huszár, 2023; Wies et al., 2023; Jiang, 2023).
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Conversely, a variety of studies have highlighted unexpected shortcomings of ICL. For example,
ICL can be sensitive to the formatting (Min et al., 2022b) or order (Lu et al., 2022) of the in-context
learning examples. Further, LLMs prefer to predict labels that are common in the pre-training data
(Zhao et al., 2021), they can predict drastically different for similar prompts (Chen et al., 2022), and
they rely on task formulations similar to those observed in the pre-training data (Wu et al., 2023).

In particular, Min et al. (2022b) claim that ICL does not learn label relationships from in-context
examples and that ICL ‘performance drops only marginally when labels in the demonstrations are
replaced by random labels’. Further, they suggest that, instead of learning input–label relationships,
ICL only works because the model learns about the general label space, the formatting of the exam-
ples, and their input distribution. They assert that ICL does ‘not learn new tasks at test time’ and
that ‘ground truth demonstrations are in fact not required’ in many common scenarios. In the first
part of our evaluation, we will revisit and ultimately disagree with these claims.

3 NULL HYPOTHESES ON HOW ICL INCORPORATES LABEL INFORMATION

We wish to obtain a better understanding of how ICL uses information about the input–label relation-
ship provided in-context. We therefore study to what extent ICL behavior matches our expectations
of how a machine learning algorithm should behave in an idealized world. To this end, we introduce
the concept of a ‘conventional learning algorithm’ as an algorithm that conforms to our intuitions of
how an idealized learner will make predictions given data. In particular, we focus on the following
intuitions of an idealized learner: (1) it makes use of the labels for learning, (2) it allows the true la-
bel relationship to be learned when provided with sufficient data, and (3) it considers all information
in the data equally. Note here that some existing approaches may not always conform to some or all
of these intuitions, e.g. due to imperfections in training schemes, but our concept of the conventional
learning algorithm reflects how we would expect them to behave if our training worked perfectly.

To allow these institutions to be tested for ICL, we now introduce a series of null hypotheses that
we will subsequently try to falsify. Our first hypothesis follows from the notion that conventional
learners make use of the conditional distribution of labels given inputs.

Null Hypothesis 1 (NH1): ICL predictions are independent of the conditional label distribution of
the examples given in-context.

We will investigate NH1 in multiple ways. In §5, we revisit and refine the randomized in-context
label experiment of Min et al. (2022b): in addition to revising their results for point predictions, we
propose the use of probabilistic metrics to study if label randomization really does not affect ICL
predictive beliefs. Then, in §6, we study ICL on a novel task that we create and which ICL can only
solve by learning a novel label relationship that it cannot know from pre-training.

Next, we study how ICL incorporates label information. The pre-trained model already contains in-
formation towards many NLP tasks: even without any ICL, predictions are significantly better than
random guessing. This raises the question of how information given in-context interacts with this
pre-training preference. In typical applications of conventional learners, we would expect that pre-
dictions eventually follow the label relation of the training examples when provided with sufficient
data. A learner that does not conform to this is inherently limited in what it can learn. With NH2,
we study if ICL conforms to these intuitions and can overcome the initial pre-training preference.

Null Hypothesis 2 (NH2): ICL can overcome the zero-shot prediction preferences of the pre-trained
model.

In §7, we modify in-context label relationships and study how this changes ICL predictions. If NH2
is true, ICL should eventually predict according to any label relation given in-context.

Our last hypothesis relies on the following typical property of conventional learning algorithms: they
will consider all information in the examples equally. If a dataset contains multiple sources of infor-
mation about a label relationship, e.g. the dataset itself is a union of multiple datasets, then all infor-
mation is considered equally by the learner. NH3 investigates if this is holds true for ICL as well.

Null Hypothesis 3 (NH3): ICL considers all information given in-context equally.

In §8, we study non-stationary input distributions for which label relations change during ICL. If
NH3 is true, ICL predictions should not depend on the order in which we present label relations.
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Figure 2: Few-shot ICL training dynamics in a default label scenario on SST-2. Accuracy (↑)
and log likelihood (↑) improve with in-context dataset size, and entropies decrease appropriately.
Averages over 500 random subsets, thick lines with moving average (window size 5) for clarity.

4 EXPERIMENTAL SETUP & ICL TRAINING DYNAMICS

We here detail our experimental setup for the subsequent evaluation of few-shot ICL behavior.

Models & Tasks. We employ LLMs from the LLaMa-2 (Touvron et al., 2023b), LLaMa (Touvron
et al., 2023a), and Falcon (TII, 2023) families due to their strong performance and open source
nature. We evaluate on SST-2, Subjective (Subj.), Financial Phrasebank (FP), Hate Speech (HS),
AG News (AGN), MQP, MRPC, RTE, and WNLI. We provide citations for all tasks in §D.

Context Size. We always report few-shot ICL performance across all possible numbers of in-context
demonstrations, i.e. from zero-shot performance up to the maximum number of examples within the
LLMs’ input token limit. This is in contrast to prior work, which often evaluates few-shot ICL at only
a few context set sizes, and allows us to obtain a comprehensive picture of ICL ‘training dynamics’.

Computationally Cheap ICL Evaluations. We propose a novel evaluation strategy that obtains
ICL predictions at all possible numbers of in-context demonstrations without incurring any addi-
tional cost. Concretely, we exploit the fact that each forward pass through the model gives not just
a prediction for the next token, but rather, the predicted probabilities for each input token (given
all preceding tokens). By extracting those token predictions that correspond to labels of in-context
examples, we obtain few-shot ICL predictions at all in-context dataset sizes with each forward pass.
We refer to §B for a formalization of few-shot ICL and further description of our evaluation strategy.

Evaluation Metrics. We evaluate few-shot ICL performance in terms of accuracy (↑) and (average)
log likelihood (↑) of label predictions. We also report entropy, which, while not a performance met-
ric, is useful for understanding how much predicted probabilities are spread over classes. We average
metrics over sets of in-context examples drawn randomly and without replacement from the training
set, and we compare to a guessing baseline that predicts with probabilities equal to class frequencies.

Default Training Dynamics. Before modifying label relationships in the following sections, Fig. 2
shows standard few-shot ICL training dynamics for Falcon models on SST-2. We observe reasonable
behavior for all models: as more in-context examples are observed, accuracies and log likelihoods
increase, while entropies decrease. Notably, log likelihoods and entropies show in-context learning
more clearly: predicted probabilities continue to improve at larger context sizes, whereas accuracies
saturate quickly. Differences between models are more noticeable for probabilistic metrics, too: en-
tropies reveal that larger or instruction-tuned Falcon models predict with higher certainty on SST-2.
Similar findings also hold for LLaMa and LLaMA-2 models, for which we provide results in Fig. F.1.

5 DO ICL PREDICTIONS DEPEND ON IN-CONTEXT LABELS?

We now study the null hypotheses (NH) formulated in §3, starting with NH1, which states that
ICL predictions are independent of the conditional label distribution of the in-context examples.
To this end, we first revisit the experiments of Min et al. (2022b), replacing all labels of in-context
examples with labels drawn randomly from the training set of the task. If NH1 is true, then accuracy,
log-likelihood, and entropy should be identical for the randomized and standard label scenario. We
note that, while we believe the results of this experiment are already sufficient to reject NH1, the
experiments in §6–§8 will provide additional strong evidence for this conclusion.

Observations & Discussion. We evaluate NH1 across all our models, tasks, and metrics, computing
full ICL training curves as introduced in §4. Figure 1 shows log likelihoods for LLaMa-2-70B for
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Figure 3: Few-shot ICL with randomized labels for SST-2: Compared to default ICL behavior
(dashed lines), log likelihoods and entropies of the Falcon models degrade when in-context labels are
randomized. Accuracies show differences less clearly than probabilistic log likelihood and entropy.
Averages over 500 repetitions, thick lines with moving average (window size 5) for clarity.
Table 1: Average differences between ICL log likelihoods for default and randomized labels. Bold
entries indicate differences are statistically significant. We can disregard lightgray entries: for them,
default ICL performance is not significantly better than a random guessing baseline. Whenever de-
fault ICL outperforms the baseline, ICL almost always performs significantly worse (positive differ-
ences) for random labels. Averages over 500 runs at max. context size, standard errors in Table F.1.

∆ Log Likelihood SST-2 Subj FP HS AGN MQP MRPC RTE WNLI

LLaMa-2 7B 0.42 0.39 0.57 0.18 0.53 0.03 0.02 0.03 0.02
LLaMa-2 13B 0.41 0.62 0.49 0.24 0.81 0.04 0.01 0.06 0.02
LLaMa-2 70B 0.51 0.53 0.57 0.34 0.80 0.29 0.04 0.22 0.18
Falcon 7B 0.20 0.19 0.25 0.06 0.31 0.01 0.01 −0.01 0.01
Falcon 7B Instr. 0.13 0.08 0.11 0.03 0.15 0.03 0.02 −0.00 0.00
Falcon 40B 0.34 0.35 0.31 0.18 0.90 0.06 0.01 0.01 0.02
Falcon 40B Instr. 0.25 0.37 0.27 0.02 0.77 0.06 0.02 0.02 0.04

a selection of tasks, and Fig. 3 shows all metrics for all Falcon models on SST-2. We observe
significant differences in ICL behavior for the default and randomized label scenario. As the context
size grows, likelihoods eventually degrade significantly for randomized labels. In Fig. 3, we can
further see entropies increase when randomizing labels. This is reasonable from a probabilistic
learning perspective: as noisy labels are observed, estimates of uncertainty will typically increase.
While differences are large for probabilistic log likelihood and entropy, they can be harder to spot
for accuracy. In Fig. 2, only Falcon-40B experiences a sizeable accuracy decrease. (For LLaMa(-2)
models, accuracy decreases more frequently and can approach guessing level, cf. Figs. F.3 to F.8.)

We provide results for label randomization across all our models, tasks, and metrics: we invite
the reader to view the full set of training curves in §F and provide a summary of the results in
Table 1. It shows the average difference in log likelihoods between the default and randomized
labels at the maximum number of demonstrations for each task and model. We gray out entries
where ICL on default labels does not outperform the guessing baseline as we are only interested in
studying label randomization when ICL works in the first place. When default label performance is
better than random (black entries), differences are almost always significantly positive (bold entries),
indicating ICL performs worse for randomized labels. Based on these results, we reject NH1 that
ICL predictions do not depend on the conditional label distribution of in-context examples.

Notably, Table 1 shows that LLaMa-2-70B, our largest and most capable model, always performs
worse under label randomization. This suggests the importance of labels in ICL will increase as
models become more powerful in the future. However, performance often degrades significantly
even for smaller models, although they struggle to reach better than random performance on the en-
tailment tasks MQP, MRPC, RTE, and WNLI. Occasionally, likelihoods improve despite random la-
bels, e.g. for the small Falcon models in Fig. 3. Following Pan et al. (2023); Min et al. (2022b), we at-
tribute this to ICL ‘recognizing’, rather than learning, the task from the random label demonstrations.
However, we note that, even here, there are significant performance gaps to the default scenario. We
conclude that label randomization adversely affecting ICL predictions is the rule not the exception.

Discussion of Min et al. (2022b). Lastly, we discuss possible reasons for why Min et al. (2022b)
arrive at the conclusion that label randomization only ‘barely hurts’ ICL performance: (1) They do
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Figure 4: Few-shot ICL achieves accuracies significantly better than random guessing on our novel
author identification task. Thus, LLMs can learn novel label relationships entirely in-context.
Averages over 500 runs, thick lines with additional moving average (window size 5) for clarity.

not study probabilistic metrics, which are more sensitive to randomization. (2) They use a fixed ICL
dataset size of 16, but effects of random labels increase with growing contexts. (3) Only one model
they study has more than 20B parameters (GPT-3), but we observe that larger models react more to
randomization. (Pan et al. (2023) also observe this, cf. §10.) (4) On some tasks, performance for Min
et al. (2022b) could be close to random guessing, where label randomization has less of an effect.

6 CAN ICL LEARN TRULY NOVEL LABEL RELATIONSHIPS?

The results of §5 show that ICL predictions do depend on the label relationship of in-context exam-
ples. Here, we explore the extent to which ICL can extract label information from the context. Con-
cretely, we study if LLMs can learn truly novel label relationships in-context. To do this, we create a
task that is guaranteed to not appear in the pre-training data. The task needs to be distinct from estab-
lished NLP tasks, for which the pre-training data could be contaminated and for which, often, strong
zero-shot performance shows the model has learned the task, perhaps implicitly, during pre-training.

Specifically, we create an authorship identification (Stamatatos, 2009) dataset from private messages
between two authors of this paper. The task is to identify the author corresponding to a given
message. As messages stem from private communication, they are guaranteed to not be part of the
pre-training corpus. For ICL to succeed here, it needs to learn the novel input–label relationship
provided in-context: while the LLM could have some general notion of authorship identification
tasks, the specific input–label relationship is definitely novel, as the authors’ private writing styles
cannot be known to the LLM. We give further details on the task in §C.

Observations & Discussion. Figure 4 shows that ICL with LLaMa-2 succeeds at learning the
author identification task. Accuracies and log likelihoods increase, agreeing with expectations
about conventional learning. Performance improves with model size, but all models perform better
than random. We show results for more LLMs in Fig. F.13: all models, except Falcon-7B-Instruct,
achieve better than random performance. We conclude that LLMs can learn truly novel tasks in-
context, correctly inferring the label relation from examples. These results also strongly support our
previous rejection of NH1 as, clearly, ICL predictions must depend on labels to learn the novel task.

7 CAN ICL OVERCOME PRE-TRAINING PREFERENCE?

With NH2, we explore how in-context label information trades off against the LLM’s pre-training
preference, i.e. its zero-shot predictions based on label relationships inferred from pre-training and
stored in the model parameters. Often, pre-training preference and in-context label relationships
agree: e.g. in Fig. 3, performance is high zero-shot and then improves with ICL. To test NH2 if
ICL can overcome pre-training preference, we create scenarios where pre-training preference and
in-context observations are not aligned. We then study if ICL behavior is compatible with fully
overcoming pre-training preference as we would expect from a conventional learner.

Concretely, we use replacement label relationships when constructing the in-context examples.
(1) We flip the default labels, e.g. (negative, positive) get mapped to (positive, negative) for SST-2.
(2) We study arbitrary labels, e.g. (negative, positive) become (A, B) or (B, A)—we deliberately
choose arbitrary labels here such that the LLM should not have a significant preference for assign-
ing them to positive or negative. We then evaluate ICL performance for predicting the replacement
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Figure 5: Few-shot ICL with replacement labels for Falcon-40B on SST-2, LLaMa-65B on Hate
Speech, and LLaMa-2-70B on MQP. Table 2 and §F contain results for all other models and tasks.
ICL achieves better than guessing performance for all label relations and models. However, predic-
tions for flipped labels (dashed blue) plateau at a higher entropies and lower likelihoods than those
for the default label relation (solid blue). For arbitrary labels (pink), the model performs similarly for
both label directions. Averages over 100 runs and thick lines with moving average (window size 5).
Table 2: Average differences between ICL entropies for default and flipped labels. Bold entries in-
dicate differences are statistically significant. Again, we disregard entries for which default ICL per-
formance is not significantly better than the guessing baseline (lightgray entries). When default ICL
outperforms the baseline, ICL entropies are almost always significantly different between scenarios.
We average 100 runs, report results at maximum context size, and show standard errors in Table F.2.

∆ Entropy SST-2 Subj FP HS AGN MQP MRPC RTE WNLI

LLaMa-2 7B −0.52 0.01 −0.40 −0.10 −0.75 −0.00 0.05 −0.03 −0.01
LLaMa-2 13B −0.48 −0.06 −0.47 −0.19 −0.95 −0.03 −0.07 −0.11 −0.07
LLaMa-2 70B −0.17 −0.10 −0.40 −0.26 −1.00 −0.24 −0.15 −0.26 −0.21
Falcon 7B −0.28 −0.12 −0.02 −0.06 −0.52 0.00 0.00 −0.00 −0.01
Falcon 7B Instr. −0.37 −0.07 −0.33 −0.05 −0.22 −0.02 0.13 0.01 0.00
Falcon 40B −0.39 −0.23 −0.42 −0.19 −0.90 −0.00 −0.10 −0.02 −0.00
Falcon 40B Instr. −0.48 −0.16 −0.43 −0.31 −0.92 −0.10 −0.02 −0.06 −0.01

label relationship, e.g. the flipped labels in (1). Note that, we rely on the flipped label experiments
to evaluate NH2; results on arbitrary labels serve to complete the picture, and we discuss them later.

Observations & Discussion. We evaluate NH2 across all our models, tasks, and metrics. Figure 5
shows results for a selection of large models and datasets. Evidently, the LLMs can, to some extent,
learn to predict the flipped label relationships against pre-training preference. Accuracies on flipped
labels reach levels significantly better than random guessing. However, in particular for entropies,
there is a consistent gap between the default and flipped label scenarios: ICL predictions on flipped
labels are much less certain. Importantly, given the plateauing behavior, this gap is unlikely to disap-
pear with additional in-context observations. (Practically speaking, we cannot actually add any addi-
tional examples as input size is maximal already and will deteriorate when exceeding the LLMs’ in-
put token limit; this is itself a limitation of ICL compared to conventional learning.) It seems that la-
bel relationships inferred from pre-training have a permanent effect that cannot be overcome through
in-context observations. This does not agree with conventional learning: predictions on flipped la-
bels should continue to improve as observations continue to contradict pre-training preference.

Crucially, we observe this behavior across models and tasks. We encourage the reader to view the
full set of training curves in §F. Table 2 provides a summary of the results, showing differences in
entropy between default and flipped label scenarios at maximum context size, highlighting statistical
significance in bold and graying out entries where ICL fails on default labels. Across the board, we
again observe that predictions on flipped labels plateau: a significant gap between predictions on
default and flipped labels remains, even at maximum input size. For the models we study, we reject
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NH2 that ICL can overcome prediction preferences from pre-training. Again, the results here
strongly support our previous rejection of NH1, as clearly, predictions change for replacement labels.

Figure 5 also shows that for replacement labels (A, B) and (B, A) both directions are similarly easy
for ICL to learn. This suggests the LLM has not learned a preference for them from pre-training,
agreeing with our intuition. Further, learning arbitrary labels is slower than learning default labels
but faster than learning flipped labels, which agrees with intuitions about inductive biases.

Can Prompting Help? In §A, we further study if specific prompts, i.e. instructions that inform the
LLMs of the flipped labels, can improve ICL predictions. We find that, while prompts initially can
help the model predict on flipped labels, eventually, prompts no longer improve predictions.

8 HOW DOES ICL AGGREGATE IN-CONTEXT INFORMATION?
With NH3, we study if ICL considers all in-context information equally. We have just seen that ICL
does not treat pre-training preference equivalently to in-context label information. However, it is
similarly important to understand how ICL treats different sources of purely in-context information.

To test NH3, we change the label relationship during in-context learning in three different scenarios.
(D→ F): after N observations of the default label relation we flip the label relation for all following
observations, e.g. from (negative, positive) to (positive, negative) for SST-2. (F→ D): we now start
with N flipped label observations and then expose the model to default labels. (Alternate F↔ D):
we alternate between the default and flipped labels after each observation. For all three setups, after
2N observations, the model has observed the same number of the flipped and default label examples.
If NH3 is true, ICL should treat all observed label relations equally, no matter their position in the
input. This means, predictions should be the same for all three scenarios after 2N observations.

Observations & Discussion. Figure 6 shows accuracies for a selection of models and tasks, and
we report full probabilistic metrics for all tasks and model combinations for which ICL was able to
learn the flipped relationships well in Figs. F.32 to F.36. We observe that, across almost all tasks and
model combinations, predictions are significantly different between the three setups after observing
the same number of examples of both label relationships (after 2N total observations, red dashed line
in the figure). We thus reject NH3 that ICL treats all information provided in-context equivalently.

After the changepoint N , predictions immediately begin to adjust to the new label relationship. In
particular, after 2N observations, the (F→D) setup has a bias for predicting according to the default
label relationship, while the (D → F) setup has a bias for predicting the flipped label relationship.
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Figure 6: Few-shot ICL accuracies when the label relationship changes throughout ICL. For (D
→ F), we start with default labels and change to flipped labels at the changepoint, for (F → D)
we change from flipped to the default labels at the changepoint, and for (Alternating F ↔ D) we
alternate between the two label relationships after every observation. For all setups, at ‘2 x Change-
point’, the LLMs have observed the same number of examples for both label relations. If, according
to NH3, ICL treats all in-context information equally, predictions should be equal at that point—but
they are not. Bootstrapped 99% confidence intervals, moving averages (size 3), and 500 repetitions.
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In other words, LLMs prefer to use information that is closer to the query, instead of considering all
available information equally. Our finding is distinct from Zhao et al. (2021), who observe that ICL
preferentially predicts labels that appear frequently near the query for a single fixed label relation.
Lastly, we note once more that the results here also strongly support our previous rejection of NH1.

9 DISCUSSION & LIMITATIONS

Alignment. For alignment of LLMs, it is crucial to understand how pre-training preference and in-
puts trade-off, as well as how different parts of the input, such as a context string and user input, in-
teract and influence predictions. Our results suggest prompt-based alignment (Bai et al., 2022b) may
struggle to overwrite pre-training preference and could itself easily be overcome by future user input.

Do Labels Always Matter? It is plausible that labels matter less for other NLP tasks such as
question answering, where in-context examples may provide limited information towards the answer
of the query question. However, for the randomized label experiment, capable LLMs might still
identify that the provided in-context answers are random and imitate this in their predictions.

Limitations. We focus on few-shot ICL tasks where evaluation is based on logits and not free-form
generation. We do this mostly to avoid complications around evaluating free-form generation
tasks and believe our results should transfer to this setting. Further, our experiments do not cover
RLHF-finetuned LLMs (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022).

10 RELATED WORK

Some recent work has studied the effect of labels in ICL. Yoo et al. (2022) also revisit label ran-
domization and find significant variance across tasks and models. Pan et al. (2023) further separate
ICL into label-independent and -dependent learning, which they study by replacing labels with ar-
bitrary tokens. Wei et al. (2023) find that smaller or instruction-tuned models are less capable when
performing ICL with replacement labels. Similar to Min et al. (2022b), the above studies do not con-
sider probabilistic metrics or full ICL training curves, and thus can underestimate changes in ICL
predictions for modified labels. For example, Pan et al. (2023) find that the gap between random and
default labels is ‘insignificant’ for small models, which our results, in particular for probabilistic
metrics, contradict, cf. §5. Further, Wei et al. (2023) claim that ‘large models can override prior
knowledge from pretraining [. . . ] in-context’ and ‘small models do not change their predictions
when seeing flipped labels’, which is not supported by our results in §7. Lastly, Gao et al. (2021)
observe that replacement labels can also degrade performance when finetuning language models.
More generally, ICL has been the subject of many recent studies. For example, Min et al. (2022a)
fine-tune language models to improve ICL, Si et al. (2023) measure the inductive bias of ICL pre-
dictions, Chan et al. (2022b); Dasgupta et al. (2022) study differences between in-weights and in-
context generalization, and Chang & Jia (2022); Liu et al. (2022); Zhang et al. (2022b) observe that
the selection of examples affect ICL predictions significantly. In this paper, we emphasize a prob-
abilistic treatment of ICL predictions. Uncertainty in LLMs has previously been studied, e.g. by
Kadavath et al. (2022); Lin et al. (2023); Bai et al. (2022a); Gonen et al. (2022). On non-language
tasks, Kirsch et al. (2022); Chan et al. (2022a) study properties that lead to the emergence of ICL.
Also related are Garnelo et al. (2018); Kossen et al. (2021); Gordon et al. (2019), who propose
deep non-parametric models on non-language tasks. Unlike ICL, they can guarantee invariance to
example-order or closely approximate Bayesian predictive distributions (Müller et al., 2022).

11 CONCLUSIONS

In this paper, we have investigated how the conditional label distribution of in-context examples af-
fects ICL predictions. To ensure our conclusions represent ICL behavior well, we have studied ICL
across all possible in-context dataset sizes and considered probabilistic aspects of ICL predictions.
In some sense, we have shown that ICL is both better and worse than expected. On the one hand,
our results demonstrate that, against expectations set by prior work, ICL does incorporate in-context
label information and can even learn truly novel tasks in-context. On the other hand, we have shown
that analogies between ICL and conventional learning algorithms fall short in a variety of ways.
In particular, label relationships inferred from pre-training have a lasting effect that cannot be sur-
mounted by in-context observations. Additional prompting can improve but likely not overcome this
deficiency. Further, ICL does not treat all information provided in-context equally and preferentially
makes use of label information that appears closer to the query.
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A CAN PROMPTS HELP ICL LEARN FLIPPED LABEL RELATIONSHIPS?

In this section, we explore if prompts can be used to overcome the plateauing ICL performance when
default labels are flipped. Before the in-context examples, we insert prompt strings that inform the
LLM of the flipped label relationship in some fashion, and should thus help the LLM adjust to it
during ICL. These prompts could fundamentally change few-shot ICL behavior. In fact, one can
think of the in-context learner as the union of LLM and prompt, where so far the prompt was simply
left empty. There could exist prompts that help ICL learn the flipped label relationship better than
without them, or as well as in the default scenario. Note that, regardless of the outcome here,
NH2 remains rejected as ICL should not need to rely on a prompt to correctly consider in-context
observations. Nevertheless, for the ‘prompted few-shot ICL’ setup, NH2 should be reconsidered.

We explore the following three prompts: ‘In the following ...’, (Instruct Prompt) ‘...negative means
positive and positive means negative’ (here for SST-2 and adapted to other tasks), (Ignore Prompt)
‘...ignore all prior knowledge’, and (Invert Prompt) ‘...flip the meaning for all answers’.

Observations & Discussions. Figure A.1 gives results for the prompted few-shot ICL setup for
LLaMa-65B and Falcon-40B on SST-2. Figures F.38 to F.46 give results for our largest models
across all tasks. However, prompting is most successful for the scenarios in Fig. A.1, making this
the most interesting result to study NH2. In particular, prompting has a surprisingly weak effect for
LLaMa-2-70B. In Fig. A.1 we observe that prompts, in particular the instruct and invert prompts,
can help improve ICL performance. However, it seems that the positive impact from prompting is
restricted to an initial boost at small in-context datasets sizes. We then sometimes observe a ‘dip’ in
performance, which could indicate ICL forgetting about the prompt. At large context sizes, none of
our prompts have any advantage, and flipped label performance again plateaus short of performance
for the default label setup. Therefore, we reject NH2 for the prompted ICL variations that we study.

It is possible that there exist prompts—that we have not found—for which we cannot reject NH2.
However, we are sceptical these prompts exist for the models we study, as their behavior at large
context sizes is strikingly similar across all prompts we investigate. For more capable LLMs, we sus-
pect it may be possible to obtain a zero-shot performance on the flipped scenario that is equal to the
zero-shot of the default scenario, i.e. the prompt leads to the LLM perfectly flipping all its zero-shot
predictions. However, we are unsure if, in addition to flipping zero-shot predictions, such prompts
would also improve ICL on flipped label observations to be as good as in the default scenario.
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Figure A.1: Prompted few-shot ICL with flipped labels on SST-2. Some prompts are able to
improve ICL on flipped labels compared to not using a prompt as before (label none in the figure).
However, improvements have no lasting effect: performance at larger context sizes does not improve
and still plateaus short of the default scenario (solid grey line). We average over 100 random subsets
and then additionally apply moving averages (window size 5) for clarity.
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B EVALUATION APPROACH FOR CHEAP IN-CONTEXT LEARNING DYNAMICS

In this section, we suggest a—to the best of our knowledge—novel way of evaluating ICL that
gives performance metrics at all in-context dataset sizes in a single forward pass without incurring
additional cost. We start by introducing the notation necessary to formalize few-shot ICL in LLMs.

Dataset to Input String. The few-shot task is defined by a dataset D = {(Si, Yi)}Ni=1, where
Si ∈ T dSi are input sentences from which to predict the associated labels Yi ∈ T dyi , and T v are
text strings of length v. A verbalizer V (S, Y ) takes a sentence–label pair and maps it to an example,
e.g. the sequence ‘I am happy’ and label ‘positive’ are verbalized as ‘Sentence: I am happy\n Label:
positive\n’. We also define a query verbalizer Vq(S) that maps a test query S to a query example,
e.g. ‘I am sad’ is mapped to ‘Sentence: I am sad\n Label:’, such that the next-token prediction
of an LLM will be encouraged to predict the label for the query. We apply the verbalizer to the
entire dataset set and concatenate its output to obtain the context C = ⊕N

i=1V (Si, Yi). Finally, we
concatenate context C and verbalized query Vq(S), where S is a sentence drawn from a separate test
set, to obtain the input to the language model, I = C ⊕ Vq(S) ∈ T dI .

Input String to Tokens. The input I is tokenized before it can be processed by the language model.
The tokenizer, T (I) = (X1, . . . , XM ), maps an input sequence I to a sequence of integers, or
tokens, Xi ∈ (1, . . . , D), where D is the vocabulary size, i.e. the number of unique tokens. We keep
track of which token positions correspond to labels, L = (l1, . . . , lN ), e.g. the indices of the tokens
immediately following the string ‘Label:’ in the above example.

Tokens to Predictions. In the following, we use capital letters to denote random variables and
lower-case letters for their realizations. Here, we describe the behavior of decoder-only language
models (Liu et al., 2018; Radford et al., 2018), a popular architecture choice for LLMs. Given the
observed sequence of input tokens (X1 = x1, . . . , XM = xM ), a single forward pass through the
language model gives an estimate of the joint probability,

p(X1 = x1) · p(X2 = x2 | X1 = x1) · ... · p(XM = xM | X1 = x1, . . . , XM−1 = xM−1). (1)

We highglight that Eq. (1) gives the joint probability at the observed outcomes: we obtain M ‘one-
step ahead’ predictions, each conditioned only on observed outcomes and not on model predictions.
Equation (1) is a common objective in LLM training, where ‘the joint probability the model assigns
to the observations’ is sometimes referred to as teacher forcing (Williams & Zipser, 1989).

At test time, LLMs are usually iteratively conditioned on their own predictions, generating novel
outputs via multiple forward passes, i.e. one first samples x̂M ∼ p(XM | . . . ), and then x̂M+1 ∼
p(XM+1 | . . . , XM = x̂M ), and so on. We here use ‘. . . ’ to stand in for any additional tokens
also conditioned on, e.g. (x1, . . . , xM−1). One usually ignores all other terms of the joint here—
the predictions for (X1, . . . , XM−1) that are generated in each forward pass—as only the last term
p(XM | . . . ) is needed to sample the next token, i.e. the label in standard few-shot ICL applications.

Single-Forward Pass ICL Training Dynamics. We now explain our approach for efficient eval-
uation of ICL training dynamics. Given input tokens (X1, . . . , XM ) for the few-shot ICL setup
described above, we first select those terms from Eq. (1) that correspond to label token predictions,∏N

i=1
p(Xli = xli | X1 = x1, . . . , Xm<li = xm<li). (2)

For each term, the model predicts a distribution over the entire token vocabulary, i.e. p(Xli | . . . ) is a
categorical distribution, p = (p1, . . . , pD), which is then evaluated at the observed tokens in Eq. (2).
We can transform this into a prediction over only the few-shot task label Y by selecting the indices
of the categorical distribution which correspond to the tokenized labels and then renormalizing,
p(Y ) = (pt1 , . . . , ptC | . . . ), where C is the number of unique labels which are encoded to tokens
(t1, . . . , tC). With this, we can rewrite Eq. (2) as the joint probability the model assigns to the
sequence of labels given input sentences

p(Y1 = y1 | S1 = s1) · p(Y2 = y2 | S1 = s1, Y1 = y1, S2 = s2) · . . .
· p(YN = yN | S1 = s1, Y1 = y1, . . . , SN−1 = sN−1, YN−1 = yN−1, SN = sN ). (3)

Note how, because the joint is evaluated at the observations, its individual terms are always condi-
tioned on the true labels and not previous predictions. This allow us to cheaply compute the training
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dynamics of ICL as a function of increasing in-context dataset size. With each forward pass, we
obtain the individual terms of Eq. (3), which are the few-shot ICL predictions at all possible context
dataset sizes, i = (1, . . . , N). In contrast, in standard few-shot ICL evaluations, each forward pass
only yields predictions for a single test query, neglecting the information the joint contains about the
first N − 1 label predictions. There may be interesting applications of Eq. (3) to model selection,
as the quantity has links to both Bayesian evidence (Murphy, 2022) and cross-validation (Fong &
Holmes, 2020), although we do not explore this any further in this paper.

Multi-Token Labels. So far, we have assumed that each label string is encoded as a single token.
However, our approach can also be applied if some or all labels are encoded as multiple tokens.
In essence, we continue to measure only the probability the model assigns to the first token of
each label, making the (fairly harmless) assumption that the first (or only) token that each label is
encoded to is unique among labels. We believe this is justified, as, given the first token for a label, the
model should near-deterministically predict the remaining tokens, i.e. all the predictive information
is contained in the first token the model predicts for a label. For example, for the Subjectivity dataset,
the label ‘objective’ is encoded by the LLaMa tokenizer as a single token but the label ‘subjective’
is encoded as two tokens, [subject, ive]. We only use the probability assigned to [subject] to assign
probabilities to ‘subjective’, and ignore any predictions for [ive]. However, if the model successfully
accommodates the pattern of the in-context example labels, we would expect probabilities for [ive]
following [subject] to be close to 1 always.

For LLaMa-7B on Subjectivity, we have investigated the above assumption empirically. After the
first observation of the ‘subjectivity’ label in-context, the probability of predicting [ive] after ob-
serving [subject] are 0.9998± 0.0003 for the following 12 instances of the ‘subjectivity’ label, with
probabilities normalized over all tokens of the vocabulary here. In other words, we can safely eval-
uate the performance of the LLaMa model from its predictions of only the [subject] token, even
though the full label is split over two tokens [subject, ive].

C AUTHORSHIP IDENTIFICATION TASK

We here give details on our novel authorship identification task.

Data Collection & Processing. We extract the last 151 messages sent between two authors of
this paper on the Slack messaging platform. If multiple messages are sent in a row by one author,
these count as multiple inputs. We filter out 42 messages that were of low quality: URLs, article
summaries, missed call notifications, and meeting notes. This leaves us with 58 and 51 messages
per author. We set the maximum message length to be 200 and truncate any messages longer than
that. Before truncation, the longest message was 579 characters long. The median message length
is 68 before and after truncation, mean and standard deviation shrink from 100± 98 to 88± 65. For
use in ICL, we treat this dataset as we would any other and present messages in random order.

Data Release. For now, we have decided to not make this dataset public for two reasons: (1) It
contains genuinely private communication, and (2) releasing the data would mean that future LLMs
might be trained on it, so we could no longer use it to test their ability to learn truly novel label
relationships in-context. However, below, we give 6 random examples from the dataset:

Author 1 Would 10.30am on Tuesday work?
Author 1 Sounds good. When are you back again?
Author 1 Yeah, we might have to find somewhere else depending on whether my office mates are

in, but its out of term so should be plenty of free meeting rooms if needed
Author 2 No problem!
Author 2 I’ll be in [redacted] next week, so do you think we can meet in person?
Author 2 The vacation is 16 days!

D DATASET CITATIONS

We evaluate on SST-2 (Socher et al., 2013), Subjective (Wang & Manning, 2012), Financial Phrase-
bank (Malo et al., 2014), Hate Speech (de Gibert et al., 2018), AG News (Zhang et al., 2015), Med-
ical Questions Pairs (MQP) (McCreery et al., 2020), as well as Microsoft Research Paraphrase Cor-
pus (MRPC) (Dolan & Brockett, 2005), Recognizing Textual Entailment (RTE) (Dagan et al., 2005),
and Winograd Schema Challenge (WNLI) (Levesque et al., 2012) from GLUE (Wang et al., 2019).
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E EXPERIMENT DETAILS

Below we give additional details on our experimental evaluation.

Guessing Baseline. In our experiments, we frequently display a ‘guessing based on class frequen-
cies’ baseline as a grey-dashed line. This baseline presents an informed guess that relies only on
knowing the class frequencies of the task and makes the exact same prediction for each input dat-
apoint. We here explain how we compute this baseline for accuracy, entropy, and log likelihood.
We are given a classification task with C classes which appear with frequencies p = [p1, . . . , pC ] in
the training set. The baseline always predicts p = [p1, . . . , pC ], i.e. it predicts the class frequencies.
For accuracy, it thus always predicts the majority class c∗ = argmaxk pk, which leads to accuracy
pc∗ . Further, the baseline prediction leads to a log likelihood of

∑
k pk log pk and an entropy of

−
∑

k pk log pk under the training data distribution.

Class Flipping. While most of our tasks are binary classification, Financial Phrasebank and AG
News are not. For these datasets, when ‘flipping’ labels in §7, §A, and §8, we actually rotate labels
instead, i.e. we reassign labels y as y ← (y+1) mod C, where C is the number of classes. For AG
News, [’world’, ’sports’, ’business’, ’science and technology’] get mapped to [’sports’, ’business’,
’science and technology’, ’world’]. For Financial Phrasebank, [’negative’, ’neutral’, ’positive’]
get mapped to [’neutral’, ’positive’, ’negative’]. Note that, for Financial Phrasebank, rotating the
labels is harder than naively inverting the label order, as rotating does not leave the meaning of the
‘neutral’ label unchanged.

In-Context Example Formatting. We use the following simple templates to format the in-context
examples. For SST-2, Subjectivity, Financial Phrasebank, Hate Speech, and our author identification
task, we use the following line of Python code to format each input example:
f"Sentence: ’{sentence}’\nAnswer: {label}\n\n".
For MRPC, WNLI, and RTE, we format instances with
f"Sentence 1: ’{sentence1}’\nSentence 2: ’{sentence2}’\nAnswer:
{label}\n\n".
For MQP, we use
f"Question 1: ’{sentence1}’\nQuestion 2: ’{sentence2}’\nAnswer:
{label}\n\n".

Implementation. We rely on the Hugging Face Python library (Wolf et al., 2020) and PyTorch
(Paszke et al., 2019) to implement the experiments of this paper. We use half-precision floating-point
numbers for LLaMa-65B and LLaMa-2-70B, and we use 8 bit-quantization for all other models,
which we have found to not affect performance notably. In Fig. E.1, we illustrate this by showing
the difference between 8 bit quantization and full 32 bit precision for default ICL and ICL with label
randomization for LLaMa-2-7B on the Subjectivity dataset: there is no significant loss of precision
or change in behavior from 8 bit quantization.

Datasets. We use Hugging Face Spaces to access all tasks considered in this paper. For Hate Speech,
we select the first 1000 examples with labels 0 and 1, skipping datapoints with labels 2 and 3. We
do not use custom processing for any other dataset.

Whitespace Tokenization. To evaluate few-shot ICL performance as introduced in §4, we need to
identify the tokens that individual task labels are encoded to. We here detail how to achieve this at
the example of the SST-2 label ‘positive’. In particular, we highlight the, perhaps unexpected, effects
of whitespaces on input tokenization. These details are important and, if not considered correctly,
can degrade performance significantly.

For Falcon models, the tokenizer encodes ‘Answer:’ as [20309, 37], ‘Answer:-’ as
[20309, 37, 204], and ‘Answer:-positive’ as [20309, 37, 3508]. We here use
dashes ‘-’ instead of whitespaces for improved legibility. Clearly, the relevant token for the label
‘positive’ is [3508]. Note how the token [204] for the trailing whitespace disappears again af-
ter appending the label. Further, just encoding ‘positive’ without a preceding whitespace gives
[28265]. However, this token does not appear in the input, where the label is preceded by a
whitespace—we should thus use the token [3508] to measure ICL performance.

The LLaMa and LLaMa-2 tokenizer encodes ‘Answer:’ as [673, 29901], ‘Answer:-’ as
[673, 29901, 29871], and ‘Answer:-positive’ as [673, 29901, 6374]. Thus,
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Figure E.1: Few-shot ICL at 8 bit and 32 bit precision with default and randomized labels for
LLaMa-2-7B on Subjectivity. There is no significant performance degradation from 8 bit quantiza-
tion. We average over 500 random in-context datasets, thin lines are bootstrapped 99% confidence
intervals, and we apply moving averages (window size 5) for clarity.

Table E.1: Maximum number of in-context examples we consider for each model-task combination.
Below, we shorten AG News as AGN, Hate Speech as HS, and Financial Phrasebank as FP.

SST-2 Subj FP HS AGN MQP MRPC RTE WNLI

LLaMa-2 140 79 73 76 45 47 40 28 57
LLaMa 66 37 33 26 21 21 20 13 27
Falcon 67 39 37 28 25 23 21 15 30

the relevant token for the label ‘positive’ is [6374]. In contrast to the Falcon tokenizer, just encod-
ing ‘positive’ without a preceding whitespace also gives [6374].

Lastly, similar caveats apply to the classic evaluation procedure for few-shot ICL, where we only
evaluate the prediction for a single test query at the end of the input. Here, it is crucially important
that we do not end inputs with a trailing whitespace. As we have seen above, for both LLaMa and
Falcon tokenizers, the trailing whitespace leads to the generation of an extra token that is not present
when encoding complete in-context examples, as the whitespace would usually be included in the
label prediction itself. This change in tokenization between in-context examples and test query can
adversely affect ICL performance.

Statistical Significance. In Tables 1, 2, F.1, and F.2 we bold differences if they are statistically
significant at a 95% level. Concretely, we compute if the absolute average differences are larger than
1.96 times the standard error. Similarly, when deciding if default label performance is significantly
better than random guessing performance, we check if mean performance plus 1.645 times the
standard error is larger than the guessing baseline across accuracy and log likelihood.

Maximum Context Dataset Size. For each task, we create in-context datasets by sub-sampling
from the training set of the task. Falcon and LLaMa support input sizes up to 2048 tokens, and
LLaMa-2 supports up to 4096 input tokens. For all models, performance will degrade if the input
size exceeds this limit. This caps the number of in-context examples we can include for each task.
For tasks where the individual input sentences are longer, we will be able to include fewer examples
in-context. Across all in-context datasets that we sample for a task, we compute the minimum num-
ber of in-context examples needed to exceed the token limit of 2048 or 4096. This is the maximum
in-context dataset size up to which we report results for that task. We list these numbers in Table E.1

Calibration. We do not calibrate predicted probabilities by first dividing them by a ‘prior’ probabil-
ity and then renormalizing as suggested by Zhao et al. (2021). We have found this rarely improves,
and sometimes degrades predictions, cf. Fig. E.2. We observe this happening in particular for tasks
where labels are encoded as multiple tokens.
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F EXTENDED RESULTS

Section 4 – Training Dynamics: Figure F.1 shows few-shot ICL training dynamics on SST-2 for a
selection of models at different parameter counts.

Section 5 – Label Randomization: Figure F.2 gives results for randomized labels for all models
on SST2. Figures F.3 to F.12 give results for all tasks and models comparing ICL with randomized
labels to the default label setup. Table F.1 gives full summary statistics across all models, tasks, and
metrics for the label randomization experiment.

Section 6 – Author ID Task: Figure F.13 gives few-shot ICL results for all models on our novel
authorship identification task.

Section 7 – Flipped Labels: Figures F.14 to F.31 give results for all tasks and models for the
modified label relationship experiments. We also report performance for additional replacement
labels across task and models. Table F.2 gives full summary statistics across all models, tasks, and
metrics for the difference between default and flipped label performance.

Section 8 – Dynamic Label Flipping: In Figs. F.32 to F.36, we give results for the experiments
investigating NH3 for all large models on tasks where label flipping gave strong performance in §7.
For LLaMa-2-70B on Hate Speech in Fig. F.35, metrics appear very similar initially. However, when
exploring additional changepoints in Fig. F.37, we do find significant differences in predictions.

Appendix A – Prompting with Flipped Labels: Figures F.38 to F.46 give results for all tasks and
models for the prompted few-shot ICL setup.
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Figure F.1: Few-shot ICL training dynamics in a standard scenario on SST-2. Accuracy (↑) and
log likelihood (↑) improve with in-context dataset size, and entropies decrease appropriately. Aver-
ages over 500 random subsets of the SST-2 training set (thin lines), additionally applying a moving
average with window size 5 for clarity (thick lines).
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Figure F.2: Few-shot ICL with randomized labels for SST-2: Compared to default ICL behavior
(dashed lines, cf. Fig. F.1), log likelihoods and entropies of the models degrade when in-context
example labels are randomized. Thin lines are averages over 500 repetitions, thick lines with moving
average (window size 5), guessing baseline based on class frequencies.
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Figure F.3: Few-shot ICL with randomized labels for LLaMa-2-7B: accuracies, entropies, and log likelihoods behave differently for randomized and default
labels when performance is above randomly guessing class frequencies. While accuracy can be noisy, differences are clearly visible for probabilistic entropy and
log likelihood. We average over 500 random in-context datasets, thin lines are bootstrapped 99% confidence intervals.
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Figure F.4: Few-shot ICL with randomized labels for LLaMa-2-13B: accuracies, entropies, and log likelihoods behave differently for randomized and default
labels when performance is above randomly guessing class frequencies. While accuracy can be noisy, differences are clearly visible for probabilistic entropy and
log likelihood. We average over 500 random in-context datasets, thin lines are bootstrapped 99% confidence intervals.
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Figure F.5: Few-shot ICL with randomized labels for LLaMa-2-70B: accuracies, entropies, and log likelihoods behave differently for randomized and default
labels when performance is above randomly guessing class frequencies. While accuracy can be noisy, differences are clearly visible for probabilistic entropy and
log likelihood. We average over 500 random in-context datasets, thin lines are bootstrapped 99% confidence intervals.
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Figure F.6: Few-shot ICL with randomized labels for LLaMa-7B: accuracies, entropies, and log likelihoods behave differently for randomized and default labels
when performance is above randomly guessing class frequencies. While accuracy can be noisy, differences are clearly visible for probabilistic entropy and log
likelihood. We average over 500 random in-context datasets, thin lines are bootstrapped 99% confidence intervals.
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Figure F.7: Few-shot ICL with randomized labels for LLaMa-13B: accuracies, entropies, and log likelihoods behave differently for randomized and default labels
when performance is above randomly guessing class frequencies. While accuracy can be noisy, differences are clearly visible for probabilistic entropy and log
likelihood. We average over 500 random in-context datasets, thin lines are bootstrapped 99% confidence intervals.
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Figure F.8: Few-shot ICL with randomized labels for LLaMa-65B: accuracies, entropies, and log likelihoods behave differently for randomized and default labels
when performance is above randomly guessing class frequencies. While accuracy can be noisy, differences are clearly visible for probabilistic entropy and log
likelihood. We average over 500 random in-context datasets, thin lines are bootstrapped 99% confidence intervals.
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Figure F.9: Few-shot ICL with randomized labels for Falcon-7B: accuracies, entropies, and log likelihoods behave differently for randomized and default labels
when performance is above randomly guessing class frequencies. While accuracy can be noisy, differences are clearly visible for probabilistic entropy and log
likelihood. We average over 500 random in-context datasets, thin lines are bootstrapped 99% confidence intervals.
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Figure F.10: Few-shot ICL with randomized labels for Falcon-7B-Instruct: accuracies, entropies, and log likelihoods behave differently for randomized and
default labels when performance is above randomly guessing class frequencies. While accuracy can be noisy, differences are clearly visible for probabilistic
entropy and log likelihood. We average over 500 random in-context datasets, thin lines are bootstrapped 99% confidence intervals.
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Figure F.11: Few-shot ICL with randomized labels for Falcon-40B: accuracies, entropies, and log likelihoods behave differently for randomized and default labels
when performance is above randomly guessing class frequencies. While accuracy can be noisy, differences are clearly visible for probabilistic entropy and log
likelihood. We average over 500 random in-context datasets, thin lines are bootstrapped 99% confidence intervals.
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Figure F.12: Few-shot ICL with randomized labels for Falcon-40B-Instruct: accuracies, entropies, and log likelihoods behave differently for randomized and
default labels when performance is above randomly guessing class frequencies. While accuracy can be noisy, differences are clearly visible for probabilistic entropy
and log likelihood. We average over 500 random in-context datasets, thin lines are bootstrapped 99% confidence intervals.



Table F.1: Full summary statistics for the randomization experiment of §5. We strongly encourage readers to also view the full training curves across all possible
context sizes in §F. Across all metrics, here show the average difference between the default and randomized label scenario. We compute ‘Metric(Default) -
Metric(Random)’, such that positive accuracy/log likelihood differences indicate that ICL performs worse with randomized labels. We compute differences at the
maximum context size for each task-model combination (cf.§E and Table E.1). We display experiments where ICL accuracies or log likelihoods on the default
labels do not significantly exceed random guessing performance in lightgray. Across models, and metrics, model performance is usually significantly worse when
labels are randomized and default performance exceeds random guessing. We display mean differences and standard errors over 500 runs. We bold entries for
which mean differences are statistically significant.

∆ Log Lik. SST-2 Subj F. Phraseb. Hate Speech AG News MQP MRPC RTE WNLI

LLaMa-2 7B 0.42± 0.02 0.39± 0.02 0.57± 0.02 0.18± 0.01 0.53± 0.04 0.03± 0.01 0.02± 0.01 0.03± 0.01 0.02± 0.01
LLaMa-2 13B 0.41± 0.02 0.62± 0.03 0.49± 0.03 0.24± 0.02 0.81± 0.04 0.04± 0.01 0.01± 0.01 0.06± 0.02 0.02± 0.03
LLaMa-2 70B 0.51± 0.03 0.53± 0.02 0.57± 0.02 0.34± 0.02 0.80± 0.03 0.29± 0.02 0.04± 0.02 0.22± 0.02 0.18± 0.02
LLaMa 7B 0.39± 0.03 0.42± 0.03 0.36± 0.02 0.15± 0.02 0.30± 0.03 0.03± 0.01 0.00± 0.01 0.03± 0.02 0.01± 0.02
LLaMa 13B 0.44± 0.03 0.45± 0.02 0.37± 0.02 0.16± 0.02 0.32± 0.03 0.04± 0.02 −0.01± 0.02 0.05± 0.02 0.02± 0.02
LLaMa 65B 0.55± 0.02 0.45± 0.02 0.49± 0.02 0.23± 0.02 0.88± 0.04 0.14± 0.02 0.01± 0.01 0.12± 0.02 0.08± 0.02
Falcon 7B 0.20± 0.01 0.19± 0.01 0.25± 0.01 0.06± 0.01 0.31± 0.03 0.01± 0.02 0.01± 0.02 −0.01± 0.02 0.01± 0.02
Falcon 7B Instr. 0.13± 0.01 0.08± 0.01 0.11± 0.01 0.03± 0.02 0.15± 0.02 0.03± 0.02 0.02± 0.03 −0.00± 0.02 0.00± 0.02
Falcon 40B 0.34± 0.02 0.35± 0.02 0.31± 0.02 0.18± 0.02 0.90± 0.04 0.06± 0.02 0.01± 0.02 0.01± 0.02 0.02± 0.02
Falcon 40B Instr. 0.25± 0.02 0.37± 0.03 0.27± 0.02 0.02± 0.03 0.77± 0.04 0.06± 0.02 0.02± 0.02 0.02± 0.02 0.04± 0.02

∆ Accuracy SST-2 Subj F. Phraseb. Hate Speech AG News MQP MRPC RTE WNLI

LLaMa-2 7B 28.4± 2.1 39.8± 2.4 30.4± 2.4 16.2± 2.3 13.4± 2.2 3.8± 2.2 5.2± 2.8 4.0± 2.4 3.0± 2.5
LLaMa-2 13B 19.8± 2.0 46.0± 2.4 24.4± 2.4 19.0± 2.3 34.6± 2.3 3.2± 2.5 2.8± 1.4 1.6± 1.9 3.6± 2.3
LLaMa-2 70B 34.8± 2.3 29.8± 2.1 27.0± 2.2 28.6± 2.5 24.4± 2.1 19.6± 2.5 3.6± 1.7 14.0± 2.0 13.6± 2.5
LLaMa 7B 24.6± 2.2 36.4± 2.5 19.8± 2.1 10.8± 2.2 11.2± 2.0 4.6± 2.8 −0.2± 1.9 2.8± 2.6 1.0± 2.0
LLaMa 13B 31.4± 2.2 42.4± 2.5 26.4± 2.7 13.8± 2.0 9.2± 1.8 4.0± 2.6 −2.6± 2.4 2.0± 2.4 3.0± 2.5
LLaMa 65B 47.4± 2.5 34.4± 2.3 18.4± 2.1 13.6± 2.2 39.2± 2.7 8.4± 2.0 2.0± 1.4 7.6± 1.8 4.6± 2.1
Falcon 7B 6.8± 1.6 14.4± 2.0 24.0± 2.4 7.6± 1.8 13.2± 2.0 3.0± 2.2 2.6± 2.4 −1.4± 2.9 0.0± 2.1
Falcon 7B Instr. 3.6± 1.4 7.6± 1.8 5.2± 1.5 2.0± 2.0 8.2± 1.9 1.6± 2.6 3.0± 2.9 −1.0± 2.3 2.8± 1.8
Falcon 40B 20.2± 2.1 22.2± 2.1 10.0± 1.8 10.6± 2.2 49.4± 2.4 11.2± 2.4 −0.4± 1.1 0.4± 1.7 1.2± 2.2
Falcon 40B Instr. 6.8± 1.4 21.8± 2.2 10.4± 1.8 0.8± 1.6 40.4± 2.4 4.2± 2.0 3.4± 2.3 3.2± 1.9 3.6± 2.2

∆ Entropy SST-2 Subj F. Phraseb. Hate Speech AG News MQP MRPC RTE WNLI

LLaMa-2 7B −0.465± 0.007 −0.177± 0.008 −0.529± 0.012 −0.099± 0.006 −0.910± 0.014 −0.004± 0.002 −0.005± 0.002 −0.014± 0.004 0.004± 0.003
LLaMa-2 13B −0.499± 0.008 −0.429± 0.009 −0.477± 0.013 −0.204± 0.008 −1.009± 0.013 −0.018± 0.004 −0.021± 0.004 −0.079± 0.006 −0.058± 0.006
LLaMa-2 70B −0.564± 0.007 −0.500± 0.007 −0.563± 0.010 −0.313± 0.010 −1.046± 0.011 −0.242± 0.009 −0.074± 0.006 −0.246± 0.009 −0.220± 0.008
LLaMa 7B −0.426± 0.009 −0.153± 0.009 −0.225± 0.011 −0.103± 0.007 −0.497± 0.013 −0.002± 0.001 −0.001± 0.003 −0.002± 0.004 −0.001± 0.004
LLaMa 13B −0.376± 0.009 −0.193± 0.009 −0.218± 0.009 −0.112± 0.007 −0.567± 0.015 −0.008± 0.004 −0.014± 0.005 −0.012± 0.004 0.001± 0.004
LLaMa 65B −0.422± 0.009 −0.283± 0.008 −0.502± 0.011 −0.273± 0.009 −1.032± 0.013 −0.100± 0.007 −0.040± 0.005 −0.128± 0.008 −0.153± 0.008
Falcon 7B −0.196± 0.007 −0.109± 0.006 −0.099± 0.006 −0.046± 0.005 −0.428± 0.015 −0.000± 0.004 0.003± 0.005 −0.002± 0.004 −0.002± 0.004
Falcon 7B Instr. −0.207± 0.007 −0.038± 0.004 −0.115± 0.007 −0.041± 0.006 −0.200± 0.011 0.000± 0.004 0.007± 0.006 0.003± 0.006 −0.003± 0.006
Falcon 40B −0.382± 0.009 −0.248± 0.009 −0.358± 0.010 −0.175± 0.008 −0.923± 0.015 −0.002± 0.004 0.001± 0.006 −0.008± 0.005 −0.001± 0.004
Falcon 40B Instr. −0.396± 0.008 −0.177± 0.009 −0.313± 0.010 −0.202± 0.009 −0.922± 0.015 −0.039± 0.006 −0.013± 0.007 −0.033± 0.006 −0.012± 0.005
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Figure F.13: Few-shot ICL on novel author identification task for all models. Models achieves
accuracies significantly better than random guessing on our novel author identification task. Thus,
ICL predictions must depend on the label relationship provided in-context. Thin lines are averages
over 500 runs, thick lines moving average (window size 5).
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Figure F.14: Few-shot ICL with replacement labels on SST-2 for LLaMa-2 models. In addition
to the default labels, we study a variety of replacement labels (see legend). We average over 100
random subsets and then additionally apply moving averages (window size 5) for clarity.
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Figure F.15: Few-shot ICL with replacement labels on SST-2 for LLaMa and Falcon models. In
addition to the default labels, we study a variety of replacement labels (see legend). We average over
100 random subsets and then additionally apply moving averages (window size 5) for clarity.
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Figure F.16: Few-shot ICL with replacement labels on Subjectivity for LLaMa-2 models. In
addition to the default labels, we study a variety of replacement labels (see legend). We average
over 100 random subsets and then additionally apply moving averages (window size 5) for clarity.
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Figure F.17: Few-shot ICL with replacement labels on Subjectivity for LLaMa and Falcon models.
In addition to the default labels, we study a variety of replacement labels (see legend). We average
over 100 random subsets and then additionally apply moving averages (window size 5) for clarity.
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Figure F.18: Few-shot ICL with replacement labels on Financial Phrasebank for LLaMa-2 mod-
els. In addition to the default labels, we study a variety of replacement labels (see legend). We
average over 100 random subsets and then additionally apply moving averages (window size 5) for
clarity.
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Figure F.19: Few-shot ICL with replacement labels on Financial Phrasebank for LLaMa and
Falcon models. In addition to the default labels, we study a variety of replacement labels (see
legend). We average over 100 random subsets and then additionally apply moving averages (window
size 5) for clarity.
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Figure F.20: Few-shot ICL with replacement labels on Hate Speech for LLaMa-2 models. In
addition to the default labels, we study a variety of replacement labels (see legend). We average
over 100 random subsets and then additionally apply moving averages (window size 5) for clarity.
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Figure F.21: Few-shot ICL with replacement labels on Hate Speech for LLaMa and Falcon models.
In addition to the default labels, we study a variety of replacement labels (see legend). We average
over 100 random subsets and then additionally apply moving averages (window size 5) for clarity.
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Figure F.22: Few-shot ICL with replacement labels on AG News for LLaMa-2 models. In addition
to the default labels, we study a variety of replacement labels (see legend). We average over 100
random subsets and then additionally apply moving averages (window size 5) for clarity.
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Figure F.23: Few-shot ICL with replacement labels on AG News for LLaMa and Falcon models.
In addition to the default labels, we study a variety of replacement labels (see legend). We average
over 100 random subsets and then additionally apply moving averages (window size 5) for clarity.
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Figure F.24: Few-shot ICL with replacement labels on Medical Questions Pairs for LLaMa-2
models. In addition to the default labels, we study a variety of replacement labels (see legend). We
average over 100 random subsets and then additionally apply moving averages (window size 5) for
clarity.
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Figure F.25: Few-shot ICL with replacement labels on Medical Questions Pairs for LLaMa and
Falcon models. In addition to the default labels, we study a variety of replacement labels (see
legend). We average over 100 random subsets and then additionally apply moving averages (window
size 5) for clarity.

47



Published as a conference paper at ICLR 2024

0.3

0.5

0.7

0.9

L
L

a
M

a
-2

7
B

Accuracy ↑

−2.5

−1.5

−0.5

Log Likelihood ↑

0.3

0.5

0.7

Entropy

Replacing default labels
(not equivalent, equivalent) with:

(not equivalent, equivalent)

(equivalent, not equivalent)

(bad, good)

(good, bad)

(A, B)

(B, A)

(green, blue)

(blue, green)

(sea, chair)

(chair, sea)

0.3

0.5

0.7

0.9

L
L

a
M

a
-2

1
3
B

−2.5

−1.5

−0.5

0.3

0.5

0.7

10 20 30
0.3

0.5

0.7

0.9

L
L

a
M

a
-2

7
0
B

10 20 30

No Observed In-Context Examples

−2.5

−1.5

−0.5

10 20 30
0.3

0.5

0.7

Figure F.26: Few-shot ICL with replacement labels on MRPC for LLaMa-2 models. In addition
to the default labels, we study a variety of replacement labels (see legend). We average over 100
random subsets and then additionally apply moving averages (window size 5) for clarity.
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Figure F.27: Few-shot ICL with replacement labels on MRPC for LLaMa and Falcon models. In
addition to the default labels, we study a variety of replacement labels (see legend). We average over
100 random subsets and then additionally apply moving averages (window size 5) for clarity.
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Figure F.28: Few-shot ICL with replacement labels on RTE for LLaMa-2 models. In addition
to the default labels, we study a variety of replacement labels (see legend). We average over 100
random subsets and then additionally apply moving averages (window size 5) for clarity.
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Figure F.29: Few-shot ICL with replacement labels on RTE for LLaMa and Falcon models. In
addition to the default labels, we study a variety of replacement labels (see legend). We average
over 100 random subsets and then additionally apply moving averages (window size 5) for clarity.

51



Published as a conference paper at ICLR 2024

0.2

0.4

0.6

0.8

L
L

a
M

a
-2

7
B

Accuracy ↑

−2.5

−1.5

−0.5

Log Likelihood ↑

0.35

0.45

0.55

0.65

0.75

Entropy

Replacing default labels
(not entailment, entailment) with:

(not entailment, entailment)

(entailment, not entailment)

(bad, good)

(good, bad)

(A, B)

(B, A)

(green, blue)

(blue, green)

(sea, chair)

(chair, sea)

0.2

0.4

0.6

0.8

L
L

a
M

a
-2

1
3
B

−2.5

−1.5

−0.5

0.35

0.45

0.55

0.65

0.75

0 20 40 60
0.2

0.4

0.6

0.8

L
L

a
M

a
-2

7
0
B

0 20 40 60

No Observed In-Context Examples

−2.5

−1.5

−0.5

0 20 40 60
0.35

0.45

0.55

0.65

0.75

Figure F.30: Few-shot ICL with replacement labels on WNLI for LLaMa-2 models. In addition
to the default labels, we study a variety of replacement labels (see legend). We average over 100
random subsets and then additionally apply moving averages (window size 5) for clarity.
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Figure F.31: Few-shot ICL with replacement labels on WNLI for LLaMa and Falcon models. In
addition to the default labels, we study a variety of replacement labels (see legend). We average over
100 random subsets and then additionally apply moving averages (window size 5) for clarity.
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Table F.2: Full summary statistics for the flipped label experiments of §7. We strongly encourage readers to also view the full training curves across all possible
context sizes and adittional replacement labels in §F. Across all metrics, here show the average difference between the default and flipped label scenario. We
compute ‘Metric(Default) - Metric(Flipped)’, such that positive accuracy/log likelihood differences indicate that ICL performs worse with flipped labels. We
compute differences at the maximum context size for each task-model combination (cf.§E and Table E.1). We display experiments where ICL accuracies or log
likelihoods on the default labels do not significantly exceed random guessing performance in lightgray. Across models, and metrics, model performance is usually
significantly worse when labels are flipped (and default performance exceeds random guessing). In particular for entropies, we observe significant differences
between ICL predictions. We display mean differences and standard errors over 100 runs. We bold entries for which mean differences are statistically significant.

∆ Log Lik. SST-2 Subj F. Phraseb. Hate Speech AG News MQP MRPC RTE WNLI

LLaMa-2 7B 0.41± 0.02 −0.04± 0.02 0.36± 0.03 0.26± 0.01 0.87± 0.03 0.01± 0.00 −0.02± 0.01 0.22± 0.01 −0.00± 0.01
LLaMa-2 13B 0.31± 0.02 0.03± 0.02 0.30± 0.02 0.26± 0.02 0.90± 0.03 0.15± 0.01 0.15± 0.01 0.38± 0.02 0.20± 0.02
LLaMa-2 70B 0.08± 0.02 0.08± 0.02 0.35± 0.03 0.18± 0.02 0.90± 0.02 0.24± 0.02 0.15± 0.02 0.21± 0.02 0.08± 0.02
LLaMa 7B 0.36± 0.02 0.13± 0.02 0.53± 0.02 0.31± 0.02 1.06± 0.03 0.05± 0.00 0.06± 0.01 0.14± 0.01 −0.03± 0.01
LLaMa 13B 0.40± 0.02 0.09± 0.02 0.51± 0.02 0.33± 0.02 1.18± 0.03 0.16± 0.01 0.16± 0.01 0.22± 0.01 0.05± 0.01
LLaMa 65B 0.33± 0.02 0.16± 0.02 0.63± 0.02 0.19± 0.02 1.02± 0.03 0.39± 0.02 0.31± 0.02 0.41± 0.02 0.20± 0.02
Falcon 7B 0.48± 0.02 0.37± 0.01 0.58± 0.02 0.19± 0.01 1.38± 0.04 0.05± 0.01 0.02± 0.01 0.05± 0.01 0.12± 0.01
Falcon 7B Instr. 0.70± 0.02 0.48± 0.01 0.77± 0.02 0.52± 0.02 2.29± 0.03 −0.07± 0.01 0.01± 0.02 0.15± 0.02 0.22± 0.02
Falcon 40B 0.33± 0.02 0.25± 0.02 0.74± 0.03 0.27± 0.02 1.00± 0.03 0.20± 0.01 0.19± 0.01 0.39± 0.01 0.09± 0.01
Falcon 40B Instr. 0.45± 0.02 0.37± 0.02 0.94± 0.03 0.68± 0.02 0.89± 0.03 0.48± 0.02 0.15± 0.01 0.70± 0.02 0.19± 0.01

∆ Accuracy SST-2 Subj F. Phraseb. Hate Speech AG News MQP MRPC RTE WNLI

LLaMa-2 7B 34.0± 5.3 −3.0± 4.3 15.0± 4.3 26.0± 6.9 47.0± 5.6 1.0± 8.4 −5.0± 5.9 32.0± 7.5 1.0± 7.3
LLaMa-2 13B 14.0± 4.0 1.0± 1.0 12.0± 3.8 18.0± 5.4 37.0± 5.8 22.1± 7.1 20.0± 5.3 36.0± 7.0 27.0± 6.5
LLaMa-2 70B 2.0± 1.4 1.0± 2.2 13.0± 3.4 0.0± 3.2 51.0± 5.6 11.0± 4.7 20.0± 5.5 7.0± 5.0 5.0± 3.8
LLaMa 7B 22.0± 4.8 3.0± 4.8 36.0± 5.9 27.0± 6.6 64.0± 6.4 6.0± 6.6 13.0± 6.6 19.0± 7.0 0.0± 8.6
LLaMa 13B 26.0± 5.8 7.0± 3.5 26.0± 5.8 36.0± 5.9 55.0± 6.2 16.0± 6.7 12.0± 4.5 28.0± 7.5 6.0± 6.9
LLaMa 65B 15.0± 4.3 8.0± 3.7 27.0± 5.3 14.0± 5.8 50.0± 5.7 29.0± 7.4 41.0± 6.3 46.0± 6.7 30.0± 6.1
Falcon 7B 49.0± 5.9 39.0± 4.9 34.0± 6.7 20.0± 8.4 63.0± 6.7 13.0± 8.2 7.0± 4.5 10.0± 6.1 12.0± 8.3
Falcon 7B Instr. 63.0± 5.8 46.0± 7.0 48.0± 6.6 42.0± 7.4 71.0± 5.2 −10.0± 7.1 −9.0± 6.3 11.0± 7.6 17.0± 8.5
Falcon 40B 15.0± 4.3 17.0± 4.5 36.0± 5.9 20.0± 6.8 58.0± 6.5 28.0± 6.8 32.0± 6.8 25.0± 8.3 16.0± 7.8
Falcon 40B Instr. 29.0± 5.3 30.0± 5.2 45.0± 5.5 53.0± 6.8 49.0± 6.9 45.0± 7.0 11.0± 6.3 48.0± 7.0 22.0± 7.6

∆ Entropy SST-2 Subj F. Phraseb. Hate Speech AG News MQP MRPC RTE WNLI

LLaMa-2 7B −0.519± 0.022 0.010± 0.017 −0.397± 0.026 −0.100± 0.013 −0.749± 0.030 −0.003± 0.005 0.049± 0.005 −0.027± 0.008 −0.006± 0.008
LLaMa-2 13B −0.479± 0.019 −0.058± 0.015 −0.475± 0.024 −0.194± 0.019 −0.953± 0.028 −0.027± 0.010 −0.067± 0.011 −0.106± 0.018 −0.073± 0.017
LLaMa-2 70B −0.167± 0.019 −0.100± 0.015 −0.398± 0.029 −0.255± 0.018 −0.995± 0.024 −0.243± 0.019 −0.150± 0.015 −0.258± 0.019 −0.209± 0.017
LLaMa 7B −0.434± 0.020 −0.017± 0.023 −0.355± 0.023 −0.159± 0.019 −0.645± 0.033 0.007± 0.003 −0.032± 0.005 −0.005± 0.008 −0.014± 0.010
LLaMa 13B −0.424± 0.023 −0.005± 0.020 −0.237± 0.022 −0.151± 0.018 −0.731± 0.033 0.008± 0.009 0.019± 0.012 −0.010± 0.008 −0.009± 0.009
LLaMa 65B −0.345± 0.019 −0.140± 0.020 −0.528± 0.024 −0.273± 0.020 −1.041± 0.029 −0.128± 0.019 −0.141± 0.015 −0.205± 0.020 −0.199± 0.019
Falcon 7B −0.276± 0.019 −0.118± 0.014 −0.022± 0.018 −0.062± 0.013 −0.518± 0.037 0.002± 0.009 0.005± 0.006 −0.004± 0.010 −0.015± 0.013
Falcon 7B Instr. −0.367± 0.020 −0.068± 0.012 −0.327± 0.021 −0.052± 0.016 −0.220± 0.028 −0.024± 0.009 0.127± 0.015 0.005± 0.015 0.001± 0.020
Falcon 40B −0.392± 0.020 −0.233± 0.022 −0.420± 0.027 −0.190± 0.022 −0.904± 0.033 −0.003± 0.010 −0.103± 0.012 −0.018± 0.014 −0.001± 0.013
Falcon 40B Instr. −0.483± 0.020 −0.160± 0.024 −0.430± 0.028 −0.313± 0.024 −0.916± 0.033 −0.098± 0.017 −0.017± 0.014 −0.063± 0.017 −0.013± 0.013
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Figure F.32: Few-shot ICL on SST-2 when the label relationship changes throughout ICL. For
(D → F), we start with default labels and change to flipped labels at the changepoint, for (F →
D) we change from flipped to the default labels at the changepoint, and for (Alternating F ↔ D)
we alternate between the two label relationships after every observation. For all setups, at ‘2 x
Changepoint’, the LLMs have observed the same number of examples for both label relations. If,
according to NH3, ICL treats all in-context information equally, predictions should be equal at that
point—but they are not. Averages over 500 repetitions, we apply moving averages (window size 3),
and thin lines are bootstrapped 99% confidence intervals, thin dashed lines are mean results without
moving average smoothing.
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Figure F.33: Few-shot ICL on Subjectivity when the label relationship changes throughout ICL.
For (D → F), we start with default labels and change to flipped labels at the changepoint, for (F
→ D) we change from flipped to the default labels at the changepoint, and for (Alternating F ↔
D) we alternate between the two label relationships after every observation. For all setups, at ‘2 x
Changepoint’, the LLMs have observed the same number of examples for both label relations. If,
according to NH3, ICL treats all in-context information equally, predictions should be equal at that
point—but they are not. Averages over 500 repetitions, we apply moving averages (window size 3),
and thin lines are bootstrapped 99% confidence intervals, thin dashed lines are mean results without
moving average smoothing.
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Figure F.34: Few-shot ICL on Financial Phrasebank when the label relationship changes
throughout ICL. For (D → F), we start with default labels and change to flipped labels at the
changepoint, for (F→ D) we change from flipped to the default labels at the changepoint, and for
(Alternating F↔D) we alternate between the two label relationships after every observation. For all
setups, at ‘2 x Changepoint’, the LLMs have observed the same number of examples for both label
relations. If, according to NH3, ICL treats all in-context information equally, predictions should
be equal at that point—but they are not. Averages over 500 repetitions, we apply moving averages
(window size 3), and thin lines are bootstrapped 99% confidence intervals, thin dashed lines are
mean results without moving average smoothing.
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Figure F.35: Few-shot ICL on Hate Speech when the label relationship changes throughout ICL.
For (D → F), we start with default labels and change to flipped labels at the changepoint, for (F
→ D) we change from flipped to the default labels at the changepoint, and for (Alternating F ↔
D) we alternate between the two label relationships after every observation. For all setups, at ‘2 x
Changepoint’, the LLMs have observed the same number of examples for both label relations. If,
according to NH3, ICL treats all in-context information equally, predictions should be equal at that
point—but they are not. Averages over 500 repetitions, we apply moving averages (window size 3),
and thin lines are bootstrapped 99% confidence intervals, thin dashed lines are mean results without
moving average smoothing.
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Figure F.36: Few-shot ICL on AG News when the label relationship changes throughout ICL.
For (D → F), we start with default labels and change to flipped labels at the changepoint, for (F
→ D) we change from flipped to the default labels at the changepoint, and for (Alternating F ↔
D) we alternate between the two label relationships after every observation. For all setups, at ‘2 x
Changepoint’, the LLMs have observed the same number of examples for both label relations. If,
according to NH3, ICL treats all in-context information equally, predictions should be equal at that
point—but they are not. Averages over 500 repetitions, we apply moving averages (window size 3),
and thin lines are bootstrapped 99% confidence intervals, thin dashed lines are mean results without
moving average smoothing.
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Figure F.37: Few-shot ICL on Hate Speech with LLaMa-2-70B when the label relationship
changes throughout ICL. We here investigate a three different changepoints, flipping labels af-
ter 10, 20, or 30 in-context observations. For (D → F), we start with default labels and change to
flipped labels at the changepoint, for (F → D) we change from flipped to the default labels at the
changepoint, and for (Alternating F ↔ D) we alternate between the two label relationships after
every observation. For all setups, at ‘2 x Changepoint’, the LLMs have observed the same number
of examples for both label relations. If, according to NH3, ICL treats all in-context information
equally, predictions should be equal at that point, regardless of whether the changepoint is after 10,
20, or 30 observations. However, this is not the case. In particular, predictions are significantly
different when the changepoint is 30. Averages over 500 repetitions, we apply moving averages
(window size 3), thin lines are bootstrapped 99% confidence intervals, thin dashed lines are mean
results without moving average smoothing.
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Figure F.38: Prompted few-shot ICL with flipped labels on SST-2. Some prompts are able to im-
prove ICL on flipped labels compared to not using a prompt as before (label none in the figure). We
average over 100 random subsets and then additionally apply moving averages (window size 5) for
clarity.
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Figure F.39: Prompted few-shot ICL with flipped labels on Subjectivity. Some prompts are able to
improve ICL on flipped labels compared to not using a prompt as before (label none in the figure).
We average over 100 random subsets and then additionally apply moving averages (window size 5)
for clarity.
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Figure F.40: Prompted few-shot ICL with flipped labels on Financial Phrasebank. Some prompts
are able to improve ICL on flipped labels compared to not using a prompt as before (label none
in the figure). We average over 100 random subsets and then additionally apply moving averages
(window size 5) for clarity.

63



Published as a conference paper at ICLR 2024

0 50

0.25

0.50

0.75

L
L

a
M

a
-2

7
0
B

Accuracy ↑

0 50

−2

−1

Log Likelihood ↑

0 50

0.4

0.6

Entropy

Default

Guessing

Flipped w/ Prompt

None

Instruct

Ignore

Invert

10 20 30

0.25

0.50

0.75

L
L

a
M

a
6
5
B

10 20 30

−2

−1

10 20 30

0.4

0.6

10 20 30

0.25

0.50

0.75

F
a
lc

o
n

4
0
B

10 20 30

−2

−1

10 20 30

0.4

0.6

10 20 30

0.25

0.50

0.75

F
a
lc

o
n

4
0
B

In
st

r.

10 20 30

No Observed In-Context Examples

−2

−1

10 20 30

0.4

0.6

Figure F.41: Prompted few-shot ICL with flipped labels on Hate Speech. Some prompts are able to
improve ICL on flipped labels compared to not using a prompt as before (label none in the figure).
We average over 100 random subsets and then additionally apply moving averages (window size 5)
for clarity.
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Figure F.42: Prompted few-shot ICL with flipped labels on AG News. Some prompts are able to
improve ICL on flipped labels compared to not using a prompt as before (label none in the figure).
We average over 100 random subsets and then additionally apply moving averages (window size 5)
for clarity.
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Figure F.43: Prompted few-shot ICL with flipped labels on Medical Questions Pairs. Some
prompts are able to improve ICL on flipped labels compared to not using a prompt as before (label
none in the figure). We average over 100 random subsets and then additionally apply moving aver-
ages (window size 5) for clarity.
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Figure F.44: Prompted few-shot ICL with flipped labels on MRPC. Some prompts are able to
improve ICL on flipped labels compared to not using a prompt as before (label none in the figure).
We average over 100 random subsets and then additionally apply moving averages (window size 5)
for clarity.
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Figure F.45: Prompted few-shot ICL with flipped labels on RTE. Some prompts are able to improve
ICL on flipped labels compared to not using a prompt as before (label none in the figure). We
average over 100 random subsets and then additionally apply moving averages (window size 5) for
clarity.
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Figure F.46: Prompted few-shot ICL with flipped labels on WNLI. Some prompts are able to im-
prove ICL on flipped labels compared to not using a prompt as before (label none in the figure). We
average over 100 random subsets and then additionally apply moving averages (window size 5) for
clarity.
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G ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments and insights into label learning in ICL.

G.1 PROGRESSIVE RANDOMIZATION

Previously, we have observed that ICL performance suffers when all labels in the context are ran-
domized. In this section, we study the changes to ICL predictions when gradually increasing the
proportion of in-context examples with random labels. This is of practical relevance as noisy labels
are a common concern in many applications.

Figure G.1 gives the performance of ICL for LLaMa-2-70B on SST-2 at different noise levels. We
observe that probabilistic log likelihood immediately and clearly degrades, even at our smallest pro-
portion of random labels of 0.2. This makes sense intuitively, as we would expect model predictions
to become less certain in the face of noisy label observations. In contrast, accuracy stays relatively
constant until the noise level reaches a proportion of 0.6, i.e. more than half the in-context points are
noisy.

G.2 CALIBRATED LABEL FLIPPING

We here repeat our label flipping experiments from §7 regarding NH2 with probabilities calibrated
according to the approach of Zhao et al. (2021) to see if calibrated predictions can overcome the
model’s pre-training preference.

Figure G.2 is a reproduction of Fig. 5 with calibrated probabilities. We observe that differences
between the calibrated and uncalibrated versions are generally small: we find almost no differ-
ences for SST-2/Falcon-40B and small improvements for all labels for Hate Speech/LLaMa-65B
and MQP/LLaMa-2-70B. Most importantly, we still observe large differences in performance be-
tween the different label setups at maximum context size, such that, here, NH2 remains rejected for
ICL with calibrated predictions.

We do not necessarily find these results surprising. Zhao et al. (2021) focus on scenarios with small
in-context dataset sizes (up to 16). They show that this is where calibration is most important.
Already for 16 in-context demonstrations, the gains from calibration are insignificant, see, e.g. their
Figure 1. In contrast, we study ICL at much larger numbers of in-context demonstrations. Thus, we
are not surprised that our conclusions do not change with calibration.

G.3 LABEL FLIPPING FOR AUTHOR IDENTIFICATION

In Fig. G.3, we present results for our label flipping experiments (NH2, §7) with LLaMa-2 models on
our novel author identification task (§6). Generally, we observe that accuracy is very similar across
different label scenarios. However, small differences are visible for the probabilistic metrics (most
clearly for entropy). Interestingly, these differences are much smaller than in most of our previous
experiments. This provides additional support for the intuitions underlying §7: we would expect the
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Figure G.1: Few-shot ICL with different proportions of randomized labels for SST-2 and LLaMa-
2-70B. As the proportions of random labels increases, predictions become less certain. Accuracies
stay relatively constant, until label noise increases above 50%. We average over 500 random in-
context datasets.
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Figure G.2: Reproduction of Fig. 5 with calibrated probabilities according to Zhao et al. (2021).
Few-shot ICL with replacement labels for Falcon-40B on SST-2, LLaMa-2-65B on Hate Speech,
and LLaMa-2-70B on MQP. Results are largely similar to the original figure Fig. 5 and NH2
remains rejected. Averages over 100 runs and thick lines with moving average (window size 5).

model to only suffer significantly from flipped or replaced in-context labels if the pre-training data
actually suggests to prefer a particular label setup over another. For the author identification task,
which is guaranteed to not be part of the training data (cf. §6), it makes sense that ICL would have
a much weaker preference for any particular label setup.

We can also discuss the small differences that we do observe between label setups: (1) Especially
initially, the performance for the arbitrary/arbitrary flipped labels, i.e. A/B or B/A, can be lower
than the performance for the default/flipped labels, which are the authors’ first names. It seems the
model prefers assigning the sentences to ‘names’ rather than ‘symbols’. It makes sense that this is a
bias that would emerge from the pre-training data. (2) Further, we observe that the larger LLaMa-2
models can slightly prefer the default label direction. We believe that a possible explanation for this
is that, sometimes, the sentences in our dataset contain the authors name, e.g. ‘Hi Author 1’ in a
sentence from Author 2. This could confuse the model for the flipped label direction, in particular,
if the model has some general understanding of author identification tasks. Lastly, we note that, to
reject NH2, it is sufficient to find any dataset on which it does not hold, such that our conclusions in
§7 remain valid regardless.

G.4 ANSWER IN CONTEXT

To better understand how ICL leverages in-context label information, in this section, we study ICL
predictions when one (or multiple) of the in-context examples exactly match the test query. That is,
the model can always achieve perfect accuracy on the test query by looking up the label of the exact
match in the in-context training set. We examine this across different label setups to investigate how
pre-training preferences affect prediction behavior of the model here.

Figure G.4 shows results for SST-2 at 10 in-context examples averaged across our selection of mod-
els. We find the following behavior: (1) A single repetition of the test query (in the training set)
increases performance for arbitrary and flipped labels but not for default labels, where performance
is high already. Further, absolute performance remains highest for the default labels. We do not
observe perfect accuracy, i.e. perfect copying behavior, for any of the label setups. This means ICL
does not implement a nearest neighbor predictor, and single observations have but a limited influence
on the decision function. This behavior seems generally sensible, in particular, if the model expects
that single examples can be mislabelled. (2) For multiple (here, four) repetitions of the test query
we observe perfect accuracy for all label setups. Variance across the different models is negligible.
This behavior is reasonable, as we would expect that multiple observations of the same input with
consistent labeling should lead to a confident prediction of that label for that input.
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Figure G.3: Few-shot ICL with replacement labels for LLaMa-2 at different sizes on our novel
author identification task. We find that differences between different label setups are much smaller
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Figure G.4: Few-Shot ICL for answer in context experiment for SST-2 averaged across our usual
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