
Published as a conference paper at ICLR 2023

CONFIDENCE-BASED FEATURE IMPUTATION
FOR GRAPHS WITH PARTIALLY KNOWN FEATURES

Daeho Um, Jiwoong Park, Seulki Park, Jin Young Choi
Department of Electrical and Computer Engineering, ASRI
Seoul National University
{daehoum1,ptywoong,seulki.park,jychoi}@snu.ac.kr

ABSTRACT

This paper investigates a missing feature imputation problem for graph learning
tasks. Several methods have previously addressed learning tasks on graphs with
missing features. However, in cases of high rates of missing features, they were
unable to avoid significant performance degradation. To overcome this limitation,
we introduce a novel concept of channel-wise confidence in a node feature, which
is assigned to each imputed channel feature of a node for reflecting certainty of
the imputation. We then design pseudo-confidence using the channel-wise shortest
path distance between a missing-feature node and its nearest known-feature node
to replace unavailable true confidence in an actual learning process. Based on the
pseudo-confidence, we propose a novel feature imputation scheme that performs
channel-wise inter-node diffusion and node-wise inter-channel propagation. The
scheme can endure even at an exceedingly high missing rate (e.g., 99.5%) and
it achieves state-of-the-art accuracy for both semi-supervised node classification
and link prediction on various datasets containing a high rate of missing features.
Codes are available at https://github.com/daehoum1/pcfi.

1 INTRODUCTION

In recent years, graph neural networks (GNNs) have received considerable attention and have per-
formed outstandingly on numerous problems across multiple fields (Zhou et al., 2020; Wu et al.,
2020). While various GNNs handling attributed graphs are designed for node representation (Def-
ferrard et al., 2016; Kipf & Welling, 2016a; Veličković et al., 2017; Xu et al., 2018) and graph
representation learning (Kipf & Welling, 2016b; Sun et al., 2019; Velickovic et al., 2019), GNN
models typically assume that features of all nodes are fully observed. In real-world situations, how-
ever, features in graph-structured data are often partially observed, as illustrated in the following
cases. First, collecting complete data for a large graph is prohibitively expensive or even impossi-
ble. Second, measurement failure is common. Third, in social networks, most users desire to protect
their personal information selectively. As data security regulation continues to tighten around the
world (GDPR), access to full data is expected to become increasingly difficult. Under these circum-
stances, most GNNs cannot be applied directly due to incomplete features.

Several methods have been proposed to solve learning tasks with graphs containing missing fea-
tures (Jiang & Zhang, 2020; Chen et al., 2020; Taguchi et al., 2021), but they suffer from signif-
icant performance degradation at high rates of missing features. A recent work by (Rossi et al.,
2021) demonstrated improved performance by introducing feature propagation (FP), which itera-
tively propagates known features among the nodes along edges. However, even FP cannot avoid a
considerable accuracy drop at an extremely high missing rate (e.g., 99.5%). We assume that it is
because FP takes graph diffusion through undirected edges. Consequently, in FP, message passing
between two nodes occurs with the same strength regardless of the direction. Moreover, FP only
diffuses observed features channel-wisely, which means that it does not consider any relationship
between channels.

Therefore, to better impute missing features in a graph, we propose to consider both inter-channel
and inter-node relationships so that we can effectively exploit the sparsely known features. To
this end, we design an elaborate feature imputation scheme that includes two processes. The first
process is the feature recovery via channel-wise inter-node diffusion, and the second is the feature

1

https://github.com/daehoum1/pcfi

Published as a conference paper at ICLR 2023

refinement via node-wise inter-channel propagation. The first process diffuses features by assigning
different importance to each recovered channel feature, in contrast to usual diffusion. To this end, we
introduce a novel concept of channel-wise confidence, which reflects the quality of channel feature
recovery. This confidence is also used in the second process for channel feature refinement based on
highly confident feature by utilizing the inter-channel correlation.

The true confidence in a missing channel feature is inaccessible without every actual feature. Thus,
we define pseudo-confidence for use in our scheme instead of true confidence. Using channel-wise
confidence further refines the less confident channel feature by aggregating the highly confident
channel features in each node or through the highly confident channel features diffused from neigh-
boring nodes.

The key contribution of our work is summarized as follows: (1) we propose a new concept of
channel-wise confidence that represents the quality of a recovered channel feature. (2) We design a
method to provide pseudo-confidence that can be used in place of unavailable true confidence in a
missing channel feature. (3) Based on the pseudo-confidence, we propose a novel feature imputation
scheme that achieves the state-of-the-art performance for node classification and link prediction even
in an extremely high rate (e.g., 99.5%) of missing features.

2 RELATED WORK

2.1 LEARNING ON GRAPHS WITH MISSING NODE FEATURES

The problem with missing data has been widely investigated in the literature (Allison, 2001; Loh &
Wainwright, 2011; Little & Rubin, 2019; You et al., 2020). Recently, focusing on graph-structured
data with pre-defined connectivity, there have been several attempts to learn graphs with missing
node features. (Monti et al., 2017) proposed recurrent multi-graph convolutional neural networks
(RMGCNN) and separable RMGCNN (sRMGCNN), a scalable version of RMGCNN. Structure-
attribute transformer (SAT) (Chen et al., 2020) models the joint distribution of graph structures and
node attributes through distribution techniques, then completes missing node attributes. GCN for
missing features (GCNMF) (Taguchi et al., 2021) adapts graph convolutional networks (GCN) (Kipf
& Welling, 2016a) to graphs that contain missing node features via representing the missing features
using the Gaussian mixture model. Meanwhile, a partial graph neural network (PaGNN) (Jiang &
Zhang, 2020) leverages a partial message-propagation scheme that considers only known features
during propagation. However, these methods experience large performance degradation when there
exists a high feature missing rate. Feature propagation (FP) (Rossi et al., 2021) reconstructs missing
features by diffusing known features. However, in diffusion of FP, a missing feature is formed by
aggregating features from neighboring nodes regardless of whether a feature is known or inferred.
Moreover, FP does not consider any interdependency among feature channels. To utilize relation-
ships among channels, we construct a correlation matrix of recovered features and additionally refine
the features.

2.2 DISTANCE ENCODING

Distance encoding (DE) on graphs defines extra features using distance from a node to the node set
where the prediction is made. (Zhang & Chen, 2018) extracts a local enclosing subgraph around each
target node pair, and uses GNN to learn graph structure features for link prediction. (Li et al., 2020)
exploits structure-related features called DE that encodes distance between a node and its neigh-
boring node set with graph-distance measures (e.g., shortest path distance or generalized PageRank
scores (Li et al., 2019)). (Zhang et al., 2021) unifies the aforementioned techniques into a labeling
trick. Heterogeneous graph neural network (HGNN) (Ji et al., 2021) proposes a heterogeneous dis-
tance encoding in consideration of multiple types of paths in enclosing subgraphs of heterogeneous
graphs. Distance encoding in existing methods improves the representation power of GNNs. We use
distance encoding to distinguish missing features based on the shortest path distance from a missing
feature to known features in the same channel.

2.3 GRAPH DIFFUSION

Diffusion on graphs spreads the feature of each node to its neighboring nodes along the edges (Coif-
man & Lafon, 2006; Shuman et al., 2013; Guille et al., 2013). There are two types of transition
matrices commonly used for diffusion on graphs: symmetric transition matrix (Kipf & Welling,

2

Published as a conference paper at ICLR 2023

Figure 1: Overall scheme of the proposed Pseudo-Confidence-based Feature Imputation (PCFI)
method. Based on the graph structure and partially known features, we calculate the channel-wise
shortest path distance between a node with a missing feature and its nearest source node (SPD-
S). Based on SPD-S, we determine the pseudo-confidence in the recovered feature, using a pre-
determined hyper-parameter α (0 < α < 1). Pseudo-confidence plays an important role in the two
stages: channel-wise Inter-node diffusion and node-wise inter-channel propagation.

2016a; Klicpera et al., 2019; Rossi et al., 2021) and random walk matrix (Page et al., 1999; Chung,
2007; Perozzi et al., 2014; Grover & Leskovec, 2016; Atwood & Towsley, 2016; Klicpera et al.,
2018; Lim et al., 2021). While these matrices work well for each target task, from a node’s per-
spective, the sum of edge weights for aggregating features is not one in general. Therefore, since
features are not updated at the same scale of original features, these matrices are not suitable for
missing feature recovery.

3 PROPOSED METHOD

3.1 OVERVIEW

We address a problem with graph learning tasks containing missing node features. To demon-
strate the effectiveness of our feature imputation, we target two main graph learning tasks. The first
target task, semi-supervised node classification, is to infer the labels of the unlabeled nodes from
the partially known features/labels and the fully known graph structure. The second target task, link
prediction, is to predict whether two nodes are likely to share a link. Figure 1 depicts the overall
scheme of the proposed feature imputation. Our key idea is to assign different pseudo-confidence to
each imputed channel features. To this end, the proposed imputation scheme includes two processes.
The first process is the feature recovery via channel-wise inter-node diffusion, and the second is the
feature refinement via node-wise inter-channel propagation. The imputed features obtained from the
two processes are used for downstream tasks via off-the-shelf GNNs.
In Sec. 3.2, we begin by introducing the notations used in this paper. In Sec. 3.3, we outline the pro-
posed PC (pseudo-confidence)-based feature imputation (PCFI) scheme that imputes missing node
features. We then propose a method to determine the pseudo-confidence in Sec. 3.4. In Sec. 3.5, we
present channel-wise inter-node diffusion that iteratively propagates known features with consider-
ation of PC. In Sec. 3.6, we present node-wise inter-channel propagation that adjusts features based
on correlation coefficients between channels.

3.2 NOTATIONS

Basic notation on graphs. An undirected connected graph is represented as G = (V, E ,A) where
V = {vi}Ni=1 is the set of N nodes, E is the edge set with (vi, vj) ∈ E , and A ∈ {0, 1}N×N denotes
an adjacency matrix. X = [xi,d] ∈ RN×F is a node feature matrix with N nodes and F channels,
i.e., xi,d, the d-th channel feature value of the node vi. N (vi) denotes the set of neighbors of vi.
Given an arbitrary matrix M ∈ Rn×m, we let Mi,: denote the i-th row vector of M . Similarly, we
let M:,j denote the j-th column vector of M .

3

Published as a conference paper at ICLR 2023

Notation for graphs with missing node features. As we assume that partial or even very few
node features are known, we define V(d)

k as a set of nodes where the d-th channel feature values are
known (k in V(d)

k means ‘known’). The set of nodes with the unknown d-th channel feature values
is denoted by V(d)

u = V \ V(d)
k . Then V(d)

k and V(d)
u are referred to source nodes and missing nodes,

respectively. By reordering the nodes according to whether a feature value is known or not for the
d-th channel, we can write graph signal for the d-th channel features and adjacency matrix as:

x(d) =

[
x
(d)
k

x
(d)
u

]
A(d) =

[
A

(d)
kk A

(d)
ku

A
(d)
uk A

(d)
uu

]
.

Here, x(d), x(d)
k , and x

(d)
u are column vectors that represent corresponding graph signal. Since the

graph is undirected, A(d) is symmetric and thus (A(d)
ku)

⊤ = A
(d)
uk . Note that A(d) is different from

A due to reordering while they represent the same graph structure. X̂ = [x̂i,d] denotes recovered
features for X from {x(d)

k }Fd=1 and {A(d)}Fd=1.

3.3 PC-BASED FEATURE IMPUTATION

The proposed PC-based feature imputation (PCFI) scheme leverages the shortest path distance be-
tween nodes to compute pseudo-confidence. PCFI consists of two stages: channel-wise inter-node
diffusion and node-wise inter-channel propagation. The first stage, channel-wise inter-node dif-
fusion, finds X̂ (recovered features for X) through PC-based feature diffusion on a given graph
G. Then, the second stage, node-wise inter-channel, refines X̂ to the final imputed features X̃ by
considering PC and correlation between channels.

To perform node classification and link prediction, a GNN is trained with imputed node features
X̃ . In this work, PCFI is designed to perform the downstream tasks well. However, since PCFI is
independent of the type of learning task, PCFI is not limited to the two tasks. Therfore, it can be
applied to various graph learning tasks with missing node features.

Formally, the proposed framework can be expressed as

X̂ = f1({x(d)
k }Fd=1, {A(d)}Fd=1) (1a)

X̃ = f2(X̂) (1b)

Ỹ = gθ(X̃,A), (1c)

where f1 is channel-wise inter-node diffusion, f2 is node-wise inter-channel propagation, and Ŷ is
a prediction for desired output of a given task. Here, PCFI is expressed as f2 ◦ f1 , and any GNN
architecture can be adopted as gθ according to the type of task.

3.4 PSEUDO-CONFIDENCE

We begin by defining the concept of confidence in the recovered feature x̂i,d of a node vi for channel
d in the first process.
Definition 1. Confidence in the recovered channel feature x̂i,d is defined by similarity between x̂i,d

and true one xi,d, which is a value between 0 and 1.

Note that the feature xi,d of a source node is observed and thus its confidence becomes 1. When the
recovered x̂i,d is far from the true xi,d, the confidence in x̂i,d will decrease towards 0. However, it
is a chicken and egg problem to determine x̂i,d and its confidence. That is, the confidence in x̂i,d

is unavailable before attaining x̂i,d according to Definition 1, whereas the proposed scheme can not
yield x̂i,d without the confidence.

To navigate this issue, instead of true confidence, we design a pseudo-confidence using the shortest
path distance between a node and its nearest source node for a specific channel (SPD-S). For in-
stance, SPD-S of the i-th node for the d-th channel feature is denoted by Si,d, which is calculated
via

Si,d = s(vi|V(d)
k ,A(d)), (2)

4

Published as a conference paper at ICLR 2023

where s(·) yields the shortest path distance between the i-th node and its nearest source node in V(d)
k

on A(d). It is notable that, if the i-th node is a source node, its nearest source node is itself, meaning
Si,d becomes zero. We construct SPD-S matrix S ∈ RN×F of which elements are Si,d.

Consider X̂ = [x̂i,d] that represents the recovered features of X with consideration of feature
homophily (McPherson et al., 2001) that represents a local property on a graph (Bisgin et al., 2010;
Lauw et al., 2010; Bisgin et al., 2012). Due to feature homophily, the feature similarity between any
two nodes tends to increase as the shortest path distance between the two nodes decreases.

Based on feature homophily, we assume that the recovered feature x̂i,d of a node vi more confidently
becomes similar to the given feature of its nearest source node as SPD-S of vi (Si,d) decreases.
According to the assumption, we define pseudo-confidence using SPD-S in Definition 2.
Definition 2. Pseudo-confidence (PC) in x̂i,d is defined by a function ξi,d = αSi,d where α ∈ (0, 1)
is a hyper-parameter.

By Definition 2, PC becomes 1 for x̂i,d = xi,d on source nodes. Moreover, PC decreases expo-
nentially for a missing node features as Si,d increases. Likewise, PC reflects the tendency toward
confidence in Definition 1. We verified that this tendency exists regardless of imputation methods
via experiments on real datasets (see Figure 7 in APPENDIX). Therefore, pseudo-confidence using
SPD-S is properly designed to replace confidence. To the best of our knowledge, ours is the first
model that leverages a distance for graph imputation.

3.5 CHANNEL-WISE INTER-NODE DIFFUSION

To recover missing node features in a channel-wise manner via graph diffusion, source nodes inde-
pendently propagate their features to their neighbors for each channel. Instead of simple aggregat-
ing all neighborhood features with the same weights, our scheme aggregates features with different
importance according to their confidences. As a result, the recovered features of missing nodes
are aggregated in low-confidence and the given features of source nodes are aggregated in high-
confidence, which is our design objective. To this end, we design a novel diffusion matrix based on
the pseudo-confidence.

For the design, Definition 3 first defines ‘Relative PC’ that represents an amount of PC in a particular
node feature relative to another node feature.
Definition 3. Relative PC of x̂j,d relative to x̂i,d is defined by ξj/i,d = ξj,d/ξi,d = αSj,d−Si,d .

Then, suppose that a missing node feature xi,d of vi aggregates features from vj ∈ N (vi). If vi and
vj are neighborhoods to each other, the difference between SPD-S of vi and SPD-S of vj cannot
exceed 1. Hence, the relative PC of a node to its neighbor can be determined using Proposition 1.
Proposition 1. If Si,d = m ≥ 1, vi is a missing node, then ξj/i,d for vj ∈ N (vi) is given by

ξj/i,d = α−1 if Si,d > Sj,d,

ξj/i,d = 1 if Si,d = Sj,d,

ξj/i,d = α if Si,d < Sj,d,

Otherwise, vi is a source node (Si,d = 0), then ξj/i,d for vj ∈ N (vi) is given by

ξj/i,d = 1 if vj is a source node(Sj,d = 1),

ξj/i,d = α if vj is a missing node(Sj,d = 0).

The proof of Proposition 1 is given in Appendix A.1.

Before defining a transition matrix, we temporarily reorder nodes according to whether a feature
value is known for the d-th channel, i.e., x(d) and A(d) are reordered for each channel as Section 3.2
describes. After the feature diffusion stage, we order the nodes according to the original numbering.

Built on Proposition 1, we construct a weighted adjacency matrix W (d) for the d-th channel.
W (d) ∈ RN×N is defined as follows,

W
(d)
i,j =

ξj/i,d if i ̸= j , A

(d)
i,j = 1

0 if i ̸= j , A
(d)
i,j = 0

1 if i = j.

(3)

5

Published as a conference paper at ICLR 2023

Note that self-loops are added to W (d) with a weight of 1 so that each node can keep some of its
own feature.

W d
i,j is an edge weight corresponding to message passing from vj to vi. Proposition 1 implies that

α−1 is assigned to high-PC neighbors, 1 to same-PC, and α to low-PC neighbors. That is, W (d)

allows a node to aggregate high PC more than low PC channel features from its neighbors. Further-
more, consider message passing between two connected nodes vi and vj s.t. W

(d)
i,j = ξj/i,d = α.

By Definition 3, ξi/j,d = ξ−1
j/i,d, so that W (d)

j,i = (W
(d)
i,j)−1 = α−1. This means that message

passing from a high confident node to a low confident node occurs in a large amount, while message
passing in the opposite direction occurs in a small amount. The hyper-parameter α tunes the strength
of message passing depending on the confidence.

To ensure convergence of diffusion process, we normalize W (d) to W
(d)

= (D(d))−1W (d) through
row-stochastic normalization with D

(d)
ii =

∑
j Wi,j . Since xd

k with true feature values should be

preserved, we replace the first |V(d)| rows of W
(d)

with one-hot vectors indicating V(d)
k . Finally,

the channel-wise inter-node diffusion matrix Ŵ (d) for the d-th channel is expressed as

Ŵ (d) =

[
I 0ku

W
(d)

uk W
(d)

uu

]
, (4)

where I ∈ R|V(d)
k |×|V(d)

k | is an identity matrix and 0ku ∈ {0}|V
(d)
k |×|V(d)

u | is a zero matrix. Note
that Ŵ (d) remains row-stochastic despite the replacement. An aggregation in a specific node can be
regarded as a weighted sum of features on neighboring nodes. A row-stochastic matrix for transition
matrix means that when a node aggregates features from its neighbors, the sum of the weights is 1.
Therefore, unlike a symmetric transition matrix (Kipf & Welling, 2016a; Klicpera et al., 2019; Rossi
et al., 2021) or a column-stochastic (random walk) transition matrix (Page et al., 1999; Chung, 2007;
Perozzi et al., 2014; Grover & Leskovec, 2016; Atwood & Towsley, 2016; Klicpera et al., 2018; Lim
et al., 2021), features of missing nodes can form at the same scale of known features. Preserving the
original scale allows features to recover close to the actual features.

Now, we define channel-wise inter-node diffusion for the d-th channel as

x̂(d)(0) =

[
x
(d)
k
0u

]
x̂(d)(t) = Ŵ (d)x̂(d)(t− 1),

(5)

where x̂(d)(t) is a recovered feature vector for x(d) after t propagation steps, 0u is a zero-column
vector of size |V(d)

u |, and t ∈ [1,K]. Here we initialize missing feature values x
(d)
u to zero. As

K → ∞, this recursion converges (the proof is provided in Appendix A.2). We approximate the
steady state to x̂(d)(K), which is calculated by (Ŵ (d))K x̂(d)(0) with large enough K. The diffusion
is performed for each channel and outputs {x̂(d)(K)}Fd=1.

Due to the reordering of nodes for each channel before the diffusion, node indices in x̂(d)(K) for
d ∈ {1, ..., F} differ. Therefore, after unifying different ordering in each x̂(d)(K) according to the
original order in X , we concatenate all x̂(d)(K) along the channels into X̂ , which is the final output
in this stage.

3.6 NODE-WISE INTER-CHANNEL PROPAGATION

In the previous stage, we obtained X̂ = [x̂i,d] (recovered features for X) via channel-wise inter-
node diffusion performed separately for each channel. The proposed feature diffusion is enacted
based on the graph structure and pseudo-confidence, but it does not consider dependency between
channels. Since the dependency between channels can be another important factor for imputing
missing node features, we develop an additional scheme to refine X̂ to improve the performance
of downstream tasks by considering both channel correlation and pseudo-confidence. At this stage,
within a node, a low-PC channel feature is refined by reflecting a high-PC channel feature according
to the degree of correlation between the two channels.

6

Published as a conference paper at ICLR 2023

We first prepare a correlation coefficient matrix R = [Ra,b] ∈ RF×F , giving the correlation co-
efficient between each pair of channels for the proposed scheme. Ra,b, the correlation coefficient
between X̂:,a and X̂:,b, is calculated by

Ra,b =
1

N−1

∑N
i=1(x̂i,a −ma)(x̂i,b −mb)

σaσb
(6)

where md = 1
N

∑N
i=1 x̂i,d and σd =

√
1

N−1

∑N
i=1(x̂i,d −md)2.

In this stage, unlike looking across the nodes for each channel in the previous stage, we look across
the channels for each node. As the right-hand graph of Figure 1 illustrates, we define fully connected
directed graphs {H(i)}Ni=1 called node-wise inter-channel propagation graphs from the given graph
G. H(i) for the i-th node in G is defined by

H(i) = (V(i), E(i),B(i)), (7)

where V(i) = {v(i)d }Fd=1 is a set of nodes in H(i), E(i) is a set of directed edges in H(i), and
B(i) ∈ RF×F is a weighted adjacency matrix for refining X̂i,:. To refine x̂i,d of the i-th node via
inter-channel propagation, we assign x̂i,d to each v

(i)
d as a scalar node feature for the d-th channel

(d ∈ {1, ..., F}). The weights in E(i) are given by B(i) in (8).

We design B(i) for inter-channel propagation in each node to achieve three goals: (1) highly corre-
lated channels should exchange more information to each other than less correlated channels, (2) a
low-PC channel feature should receive more information from other channels for refinement than a
high-PC channel feature, and (3) a high PC channel feature should propagate more information to
other node channels than a low PC channel feature. Based on these design goals, the weight of the
directed edge from the b-th channel to the a-th channel (B(i)

a,b) in B(i) is designed by

B
(i)
a,b =

{
β(1− αSi,a)αSi,bRa,b if a ̸= b

0 if a = b
, (8)

where Ra,b, αSi,b , and (1 − αSi,a) are the terms fore meeting design goals (1), (2), and (3), re-
spectively. α is hyper-parameter for pseudo-confidence in Definition 2, and β is the scaling hyper-
parameter.

Node-wise inter-channel propagation on H(i) outputs the final imputed features for Xi,:. We define
node-wise inter-channel propagation as

X̃⊤
i,: = X̂⊤

i,: +B(i)(X̂i,: − [m1, m2, · · · ,mF])
⊤, (9)

where X̃i,: and X̂i,: are row vectors. Preserving the pre-recovered channel feature values (as self
loops), message passing among different channel features is conducted along the directed edges of
B(i). After calculating X̃i,: for i ∈ {1, ..., N}, we obtain the final recovered features by concate-
nating them, i.e., X̃ = [X̃⊤

1,: X̃
⊤
2,: · · · X̃⊤

N,:]
⊤. Moreover, since R is calculated via recovered

features X̃ for all nodes in G, channel correlation propagation injects global information into recov-
ered features for X . In turn, X̃ is a final output of PC-based feature imputation and is fed to GNN
to solve a downstream task.

4 EXPERIMENTS

To validate our method, we conducted experiments for two main graph learning tasks: semi-
supervised node classification and link prediction.

4.1 EXPERIMENTAL SETUP

Datasets. We experimented with six benchmark datasets from two different domains: citation net-
works (Cora, CiteSeer, PubMed (Sen et al., 2008) and OGBN-Arxiv (Hu et al., 2020)) and rec-
ommendation networks (Amazon-Computers and Amazon-Photo (Shchur et al., 2018)). For link

7

Published as a conference paper at ICLR 2023

Figure 2: Average accuracy (%) on the six datasets with rm ∈ {0, 0.5, 0.9, 0.995}. sRMGCNN and
GCNMF are excepted due to OOM results in certain datasets and the significantly poor performance
on all the available datasets, as table 1 shows.

prediction, we evaluated all methods on the five benchmark datasets except OGBN-Arxiv that was
caused out of memory. The datasets are described in Appendix A.4.1.
Compared Methods. For semi-supervised node classification, we compared our method to two
baselines and four state-of-the-art methods. we set Baseline 1 to a simple scheme that directly
fed the graph data with missing features to GNN without recovery, where all missing values in a
feature matrix were set to zero. We set Baseline 2 to label propagation (LP) (Zhu & Ghahramani,
2002) which does not use node features and propagates only partially-known labels for inferring the
remaining labels. That is, LP corresponds to the case of 100% feature missing. The four state-of-the-
art methods can be categorized into two approaches: GCN-variant model={GCNMF (Taguchi et al.,
2021), PaGNN (Jiang & Zhang, 2020)} and feature imputation= {sRMGCNN (Monti et al., 2017),
FP (Rossi et al., 2021)}. While GCN-variant models were designed to perform node classification
directly with partially known features, feature imputation methods combine with GNN models for
downstream tasks. In Baseline 1, sRMGCNN, FP, and our method, we commonly used vanilla
GCN (Kipf & Welling, 2016a) for the downstream task.
For link prediction, we compared our method with sRMGCNN and FP, which are the feature impu-
tation approach. To perform link prediction on the imputed features by each method, graph auto-
encoder (GAE) (Kipf & Welling, 2016b) models were adopted. We used features inferred by each
method as input of GAE models. We further compared against GCNMF (Taguchi et al., 2021) for
link prediction. We report the detailed implementation in Appendix A.3.
Data Settings. Regardless of task type, we removed features according to missing rate rm (0 <
rm < 1). Missing features were selected in two ways.

• Structural missing. We first randomly selected nodes in a ratio of rm among all nodes.
Then, we assigned all features of the selected nodes to missing (unknown) values (zero).

• Uniform missing. We randomly selected features in a ratio of rm from the node feature
matrix X , and we set the selected features to missing (unknown) values (zero).

For semi-supervised node classification, we randomly generated 10 different training/validation/test
splits, except OGBN-Arxiv where the split was fixed according to the specified criteria. For link
prediction, we also randomly generated 10 different training/validation/test splits for each datasets.
We describe the generated splits in detail in Appendix A.4.2.

Hyper-parameters. Across all the compared methods, we tuned hyper-parameters based on val-
idation set. For PCFI, we analyzed the influence of α and β in Appendix A.3.2. We used
grid search to find the two hyper-parameters in the range of 0 < α < 1 and 0 < β ≤ 1
on validation sets. For the node classification, (α, β) was determined by the best pair from
{(α, β)|α ∈ {0.1, 0.2, · · · , 0.9}, β ∈ {10−6, 10−5.5, · · · , 1}}. For the link prediction, the best
(α, β) was searched from {(α, β)|α ∈ {0.1, 0.2, · · · , 0.9}, β ∈ {10−6, 10−5, · · · , 1}}, as shown in
Figure 3, 4 of APPENDIX.

Ablation Study. We present the ablation study to show the effectiveness of each component (row-
stochastic transition matrix, channel-wise inter-node diffusion, and node-wise inter-channel propa-
gation) of PCFI in Appendix A.4.4.

8

Published as a conference paper at ICLR 2023

Table 1: Node classification accuracy (%) at missing rate rm = 0.995. OOM denotes out of memory.
* denotes incalculable average for six datasets due to OOM results.

Missing type Dataset Baseline 1 Baseline 2 (LP) sRMGCNN GCNMF PaGNN FP PCFI

Structural
missing

Cora 44.15± 8.44 74.52± 1.60 29.31± 0.71 29.20± 1.13 30.55± 8.85 72.84± 2.85 75.49± 2.10
CiteSeer 31.68± 4.50 65.89± 2.29 24.21± 1.35 24.50± 1.52 25.69± 3.98 59.76± 2.47 66.18± 2.75
PubMed 48.20± 3.65 72.25± 3.78 OOM 40.19± 0.95 50.82± 4.61 72.69± 2.66 74.66± 2.26
Photo 79.68± 2.17 82.42± 2.57 26.10± 1.89 26.82± 6.33 66.91± 3.99 86.57± 1.50 87.70± 1.29
Computers 72.03± 1.91 76.28± 1.43 37.15± 0.12 30.59± 9.81 56.50± 3.29 77.45± 1.59 79.25± 1.19
OGBN-Arxiv 54.52± 0.63 67.56± 0.00 OOM OOM 57.43± 0.36 68.23± 0.27 68.72± 0.28

Average 55.04 73.15 * * 47.98 72.92 75.33

Uniform
missing

Cora 62.63± 2.64 74.52± 1.60 29.32± 0.74 27.85± 2.27 53.75± 2.03 77.55± 2.01 78.53± 1.39
CiteSeer 63.19± 1.83 65.89± 2.29 24.66± 1.90 24.29± 1.47 44.95± 2.59 68.00± 2.16 69.40± 1.85
PubMed 54.70± 3.03 72.25± 3.78 OOM 39.47± 0.76 60.24± 3.78 73.88± 2.35 76.44± 1.64
Photo 85.40± 1.33 82.42± 2.57 26.58± 1.68 25.98± 3.90 85.30± 1.05 87.75± 1.07 88.60± 1.30
Computers 79.49± 1.21 76.28± 1.43 37.16± 0.12 34.78± 4.69 78.04± 1.18 81.47± 0.91 81.79± 0.70
OGBN-Arxiv 58.12± 0.46 67.56± 0.00 OOM OOM 65.30± 0.22 68.67± 0.38 70.19± 0.15

Average 67.26 73.15 * * 64.6 76.22 77.49

Table 2: Link prediction results (%) at missing rate rm = 0.995. OOM denotes out of memory.

Dataset Full features Structural missing Uniform missing
sRMGCNN GCNMF FP PCFI sRMGCNN GCNMF FP PCFI

Cora AP 92.05± 0.75 66.34± 5.78 68.26± 1.07 83.74± 1.05 86.45± 1.15 66.46± 5.63 67.25± 1.10 86.31± 1.40 87.30± 1.33
AUC 92.58± 0.86 68.80± 6.44 71.09± 0.87 86.12± 1.04 88.26± 0.97 68.87± 6.36 70.78± 0.86 88.73± 1.16 89.24± 1.08

CiteSeer AP 90.50± 0.92 67.75± 1.95 67.75± 1.98 79.74± 1.71 80.12± 1.59 64.35± 5.19 65.71± 1.80 82.02± 1.95 82.98± 2.30
AUC 91.65± 0.99 69.08± 1.88 69.10± 1.95 83.24± 1.43 83.88± 1.30 66.30± 5.65 68.55± 1.72 85.81± 1.47 86.28± 1.77

PubMed AP 95.82± 0.27 OOM 87.14± 0.28 78.93± 1.51 82.65± 0.91 OOM 81.67± 2.27 77.05± 3.54 85.26± 0.36
AUC 95.95± 0.26 OOM 86.07± 0.31 84.30± 0.98 87.02± 0.41 OOM 82.70± 1.39 83.26± 2.24 88.52± 0.20

Photo AP 95.76± 0.38 81.48± 0.29 81.45± 0.30 94.05± 1.18 96.40± 0.42 81.53± 0.27 81.48± 0.30 95.97± 0.21 97.07± 0.21
AUC 95.34± 0.42 81.07± 0.33 81.03± 0.34 93.57± 1.06 96.01± 0.49 81.14± 0.29 81.07± 0.33 95.54± 0.24 96.89± 0.23

Computers AP 93.78± 1.16 83.37± 0.17 83.33± 0.17 90.57± 1.23 94.65± 0.40 83.39± 0.18 83.36± 0.17 93.96± 0.24 95.98± 0.21
AUC 93.79± 1.09 83.66± 0.24 83.62± 0.24 90.92± 1.05 94.67± 0.43 83.68± 0.26 83.65± 0.25 93.90± 0.24 96.03± 0.22

4.2 SEMI-SUPERVISED NODE CLASSIFICATION RESULTS

Figure 2 demonstrates the trend of an average accuracy of compared methods for node classification
on six datasets with different rm. The performance gain of PCFI is remarkable at rm = 0.995.
In contrast, the average accuracy of existing methods rapidly decrease as rm increases and are
overtaken by LP which does not utilize features. In the case of uniform missing features, FP exhibits
better resistance than LP, but the gap from ours increases as rm increases.

Table 1 illustrates the detailed results of node classification with rm = 0.995. sRMGCNN and
GCNMF show significantly low performance for all experiments in this extremely challenging en-
vironment. Baseline 2 (LP) outperforms PaGNN in general, and even FP shows worse accuracy
than Baseline 2 (LP) in certain settings. For all the datasets, PCFI performed in a manner that was
superior to the other methods at rm = 0.995.

4.3 LINK PREDICTION RESULTS

Table 2 demonstrates the results for the link prediction task at rm=0.995. PCFI achieves state-of-
the-art performance across all settings except PubMed with structural missing. Based on the results
on semi-supervised node classification and link prediction, which are representative graph learning
tasks, PCFI shows the effectiveness at a very high rate of missing features.

5 CONCLUSION

We introduced a novel concept of channel-wise confidence to impute highly rated missing features
in a graph. To replace the unavailable true confidence, we designed a pseudo-confidence obtainable
from the shortest path distance of each channel feature on a node. Using the pseudo-confidence,
we developed a new framework for missing feature imputation that consists of channel-wise inter-
node diffusion and node-wise inter-channel propagation. As validated in experiments, the proposed
method demonstrates outperforming performance on both node classification and link prediction.
The channel-wise confidence approach for missing feature imputation can be straightforwardly ap-
plied to various graph-related downstream tasks with missing node features.

9

Published as a conference paper at ICLR 2023

ETHICS STATEMENT

The intentionally removed private or confidential information can be recovered using the proposed
method and the recovered information can be misused. Therefore, the work is suggested to be used
for positive impacts on society in areas such as health care (Wang et al., 2020; Deng et al., 2020),
crime prediction (Wang et al., 2021), and weather forecasting (Han et al., 2022).

REPRODUCIBILITY STATEMENT

For theoretical results, we explained the assumptions and the complete proofs of all theoretical
results in Section 3.4, 3.5, and Appendix. In addition, we include the data and implementation
details to reproduce the experimental results in Section 4 and Appendix A.3. The codes are available
at https://github.com/daehoum1/pcfi.

ACKNOWLEDGMENTS

This work was supported by IITP grant funded by Korea government(MSIT) [No.B0101-15-0266,
Development of High Performance Visual BigData Discovery Platform for Large-Scale Realtime
Data Analysis; NO.2021-0-01343, Artificial Intelligence Graduate School Program (Seoul National
University)]

REFERENCES

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: A system for
{Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pp. 265–283, 2016. 19

Paul D Allison. Missing data. Sage publications, 2001. 2

James Atwood and Don Towsley. Diffusion-convolutional neural networks. Advances in neural
information processing systems, 29, 2016. 3, 6

Abraham Berman and Robert J Plemmons. Nonnegative matrices in the mathematical sciences.
SIAM, 1994. 15

Halil Bisgin, Nitin Agarwal, and Xiaowei Xu. Investigating homophily in online social networks. In
2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Tech-
nology, volume 1, pp. 533–536. IEEE, 2010. 5

Halil Bisgin, Nitin Agarwal, and Xiaowei Xu. A study of homophily on social media. World Wide
Web, 15(2):213–232, 2012. 5

Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor W Tsang. Learning on
attribute-missing graphs. IEEE transactions on pattern analysis and machine intelligence, 2020.
1, 2

Fan Chung. The heat kernel as the pagerank of a graph. Proceedings of the National Academy of
Sciences, 104(50):19735–19740, 2007. 3, 6

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30, 2006. 2

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016. 1

Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing Wang, and Yue Ning. Cola-gnn: Cross-
location attention based graph neural networks for long-term ili prediction. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management, pp. 245–254,
2020. 10

10

https://github.com/daehoum1/pcfi

Published as a conference paper at ICLR 2023

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019. 17

GDPR. General data protection regulation. https://gdpr.eu/. Accessed: 2022-09-28. 1

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016. 3, 6

Adrien Guille, Hakim Hacid, Cecile Favre, and Djamel A Zighed. Information diffusion in online
social networks: A survey. ACM Sigmod Record, 42(2):17–28, 2013. 2

Jindong Han, Hao Liu, Haoyi Xiong, and Jing Yang. Semi-supervised air quality forecasting via
self-supervised hierarchical graph neural network. IEEE Transactions on Knowledge and Data
Engineering, 2022. 10

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020. 7

Houye Ji, Cheng Yang, Chuan Shi, and Pan Li. Heterogeneous graph neural network with distance
encoding. In 2021 IEEE International Conference on Data Mining (ICDM), pp. 1138–1143.
IEEE, 2021. 2

Bo Jiang and Ziyan Zhang. Incomplete graph representation and learning via partial graph neural
networks. arXiv preprint arXiv:2003.10130, 2020. 1, 2, 8, 19

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 17

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016a. 1, 2, 6, 8

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b. 1, 8, 17, 20

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.
3, 6

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learn-
ing. arXiv preprint arXiv:1911.05485, 2019. 3, 6, 20

Hady Lauw, John C Shafer, Rakesh Agrawal, and Alexandros Ntoulas. Homophily in the digital
world: A livejournal case study. IEEE Internet Computing, 14(2):15–23, 2010. 5

Pan Li, I Chien, and Olgica Milenkovic. Optimizing generalized pagerank methods for seed-
expansion community detection. Advances in Neural Information Processing Systems, 32, 2019.
2

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020. 2

Jongin Lim, Daeho Um, Hyung Jin Chang, Dae Ung Jo, and Jin Young Choi. Class-attentive dif-
fusion network for semi-supervised classification. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI, pp. 2–9, 2021. 3, 6

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume 793. John
Wiley & Sons, 2019. 2

Po-Ling Loh and Martin J Wainwright. High-dimensional regression with noisy and missing data:
Provable guarantees with non-convexity. Advances in neural information processing systems, 24,
2011. 2

11

https://gdpr.eu/

Published as a conference paper at ICLR 2023

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001. 5

Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix completion with recur-
rent multi-graph neural networks. Advances in neural information processing systems, 30, 2017.
2, 8, 19

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999. 3, 6

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017. 17

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014. 3, 6

Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong,
and Michael Bronstein. On the unreasonable effectiveness of feature propagation in learning on
graphs with missing node features. arXiv preprint arXiv:2111.12128, 2021. 1, 2, 3, 6, 8, 15, 19

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008. 7

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018. 7

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. The
emerging field of signal processing on graphs: Extending high-dimensional data analysis to net-
works and other irregular domains. IEEE signal processing magazine, 30(3):83–98, 2013. 2

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014. 17

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. arXiv
preprint arXiv:1908.01000, 2019. 1

Hibiki Taguchi, Xin Liu, and Tsuyoshi Murata. Graph convolutional networks for graphs containing
missing features. Future Generation Computer Systems, 117:155–168, 2021. 1, 2, 8, 17, 19

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017. 1

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. ICLR (Poster), 2(3):4, 2019. 1

Chenyu Wang, Zongyu Lin, Xiaochen Yang, Jiao Sun, Mingxuan Yue, and Cyrus Shahabi. Hagen:
Homophily-aware graph convolutional recurrent network for crime forecasting. arXiv preprint
arXiv:2109.12846, 2021. 10

Ziyu Wang, Nanqing Luo, and Pan Zhou. Guardhealth: Blockchain empowered secure data manage-
ment and graph convolutional network enabled anomaly detection in smart healthcare. Journal of
Parallel and Distributed Computing, 142:1–12, 2020. 10

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020. 1

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453–5462. PMLR, 2018. 1, 18

12

Published as a conference paper at ICLR 2023

Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling missing
data with graph representation learning. Advances in Neural Information Processing Systems, 33:
19075–19087, 2020. 2

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018. 2

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34, 2021. 2

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI Open, 1:57–81, 2020. 1

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propa-
gation. 2002. 8, 19

13

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 PROOF OF PROPOSITION 1

Proposition 1. If Si,d = m ≥ 1, vi is a missing node, then ξj/i,d for vj ∈ N (vi) is given by

ξj/i,d = α−1 if Si,d > Sj,d,

ξj/i,d = 1 if Si,d = Sj,d,

ξj/i,d = α if Si,d < Sj,d,

Otherwise, vi is a source node (Si,d = 0), then ξj/i,d for vj ∈ N (vi) is given by

ξj/i,d = 1 if vj is a source node (Sj,d = 1),

ξj/i,d = α if vj is a missing node (Sj,d = 0).

Proof. Let va and vb be arbitrary nodes, and let δ(va, vb) denote the number of edges in the shortest
path between va and vb. The shortest path distance from vi to its nearest source node for the d-th
feature channel, Si,d, is given by

Si,d = min{δ(vi, vs)| vs ∈ V(d)
k }.

Claim 1: Si,d = 0 ⇔ vi ∈ V(d)
k . Proof: Since vi is a source node, Si,d = 0.

Claim 2: Si,d ≥ 1 ⇔ vi /∈ V(d)
k ⇔ vi ∈ V(d)

u . Proof: Since vi is not a known node (vi /∈ V(d)
k) if

and only of vi is unknown node (vi ∈ V(d)
u), then Si,d ≥ 1 is obvious.

Let vs be a known node such that δ(vs, vi) = m which exists because Si,d = m. Then δ(vs, vj) ≤
δ(vs, vi)+ δ(vi, vj) = m+1 holds by the triangle inequality since shortest path distance is a metric
on the graph. This proves that Sj,d ≤ m + 1, and also included the case of Si,d = 0 as a special
case.

Assume that there is some known node vs′ such that δ(vj , vs′) ≤ m − 2. Then δ(vi, vs′) ≤
δ(vi, vj) + δ(vj , vs′) ≤ 1 + m − 2 = m − 1 by the triangle inequality. However, this contra-
dicts Si,d = m. Therefore, for all source node s′, δ(vj , vs′) ≥ m− 1 which implies Sj,d ≥ m− 1..

Then, the following Claim 3 also holds.

Claim 3: If Si,d = m ≥ 1, then Sj,d − Si,d ∈ {−1, 0, 1} for vj ∈ N (vi). Otherwise, if Si,d = 0,
then Sj,d − Si,d ∈ {0, 1} for vj ∈ N (vi)

According to Claim 3 and ξj/i,d = αSj,d−Si,d in Definition 3 of the main text, the proposition 1
holds trivially.

14

Published as a conference paper at ICLR 2023

A.2 CONVERGENCE OF CHANNEL-WISE INTER-NODE DIFFUSION

The convergence of the proposed Channel-wise Inter-node Diffusion is presented in the following
Proposition.

Proposition A.1. The channel-wise inter-node diffusion matrix for the d-th channel, Ŵ (d), is ex-
pressed by

Ŵ (d) =

[
I 0ku

W
(d)

uk W
(d)

uu

]
,

where W
(d)

is the row-stochastic matrix calculated by normalizing W (d). The recursion in channel-
wise inter-node diffusion for the d-th channel is defined by

x̂(d)(0) =

[
x
(d)
k
0u

]
x̂(d)(t) = Ŵ (d) x̂(d)(t− 1)

Then, lim
K→∞

x̂
(d)
u (K) converges to (I −W

(d)

uu)
−1W

(d)

ukx
(d)
k , where x

(d)
k is the known feature of the

d-th channel.

The proof of this Proposition follows that of (Rossi et al., 2021) which proves the case of a
symmetrically-normalized diffusion matrix. In our proof, the diffusion matrix is not symmetric.
For proof of Proposition A.1, we first give Lemma A.1 and A.2.

Lemma A.1. W
(d)

is the row-stochastic matrix calculated by normalizing W (d) which is the
weighted adjacency matrix of the connected graph G. That is, W

(d)
= (D(d))−1W (d) where

D
(d)
ii =

∑
j Wi,j . Let W

(d)

uu be the |x̂(d)
u | × |x̂(d)

u | bottom-right submatrix of W
(d)

, and let ρ(·)
denote spectral radius. Then, ρ(W

(d)

uu) < 1.

Proof. Let W
(d)

uu0 ∈ RN×N be the matrix where the bottom right submatrix is W
(d)

uu and all the
other elements are zero. That is,

W
(d)

uu0 =

[
0kk 0ku

0uk W
(d)

uu

]
where 0kk ∈ {0}|x̂

(d)
k |×|x̂(d)

k |, 0ku ∈ {0}|x̂
(d)
k |×|x̂(d)

u |, and 0uk ∈ {0}|x̂(d)
u |×|x̂(d)

k |.

Since W
(d)

is the weighted adjacency matrix of connected graph G, W
(d)

uu0 ≤ W
(d)

element-

wisely and W
(d)

uu0 ̸= W
(d)

. Moreover, since W
(d)

uu0 + W
(d)

is a weighted adjacency matrix of a

strongly connected graph, W
(d)

uu0 +W
(d)

is irreducible due to Theorem 2.2.7 of (Berman & Plem-

mons, 1994). Then, by Corollary 2.1.5 of (Berman & Plemmons, 1994), ρ(W
(d)

uu0) < ρ(W
(d)

).
Since the spectral radius of a stochastic matrix is one (Theorem 2.5.3 in (Berman & Plemmons,
1994)), ρ(W

(d)
) = 1. Furthermore, since W

(d)

uu0 and W
(d)

uu share the same non-zero eigenvalues,

ρ(W
(d)

uu) = ρ(W
(d)

uu). Finally, ρ(W
(d)

uu) = ρ(W
(d)

uu0) < ρ(W
(d)

) = 1.

Lemma A.2. I −W
(d)

uu is invertible where I is the |x̂(d)
u | × |x̂(d)

u | identity matrix.

Proof. Since 1 is not an eigenvalue of W
(d)

uu by Lemma A.1, 0 is not an eigenvlaue of I − W
(d)

uu .

Thus I −W
(d)

uu is invertible.

In the following, we give the proof of Proposition 1.
Proof of Proposition 1. Unfolding the recurrence relation gives us

x̂(d)(t) =

[
x̂
(d)
k (t)

x̂
(d)
u (t)

]
=

[
I 0ku

W
(d)

uk W
(d)

uu

][
x̂
(d)
k (t− 1)

x̂
(d)
u (t− 1)

]
=

[
x̂
(d)
k (t− 1)

W
(d)

uk x̂
(d)
k (t− 1) +W

(d)

uu x̂
(d)
u (t− 1)

]
.

15

Published as a conference paper at ICLR 2023

Since x̂(d)
k (t) = x̂

(d)
k (t−1) in the first |x̂(d)

k | rows, x̂(d)
k (K) = ... = x̂

(d)
k . That is, x̂(d)

k (K) remains
x
(d)
k . Hence lim

K→∞
x̂
(d)
k (K) converges to x

(d)
k .

Now, we just consider the convergence of lim
K→∞

x̂
(d)
u (K). Unrolling the recursion of the last |x̂(d)

u |
rows become,

x̂(d)
u (K) = W

(d)

ukx
(d)
k +W

(d)

uu x̂
(d)
u (K − 1)

= W
(d)

ukx
(d)
k +W

(d)

uu (W
(d)

ukx
(d)
k +W

(d)

uu x̂
(d)
u (K − 2))

= . . .

= (

K−1∑
t=0

(W
(d)

uu)
t)W

(d)

ukx
(d)
k + (W

(d)

uu)
K x̂(d)

u (0)

Since lim
K→∞

(W
(d)

uu)
K = 0 by Lemma A.1, lim

K→∞
(W

(d)

uu)
K x̂

(d)
u (0) = 0 regardless of the initial state

for x̂
(d)
u (0). (We replace x̂

(d)
u (0) with a zero column vector for simplicity.) Thus, it remains to

consider lim
K→∞

(
∑K−1

t=0 (W
(d)

uu)
t)W

(d)

ukx
(d)
k .

Since ρ(W
(d)

uu) < 1 by Lemma A.1 and (I −W
(d)

uu)
−1 is invertible by Lemma A.2, the geometric

series converges as follows

lim
K→∞

x̂(d)
u (K) = lim

K→∞
(

K−1∑
t=0

(W
(d)

uu)
t)W

(d)

ukx
(d)
k = (I −W

(d)

uu)
−1W

(d)

ukx
(d)
k .

Thus, the recursion in channel-wise inter-node diffusion converges. □

16

Published as a conference paper at ICLR 2023

A.3 IMPLEMENTATION

A.3.1 IMPLEMENTATION DETAILS

We used Pytorch (Paszke et al., 2017) and Pytorch Geometric (Fey & Lenssen, 2019) for the exper-
iments on an NVIDIA GTX 2080 Ti GPU with 11GB of memory.

Node classification. We trained GCN-variant models (GCNMF, PaGNN) and GCN models for
feature imputation methods (Baseline 1, sRMGCNN, FP, PCFI) as follows. We used Adam op-
timizer (Kingma & Ba, 2014) and set the maximal number of epochs to 10000. We used an early
stopping strategy with patience of 200 epochs. By grid search on each validation set, learning rates of
all experiments are chosen from {0.01, 0.005, 0.001, 0.0001}, and dropout (Srivastava et al., 2014)
was applied with p selected in {0.0, 0.25, 0.5}.

Link prediction. For GCNMF and GAE used as common downstream models for feature impu-
tation methods, we trained the models with Adam optimizer for 200 iterations. By grid search on
the validation set, learning rates of all methods are searched from {0.1, 0.01, 0.005, 0.001, 0.0001}
for each dataset, and dropout was applied to each layer with p searched from {0.0, 0.25, 0.5}. As
specified in (Kipf & Welling, 2016b) and (Taguchi et al., 2021), we used a 32-dim hidden layer
and 16-dim latent variables for the all auto-encoder models.

For all the compared methods, we followed all the hyper-parameters in original papers or codes
if feasible. If hyper-parameters (the number of layers and hidden dimension) of a model for cer-
tain datasets are not clarified in the papers, we searched the hyper-parameters using grid search.
In that case, we searched the number of layers from {2, 3} and the hidden dimension from
{16, 32, 64, 128, 256}.

We present the pseudo-code of our PCFI in Sec. A.6. Our code will be available upon publication.

A.3.2 PCFI HYPER-PARAMETERS

Figure 3: Node classification accuracy on CiteSeer with different α and β. The experiments are
conducted under a structural-missing setting with rm = 0.995.

We set K to 100 throughout all the experiments. PCFI has two hyper-parameters α and β. α is used
to calculate PC for channel-wise inter-node diffusion and node-wise inter-channel propagation. β
controls the degree of node-wise inter-channel propagation. To analyze the effects of the hyper-
parameter, we conducted experiments with various α and β. Figure 3 and Figure 4 demonstrate the
influence of α and β.

For node classification, we set search range of α and β same as in Figure 3. For node classification,
we chose α from {0.1, 0.2, ..., 0.9}, and β from {10−6, 10−5.5, 10−5, ..., , 1} using a validation set.
Then, for link prediction, we set search range of α and β same as in Figure 4. We selected α from

17

Published as a conference paper at ICLR 2023

Figure 4: Link prediction results on Cora with different α and β. The experiments are conducted
under a structural-missing setting with rm = 0.995.

Table 3: Hyper-parameters of PCFI used in node classification.

Missing type Structural missing Uniform missing
rm 0.995 0.9 0.5 0.995 0.9 0.5

Cora α 0.9 0.9 0.6 0.7 0.5 0.5
β 1 10−1 1 10−2 10−1 1

CiteSeer α 0.8 0.6 0.5 0.8 0.5 0.1
β 10−1.5 10−0.5 1 10−0.5 1 1

PubMed α 0.8 0.9 0.9 0.7 0.8 0.2
β 10−1 10−0.5 10−0.5 10−2.5 1 1

Photo α 0.2 0.4 0.6 0.2 0.2 0.5
β 10−4 10−6 10−2.5 10−1.5 10−6 104.5

Computers α 0.1 0.1 0.3 0.1 0.2 0.4
β 10−3.5 10−4 10−5.5 10−2.5 10−4 10−5.5

OGBN-Arxiv α 0.1 0.4 0.2 0.2 0.8 0.8
β 10−6 10−6 10−6 10−4 10−6 10−2.5

Table 4: Hyper-parameters of PCFI used in link prediction.

missing type Dataset Cora CiteSeer PubMed Photo Computers

Structural α 0.9 0.9 0.2 0.1 0.1
β 1 10−1 1 10−1 10−1

Uniform α 0.9 0.6 0.3 0.1 0.1
β 1 1 1 1 1

{0.1, 0.2, ..., 0.9}, and β from {10−6, 10−5, 10−4, ..., , 1}. To find the best hyper-parameter, we
used grid search on a validation set. The detailed setting of hyper-parameters for all datasets used in
our paper are listed in Table 3 and Table 4.

To train downstream GCNs added to PCFI for node classification, we fix a learning rate to 0.005.
Then, to train downstream GAE added to PCFI for link prediction, we set a learning rate to 0.01 and
0.001 for {Cora, CiteSeer, PubMed} and {Photo, Computers}, respectively.

Downstream GCN for node classification. We set the number of layers to 3, and We fix dropout
rate p = 0.5. The hidden dimension was set to 64 for all datasets except OGBN-Arxiv where 256 is
used. For OGBN-Arxiv, as the Jumping Knowledge scheme (Xu et al., 2018) with max aggregation
was applied to FP, we also utilized the scheme.

18

Published as a conference paper at ICLR 2023

A.3.3 IMPLEMENTATION OF BASELINES

GCNMF (Taguchi et al., 2021). We used publicly released code by the authors. The code for
GCNMF1 is MIT licensed.

FP (Rossi et al., 2021). We used publicly released code by the authors. The code for FP2 is Apache-
2.0 licensed.

PaGNN (Jiang & Zhang, 2020). We used re-implemented Apache-2.0-licensed code3 since we
could not find officially released code by the authors for PaGNN.

sRMGCNN (Monti et al., 2017). Due to the compatibility problem from the old-version Tensor-
flow (Abadi et al., 2016) of the code, we only updated the version of publicly released code4 to
Tensorflow 2.3.0. The code is GPL-3.0 licensed.

Label propagation (Zhu & Ghahramani, 2002). We employed re-implemented code in-
cluded in MIT-licensed Pytorch Geometric. We tuned hyper-parameter α of LP in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95} by grid search.

A.4 EXPERIMENTS

A.4.1 DATASETS

All the datasets used in our experiments are publicly available from the MIT-licensed Pytorch Ge-
ometric package. We conducted all the experiments on the largest connected component of each
given graph. For a disconnected graph, we can simply apply PCFI to each connected component
independently. The description for the datasets is summarized in Table 5.

Table 5: Dataset statistics.

Dataset # Nodes # Edges # Features # Classes
Cora 2,485 5,069 1,433 7
CiteSeer 2,120 3,679 3,703 6
PubMed 19,717 44,324 500 3
Photo 7,487 119,043 745 8
Computers 13,381 245,778 767 10
OGBN-Arxiv 169,343 1,166,243 128 40

1https://github.com/marblet/GCNmf
2https://github.com/twitter-research/feature-propagation
3https://github.com/twitter-research/feature-propagation
4https://github.com/fmonti/mgcnn

19

Published as a conference paper at ICLR 2023

Figure 5: Node classification accuracy (%) on the synthetic graphs according to − log(Ed), where
Ed is the Dirichlet energy (An increase in Ed means an increase in homophily.). The experiments
are conducted under a structural-missing setting with rm = 0.995. The proposed PCFI consistently
outperforms FP and the performance gap widens as homophily increases.

A.4.2 RANDOM SPLIT GENERATION

Node classification. We randomly generated 10 different training/validation/test splits, except
OGBN-Arxiv where the split was given according to the published year of papers. As the setting
in (Klicpera et al., 2019), in each generated split, 20 nodes per class were assigned to the training
nodes. Then, the number of validation nodes is determined by the number that becomes 1500 by
adding to the number of the training nodes. As the test nodes, we used all nodes except training and
validation nodes.

Link prediction. We randomly generated 10 different training/validation/test splits for each
datasets. In each split, we applied the same split ratio regardless of datasets. As the setting in
(Kipf & Welling, 2016b), we commonly used 85% edges for train, 5% edges for validation, and the
10% edges for test.

A.4.3 GAIN OF PCFI ACCORDING TO FEATURE HOMOPHILY

In this section, since pseudo-confidence is based on the assumption that linked nodes have similar
features, we explored how feature homophily of graphs impacts the performance of PCFI. We further
analyzed the gain of PCFI over FP in terms of feature homophily. For the experiments, we generated
features with different feature homophily on graphs from the synthetic dataset where each graph
contains 5000 nodes that belong to one of 10 classes.

We selected two graphs (graphs with class homophily of 0.3 and 0.5) from the dataset. Preserving
the graph structure and class distribution, we newly generated multiple sets of node features for
each graph so that each generated graph has different feature homophily. The features for nodes
were sampled from overlapping 10 5-dimensional Gaussians which correspond to each class and
the means of the Gaussians are set differently to be the same distance from each other. For the
covariance matrix of each Gaussian, diagonal elements were set to the same value and the other
elements were set to 0.1 times the diagonal element. That is, the covariance between different
channels was set to 0.1 times the variance of a channel. For each feature generation of a graph,
we changed the scale of the covariance matrix so that features are created with different feature
homophily. As the scale of the covariance matrix decreases, the overlapped area between Gaussians
decreases. By doing so, more similar features are generated within the same class and the graph has
higher feature homophily. Then, for semi-supervised node classification, we randomly generated
10 different training/validation/test splits. For each split, we set the numbers of nodes in training,
validation, and test set to be equal.

20

Published as a conference paper at ICLR 2023

Figure 5 demonstrates the trend of the accuracy of PCFI and FP under a structural-missing setting
with rm = 0.995. We can confirm that the gain of PCFI over FP exceeds 10% on both graphs
with high feature homophily. Furthermore, PCFI shows superior performance regardless of levels
of feature homophily. This is because confidence based on feature homophily is the valid concept
on graphs with missing features and pseudo-confidence is designed properly to replace confidence.

A.4.4 ABLATION STUDY

To verify the effectiveness of each element of PCFI, we carried out an ablation study. We started
by measuring the performance of FP that performs simple graph diffusion with a symmetrically-
normalized transition matrix. Firstly, we changed the normalization type of the transition matrix.
We replaced the symmetrically-normalized transition matrix with a row-stochastic transition matrix
(row-ST in Table 6 and Table7). The row-stochastic transition matrix leads to feature recovery at
the same scale of actual features. Secondly, we introduced PC to the diffusion process, which means
PC-based channel-wise inter-node diffusion was performed (CID in Table 6 and Table7). Lastly,
we performed node-wise channel propagation on recovered features obtained by channel-wise inter-
node diffusion (NIP in Table 6 and Table7). We compared the performance of these four cases.
In this experiment, for CiteSeer, we performed node classification under structural-missing setting
with rm = 0.995. Then, for Cora and PubMed, we performed link prediction with rm = 0.995.
We applied structural missing and uniform missing to Cora and PubMed, respectively. As shown in
Table 6 and Table 7, each component of PCFI contributes to performance improvement throughout
the various settings.

Table 6: Ablation study of PCFI. row-ST, CID and, NIP denote a row-stochastic transition matrix,
channel-wise inter-node diffusion, and node-wise inter-channel propagation, respectively.

row-ST CID NIP CiteSeer
✗ ✗ ✗ 59.76± 2.47
✓ ✗ ✗ 64.80± 2.60
✓ ✓ ✗ 65.40± 2.77
✓ ✓ ✓ 66.18± 2.75

Table 7: Ablation study of PCFI. row-ST, CID and, NIP denote a row-stochastic transition matrix,
channel-wise inter-node diffusion, and node-wise inter-channel propagation, respectively.

row-ST CID NIP Cora PubMed
AUC (%) AP (%) AUC (%) AP (%)

✗ ✗ ✗ 83.74 ± 1.05 86.12 ± 1.04 77.05 ± 3.54 83.26 ± 2.24
✓ ✗ ✗ 83.96 ± 1.02 86.14 ± 1.07 80.72 ± 1.28 84.99 ± 0.68
✓ ✓ ✗ 84.16 ± 1.23 86.24 ± 1.24 82.88 ± 1.23 87.20 ± 0.40
✓ ✓ ✓ 86.45 ± 1.15 88.26 ± 0.97 85.26 ± 0.36 88.52 ± 0.20

A.4.5 RESISTANCE OF PCFI TO MISSING FEATURES

To verify the resistance of PCFI against missing features, we compared the averaged node classifi-
cation accuracy for the 6 datasets by increasing rm as shown in Table. 8. We compared each average
accuracy with different rm from rm = 0 to rm = 0.95. For structural missing, PCFI loses only
2.23% of relative average accuracy with rm = 0.9, and 4.82% with rm = 0.995. In the case of
uniform missing, PCFI loses only 1.81% of relative average accuracy with rm = 0.9, and 2.66%
with rm = 0.995. Note that classification with rm = 0.995 is the extremely missing case in which
only 0.5% of features are known. This result demonstrates that PCFI is robust to missing features.

Even at the same rm, we observed the average accuracy for structural missing is lower than one
for uniform missing. We analyzed this observation in the aspect of confidence. Since features are
missing in a node unit for structural missing, all channel features of a node have the same SPD-
S, i.e., Si,1 = . . . = Si,F . Hence, in a node far from its nearest source node, every channel
feature has low confidence. Then, every missing feature of the node can not be improved via node-
wise inter-channel propagation due to the absence of highly confident channel features in the node.

21

Published as a conference paper at ICLR 2023

Table 8: Node classification accuracy (%) of PCFI at different missing rates of for two missing
types. For each experiment, we report the mean with standard deviation (mean ± std). For each
missing type, we report average accuracy with relative drop (%p) compared to a full-feature setting
(average (drop)).

Missing type Dataset Full features 50% missing 90% missing 99.5% missing

Structural
missing

Cora 82.35 ± 1.49 80.37 ± 1.55 78.88 ± 1.43 75.49 ± 2.10
CiteSeer 70.98 ± 1.46 70.10 ± 2.02 69.76 ± 1.96 66.18 ± 2.75
PubMed 77.49 ± 2.05 75.93 ± 1.44 76.12 ± 1.87 74.66 ± 2.26
Photo 92.14 ± 0.62 91.81 ± 0.54 89.96 ± 0.68 87.70 ± 1.29
Computers 85.67 ± 1.41 84.91 ± 0.88 82.40 ± 1.38 79.25 ± 1.19
OGBN-Arxiv 72.28 ± 0.11 71.64 ± 0.19 70.39 ± 0.19 68.72 ± 0.28

Average 80.15 79.13 (−1.02) 77.92 (−2.23) 75.33 (−4.82)

Uniform
missing

Cora 82.35 ± 1.49 81.28 ± 1.59 79.55 ± 1.32 78.53 ± 1.39
CiteSeer 70.98 ± 1.46 71.68 ± 1.92 69.92 ± 1.68 69.40 ± 1.85
PubMed 77.49 ± 2.05 76.88 ± 2.09 76.56 ± 2.08 76.44 ± 1.64
Photo 92.14 ± 0.62 91.83 ± 0.58 89.84 ± 1.00 88.60 ± 1.30
Computers 85.67 ± 1.41 84.96 ± 1.15 83.14 ± 0.72 81.79 ± 0.70
OGBN-Arxiv 72.28 ± 0.11 71.78 ± 0.09 70.91 ± 0.17 70.19 ± 0.15

Average 80.15 79.73 (−0.42) 78.34 (−1.81) 77.49 (−2.66)

Thus, the node is likely to be misclassified. In contrast, for uniform missing, channel features of
a node have various PC where known channel features have high confidence and propagate their
feature information to unknown channel features in the node. Hence, most nodes can be classified
well owing to the recovered features from highly confident channel features. We claim that this
observation shows the validity of the concept of channel-wise confidence. The tables containing
accuracy at different rm for the two missing types is in Section A.5.

A.4.6 CLASSIFICATION ACCURACY ACCORDING TO PSEUDO-CONFIDENCE

(a) Cora (b) Citeseer

Figure 6: Node classification accuracy (%) according to SPD-S of test nodes. For both Cora and
CiteSeer, structural missing with rm = 0.995 is applied. PCFI* denotes PCFI without node-wise
inter-channel propagation. PCFI shows a noticeable performance gain especially for nodes with
low-PC missing features (large-SPD-S nodes). Also, node-wise inter-channel propagation shows its
effectiveness on nodes with low-PC features.

Under a structural missing setting, node features in a node have the same SPD-S, i.e., Si,1 = ... =
Si,d for the i-th node. Since pseudo confidence ξi,d is calculated by ξi,d = αSi,d , node features
within a node also have the same pseudo-confidence (PC) for structural missing, i.e., ξi,1 = ... =
ξi,d. We refer to SPD-S of node features within a node as SPD-S of the node. Similarly, we refer to
PC of node features with a node as PC of the node. The test nodes are divided according to SPD-S of
the nodes. Then, to observe the relationship between PC and classification accuracy, we calculated
classification accuracy of nodes in each group. We conducted experiments on Cora and CiteSeer
under a structural missing setting with rm = 0.995. We compared PCFI with sRMGCNN and FP.

22

Published as a conference paper at ICLR 2023

Figure 6 shows node classification accuracy according to SPD-S of test nodes. For both datasets,
as SPD-S of nodes increases, the accuracy of FP tends to decrease. However, for large-SPD-S
nodes, PCFI gains noticeable performance improvement compared to FP. Furthermore, the results
on Cora show that PCFI outperforms PCFI without node-wise inter-channel propagation on large-
SPD-S nodes. Since large SPD-S means low PC, we can observe that PCFI imputes low-PC missing
features effectively.

A.4.7 DEGREE OF FEATURE RECOVERY ACCORDING TO PSEUDO-CONFIDENCE

0.9

1.0
sRMGCNN FP PCFI* PCFI

0 1 2 3 4 5 6 7 8 9 10
SPD-S

0.05

0.10

0.15

0.20

Co
sin

e
Si

m
ila

rit
y

(a) Cora

0.9

1.0
sRMGCNN FP PCFI* PCFI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
SPD-S

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Co
sin

e
Si

m
ila

rit
y

(b) Citeseer

Figure 7: Cosine similarity between Xi,: (original features in a node) and X̂i,: (its recovered fea-
tures) according to SPD-S of features within the node. For both datasets, we randomly selected
99.5% nodes and remove all features of the selected nodes (structural missing) so that all channel
features within a node have the same SPD-S. The imputed feature similarity between two nodes
tends to decrease as the shortest path distance between the two nodes increases.

We further conducted experiments to observe the degree of feature recovery according to SPD-S of
nodes. To evaluate the degree of feature recovery for each node, we measured the cosine similarity
between recovered node features and original node features. The setting for experiments is the same
as in section A.4.6.

Figure 7 demonstrates the results on Cora and CiteSeer. As SPD-S of nodes increases from zero,
which means PC of nodes decreases, the cosine similarity between tends to decreases. In other
words, PC of nodes increases, the cosine similarity tends to increase. This shows that the pseudo-
confidence is designed properly based on SPD-S, which reflect the confidence.

Unlike the tendency in node classification accuracy, PCFI shows almost the same degree of feature
recovery as PCFI without node-wise inter-channel propagation. This means that node-wise inter-
channel propagation improves performance with very little refinement. That is, higher classification
accuracy on nodes does not necessarily mean higher degree of feature recovery of the nodes. We
leave a detailed analysis of this observation for future work.

23

Published as a conference paper at ICLR 2023

A.4.8 COMPUTATIONAL COST

Figure 8: Training time (in seconds) of methods on Cora under a structural-missing setting with
rm = 0.995.

To compare computational cost, we measured the total training time on a single split of Cora. We
performed node classification under a structural-missing setting with rm = 0.995. The training
time of each method is shown in Figure 8. The training time for the feature imputation methods
(sRMGCNN, FP, PCFI) includes both the time for feature imputation and training of a downstream
GCN. PCFI shows less training time than the other methods except for FP. Even compared to FP,
PCFI takes only 15.4% more time than FP. For PCFI under a uniform-missing setting, the time
for computing SPD-S increases by the number of channels. PCFI outperforms the state-of-the-art
methods with less or comparable computational cost to the other methods.

24

Published as a conference paper at ICLR 2023

A.5 NODE CLASSIFICATION ACCURACY ACCORDING TO MISSING RATE FOR EACH
SETTING

Figure 9: Average accuracy (%) for each setting (missing type, dataset).

25

Published as a conference paper at ICLR 2023

A.6 PYTORCH-STYLE PSEUDO-CODE OF PSEUDO-CONFIDENCE-BASED FEATURE
IMPUTATION (PCFI)

Algorithm 1 PyTorch-style pseudo-code of PCFI
class PCFI(torch.nn.Module):

def __init__(self, K, alpha, beta):
super(PCFI, self).__init__()
self.K = K
self.alpha = alpha
self.beta = beta

edge_index has shape [2, |E|]
mask is a boolean tensor indicating known features
with True
def propagate(self, x, edge_index, mask, mask_type):

nv, feat_dim = x.shape
Channel-wise inter-node diffusion
out = torch.zeros_like(x)
out[mask] = x[mask]
structural missing case
if mask_type == "structural":

SPDS = self.compute_SPDS(edge_index, mask, mask_type)
Wbar = self.compute_Wbar(edge_index, mask, mask_type)
for t in range(self.K):

out = torch.sparse.mm(Wbar, out)
out[mask] = x[mask]

SPDS = SPDS.repeat(feat_dim, 1)
uniform missing case
if mask_type == "uniform":

SPDS = self.compute_SPDS(edge_index, mask, \
mask_type, feat_dim)

for d in range(feat_dim):
Wbar = self.compute_Wbar(edge_index, SPDS[d])
for i in range(self.K):

out[:,d] = torch.sparse.mm(Wbar, \
out[:,d].reshape(-1,1)).reshape(-1)

out[mask[:,d],d] = x[mask[:,d],d]
Node-wise inter-channel propagation
cor = torch.corrcoef(out.T).nan_to_num().fill_diagonal_(0)
a1 = (self.alpha ** SPDS.T) * (out - torch.mean(out,\

dim=0))
a2 = torch.matmul(a1, cor)
out1 = self.beta * (1 - self.alpha ** SPDS.T) * a2
out = out + out1
return out

26

Published as a conference paper at ICLR 2023

Algorithm 2 PyTorch-style pseudo-code for SPD-S

get SPD-S of each node by computing the k-hop subgraph
around the source nodes
In this code, SPDS has shape [F, N]
def compute_SPDS(self, edge_index, feature_mask, mask_type, \

feat_dim = None):
nv = feature_mask.shape[0]
structural missing case
if mask_type == "structural":

SPDS = torch.zeros(nv, dtype = torch.int)
v_0 represents the source nodes
v_0 = torch.nonzero(feature_mask[:, 0]).view(-1)
v0_to_k = v_0
SPDS[v_0] = 0
k = 1
while True:

v_k_hop_sub = torch.geometric.utils \
.k_hop_subgraph(v_0, k, edge_index, \
num_nodes = nv)[0]

v_k represents the nodes of which SPS-S = k
v_k = torch.from_numpy(np.setdiff1d(v_k_hop_sub, \

v_0_to_k))
if len(v_k) == 0:

break
SPDS[v_k] = k
torch.cat([v_0_to_k, v_k], dim=0)
k += 1

uniform missing case
if mask_type == "uniform":

SPDS = torch.zeros(feat_dim, nv)
for d in range(feat_dim):

v_0 = torch.nonzero(feature_mask[:,d]).view(-1)
v_0_to_k = v_0
SPDS[d, v_0] = 0
k = 1
while True:

v_k_hop_sub = \
torch.geometric.utils.k_hop_subgraph(\

v_0, k, edge_index, num_nodes = nv)[0]
v_k = torch.from_numpy(np.setdiff1d \

(v_k_hop_sub, v_0_to_k))
if len(v_k) == 0:

break
SPDS[d, v_k] = k
torch.cat([v_0_to_k, v_k], dim=0)
k += 1

return SPDS

27

Published as a conference paper at ICLR 2023

Algorithm 3 PyTorch-style pseudo-code for W
(d)

def compute_Wbar(self, edge_index, SPDS):
In the propagation, row and column correspond to
destination and source, respectively.
row, col = edge_index[0], edge_index[1]
SPDS_row = SPDS[row]
SPDS_col = SPDS[col]
edge_weight = self.alpha ** (SPDS_col - SPDS_row + 1)
row-wise sum
deg_W = torch_scatter.scatter_add(edge_weight, row, \

dim_size= SPDS.shape[0])

normalize W (d) to row-stochastic W
(d)

deg_W_inv = deg_W.pow_(-1.0)
deg_W_inv.masked_fill_(deg_W_inv == float("inf"), 0)
norm_edge_weight = edge_weight * deg_W_inv[row]
Wbar = torch.sparse.FloatTensor(edge_index, \

values= norm_edge_weight)
return Wbar

28

