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ABSTRACT

While state-of-the-art language models (LMs) surpass the vast majority of hu-
mans in certain domains, their reasoning remains largely opaque, undermining
trust in their output. Furthermore, while autoregressive LMs can output explicit
reasoning, their true reasoning process is opaque, which introduces risks like de-
ception and hallucination. In this work, we introduce the Prototype Transformer
(ProtoT)—an autoregressive LM architecture based on prototypes (parameter vec-
tors), posed as an alternative to the standard self-attention-based transformers.
ProtoT works by means of two-way communication between the input sequence
and the prototypes, and we show that this leads to the prototypes automatically
capturing nameable concepts (e.g. “woman”) during training. They provide the
potential to interpret the model’s reasoning and allow for targeted edits of its be-
havior. Furthermore, by design, the prototypes create communication channels
that aggregate contextual information at different time scales, aiding interpretabil-
ity. In terms of computation scalability, ProtoT scales linearly with sequence
length vs the quadratic scalability of SOTA self-attention transformers. Compared
to baselines, ProtoT scales well with model and data size, and performs well on
text generation and downstream tasks (GLUE). ProtoT exhibits robustness to in-
put perturbations on par or better than some baselines, but differs from them by
providing interpretable pathways showing how robustness and sensitivity arises.
Reaching close to the performance of state-of-the-art architectures, ProtoT paves
the way to creating well-performing autoregressive LMs interpretable by design.

1 INTRODUCTION

Large-scale autoregressive language models have achieved strong performance across various do-
mains, with architectures like GPT-4 and LLaMA (Achiam et al., 2023; Touvron et al., 2023a)
demonstrating capabilities on benchmarks spanning mathematical reasoning, code generation, and
natural language understanding tasks. However, these models exhibit limited transparency in their
reasoning processes, creating challenges for understanding how they arrive at their outputs and po-
tentially limiting their deployment in applications where interpretability is important. For example,
it has been observed that there is a large disconnect between models’ explicit reasoning and their
internal computational processes (Greenblatt et al., 2024): while language models can generate step-
by-step explanations when prompted, research indicates that these explanations may not reflect their
actual reasoning pathways (Turpin et al., 2023). This opacity also contributes to hallucination be-
haviors, where models generate confident but factually incorrect outputs without clear indicators of
uncertainty (Zhang et al., 2025).

Current interpretability methods for language models primarily operate as post-hoc analysis tools
on architectures not designed with interpretability as a primary consideration. Approaches such as
attention visualization (Clark et al., 2019), probing techniques (Tenney et al., 2019), and causal in-
tervention methods (Meng et al., 2022) provide insights into model behavior but face limitations
imposed by the underlying self-attention architecture. More recent techniques like sparse autoen-
coders (Kissane et al., 2024) attempt to disentangle superposed features within existing architectures,
though they still operate within the constraints of standard transformer designs.

In this work, we present the Prototype Transformer (ProtoT), an alternative autoregressive language
model architecture that incorporates interpretability considerations directly into its design. ProtoT
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replaces the standard self-attention mechanism with a prototype-based approach, where learnable
parameter vectors engage in bidirectional communication with input sequences. This design choice
allows prototypes to capture interpretable concepts during training, providing more direct access to
the model’s reasoning components.

ProtoT offers several characteristics that distinguish it from standard transformer architectures. The
prototype-based design enables direct inspection and modification of learned concepts, supporting
targeted behavioral adjustments based on identifiable reasoning components. The architecture ag-
gregates contextual information across different temporal scales through prototype communication
channels, which facilitates the interpretation of both local and global reasoning patterns. Addi-
tionally, ProtoT operates with linear computational complexity relative to sequence length, versus
quadratic for the standard self-attention. The explicit prototype representations enable attribution of
predictions to the internal pathways that generated them, allowing inspection of how information is
routed. Our contributions are briefly as follows:

• We introduce ProtoT, a novel autoregressive language model architecture that replaces self-
attention with prototype-based communication. The architecture uses learnable parameter vectors
that engage in bidirectional communication with input sequences, achieving linear computational
complexity while maintaining competitive performance.

• We demonstrate that prototypes automatically learn disentangled, nameable concepts during train-
ing, across abstraction levels, enabling interpretation of model reasoning. We also show the per-
prototype time preference, and “predict and consolidate” behavior patterns. We show that targeted
behavior edits are possible for a wide range of concepts through selective prototype intervention.

• We provide extensive evaluation showing that ProtoT achieves competitive text generation qual-
ity and downstream performance, while offering superior robustness analysis. The architecture
demonstrates stability under meaning-preserving perturbations, mediated by the prototypes.

2 RELATED WORK

Interpretability in Language Models. One of the main goals when it comes to interpreting lan-
guage models is to identify which components—such as heads, layers, or neurons—are responsible
for specific behaviors (Zhang & Nanda, 2023). This is non-trivial, as attention magnitude does not
necessarily imply causal importance (Jain & Wallace, 2019). Moreover, phenomena like superposi-
tion, where multiple features are encoded in overlapping directions, make isolating concepts difficult
(Elhage et al., 2022). Consequently, this problem is often approached via causal intervention, ana-
lyzing activation differences between clean and corrupted prompts (Meng et al., 2022; Geva et al.,
2023; Wang et al., 2022). A recent promising direction involves Sparse Autoencoders (SAEs), ap-
plied not just to MLPs but also to attention outputs (Kissane et al., 2024), aiming to disentangle
superposed features into interpretable units (Rai et al., 2024).

Prototype Methods. Prototype methods seek to render decisions interpretable by relating inputs
to learned examples. In computer vision, this often involves comparing inputs to prototypical parts
for classification (Chen et al., 2019; Rymarczyk et al., 2022). Recently, ProtoViT (Ma et al., 2024)
adapted this to Vision Transformers, using prototypes as deformable parts in the final layer. In NLP,
approaches like ProtoAttend (Arik & Pfister, 2020) use attention over entire training examples for
decision-making. Other architectures, such as ProtoryNet (Hong et al., 2023) and ProSeNet (Meng
et al., 2022), introduce prototype trajectories or sparsity constraints to refine interpretability. Unlike
many of these works which place prototypes only at the final classification stage, our architecture
integrates prototype routing at every level of the hierarchy. Recent advances also include ProtoLens
for sub-sentence span extraction (Wei & Zhu, 2025) and white-box frameworks for sentiment detec-
tion (Wen & Rezapour, 2025).

Alternatives to Self-Attention. Recent work has explored replacing standard self-attention with
mechanisms using fixed sets of latent vectors. Slot Attention (Locatello et al., 2020) employs a
competitive binding mechanism (softmax over slots) to segment inputs, but relies on iterative refine-
ment steps (e.g., GRU) over static inputs. The Perceiver family (Jaegle et al., 2022; Hawthorne et al.,
2022) decouples compute from input size by projecting data into a latent space processed by a stan-
dard transformer stack. Our ProtoT mixer differs fundamentally in both interaction and state update.
Unlike Perceiver, where latents interact globally via self-attention (O(R2)), ProtoT prototypes never
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Figure 1: A single autoregressive step of the ProtoT mixer module. Prototypes P1, . . . , PR route
inputs x1, . . . , xi−1 (past-only – excluding xi) into R channels via similarity scores at the write
gate. Time-discount and time-wise mean are applied per channel. The read gate reads from each
channel via the similarity between its prototype and xi, followed by aggregation into the output yi.

interact; they serve as filters for R independent, parallel channels (O(R)). And unlike Slot Atten-
tion’s iterative refinement, ProtoT updates state autoregressively via strict past-only time-discounted
aggregation (EMA). This design creates a semantic routing bottleneck rather than a general-purpose
processing workspace, encouraging prototypes to capture nameable concepts (Sec. 5.1).

3 PROTOTYPE TRANSFORMER

The prototype transformer (ProtoT) is an autoregressive LM architecture, based on prototypes. It is
a transformer stack identical to LLaMA-3 (Grattafiori et al., 2024), apart from the mixer module:
ProtoT uses a prototype-based mixer instead of standard self-attention. Like LLaMA-3, ProtoT has
L blocks (“layers”), each consisting of a mixer and a SwiGLU (Shazeer, 2020) feed-forward (FFN)
module with the same intermediate ratio of ∼2.7 as in LLaMA-3, and skip-connections with RMS
pre-layernorm (Zhang & Sennrich, 2019) around each of the mixer module and the FFN.

Prototype mixer: This module is a self-attention alternative that uses R prototypes (trainable pa-
rameter vectors) to route the communication across the sequence through R corresponding channels
(Fig. 1). Communication in and out of the channel is mediated via a write gate (in) and read gate
(out) (Eq. 1 and 2). Each prototype is used as a filter via the write gate to aggregate (time-discounted)
information from the past, defining a communication channel, and reading back the information via
the read gate into the sequence. The prototype mixer follows the following formula applied at any
token position i, for linear maps U, V, and W, with full details below:

xi ← U
( ∑
k=1,...,R

Softmaxk
(
(W (xi) · Pk)/τr

)
k︸ ︷︷ ︸

Read Gate

PM(Pk, x1, . . . , xi−1)︸ ︷︷ ︸
Prefix Mean, channel k

)
, where: (1)

PM =
(∑
j:j<i

βi−j
k Softmaxk

(
(xj · Pk)/τw

)
k︸ ︷︷ ︸

Write Gate

V (xj)
)/ ∑

j:j<i

βi−j
k Softmaxk

(
(xj · Pk)/τw

)
k︸ ︷︷ ︸

Mass Normalization

(2)

Communication passes through an R-channel bottleneck, each channel mediated by a prototype
via the read and write gate. This bottleneck encourages the network to specialize the channels
semantically, which in turn specializes the prototypes semantically. This is likely what leads to the
prototypes capturing nameable concepts at the write gate (Sec. 5.1).

Write gate: a cross-attention-like gating mechanism between prototypes Pk and inputs xj (Eq.2),
reweighing the values (V (xj)). Unlike cross-attention, the Write Gate uses softmax over the pro-
totypes, to do channel-aligned rather than sequence-aligned gating. It writes information from the
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sequence into the R channels, and uses a learned temperature τw for added expressivity. At layers 0
and 1 we also add a local convolution at the values stream (immediately after V (xj)) – a convolution
with kernel size 5, across the 4 past tokens and the current one, with h channels corresponding to the
hidden dimension. It adds expressivity at the value stream, by capturing short-term relationships,
and we show reduced perplexity and increased utility of layer 0, as measured by increased alpha-gate
(Appendix A.7.1, Table 15). We also show kernel-size ablations in Appendix A.7.2, Table 16.

Read gate: a cross-attention-like mechanism that reads information from the R channels according
to similarity with the corresponding R prototypes Eq.2. It is identical to the write gate, except for
the linear map W (xi) and separate temperature τr, which add expressivity and allow for read/write
gate specialization. This specialization may also help with interpretability, by decoupling the read-
ing and the writing mechanisms. At layer 0 we use shared read/write routing (removing the W
linear map) and sharper τr initialization (3.0 vs 1.0) which we show (Appendix A.7.1, Table 15)
reduce perplexity and increase utility (higher alpha-gate value, defined below), likely by providing
an inductive bias that reduces noise.

Prefix mean (PM): aggregator of past information via R communication channels, each corre-
sponding to a prototype. In PM, a cumulative sum operation (Eq. 2) enforces a strict autoregressive
constraint for next-token prediction. At position i, the aggregation is only on entries from posi-
tions j < i, so the representation used for predicting token i is a function of the past context only.
In contrast, standard self-attention allows position i to attend directly to itself, providing a vertical
shortcut from the input at position i to the output at the same position. By removing this direct path,
the prefix mean encourages the write gate to base its updates on earlier positions and to anticipate
the needs of the read gate, which we empirically demonstrate in Section 5.1. A discounted prefix
gives per-channel time preference, allowing aggregation at different time scales. It is defined as
exponential moving average (EMA) (time discount) on the Prefix Mean, via βk = σ(γk) ∈ (0, 1),
parametrized by learnable γk. It can also be used to interpret the time preference of each prototype,
as in Section 5.1. Mass normalization then turns the prefix cumulative sum into a prefix mean by
dividing it by the sum of coefficients. This theoretically stabilizes the computation, and we have
observed reduces perplexity at a small computational cost (Appendix A.7.2, Table 18). We also use
low-rank projection at 1/2 of the hidden size (h) at the value stream (V (xj)), which saves up to
50% compute at the mixer module, with similar performance (Table 18). We keep the prototypes
and routing (read and write gates) in the full size h as their computational cost is only linear in h.

Alpha Gate: a ReZero-like (Bachlechner et al., 2020) scalar gate applied at the output of each Pro-
totype Mixer module before it merges with the residual stream (skip-connection). Unlike ReZero,
which uses it to improve training of extremely-deep models, we use it as a low-computational-cost
debugging tool: a low value of α at a given layer (declining rapidly during training) is a strong evi-
dence that the mixer is not contributing to the overall prediction. Due to this role of α, we initialize
it at identity (1.0) (vs ReZero’s 0.0), which also performs better (see Appendix A.7.2, Table 17).

Compute: The ProtoT computational cost scales linearly in sequence length, as visible by Eq. 1
and 2. Note the recurrence in Eq. 2: the Prefix Mean for xi depends only on the Prefix Mean for
xi−1 and on xi−1, both of which can be cached. This means that the model can generate tokens at
sequence-wise constant (O(1)) computational and memory cost.

4 EXPERIMENTAL SETUP

Baselines: We compare ProtoT to three representative mixer families while keeping the backbone
fixed: depth (6), hidden size (256), FFN ratio (2.7×), RMSNorm, dropout (0.1), and the training
recipe. We use the same tokenizer and optimizer across models and do not reuse any pre-trained
weights. To isolate mixer effects, we exclude MoE (e.g., Qwen-3) (Yang et al., 2025) and hybrid
architectures (e.g., Jamba) (Lieber et al., 2024). We compare against a LLaMA-style Transformer:
a single-expert, decoder-only self-attention Transformer following LLaMA-3/3.1 (Grattafiori et al.,
2024), matched to ProtoT in backbone hyperparameters and training setup. The only architectural
difference is the mixer (self-attention vs. prototype); Mamba (Gu & Dao, 2023): a modern state-
space model (SSM) instantiation with the same dimensionality (6 layers, hidden 256) and FFN
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configuration as ProtoT; and DeltaNet (Yang et al., 2024) (delta-rule linear transformer): a linear-
attention baseline, configured with the same width, depth, and FFN ratio as ProtoT.

Dataset: We use a subset of the FineWeb-Edu dataset (Penedo et al., 2024), a high-quality web
crawl dataset specifically curated for language model training. FineWeb-Edu consists of educa-
tional and informational web pages, providing diverse, coherent text that is well-suited for training
autoregressive language models. The full dataset contains approximately 1.3 trillion tokens (with a
less strict “score-2” filtering version containing 5.4 trillion tokens), but we use a manageable 250
million token subset for our experiments. Our sampled dataset contains 360,313 documents, with
an average document length of 694 tokens. We use a custom BPE tokenizer (Sennrich et al., 2015)
trained on the dataset with a vocabulary size of 16,000 tokens. For training, we use 338,695 doc-
uments (234.9M tokens) for the train split, 18,015 documents (12.5M tokens) for validation, and
3,603 documents (2.6M tokens) for testing. We chose this dataset over alternatives like C4 or The
Pile because of its focus on high-quality, educational content.

Hyperparameter search: We do hyperparameter search on 18k examples for 10 epochs of the
training data, with the default model sizes: hidden size h=256, layers L=6, and context ctx=256,
unless otherwise specified. We use automatic search over batch size (32, 64, 128) and learning rate
(from interval (3e-5, 3e-2)). For the search, we use Optuna with BoTorchSampler, with 15-trial
warmup and 50 total trials, averaging over 3 seeds per trial. We found that batch size of 32 works
best for all, but that the best learning rate varies across models. See Appendix A.2 for more details.

Learning rate (LR) and scheduler: We use linear warmup over 2% of training, and cosine anneal-
ing towards 10% of the peak learning rate. This is common practice in large LM training (Kalra &
Barkeshli, 2024) for two reasons: (1) warmup helps reduce divergence for large LMs (e.g., we ob-
served that LLaMA had convergence issues without warmup when we tried the large-scale setting),
and (2) cosine annealing helps with reaching higher peaks and lower lows of the LR (e.g., we found
that values more than 1.6e-3 were best, compared to 7e-4 for flat LR), and lead to significantly lower
perplexity (2-6 points less, depending on the model, in the default settings). We train all our mod-
els with AdamW (Loshchilov & Hutter, 2017), following standard practice in language modeling.
Compared to SGD, AdamW is more robust to hyperparameter choice (Zhao et al., 2024).

Dropout: For all models, we use dropout (with probability 0.1) after the token embeddings, at
the residual (block output) between blocks, and inside the FFN, because we find that it reduces
perplexity for all models (Appendix A.7.2, Table 20). This is likely because it prevents overfitting in
the multi-epoch training regime (10 epochs) that we use. For LLaMA, we additionally put dropout
inside the self-attention (HuggingFace-supported option), which further decreases perplexity.

Attention heads and prototypes (R): Similar to (Press & Wolf, 2017), we have found that sharing
the weights between embeddings and LM head reduces perplexity at the hyperparameter search
stage, for all models. This is likely because it provides a good inductive bias aligning the token
embeddings between input and final projection. We keep this choice at large-scale experiments
as well, for simplicity. We also select attention heads from {2, 4, 8}, but at both small-scale and
large-scale runs we have found that 4 works best for all models with attention heads (LLaMA and
DeltaNet), which is what we use. For ProtoT’s prototypes (R), we have found diminishing returns
in terms of perplexity improvements beyond R=32 (Appendix A.7.2, Table 19), while computation
scales linearly with R. Therefore, we use R=32 for all runs.

5 EXPERIMENTS

Large-scale training: In Table 1, we compare ProtoT to the 3 baselines at large-scale training (first
vs. last column). We study the effect of simultaneously scaling the hidden size 2x, the layers 2x, the
context size by 2x, and the training data ∼19x, versus the default training settings. The results show
that ProtoT scales well to the large model/data scenario. We show that ProtoT maintains relative
performance to LLaMA, or even improves it (15.0 → 14.3% worse) with scale. Furthermore,
ProtoT outperforms the DeltaNet linear-attention baseline (29.5 vs. 31.5 perplexity, respectively).
However, a large gap remains versus LLaMA and the Mamba state-space model (29.5 vs. 25.8
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Table 1: Long-context scalability: Cols. 1–4: scaling from the default 256 up to 2048; Cols. 1 & 5:
Default (h=256, L=6, ctx=256, Ex=18k) vs. Large-scale training (h=512, L=12, ctx=512, Ex=339k).
Test perplexity (lower is better). Best results in each section are in bold.

Model Default 512 1024 2048 Large-scale
LLaMA 78.7 70.4 65.3 63.6 25.8
Mamba 86.0 78.0 70.5 69.5 26.5
DeltaNet 90.4 76.3 70.6 68.9 31.5
ProtoT 90.5 84.8 80.5 81.9 29.5
ProtoT (h=512) 97.2 82.0 73.7 73.0 –
ProtoT (L=12) 109.6 79.8 74.6 76.7 –
ProtoT (R=64) 94.0 83.2 79.1 80.5 –

and vs. 26.5, respectively). While we did our best to optimise ProtoT, this is the first iteration of the
model, whereas established LMs like LLaMA have had multiple (Touvron et al., 2023a;b; Grattafiori
et al., 2024). We expect with community feedback and further refinement to shrink this gap.

Long-context scalability: The results in Table 1 (columns 1-4) show that ProtoT scales poorly with
context length (if other model dimensions are fixed), which suggests that ProtoT is running into a
bottleneck. This is likely because the cross-sequence communications pass through the prefix mean
(Fig. 1 and Eq. 1), over R channels with h hidden dimensions each, which can be restrictive. We
further investigate this issue in the final 3 rows of Table 1, where we compare possible culprits:
the hidden size h, the number of prototypes R, and the layers L (which can also play a role). The
results show that the hidden dimension is the most restrictive as increasing it is the only one of the
3 that keeps improving with context size beyond 1024. Our model is most affected by this likely
because of our choice to project down to h/2 at the values (V (xj) in Eq.1) to save compute, further
exacerbating this bottleneck. In practice, this is less of an issue because, in more realistic settings
(e.g. Large-Scale Training), the larger capacity of the model would allow for larger context lengths.

Text-Generation Performance: To evaluate quality of outputs, we measure open-ended text-
generation ability using an LLM-as-a-judge protocol, following the Chatbot-Arena style pairwise
comparison setup. For each prompt, two model outputs are evaluated by a frozen judge model
under a fixed rubric, providing win/tie statistics that are converted into Elo scores. As shown in
Appendix B, ProtoT achieves competitive generation quality, outperforming DeltaNet while landing
between LLaMA and Mamba in Elo ranking. See Appendix B for text generation samples from
each model.

Table 2: GLUE downstream fine-tuning results (all metrics reported as percentages). For COLA we
report Matthews correlation; for SST-2 accuracy; for MRPC F1; for STS-B Pearson correlation; for
RTE, WNLI, QNLI, MNLI and MNLI-MM accuracy; for QQP F1. GLUE reports the unweighted
average of the nine task-specific scores. Results are averaged over 3 seeds. Best results are in bold.

Model COLA SST-2 MRPC STS-B RTE WNLI QQP QNLI MNLI MNLI-MM GLUE
LLaMA 31.5 90.8 82.7 78.3 57.8 65.1 68.0 86.0 79.8 79.6 71.6
Mamba 31.1 88.6 80.3 72.8 54.4 65.1 64.8 82.4 74.7 74.7 68.6
DeltaNet 13.8 85.8 80.1 67.0 50.9 65.1 62.6 80.1 71.1 71.8 64.5

ProtoT 27.7 90.0 80.1 66.2 53.9 64.6 64.8 81.8 75.3 74.8 67.6

Downstream performance: To comprehensively evaluate the general-purpose language under-
standing of ProtoT vs baselines, we fine-tune on the GLUE benchmark (Wang et al., 2018) consist-
ing of 9 English NLU tasks spanning sentence- and sentence-pair classification as well as semantic
textual similarity (more details in Appendix A.4).

As shown in Table 2, overall, LLaMA achieves the best overall performance, but ProtoT remains
highly competitive and often matches or outperforms the dense baselines. In particular, ProtoT
consistently attains the second-best scores on MNLI and MNLI-MM, indicating strong cross-domain
robustness for large-scale natural language inference. On mainstream single-sentence and sentence-
pair classification tasks such as SST-2, QQP and QNLI, ProtoT performs close to LLaMA and
on par with Mamba while clearly outperforming DeltaNet, showing that its structured prototype
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representations do not sacrifice accuracy on high-resource benchmarks. For low-resource tasks such
as RTE and CoLA, ProtoT delivers performance comparable to dense models, suggesting that its
inductive bias can maintain stable accuracy even when training data is limited. Taken together,
these test-set results confirm that ProtoT preserves competitive GLUE performance while offering
structural advantages, especially for robust inference under distribution shifts.

Throughput Benchmarks:

We evaluate both training and inference throughput. For training, we use identical conditions across
models (same data pipeline, optimizer, BF16 precision, sequence length 256, batch sizes 32 and
128). ProtoT achieves 25.2 and 7.6 it/s (batch 32/128), outperforming Mamba (11.9 and 3.2 it/s)
and DeltaNet (3.5 and 1.8 it/s) while lagging behind the optimized LLaMA attention baseline (55.1
and 23.6 it/s). For autoregressive inference with batch size 1 on a single H100 80GB GPU, LLaMA
attains the highest throughput at short context lengths, whereas ProtoT scales more favorably with
context and surpasses LLaMA at 32k tokens and beyond; DeltaNet maintains the highest throughput
at long context lengths. See Appendix A.6 for detailed throughput benchmarks and FLOP analyses.

5.1 INTERPRETABILITY

Prototypes act as representational slots: contextual information is aggregated into R prototype chan-
nels via the write gate and then read back through the read gate (Fig. 1). This structure allows
features to be stored and reused within each sequence through the prototype-specific prefix means,
enabling association of prototypes with identifiable concepts. Each prototype also has an associ-
ated decay parameter βk, applied in the prefix mean (Eq. 2) to discount past activations. Smaller
βk values produce faster decay, while larger values allow information to persist longer. For inter-
pretability, we report the derived half-life t

(k)
1/2 = − ln 2

ln(βk)
, specifying the expected number of steps

for the contribution of prototypes to halve and providing a direct way to analyze specialization in
short- or long-term dependencies. We analyze read–write interactions to understand how the model
integrates and updates contextual information through prototype channels during sequence genera-
tion.

Experiments: To investigate interpretability properties, we design four experiments with ProtoT
(large-scale model from Table 1). We compute write routing activations across sequences from the
FineWeb validation set for each prototype, aggregate them at the sequence level, and rank sequences
by total activation strength. This identifies sequences that most strongly activate each prototype and
allows us to visually inspect learned concepts and the relation between temporal locality and βk

parameter. We also use collected activations to compute widely adopted metrics (L1 sparsity, Gini
Coefficient, Entropy, Mutual Information).

We analyze write and read phases during sequence generation. For a subset of prototypes, we
select the most activating sequences and compute write and read routing activations for each token
along the same prototype. This enables inspection of the internal dynamics of ProtoT, showing how
sequence level information is aggregated and maintained during processing.

To quantitatively assess the presence of disentangled and nameable concepts and the impact of poly-
semanticity, we introduce an extensive analysis and labeling method inspired by auto-interpretability
score metrics (Bricken et al. (2023); Paulo et al. (2024)). For each prototype, we collect its ten most
activating sequences and extract, within each sequence, the tokens with the highest activation. This
compact summary of prototype usage is submitted to an LLM-based evaluator (GPT-5.1), which is
prompted to produce the following:

• Theme: the main recurrent theme identified in the most activating sentences.
• Disentanglement score: score between 1 and 10 that assesses how well the main theme is

disentangled from other themes.
• Main topic coverage: count between 1 and 10 that assesses how many of the most activat-

ing sentences effectively contain the main theme.
• Number of themes: count between 1 and 10 that assesses how many uncorrelated themes

are present in the most activating sentences (if the themes are at least 10, assign 10).
• Explanation: natural language explanation that describes the labeling and scoring process.
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In order to compare the potential for interpretability in ProtoT and Transformer models, we collect
activations, compute the same metrics and perform the LLM-aided evaluation experiment also on
the trained LLaMA model from Table 1. We present statistics collected with the LLM-aided inter-
pretability experiment in Figure 2 and an example of prototype visualization in Figure 3. The exact
prompt used is in Appendix A.10. We show additional results in Appendix A.9 for LLM-aided
interpretability experiments with LLaMA (Figure 24) and with multiple model configurations of
ProtoT (Figures 19, 20, 21, 22, 23). Interpretability metrics for LLaMA and ProtoT are in Appendix
A.8 in Figures 8 and 9.

We probe the functional role of individual prototypes through a targeted intervention experiment.
Based on write-gate activations on the FineWeb validation set, we identified three functionally dis-
tinct prototypes from Layer 9: L9 P7, which encodes a ‘female’ concept; L9 P18, which partially
encodes a ‘male’ concept; and L9 P2, a gender-neutral control. Our intervention consists of disrupt-
ing each of these prototypes via parameter re-initialization and measuring the subsequent change in
the conditional probability of the target words ‘women’ and ‘girls’. We illustrate these prototypes in
Figures 4, 5, and 6. Additional details on the construction of test sentences are in Appendix A.3.1.

Interpreting prototypes at the write gate: Human and LLM-aided evaluation reveal that proto-
types capture disentangled concepts across varying levels of semantic abstraction, which naturally
emerge as a result of training and encode interpretable patterns. For example, we identify concepts
like entity names, functional words, verbs, as well as composite dates, illnesses, or school-related
narratives. We also find that these concepts generally reflect the hierarchical organization of the
model, with early layers tending to capture more superficial patterns and deeper layers representing
composite and abstract semantics. We observe that polysemanticity is present in a few prototypes
but remains limited overall and in fact, LLM aided evaluation reveals high disentanglement and a
low number of uncorrelated themes for the vast majority of prototypes. Furthermore, we identify a
correlation between half-life values and encoded concepts, where lower half-life values tend to cap-
ture local elements (such as stop words, or punctuation). Finally, we observe that ProtoT performs
significantly better than LLaMA on all LLM-aided evaluation scores, with higher disentanglement
and coverage and a lower number of uncorrelated topics. These results show that gate-mediated
communication at the write gate forms prototype hubs that can largely be treated as separate, dis-
entangled concept hubs, highlighting their potential for interpretability. A study on the correlation
between half-life values and locality can be found in Appendix A.8, Table 21.

Results of the write-read alternation pattern: We observe a consistent temporal pattern in read
and write activations, with read activity peaking one step before write activity. For example, in the
results shown in Figure 3 (right), for the token ‘protection’, the read gate activates prototype 4 at the
preceding token ‘fall’, followed by write activation on ‘protection’. This pattern is consistently seen
across the most strongly activating sequences for each prototype and suggests that read and write
gates may develop coordinated interactions. This coordination is consistent with a predict-and-
consolidate behavior, where the read gate appears to anticipate which prototype may be relevant
for the upcoming tokens, and the write gate subsequently updates the memory based on the current
token.

Figure 2: histograms of the numerical scores provided by LLM aided interpretability

Results of the prototype intervention: Our intervention experiments demonstrate that proto-
types function as specific and interacting semantic hubs. By employing gate masking (ablating the
write/read channels) alongside random re-initialization, we isolated precise mechanistic roles. Dis-
rupting the ‘female’ prototype L9 P7 significantly decreased the probability of related words (e.g.,
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−17.80% for ‘women’ in seed sentence), highlighting its functional importance for this concept.
The specificity of this effect was validated by the negligible impact of disrupting the control pro-
totype, L9 P2, while disrupting the ‘male’ prototype L9 P18 consistently increased the probability
of female-coded words (e.g., +11.50% for ‘women’ in the seed sentence). These findings indicate
that the model learns functionally distinct prototypes and uses them interactively to refine its predic-
tions. This interactive behavior extends beyond gender concepts: we demonstrate similar necessity
for geographic entities (e.g., ‘New Zealand’) and abstract states (e.g., ‘Mental Health’). Further-
more, cross-seeds experiments on ‘COVID’ confirm that the emergence of these concept-specific
slots is a robust architectural property. Comprehensive results are detailed in the Appendix A.3.

Figure 3: Left: Sequences most strongly activating prototype 11 at layer 0, which encodes the con-
cept of narrative in a scholastic context. Right: Write-gate, read-gate, and memory curves for a
sequence that strongly activates prototype 23 at layer 4. Read-gate peaks precede write-gate activa-
tions, spiking on the token immediately before those that trigger write-gate routing.

5.2 ROBUSTNESS

We analyze robustness of ProtoT vs baselines (the large-scale models from Table 1) from three com-
plementary perspectives: (1) robustness to meaning-preserving noise perturbations, (2) robustness
to prototype clamping perturbations, and (3) behavior to interventions that alter semantics. This
unified view clarifies both stability under benign variations and sensitivity to intended changes.

Noise perturbations: We first consider black-box, surface-level perturbations that preserve mean-
ing (e.g., synonyms, typos, contractions). The perturbation benchmark (Appendix A.5) contains
3,500 semantically equivalent sentence pairs across seven categories. Robustness is quantified by
the Jensen–Shannon divergence JS(p(·|x), p(·|x′)) between next-token distributions for an origi-
nal input x and its perturbed variant x′. Lower values indicate greater stability. Table 3 shows
that Mamba has the overall lowest JS, hence the strongest stability. ProtoT, however, consistently
outperforms LLaMA on synonyms, typos, spelling, and morphology. This aligns with ProtoT’s de-
sign: prototypes aggregate contextual information into nameable concepts, yielding stability under
lexical variation. While ProtoT lags LLaMA on punctuation (where precise attention alignment is
beneficial), it reliably surpasses DeltaNet and is overall competitive with strong baselines.

Table 3: Slice-level robustness measured by Jensen–Shannon divergence (lower is better).
Abbreviations: abbr.=abbreviation, contr.=contraction, morph.=morphology, punct.=punctuation,
spell.=spelling, syn.=synonym, typo=typos. Best per column in bold.

Model abbr. contr. morph. punct. spell. syn. typo
DeltaNet 1.0657 0.8310 0.6671 0.5804 0.3547 0.6363 0.6257
LLaMA 0.3325 0.0449 0.2267 0.1740 0.0634 0.1450 0.2269
Mamba 0.1441 0.0104 0.0476 0.4428 0.0054 0.0130 0.0761
ProtoAttn 0.4166 0.0823 0.0498 0.3982 0.0260 0.1132 0.2074

Prototype clamping: To test whether robustness is mediated by prototype routing, we com-
pute Prototype-Mediated Robustness (PMR). For a pair (x, x′), let JSbase = JS(p(·|x), p(·|x′)).
We then clamp the prototype routing weights from x onto x′ and recompute JSclamped =
JS(p(·|x), pclamped(·|x′)). We define PMR = (JSbase − JSclamped)/JSbase. A positive PMR

9
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indicates that prototypes mediate robustness, while negative values suggest residual pathways dom-
inate. Table 4 shows that while the mean PMR is sometimes slightly negative, for 5 out of 7 slices
the positive fraction PMR>0 is around 0.5–0.6 and JSclamped < JSbase. This shows that proto-
types overall contribute to robustness, providing interpretable routing pathways rather than opaque
head-level aggregation.

Table 4: Prototype-Mediated Robustness (PMR). Mean and std of PMR, fraction of positive cases,
and average JSDs. Best per column in bold.

Slice PMRmean PMRstd PMR> 0 JSbase JSclamped n
abbreviation -0.093 0.367 0.596 0.417 0.415 500
contraction -0.027 0.104 0.330 0.082 0.083 500
morphology -0.034 0.176 0.474 0.050 0.051 500
punctuation -0.000 0.373 0.554 0.398 0.322 500
spelling -0.033 0.225 0.610 0.026 0.025 500
synonym 0.013 0.075 0.606 0.113 0.109 500
typo 0.001 0.279 0.533 0.208 0.186 500

Intervention behavior: Finally, we study sensitivity under interventions that alter semantics: gen-
der, negation, and number tags. Unlike surface perturbations, these flips should change predictions.
We measure JS, top-k overlap (Ov), Spearman correlation (Sp), and top-1 invariance (T1). Higher
JS and lower Ov/Sp/T1 indicate greater sensitivity to the intervention. Table 5 shows that while
DeltaNet attains the highest raw JS, ProtoT consistently yields lower Ov, Sp, and T1 compared to
LLaMA and Mamba. This indicates that ProtoT adapts more reliably under meaning-altering inter-
ventions, reflecting appropriate semantic sensitivity through prototype routing. LLaMA and Mamba
often remain insensitive to such tags.

Table 5: Intervention robustness on gender (gen), negation (neg), and number (num). Metrics: JS
(higher better), Ov/Sp/T1 (lower better). Best values in bold.

Model JS (gen / neg / num) Ov (gen / neg / num) Sp (gen / neg / num) T1 (gen / neg / num)
DeltaNet 0.054 / 0.173 / 0.282 0.754 / 0.540 / 0.474 0.610 / 0.176 / 0.033 0.616 / 0.388 / 0.330
LLaMA 0.004 / 0.028 / 0.022 0.946 / 0.875 / 0.843 0.966 / 0.815 / 0.824 0.890 / 0.770 / 0.930
Mamba 0.003 / 0.006 / 0.007 0.936 / 0.935 / 0.907 0.949 / 0.910 / 0.907 0.884 / 0.992 / 0.948
ProtoT 0.037 / 0.081 / 0.083 0.709 / 0.774 / 0.657 0.429 / 0.536 / 0.441 0.690 / 0.806 / 0.806

In conclusion, noise perturbation results establish that ProtoT is robust to lexical variation. PMR
results show that prototypes actively mediate robustness, exposing interpretable mechanisms. Inter-
vention behavior confirms that ProtoT is more sensitive to meaning-altering changes than Mamba or
LLaMA for example. Together, these findings show that ProtoT not only matches or surpasses base-
lines in robustness but also provides transparent pathways for analyzing where robustness arises.

6 CONCLUSION

We have introduced the Prototype Transformer (ProtoT), an alternative autoregressive language
model architecture that replaces standard self-attention mechanisms with prototype-based mixer to
enhance model interpretability. Through bidirectional communication between learnable prototype
vectors and input sequences, ProtoT demonstrates that architectural design choices can support inter-
pretability with only small compromise in performance. It exhibits strong robustness, better text gen-
eration than self-attention, while downstream performance (GLUE) is on par with linear-compute
baselines. Furthermore, prototypes automatically learn coherent, nameable concepts during training.
The architecture also provides practical advantages through linear computational complexity and en-
ables strong attribution of predictions to specific conceptual components and targeted editability.

Future work will further explore the scope and boundaries of this approach, including broader eval-
uation across diverse tasks and model scales. In summary, our results show that incorporating inter-
pretability considerations into architectural design may be compatible with maintaining competitive
performance. ProtoT contributes to ongoing research toward developing LMs that balance capability
with transparency for applications where understanding and correcting model reasoning is essential.
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7 REPRODUCIBILITY STATEMENT

We provide full details of the model architecture, training setup, and evaluation
protocols in the main paper and appendix. The perturbation benchmark dataset
(perturbation benchmark.jsonl), along with its generation and filtering scripts,
is included in the supplementary material and will be released publicly upon accep-
tance. In addition, we introduce a manually constructed intervention benchmark dataset
(intervention benchmark.jsonl), which tests semantic interventions on gender, negation,
and number. Since the dataset was curated directly rather than generated by scripts, we will
release it in full to ensure exact reproducibility of the intervention robustness experiments. We also
include the interactive html (prototype visualization word level.html). All code to
reproduce our experiments will likewise be made available upon acceptance.
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A APPENDIX

A.1 AI USAGE

We have used LLMs for proofreading the paper and to polish writing, for retrieval and discovery
of related work, and for low-level coding help, e.g. to help us produce the prototype interpretability
html. We have checked all AI output, and have verified that the resulting code is correct and works
as expected.

A.2 ADDITIONAL DETAILS ON EXPERIMENT SETUP FOR LONG-CONTEXT SCALABILITY
AND LARGE-SCALE TRAINING

Batch size: We have found that batch size of 32 works best for training among 32, 64, 128, for
all models. Lower batch size values were not considered to preserve parallelisability and reduce
number of training steps. We keep this batch size (32) in larger experiments as well, for simplicity,
and only select the learning rate from a handful of scaling options. Furthermore, smaller batch sizes
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generalize better than large batch sizes even with large-scale data (Masters & Luschi, 2018); large
batch sizes are mainly used for hardware utilization and training speed-up as they require fewer steps
to finish training (Ying et al., 2018).

Learning rate: The best learning rates found via the automatic hyperparameter search for the
default model sizes are: LLaMA: 1.6e-3, Mamba: 3.8e-3, DeltaNet: 6.8e-3, and ProtoT: 2.0e-3.

For the long-context scalability experiment, we have tried increasing the learning rate accordingly
(by square root of context size ratio), as per AdamW scaling laws (Li et al., 2024), because extended
context is computationally-similar to a larger batch size. However, we have found that scaling the
learning rate helps only for DeltaNet and only in the large-scale model/data setting. In the results,
we report only the best value from scaled vs non-scaled LR for all models.

For the large-scale training experiment, we ran each model with the best hyp-s from the hyp search,
and with scaled version thereof. We observed instability with Mamba, so we reduced the LR until
it reached stability (from 3.8e-3 down to 2.3e-3). For all other models, we report results with the
best-found learning rates (above).

A.3 PROTOTYPE INTERVENTION EXPERIMENTS

To move beyond correlational observations, we designed an intervention experiment to probe the
functional role of individual prototypes within the model’s predictive process. This methodology
involves systematically manipulating a single prototype by either re-initializing it with random noise
or zeroing-out the output of the write/read gate corresponding to the prototype, which is equivalent
to zeroing-out/ablating the entire communication channel corresponding to it. We then measure the
resulting impact on the model’s output probabilities for a targeted linguistic task. By quantifying
this change, we can assess the prototype’s influence and determine its functional importance for a
specific prediction.

A.3.1 IDENTIFYING AND TARGETING CONCEPT-SPECIFIC PROTOTYPES

To identify prototypes that appear to encode distinct, human-understandable concepts, we ana-
lyze the top-activating sentences for each prototype from the visualization introduced in Sec. 5.1.
Based on this analysis, we selected three prototypes from Layer 9 for our study. The prototype L9
P7(Fig. 4), which consistently activates on sentences containing words such as ‘women’ and ‘girls’,
we hypothesize that L9 P7 is a key causal component in the model’s representation of the ’female’
concept. Similarly, we identified prototype L9 P18(Fig. 5) as a representation for the ’male’ con-
cept, as it shows high activation for words like ‘man’ and ‘boy’. Finally, prototype L9 P2(Fig. 6)
was selected as a control, as it did not exhibit a clear, gender-coded semantic preference.
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Figure 4: Visualization for prototype L9 P7
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Figure 5: Visualization for prototype L9 P18
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Figure 6: Visualization for the control prototype L9 P2

Test Case Construction. To create a controlled and relevant test set, we began with a seed sen-
tence identified from our initial visualization analysis. This sentence was the top-ranked example
from the FineWeb test set that maximally activated the ‘write‘ gate of our primary target, prototype
L9 P7. To expand our test set while maintaining semantic consistency, we then prompted a large
language model (Gemini 2.5 Pro) to generate six additional sentences thematically similar to the
seed sentence, each required to contain the keywords ‘women‘ and ‘girls‘.

The resulting corpus of seven sentences used in our experiments is as follows:

• “did you know that there is a government strategy for women and girls in sports and active
recreation to address the inequalities of girls’ and women’s” (seed sentence from FineWeb)

• “Many organizations are working on programs that focus on empowering women and girls
to participate equally in science and technology.”

• “Did you know that several global initiatives aim to protect the rights of women and girls
from violence and discrimination?”

• “Education policies are increasingly emphasizing equal opportunities for women and girls
to excel in leadership roles.”

• “Access to healthcare remains a critical issue, and governments are creating strategies to
improve services for women and girls.”
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• “International campaigns highlight how climate change disproportionately affects women
and girls in vulnerable communities.”

• “Did you know that mentorship networks are being created to support women and girls in
pursuing careers in engineering and mathematics?”

From this corpus, we defined our test cases. Each case consists of a context (the sentence preceding
a target word) and a completion token (the target word itself). For this study, we focused on the
probability of the target completions ‘women’ and ‘girls’.

Results: After establishing a baseline probability for each test case using the unmodified model,
we create a copy of the model for each intervention. The intervention method used is Disruption,
where the parameter vector of the target prototype (L9 P7, L9 P18, or L9 P2) is re-initialized with
random noise, scaled according to the model’s original initialization scheme. This procedure erases
the prototype’s learned knowledge while preserving the overall model architecture. We then measure
the post-intervention probability of the completion token.

The results of our intervention experiments are summarized in Table 6. To focus the analysis on
contexts where the target word is considered a plausible completion by the model, we excluded test
cases where the baseline probability of the target completion was below 1%.

Table 6: Comprehensive intervention results. We report the relative change in target probability (%)
under three conditions: Rnd (Random Re-initialization), Wr (Write Gate Mask), and Rd (Read Gate
Mask). L9 P7 is the target ’female’ prototype; L9 P18 is the ’male’ prototype, and L9 P2 serve as
control.

L9 P7 (’female’) L9 P18 (’male’) L9 P2 (Control)

Context (Truncated) Base(%) Rnd Wr Rd Rnd Wr Rd Rnd Wr Rd

Target: ‘women’
...inequalities of... 3.21 -17.80 -16.60 +7.57 +11.50 +16.95 +12.71 +0.74 +2.30 -0.61
...empowering... 4.24 -3.00 +1.43 -3.06 -0.13 +7.09 -0.18 -0.17 +0.35 -0.33
...protect rights of... 13.54 +1.37 -2.29 +1.56 +1.43 -1.03 +1.64 +0.09 -0.22 +0.38
...equal opps for... 10.14 -0.67 +3.45 -0.76 -0.31 +2.20 -0.31 -0.75 +0.49 -1.08
...climate affects... 11.87 +1.81 -1.65 +1.86 +0.12 -2.61 +0.22 +0.34 -0.32 +0.58

Target: ‘girls’
...inequalities of... 2.80 -10.62 -10.67 +5.49 +0.50 -1.57 +0.19 +0.03 -0.46 +0.03
...empowering... 68.55 +0.11 +0.39 +0.23 +0.28 +0.79 +0.39 -0.28 +0.02 -0.26
...protect rights of... 78.63 -0.45 -0.41 +0.76 +0.64 +0.70 +0.64 -0.04 -0.03 -0.13
...equal opps for... 60.49 -0.17 +0.01 +0.58 +0.56 +0.84 +0.65 -0.19 +0.02 -0.27
...improve services... 64.33 -1.56 -1.43 +0.35 +0.62 +0.94 +0.72 -0.15 +0.05 -0.19
...climate affects... 68.66 -1.01 -0.95 +0.72 +1.39 +1.50 +1.52 -0.10 -0.05 -0.21
...support women in... 38.32 -3.89 -3.51 +1.68 +2.39 +4.15 +2.64 -0.55 -0.11 -1.10

For prototype re-initialization, our results reveal a clear causal link between prototype L9 P7 and
the model’s representation of female-coded concepts. Disrupting this ’female’ prototype signifi-
cantly decreased the probability of target words like ‘women’ (−17.80%) and ‘girls’ (−10.62%),
particularly in less constrained contexts. This effect, however, diminished in test cases where the
baseline probability was already very high (e.g., > 60%), suggesting that highly predictable com-
pletions are more robust and less reliant on any single prototype. The specificity of this function was
confirmed by a control experiment where disrupting an unrelated prototype, L9 P2, yielded only
negligible changes, proving our findings are not artifacts of random model perturbations. Further-
more, the interventions uncovered a more sophisticated dynamic: disrupting the ’male’ prototype,
L9 P18, consistently increased the probability of female-coded words. This suggests an inhibitory
or competitive relationship, where the model refines its predictions by balancing between oppos-
ing semantic concepts. Taken together, these results demonstrate that the model utilizes specific,
functionally distinct, and interacting prototypes to represent and manipulate complex concepts like
gender.

For the gate-specific interventions, our results demonstrate that zeroing out the Write or Read gates
provides a more rigorous measure of causal influence. By acting as a deterministic ablation rather

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

than a stochastic disruption, Write Gate masking revealed a significantly sharper functional con-
trast between the opposing gender concepts. As shown in Table 6, the divergence between the
inhibitory effect of the ’male’ prototype (L9 P18) and the causal necessity of the ’female’ proto-
type (L9 P7) was markedly amplified under the masking condition. Specifically, in contexts such
as “...inequalities of...”, the gap between the probability surge caused by masking the ’male’ proto-
type (+16.95%) and the drop caused by masking the ’female’ prototype (-16.60%) was substantially
wider (∆ ≈ 33.6%) compared to the spread observed under random disruption (∆ ≈ 29.3%).
These findings suggest that strict channel ablation effectively isolates the distinct semantic mech-
anisms (whether competitive or constructive) that prototypes engage in, with the Write Gate often
serving as the primary causal bottleneck for concept storage.

A.3.2 ROBUSTNESS OF CONCEPT-SPECIFIC PROTOTYPES EMERGENCE ACROSS RANDOM
SEEDS

To ensure that the localization of semantic concepts is a robust property of the architecture rather
than an artifact of a specific initialization, we extended our analysis by training two additional mod-
els with different random seeds. We repeated the visualization process described in Sec. 5.1 for these
new runs to observe if similar semantic clusters emerged. We focus on the concept of ’COVID-19’
as a representative case study. In all three models (the original and two replicates), we successfully
identified a distinct prototype that was maximally activated by terms related to the pandemic.

To validate the functional consistency of these re-emerged prototypes, we conducted intervention
experiments targeting the prediction of the token ‘COVID’ in relevant contexts. For each model, we
disrupted the identified COVID-specific prototype via random re-initialization, write gate masking
and read gate masking. We followed the same workflow as in Sec. A.3.1. The test corpus for the
COVID-specific prototype consisted of the following sentences:

• “covid - 19 lambda variant lambda variant cases of covid - 19 are emerging in the us.
while nowhere near”

• “The World Health Organization declared the outbreak of COVID-19 a pandemic in March
2020.”

• “Researchers identified the Alpha, Beta, Gamma, and Delta strains as variants of concern
for COVID-19.”

• “The Pfizer-BioNTech and Moderna vaccines use mRNA technology to protect against the
COVID-19 virus.”

• “Anosmia, the sudden loss of smell and taste, was identified as a specific symptom of
COVID-19 infection.”

• “To curb the spread, the government mandated a 14-day quarantine for anyone testing
positive for COVID-19.”

• “Hospitals faced a critical shortage of ventilators during the initial surge of severe COVID-
19 cases.”

• “The FDA granted emergency use authorization for Paxlovid, an oral antiviral pill for
treating COVID-19.”

• “Scientists continue to debate the zoonotic origins of COVID-19 and its potential transmis-
sion from bats.”

• “Despite strict border controls, the Omicron variant of COVID-19 managed to spread
rapidly across the globe.”

• “Long-haulers are patients who suffer from debilitating symptoms months after recovering
from acute COVID-19.”

• “Public health officials urged the population to wear N95 masks to prevent the airborne
transmission of COVID-19.”

• “The CDC updated its guidelines regarding the isolation period for asymptomatic cases of
COVID-19.”

• “Herd immunity against COVID-19 became difficult to achieve due to the emergence of
new escape variants.”
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• “Schools implemented social distancing and improved ventilation to reduce the risk of
COVID-19 transmission in classrooms.”

• “The economic fallout from the COVID-19 pandemic led to supply chain disruptions and
rising inflation.”

• “A negative PCR test result for COVID-19 was required for all passengers boarding inter-
national flights.”

• “Studies suggest that previous infection provides some level of natural immunity against
reinfection with COVID-19.”

• “The global death toll attributed to COVID-19 has highlighted the vulnerabilities in health-
care systems worldwide.”

• “Contact tracing apps were deployed to alert individuals who had been exposed to a con-
firmed case of COVID-19.”

• “Rehabilitation programs are being established to help patients recover from the respira-
tory damage caused by severe COVID-19.”

Table 7: Cross-seed consistency of the ’COVID’ prototype. We compare the impact of interventions
across three different model initializations. Cells with ‘-’ indicate that the baseline probability was
below the 1% threshold for reliability. All values represent probabilities or probability changes (in
percentage points).

Original Model (L1 P14) Seed 124 (L7 P29) Seed 325 (L6 P31)

Context (Truncated) Base Rnd Wr Rd Base Rnd Wr Rd Base Rnd Wr Rd

covid - 19 lambda variant... 12.4 +0.3 +0.5 -0.0 48.7 -8.6 -8.4 +0.1 27.4 +4.6 +6.3 -5.7
The World Health Organization... 6.4 -1.5 -1.7 +0.2 16.2 -0.4 +0.1 -0.1 9.7 +12.6 +13.0 +13.1
The Pfizer-BioNTech and Moderna... 0.6 - - - 0.9 - - - 1.4 +0.4 -0.4 +0.1
To curb the spread,... 10.4 -0.1 -0.6 +0.0 13.3 -0.9 -0.9 +0.4 17.3 -0.5 +0.3 -0.4
Hospitals faced a critical... 0.4 - - - 1.4 +1.7 +2.0 -0.1 2.4 +23.3 +27.3 +22.1
The FDA granted emergency... 0.7 - - - 3.4 +0.8 +0.8 -0.1 1.1 +9.3 +5.9 -3.8
Despite strict border controls,... 0.7 - - - 2.2 -3.7 -3.6 +0.0 2.4 +2.8 +2.6 +2.2
Public health officials urged... 6.0 +0.2 -0.2 -0.1 3.3 +0.5 +0.5 -0.0 12.7 -2.7 -8.1 -2.9
The CDC updated its... 2.5 -0.3 -0.1 +0.1 3.4 -0.9 -0.5 +0.1 3.5 +3.4 -10.8 +5.7
Herd immunity against COVID... 7.9 +0.2 +0.4 +0.0 5.4 -0.1 +0.0 +0.0 6.5 +1.4 -1.8 +1.6
Schools implemented social... 1.8 -0.4 -0.4 +0.1 2.3 +0.5 +0.9 -0.0 4.0 +1.2 -0.9 +1.3
The economic fallout from... 2.4 +2.0 +2.3 -0.2 2.0 +0.2 -0.0 -0.0 1.5 -4.9 +3.1 -5.1
Studies suggest that previous... 1.3 +0.8 +0.9 -0.1 1.0 -0.1 +0.2 +0.1 2.5 +0.0 -2.9 +0.3
The global death toll... 2.7 +0.3 +0.3 +0.0 2.9 +0.1 -0.0 +0.0 1.6 -6.5 -13.4 -6.8
Contact tracing apps were... 2.3 +0.4 +0.4 -0.1 4.0 -0.2 +0.2 +0.1 5.1 +0.3 -0.3 +1.6
Rehabilitation programs are... 0.2 - - - 0.9 - - - 2.9 +3.9 -22.0 +4.0

Results: Our analysis across different random seeds shows that the ProtoT architecture consistently
localizes concepts within specific semantic regions, demonstrating strong robustness. However, the
specific functional mechanisms used by these prototypes can differ significantly between model ini-
tializations. We acknowledge that the intervention effects for the COVID-19 prototype appear more
variable than those observed in the gender experiments. This difference comes in part from the way
the concepts are structured. Gender is modeled as a clear binary contrast (Male vs. Female), which
allows relative comparisons, while COVID-19 is a single concept – it depends only on changes from
a baseline probability and has no direct opposite reference. Despite this lack of contrastive refer-
encing, the most significant finding is the robust emergence of the concept itself: across all three
random seeds, the model consistently allocated a dedicated prototype slot to encode pandemic- or
disease-related knowledge without explicit supervision.

A.3.3 EXTENDED INTERVENTION ANALYSIS ON DIVERSE CONCEPTS

To demonstrate that the functional localization of semantic concepts is a general property of the Pro-
toT architecture and not limited to the social (Gender) or event-specific (COVID-19) cases discussed
in the above, we extended our discovery pipeline to additional semantic domains. Here, we present
intervention results for geographic entity (“e.g. New Zealand”) and an abstract state (“e.g. Mental
Health”).

The test corpus for the ’New Zealand’ prototype consisted of the following sentences:
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• “The Dutch explorer Abel Tasman named New Zealand as Nova Zeelandia after the Dutch
province of Zeeland”

• “The Treaty of Waitangi signed in 1840 was instrumental in establishing British sovereignty
over New Zealand”

• “Regular Quaker meetings began in Nelson in 1842 and later spread across New Zealand”
• “The first Quaker to visit Aotearoa / New Zealand was Sydney Parkinson”

The test corpus for the ’Mental Health’ prototype consisted of the following sentences:

• “Meditation and mindfulness practices are beneficial for maintaining mental clarity.”
• “Regular exercise can improve mental well-being and reduce symptoms of anxiety.”
• “She sought professional help to manage her mental stress during the exam period.”
• “Many people face mental health challenges but do not seek support due to stigma.”

We identified a prototype in L5 P9 that maximally activated for contexts related to the country
including New Zealand. To validate its causal role, we constructed a test set containing historical
and geographical facts. We then measured the impact of masking the prototype to see the change on
the prediction of the target token ‘zealand’.

The results (Table 8) show striking causal efficacy. For instance, in the context of “...abel tasman
named new [zealand]”, masking the write gate caused a massive probability drop of 21.54%. Sim-
ilarly, references to the Treaty of Waitangi saw a 12.52% drop. This confirms that this specific slot
(L5 P9) is critical for storing and retrieving knowledge specific to this geographic entity.

Table 8: Intervention results for the ’New Zealand’ prototype (L5 P9). We report the relative change
in probability for the target token ‘zealand‘ when masking the Write Gate (Wr), Read Gate (Rd), or
applying Random Noise to the Prototype (Rnd).

Relative Change (%)

Context (Truncated) Baseline Wr Rd Rnd

...explorer abel tasman named new... 35.7% -21.5 -21.0 -20.7

...treaty of waitangi signed in 1840... 91.9% -12.5 -12.9 -12.4

...regular quaker meetings began in... 33.4% -2.3 -1.2 -1.1

...first quaker to visit aotearoa... 99.7% -0.2 -0.2 -0.2

Moving beyond concrete entities, we investigated whether abstract concepts are similarly localized.
We identified a prototype in L6 P9 responsive to Mental Health and communication. We tested this
using sentences involving psychological states and well-being, targeting the token ‘mental’.

As shown in Table 9, while the baseline probabilities for this abstract adjective are generally lower
than for proper nouns, intervention still yields consistent causal effects, further supporting the func-
tional diversity discussed in the main text.

Table 9: Intervention results for the ’Mental Health’ prototype (L6 P9). Target token: ‘mental’.

Relative Change (%)

Context (Truncated) Baseline Wr Rd Rnd

...mindfulness practices are beneficial... 5.0% -2.2 -2.3 -1.6

...exercise can improve mental... 2.1% -0.4 -0.7 -0.6

...sought professional help to manage... 1.4% -0.2 -0.2 -0.2

...face mental health challenges... 1.3% -0.1 -0.0 -0.0

A.4 DOWNSTREAM (DETAILS)

We provide the training protocol and hyperparameter configuration used for the GLUE downstream
experiments, covering datasets and splits, pre-processing, optimization, early-stopping/selection on
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dev, and the hyperparameter sweep and choice rules, and we additionally report the corresponding
GLUE dev-set results for completeness.

Training protocol: We evaluate four language model architectures: ProtoT, LLaMA, Mamba, and
DeltaNet, on the GLUE benchmark under a unified experimental protocol to ensure fair comparison.
Unless stated otherwise, all details follow the Experimental Setup 4. Inputs are formed as single-
sentence or sentence-pair prompts according to the task, with a maximum sequence length of 512.
To avoid leakage, we fine-tune on the official training split, select hyperparameters and checkpoints
on the official development split using early stopping, and export test predictions in the official TSV
format for submission to the GLUE server. We follow the official GLUE metrics: accuracy for
SST-2, QNLI, MNLI, QQP, RTE, and WNLI (or the primary metric reported by the official script),
the accuracy and F1 pair for MRPC and QQP, Matthews correlation for CoLA, and Pearson and
Spearman correlations for STS-B.

Optimization and regularization are aligned across models. We use the AdamW optimizer together
with a linear learning-rate schedule with warmup. We apply selective weight decay consistent with
pre-training: decay is applied to affine weights that benefit from it, while embeddings, normalization
layers, and biases receive no decay. For GLUE downstream fine-tuning, we use a batch size of 16
for all models. Compared to pre-training, the GLUE datasets are much smaller, so we prefer a
moderately small batch size that provides more stochasticity in the updates and typically leads to
better generalization in low-data regimes. Fine-tuning runs for up to 3 epochs with early stopping
on dev, and the dev-best checkpoint is used to generate test predictions. Unless otherwise specified,
a fixed random seed is used across tasks and models to support reproducibility.

Hyperparameter selection: Because architectures differ in optimization sensitivity, we conduct
per-model hyperparameter selection. For each model we run small grid searches on two represen-
tative tasks, SST-2 (medium-scale binary classification) and MNLI (large-scale multi-class classifi-
cation). We sweep learning rates over a grid that includes 2.5e-5, 3.5e-5, 5.5e-5, 1e-4, 2e-4, 3e-4,
4e-4, 5e-4, 7e-4, 8.5e-4, 1e-3, and we sweep warmup ratios over 6% and 10%. The best learning
rate and warmup found per model on these representative tasks are then fixed for that model across
the remaining GLUE tasks, where “best” is defined as the (learning-rate, warmup) configuration that
achieves the highest average dev performance over SST-2 and MNLI. All other training details, such
as batch size, maximum length, optimizer settings, and early-stopping criterion, remain identical
across models.

The final per-model settings in our environment are as follows. PrototypeAttn uses a learning rate
of 3.5e-5 with 6% warmup. LLaMA uses a learning rate of 5.5e-5 with 10% warmup. Mamba uses
a learning rate of 1e-4 with 10% warmup. DeltaNet uses a learning rate of 7e-4 with 10% warmup.

GLUE dev downstream fine-tuning results: For completeness, we also report the GLUE dev
set results in Table 10, using the same evaluation metrics as in the main text (Matthews correlation
for CoLA, accuracy for SST-2/RTE/WNLI/QNLI/MNLI/MNLI-MM, F1 for MRPC and QQP, and
Pearson correlation for STS-B). These dev numbers were used during model development and are
largely consistent with the test-set trends in the results in Section 5, Table 2: LLaMA achieves the
strongest overall performance, while ProtoT remains competitive with dense baselines and shows
robust behavior across multiple tasks.

Table 10: GLUE dev downstream fine-tuning results (all metrics reported as percentages). For
COLA we report Matthews correlation; for SST-2 accuracy; for MRPC F1; for STS-B Pearson
correlation; for RTE, WNLI, QNLI, MNLI and MNLI-MM accuracy; for QQP F1. Results are
averaged over 3 seeds. Best results are in bold.

Model COLA SST-2 MRPC STS-B RTE WNLI QQP QNLI MNLI MNLI-MM
LLaMA 36.4 91.2 84.9 85.8 60.1 56.3 85.9 86.4 80.5 79.7
Mamba 30.6 89.1 82.3 79.4 55.8 56.3 82.7 82.2 75.1 74.9
DeltaNet 8.9 85.5 81.4 75.7 56.1 56.3 81.2 80.1 71.6 72.5

ProtoT 29.3 89.8 81.7 73.3 54.5 54.9 83.6 82.6 75.4 76.0
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A.5 ROBUSTNESS (DETAILS)

This section details the perturbation set, construction pipeline, and slice-level statistics for the black-
box robustness experiments.

A.5.1 PERTURBATION DATASET CONSTRUCTION

We construct a dedicated perturbation benchmark with seven categories of meaning-preserving sur-
face noise, 500 pairs per category (3,500 total). Source sentences are sampled from three public
corpora under simple length and formatting constraints: WikiText-2 (Merity et al., 2016), DailyDi-
alog (Li et al., 2017), and AG News (Zhang et al., 2015).

The final slices are:

• Synonyms: Replacements derived from WordNet (Miller, 1995). We select candidate lemmas
that differ from the original token, avoid multi-word expressions, and have similar length. The
generator enforces a mix of 1/2/3 substitutions per sentence. This slice is further filtered us-
ing Sentence-BERT (all-MiniLM-L6-v2; (Reimers & Gurevych, 2019; Wang et al., 2020)) and
lexical heuristics (see below).

• Typos: Single-character keyboard noise applied to one token (internal character substitution),
ensuring short, localized corruption.

• Spelling variants: American↔ British spelling changes (e.g., color→ colour, organize→ or-
ganise) using a fixed mapping and a curated example pool.

• Morphological variants: Simple inflection changes (e.g., singular→ plural) using rule-based
morphology patterns plus a curated pool.

• Contractions/Expansions: Deterministic mappings between standard and contracted forms
(e.g., do not→ don’t, it is→ it’s).

• Punctuation/Casing: Insertion or removal of punctuation (e.g., sentence-final periods or
comma adjustments), while keeping word order intact.

• Abbreviations/Short forms: Systematic long-form → abbreviation mappings (e.g., Doc-
tor→ Dr., United States→ U.S.).

After generating the dataset, a separate cleaning and rebalancing script was run:

(i) filter by Sentence-BERT similarity (≥ 0.75),
(ii) apply lexical checks (rare tokens, casing),

(iii) backfill missing items from curated fallback pools, and
(iv) sample exactly 500 pairs per slice.

Table 11: Example sentence pairs from the perturbation benchmark.

Category Original Perturbed
Abbreviation Doctor Smith arrived. Dr. Smith arrived.
Contraction I cannot go. I can’t go.
Synonym He was happy. He was glad.
Spelling I like this color. I like this colour.

A.5.2 VARIANCE STATISTICS

To characterize the perturbation strength of each slice, we compute: (i) cosine similarity of all-
MiniLM-L6-v2 embeddings between original and perturbed sentences, (ii) character-level Leven-
shtein distance (Levenshtein, 1966).

Table 12 reports the per-slice averages. As expected, some categories (e.g., typos) introduce very
small character edits but can cause non-trivial distributional shifts, while others (e.g., synonyms,
abbreviations) involve larger form changes yet maintain high semantic similarity.
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Table 12: Variance statistics for the perturbation benchmark (3,500 pairs total).

Synonym Typo Spelling Morphology Contraction Punctuation Abbreviation
Avg. Similarity 0.828 0.775 0.956 0.881 0.895 0.983 0.894
Avg. Edit Distance 5.89 1.03 1.20 1.00 2.54 1.09 7.23

Table 13: Training throughput (it/s; higher is better) and elapsed time (s; lower is better) for
matched-depth/width models at seq. len. 256 (BF16). FLOPs are reported in units of ×105 (for-
ward+backward). When compilation was unavailable, values reflect the fastest steady-state runs
without compilation.

Model Batch it/s Elapsed (s) FLOPs/sample (×105) Total FLOPs (×105) Params

ProtoT 32 25.2 34.57 41,583.0 1,330,657.0 12,205,266
ProtoT 128 7.6 31.32 41,583.0 5,322,625.2 12,205,266

Mamba 32 11.9 58.17 34,734.9 1,111,517.4 6,724,352
Mamba 128 3.2 54.26 34,734.9 4,446,069.4 6,724,352
DeltaNet 32 3.5 222.88 — — 12,963,456
DeltaNet 128 1.8 182.06 — — 12,963,456
LLaMA 32 55.1 26.16 49,341.5 1,578,929.0 12,938,496
LLaMA 128 23.6 22.30 49,341.5 6,315,714.3 12,938,496

A.6 THROUGHPUT BENCHMARKS (PROTOT, MAMBA, LLAMA, DELTANET)

We evaluate under identical conditions: same data pipeline, optimizer, precision (BF16), sequence
length 256, and batch sizes 32 and 128. FLOP counts are per-sample (forward+backward) where
obtainable. Observations: Table 13 summarizes training throughput at batch sizes 32 and 128 for
matched-depth/width models. LLaMA attains the highest throughput overall (55.1 and 23.6 it/s).
ProtoT sustains 25.2 and 7.6 it/s and is ∼2.1–2.4× faster than Mamba (11.9 and 3.2 it/s) at the
same backbone. The FLA-based DeltaNet baseline, evaluated without fused delta kernels and with
torch.compile disabled, reaches 3.5 and 1.8 it/s (batch 32/128).

A.6.1 LONG-CONTEXT THROUGHPUT

Throughput Evaluation Methodology To evaluate the computational efficiency of the models at
varying context lengths, we measured the processing throughput on a single NVIDIA A100 80GB
GPU. The benchmark measured the number of forward pass iterations per second (it/s) for a batch
size of 1 across context lengths ranging from 2,048 to 131,072 tokens.

For a fair comparison, all models were run in standard PyTorch eager mode without
torch.compile optimization. This ensures that the results reflect the raw architectural perfor-
mance characteristics rather than compiler-specific optimizations which may vary in maturity across
different architectures.

Throughput Results Table 14 shows the long-context inference throughput results. LLaMA
achieves the highest throughput at short context lengths. However, ProtoT scales better as context
increases, surpassing LLaMA at 32k tokens and above. DeltaNet maintains the highest throughput
at long context lengths.

A.7 ABLATIONS

A.7.1 LAYER-0 ROUTING ABLATIONS

We ablate the three mitigations that stabilize the layer-0 router: (i) sharing the write/read routing
distribution, (ii) sharpening the initial temperature (τ0 = 3.0), and (iii) adding a k = 5 depth-wise
convolution to the write-value path of layers 0–1. Each configuration fine-tunes a 6-layer ProtoT on
the FineWeb 18k/4k split (sequence length 256, seed 0) for three epochs, using the same optimizer,
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Table 14: Long-context inference throughput (iterations per second; higher is better). Measured on
a single NVIDIA H100 80GB GPU, batch size 1, PyTorch eager mode without torch.compile.

Context LLaMA ProtoT Mamba DeltaNet
2,048 100.47 38.74 35.50 43.54
4,096 47.90 20.61 19.04 42.35
8,192 21.72 10.82 9.89 44.89

16,384 8.08 5.49 5.05 40.20
32,768 2.61 2.78 2.55 27.78
65,536 0.74 1.40 1.28 17.34

131,072 0.20 0.65 0.57 9.41

tokenizer, and learning rate as the main experiments. We report best validation perplexity alongside
routing diagnostics logged on the dev set.

Table 15: Layer-0 routing ablations on FineWeb. Metrics come from the final validation epoch
(val router stats.csv) and the best dev perplexity tracked during training. Lower perplexity,
Gini, and top-1 probability imply healthier routing; higher ᾱ0 indicates that the ReZero gate remains
active. Best values are in bold.

Variant Shared L0 τ0 init Write conv Best val ppl ↓ ᾱ0 ↑ Gini ↓ top-1 ↓
All mitigations (baseline) On 3.0 k = 5 133.3 0.672 0.034 0.079
No shared routing Off 3.0 k = 5 133.4 0.658 0.064 0.082
τ reset to 1.0 On 1.0 k = 5 133.6 0.653 0.035 0.088
No write conv On 3.0 Off 145.7 0.354 0.097 0.177
All mitigations off Off 1.0 Off 149.9 0.261 0.243 0.373

The convolution contributes most to stability: removing it roughly doubles the router concentration
(top-1 rises from 0.079 to 0.177), increases hub inequality, and halves the layer-0 ReZero gate,
ultimately worsening perplexity by +12.4 points. Shared routing and the sharpened τ0 have smaller
individual effects on perplexity, but together they keep hub utilisation uniform (gini 0.034) while
allowing the gate to stay near its baseline value. Disabling every mitigation reproduces the original
alpha-collapse, dropping ᾱ0 to 0.261 and letting a single hub monopolise 37% of the mass.

Interpretation. Shared write/read routing and the sharper initial temperature primarily act as reg-
ularisers: they prevent the router from collapsing mass onto a few hubs without hurting sample
efficiency. The depth-wise convolution, in contrast, provides an expressivity boost that both im-
proves perplexity and raises the effective signal scale entering layer 0; once it is removed the router
cannot maintain broad support and the ReZero gate decays. The combination of all three mitigations
therefore offers a balanced trade-off between stability and performance.

A.7.2 VALIDATING THE HYPERPARAMETER CHOICES

These experiments motivate the choice of kernel size (5) for the local convolution, the alpha-gate
initialization (1.0), the number of prototypes (32), the use of mass normalization, low-rank projec-
tion at the value stream, and dropout. In these experiments, we use the default model, data, and
training configurations, unless otherwise specified. We search over learning rates values (1.0e-3,
2.0e-3, 3.0e-3) for ProtoT, (0.8e-3, 1.6e-3, 3.2e-3) for LLaMA, (1.9e-3, 3.8e-3, 7.6e-3) for Mamba,
and (3.4e-3, 6.8e-3, 13.6e-3) for DeltaNet (the middle values of each interval are informed by the
best learning rates from the automatic hyperparameter search, Section 4), and average the results
over 3 seeds.

Kernel size of local convolution The results in Table 16 show that kernel size 5 and 6 are the best
values in terms of dev perplexity, with an insignificant difference (≈0.2%) between the two (97.1 vs
96.9), which confirms our choice of kernel size = 5.
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Table 16: Kernel size ablation of the local convolution in ProtoT. Reported best dev perplexity (lower
is better), averaged over 3 seeds. Best values are in bold.

Variant Kernel size Performance (dev perplexity) ↓
ProtoT (k=4) 4 98.3
ProtoT (k=5) 5 97.1
ProtoT (k=6) 6 96.9
ProtoT (k=7) 7 97.5

Alpha-gate initialization: The results in Table 17 show that 0.8 and 1.0 are the best values for
α initialization, without significant difference in performance, which confirms our choice of 1.0.
In particular, α = 1.0 performs better than ReZero’s α = 0.0 (Bachlechner et al., 2020), with
97.1 vs 99.2 perplexity. This is likely because ReZero trains extremely-deep NNs, where it may
be beneficial to start from zero contribution from the layers, to avoid noise accumulation early in
training.

Table 17: Alpha-gate initialization study for ProtoT. Reported best dev perplexity (lower is better),
averaged over 3 seeds. Best values are in bold.

Alpha initialization value Performance (dev perplexity) ↓
0.0 99.2
0.5 97.9
0.8 97.0
1.0 97.1
1.2 98.7

Mass Normalization and Low-Rank Projection at the Value Stream: The results in Table 18
show that the mass normalization (used in the default setting) brings≈9% slowdown, while improv-
ing perplexity by ≈4.6%. This is a trade-off, where we have chosen the performance gain over the
slowdown. On the other hand, the low-rank projection to half the hidden size performs about the
same in terms of dev perplexity (97.1 vs 97.3), while introducing a massive speed-up (≈59% faster).

Table 18: Ablation study for ProtoT: mass normalization and low-rank projection. Reported best
dev perplexity (lower is better), averaged over 3 seeds. Best values are in bold.

Setting Performance (dev perplexity) Speed after torch.compile() [it/s]
Default settings 97.1 89
No mass normalization 101.8 98
No low-rank projection 97.3 56

Optimal number of prototypes (R): The results in Table 19 show that ProtoT’s performance
plateaus after R=32 (97.1→97.3 perplexity), whereas speed drops substantially (89→60 it/s). This
shows that R=32 is the optimal trade-off between model performance and speed.

Table 19: Optimal number of prototypes (R) for ProtoT. Reported best dev perplexity (lower is
better), averaged over 3 seeds. Best values are in bold.

R value Performance (dev perplexity) Speed after torch.compile() [it/s]
16 98.5 116
32 97.1 89
64 97.3 60
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Dropout: The results in Table 20 show that the default dropout configuration we use in Section 4
yields the best perplexity for ProtoT and all baseline models.

Table 20: Dropout study for ProtoT, LLaMA, Mamba, and DeltaNet. Reported best dev perplexity
(lower is better), averaged over 3 seeds. Best values are in bold.

Model settings Performance (dev perplexity) ↓
ProtoT (default: dropout=0.1) 97.1
ProtoT (no dropout) 107.6

LLaMA (default: dropout=0.1) 84.8
LLaMA (no dropout at self-attn) 85.2
LLaMA (no dropout at all) 92.4

Mamba (default: dropout=0.1) 91.1
Mamba (no dropout) 96.6

DeltaNet (default: dropout=0.1) 99.4
DeltaNet (no dropout) 103.5

A.8 ADDITIONAL INTERPRETABILITY METRICS

In this appendix, we report results on correlation between half life values and locality of a con-
cept as well as four complementary metrics that characterize how prototype activations of Pro-
toT and LLaMA attention heads value norms evolve across depth. Each metric captures a dif-
ferent aspect of how the routing distribution changes from early to deeper layers. Let al,p(x)
denote the activation of prototype p ∈ {1, . . . , P} at layer l ∈ {1, . . . , L} for input x, and let
al(x) = (|al,1(x)|, . . . , |al,P (x)|) denote the vector of absolute activations.

Correlation Between Half-Life and Locality To assess whether prototype half-life reflects con-
cept locality, we require an operational proxy for locality. Empirically, low-level lexical prototypes
(e.g., punctuation, stopwords) exhibit highly repetitive sets of most-activating-tokens, whereas more
abstract prototypes show greater token diversity. This aligns with the intuition that local prototypes
focus on neighboring tokens and as a result, activate more strongly based on token identity, while
longer half-life prototypes aggregate information over wider contexts. Motivated by this observa-
tion, we use the token repetition score as a proxy for locality.

Low half-life prototype (L2P6) Higher half-life prototype (L2P10)
HL = 5.04, repetition = 0.73 HL = 12.26, repetition = 0.25
Function-word clusters Transformation expressions
(e.g., “in the”, “of the”) (e.g., “from · to ·”)

the , the , ,
in the , the of , ,
a many of the , ,
, or of the most and
the a , in , this
in the , in other ,

guide for aim deliver their close
converted to homeless converted an into
adaptation of through applied to the
delegation responsibility shifts from
‘‘common’’ delegation
manage . bring our home from
uses encourage invite your to build

Figure 7: Two example prototypes illustrating the relationship between half-life and repetition. The
short half-life prototype (left) exhibits tightly localized, highly repetitive lexical patterns, whereas
the longer half-life prototype (right) activates on broader transformation expressions.

We quantify the relationship between half-life and repetition using two standard statistical tools: (i)
a Spearman rank correlation between half-life and repetition scores, and (ii) quantile-based group
comparisons in which prototypes are divided into half-life quartiles. For the latter, we compare
mean repetition scores across quartiles and compute the effect size (Cohen’s d) between the lowest
and highest half-life groups.

The results show a robust negative association between half-life and repetition, with a highly sig-
nificant Spearman correlation and a large effect size (d = 0.825) between the lowest and highest
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Metric Value Interpretation
Spearman ρ −0.2192 Negative association
p-value 8.3× 10−10 Very significant
Q1 repetition (HL ≤ 7.8) 0.4060 High repetition
Q2 repetition 0.3429 Medium
Q3 repetition 0.4017 High
Q4 repetition (HL > 13.4) 0.2695 Low repetition
Cohen’s d (Q1–Q4) 0.825 Large effect

Table 21: Relationship between prototype half-life and repetition score. Lower half-life prototypes
exhibit substantially higher repetition.

quartiles. This provides strong evidence that prototypes with shorter half-lives encode more local,
repetitive lexical patterns, whereas longer half-life prototypes correspond to broader, less repetitive
activation structure.

L1 SPARSITY RATIO. To measure the degree of “winner–take–all” behavior among prototypes,
we compute

Sl = Ex
maxp |al,p(x)|

1
P

∑P
p=1 |al,p(x)|

. (3)

A high value indicates that a single prototype (or a small subset) dominates the activation mass,
reflecting strong concentration and effective sparsity.

GINI COEFFICIENT. To quantify the inequality of the activation distribution, we compute the Gini
index

Gl = Ex
1

P

(
P + 1− 2

∑P
p=1(P + 1− p) a↑l,p(x)∑P

p=1 al,p(x)

)
, (4)

where a↑l,p(x) are the activations sorted in increasing order. Low values correspond to uniform
activation across prototypes, while high values indicate strong inequality and specialization.

ENTROPY. To measure the spread or concentration of activations, we normalize pl,p(x) =

|al,p(x)|/
∑P

q=1 |al,q(x)| and compute the Shannon entropy

Hl = −Ex

P∑
p=1

pl,p(x) log pl,p(x). (5)

High entropy indicates diffuse activation across many prototypes, whereas lower entropy reflects
concentrated, low-uncertainty routing.

MUTUAL INFORMATION. To assess how strongly prototype activations depend on surface lexical
identity, we compute the mutual information between the discretized activations ãl,p and the token
identity T :

Il = I(T ; ãl,p) . (6)
High mutual information indicates that activations are predictive of the specific token type. A de-
crease in mutual information with depth does not by itself establish that deeper prototypes encode
“more abstract” concepts; however, it is consistent with the broader pattern observed across our
sparsity, entropy, and interpretability analyses, where later layers appear less tied to local lexical
identity and more shaped by contextual or compositional signals.

Together, these metrics provide a multifaceted view of how prototype representations of ProtoT
sharpen, specialize, and suggest a transition from local lexical cues to increasingly structured or
context-sensitive behaviors as depth increases. LLaMA metrics by contrast, do not show clear sys-
tematic patterns, entropy remains uniform across layers while the Gini coefficient and L1 sparsity
oscillate. Mutual Information follows a pattern similar to that of ProtoT
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(a) Gini increases with depth, indicating concentra-
tion of activation mass.

(b) Entropy decreases as routing becomes sharper and
less uniform.

(c) L1 sparsity increases, reflecting increasingly se-
lective activation.

(d) Mutual information decreases with depth, indicat-
ing weaker dependence on lexical identity and greater
sensitivity to contextual structure.

Figure 8: ProtoT interpretability metrics across depth.

(a) Gini increases with depth, indicating concentra-
tion of activation mass.

(b) Entropy decreases as routing becomes sharper and
less uniform.

(c) L1 sparsity increases, reflecting increasingly se-
lective activation.

(d) Mutual information decreases with depth, indicat-
ing weaker dependence on lexical identity and greater
sensitivity to contextual structure.

Figure 9: LLaMA interpretability metrics across depth.

A.9 ADDITIONAL CONCEPTS VISUALIZATION AND LLM-AIDED EVALUATION RESULTS

Prototype visualizations We provide additional examples from the write gate activation inter-
pretability experiment, useful to better illustrate results about learned concept representation. This
section also contains result statistics for LLM-aided evaluation experiment for multiple model con-
figuration of ProtoT and for LLaMA.
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Figure 10: Visualization for prototype L0 P18. Half-life = 12.8

Figure 11: Visualization for prototype L1 P14. Half-life = 13.2

LLM scoring and labeling We provide visualizations of some random selected examples and
resulting statistics of the LLM scoring process. We also show ablation for different model configu-
rations, including R=16, R=64, two extra seeds for R=32 and R=32 without low rank projection.
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Figure 12: Visualization for prototype L7 P31. Half-life = 12.7

Figure 13: Visualization for prototype L8 P5. Half-life = 0.140
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Figure 14: Visualization for prototype L10 P8. Half-life = 0.510

Figure 15: LLM aided interpretability results for prototype L0 P21 R=32 (S=135).
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Figure 16: LLM aided interpretability results for prototype L1 P27 R=32 (S=135).

Figure 17: LLM aided interpretability results for prototype L5 P7 R=32 (S=135).
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Figure 18: LLM aided interpretability results for prototype L9 P14 R=32 (S=135).

Figure 19: histograms for LLM aided interpretability for model configuration R=16

Figure 20: histograms for LLM aided interpretability for model configuration R=32 (S=124)

Figure 21: histograms for LLM aided interpretability for model configuration R=32 (S=135)
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Figure 22: histograms for LLM aided interpretability for model configuration R=64

Figure 23: histograms for LLM aided interpretability for R=32 (S=124) and no low rank projection

Figure 24: histograms for LLM aided interpretability for LLaMA model trained for 1)
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A.10 PROMPT FOR LLM-AIDED INTERPRETABILITY EXPERIMENT

            "You are analyzing a single prototype (a neuron-like feature) from a neural 

language model.\n"

            "For this prototype you are given, for each of its top-ranked sentences, the 

full sentence and the subset "

            "of its most activating tokens. Each example is formatted as:\n\n"

            "  Most activating tokens sentence: <token1 token2 ...>\n\n"

            "  Sentence: <full sentence text>\n"            

            "A **theme** is any recurrent characteristic that appears across multiple 

high-activation token sets or their "

            "sentences. Themes can be narrative motifs, entities, stylistic elements, 

punctuation patterns, lexical fields, "

            "or any other shared property that appears across more than one example. ALL 

PREVIOUS EXAMPLES ARE CONSIDERED THEMES. It can be local (individuated by single"

            "isolated words (like numbers or punctuation) or more sentence level 

(individuated by composing multiple tokens)\n\n"

        

            "Your task is to determine whether there is a meaningful main theme shared 

across the provided sentences, "

            "and how strongly that theme characterizes this prototype.\n\n"

            "You should first of all observe the most activating tokens to check if there 

is a main theme that is already observable there"

            "then if by observing only the tokens it is hard to find a common theme, you 

should check the sentences to observe if there is"

            "a more ’sentence level’ theme like a narrative or a motif. Remember that the 

first indication is given by the most activating tokens,"

            "if they are clearly forming a visible coherent pattern, that’s enough to 

conclude the analysis. If instead the pattern they are forming is not that clear,"

            "then move to observe and analyze the full sentences."

            "For example in these sentences and most activating tokens there is everywhere 

a common theme of comitative structure with the use of the word ’with’ that is already 

very visible with the most activating tokens"

            "Sentence Rank 1: how are nigeria â\200\231 s trading and political 

relationships changing? what relationship did nigeria have with britain? trade between 

britain and west africa has occurred for over"

            "Sentence Rank 2: the teens at risk series deals with powerful and relevant 

issues facing teenagers today. this series reveals first - hand how young people deal with 

and overcome the very real"

            "Sentence Rank 3: the only country that south korea shares a land border with 

is north korea. the land border between the two countries is 148 miles in length, dissec"

            "Sentence Rank 4: communication with families: a plan for every child keep 

communicating with parents and pave the way for continued progress! by carla poole summer 

is on the"

            "Most activating tokens[1]: trading relationships relationship with trade 

between"

            "Most activating tokens[2]: deals with issues facing deal with overcome"

            "Most activating tokens[3]: shares border with border between two"

            "Most activating tokens[4]: communication with families communicating with 

parents"

            "or in this other example list of most activating tokens, we have knowledge 

and questions, this can be safely identified as a single common main theme. the list of 

sentences reinforce what was already observable"

            "Sentence Rank 1: did you know that something called chronic fatigue existed? 

well, many of us do not know about this ailment, but it is actually quite common. the"

            "Sentence Rank 2: how to do homework quicker the best way to do homework 

sooner is a problem most college students have. doing homework isn â\200\231 t as 

enjoyable as mother and"

            "Sentence Rank 3: what does shingles look like? how does shingles start? how 

does shingles affect the body? how is the diagnosis made and treatment"

            "Sentence Rank 4: norovirus information guide noroviruses ( previously known 

as norwalklike viruses ) are widely recognized as the agents known to cause outbreaks of 

illness among"

            "Most activating tokens[1]: did know well do know quite"

            "Most activating tokens[2]: do do isn t as as"

            "Most activating tokens[3]: does ? does ? does ?"

            "Most activating tokens[4]: known as recognized as known"
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            "In this other examples we have that even if the sentences don’t exihibit a 

clear evident patterns, the most activating tokens are all about punctuation. This is 

enough"

            "to identify a hihgly disentangle punctuation theme with high coverage and low 

number of themes."

            "Most activating tokens[1]: ; ; ; ; ; ; ; ; ; ; ; ;"

            "Most activating tokens[2]: , ), . . . , , ."

            "Most activating tokens[3]: , , , . . ,"

            "Most activating tokens[4]: . , , ,"

            

            "Sentence Rank 1: conflict resolution - for kids conflict; listening; 

negotiate; compromise; resolve; resolution; understanding; working together; outcomes; 

skill; listen; feelings; put"

            "Sentence Rank 2: schulman, samuel ( 1864 â\200\223 1955 ), u. s. reform 

rabbi. schulman, born in russia, was taken to the u."

            "Sentence Rank 3: we provide arts and architecture assignment help in fine 

arts, visual arts, industrial design, architectural design etc. at myassignmenthelp. net,"

            "Sentence Rank 4: google. com, pub - 6983070578797176, direct, f08c47f"

            

        

            "Break the disentanglement assessment into these components (all on a 

1â\200\22310 scale):\n"

            "  - coverage_main_theme: in how many sentences the main theme appears?\n"

            "      indicate the precise number between 1 and 10\n\n"

            "  - number_of_themes: how many uncorrelated themes appear in the prototype?\n"

            "      indicate the precise number between 1 and 10, if it is more than 10, 

just answer 10\n\n"

        

            "Use these two component scores to decide the overall disentanglement_score 

(1â\200\22310):\n"

            "  1-2 = There is no recurring characteristic across the most activating 

tokens or the sentences; entirely mixed or noisy.\n"

            "  3-4 = Very weak hints of a pattern; mostly mixed, but with minor 

repetition.\n"

            "  5-6 = A moderate theme: some noise, but a noticeable dominant trait.\n"

            "  7-8 = A strong theme: clearly recurrent and consistent across many 

sentences.\n"

            "  9-10 = An extremely strong and clean theme: nearly all sentences share the 

same core characteristic.\n\n"

        

            "When choosing the scores, do NOT avoid extremes: use the full range from 1 to 

10 whenever appropriate.\n\n"

        

            "Provide your answer STRICTLY as a JSON object with these exact keys:\n"

            ’  "disentanglement_score": integer 1-10,\n’

            ’  "coverage_main_theme": integer 1-10,\n’

            ’  "number_of_themes": integer 1-10,\n’

            ’  "theme": short string describing the single main shared characteristic,\n’

            ’  "explanation": 1-10 sentences explaining why you chose these scores.\n\n’

            "Output ONLY valid JSON. No markdown, no backticks, no additional text."

Figure 25: Full prompt used for LLM aided evaluation and labeling experiment
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B APPENDIX: COMPREHENSIVE EVALUATION DETAILS

B.1 QUALITATIVE EVALUATION METHODOLOGY

We adopted an LLM-as-a-judge protocol inspired by Chatbot Arena (Chiang et al., 2024). For a
given evaluation prompt, we present the two model outputs (Response A and Response B) to a
frozen judge model (Gemma-3-4B-IT) using a fixed system instruction that asks the judge to select
the better response based on coherence, relevance, fluency, and correctness, and to reply with a
single token in “A”, “B”, “Tie”. To reduce position bias, we query the judge twice per example:
once with the order (A, B) and once with the order (B, A). The two decisions are mapped back to the
original models and converted into soft pairwise scores (win = 1, tie = 0.5 per model). Aggregating
over all prompts yields pairwise win/tie statistics between the two systems, which we then use to
compute Elo ratings following the standard Chatbot Arena procedure.

B.2 COMPREHENSIVE RESULTS

Table 22 presents the qualitative ELO rankings of the models.

Table 22: Evaluation of Model Quality. ELO scores are derived from pairwise judge evaluations
(higher is better).

Model ELO
LLaMA 938.59
Mamba 1150.78
ProtoT 1015.93
DeltaNet 894.70

B.3 QUALITATIVE SAMPLES

We decode 50-token continuations for each model on a shared set of FineWeb validation prompts,
score every output with BLEU against the held-out reference, and then extract the highest-BLEU
prompt for each model. The examples below present those prompts alongside every model’s com-
pletion and BLEU score, enabling apples-to-apples qualitative inspection.

Each subsection lists the prompts where a model achieved its highest BLEU scores. For every
selected prompt, we show the prompt, the reference completion, and the completions (with BLEU)
for all available models.

B.3.1 PROMPT — PROTOT WINNER

Prompt: ..can also be caused by other conditions such as benign prostate enlargement. there are no
known causes for prostate cancer. however, between 5% and 10% of cases run in families, where the
patient inherits a high risk of this type of cancer. prostate cancer is very rare in men under 50. the
risk increases after the age of 50 with half of all cases occurring in men over 70. men from families
with a history of prostate cancer are at higher risk than normal. race also has

Reference: an effect: men of afro-caribbean descent are about twice as likely to get it whereas
men of asian descent have a lower risk of prostate cancer. some evidence suggests that a diet high
in tomatoes, vitamin e, cruciform vegetables (such as broccoli, cabbage, cauliflower and brussels
sprouts) and selenium may reduce the risk of prostate cancer. however, other studies have failed to
confirm these effects, so the findings of this prostate cancer research have

ProtoT (BLEU 0.0359): a higher risk of prostate cancer. the risk of prostate cancer is higher in
men than women. the risk of prostate cancer is higher in men than women. the risk of
prostate cancer is higher in men than in women. the risk of prostate cancer is

DeltaNet (BLEU 0.0334): a higher risk of developing prostate cancer. the risk of prostate cancer
is higher in women with a high risk of developing the disease. the risk of prostate cancer is
higher in women with a high risk of developing the disease. the risk of prostate cancer is
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LLaMA (BLEU 0.0000): a risk. men from family with a history of prostate cancer are at higher
risk than normal. men from family with a history of prostate cancer are at higher risk than
normal. men from family with a history of prostate cancer are at higher risk than normal

Mamba (BLEU 0.0000): a significant impact on the risk of developing prostate cancer. african
american men are at a higher risk of developing prostate cancer than caucasian men. african
american men are at a higher risk of developing prostate cancer than caucasian men. cau-
casian men are at

B.3.2 PROMPT — LLAMA WINNER

Prompt: .. grow out of control to form a mass or tumour. it is a very variable disease. some
tumours remain small and grow so slowly that they cause no problems for the rest of a man’s life;
others are aggressive, grow quickly and become life-threatening. many of these aggressive cases
will eventually spread to the bones, where they can cause severe pain. prostate cancer is now the
most commonly diagnosed male cancer in many western countries. currently there are 37,000 new
cases a year

Reference: in the uk; 218,000 in the usa; 25,000 in canada and 17,000 new cases a year in aus-
tralia. the number of recorded cases has increased a lot in recent years. this is partly due to the
increased use of the psa test, which has resulted in more cases being detected, and partly due to the
fact that men are living longer. like most cancers, prostate cancer is more common in those over 60.
main symptoms include: however, all of these symptoms

LLaMA (BLEU 0.0228): there are more than 1,000 new cases a year. there are more than 1,000
new cases a year. there are more than 1,000 new cases a year. there are more than 1,000
new cases a year. there

Mamba (BLEU 0.0203): in the uk. the number of new cases is expected to rise to more than 1,000
by 2050. the disease is also becoming more common in the uk, with more than half of all
new cases diagnosed in the uk in the last decade

ProtoT (BLEU 0.0000): in the united states. prostate cancer is the most common cancer in men
and women. it is the most common cancer in men and women. it is the most common
cancer in men and women. it is the most common cancer in men and women.

DeltaNet (BLEU 0.0000): in the u. the most common form of the disease is prostate cancer. the
most common form of the disease is prostate cancer. the most common form of the disease
is prostate cancer. the most common form of the disease is prostate cancer. the most

B.3.3 PROMPT — DELTANET WINNER

Prompt: averages and comparatives – hotter, colder, more, less, the highest, the lowest and so on.
the students also learnt the basic elements of the water cycle. the biology unit included learning the
characteristics of things that are alive: movement, the ability to eat and drink, the ability to breathe,
reproduction (plants only !!), growth and excretion. the students were introduced to the process of
photosynthesis to illustrate the fact that plants make their own food and ex

Reference: crete oxygen and water. this was a completely new concept for them and they found it
fascinating. the students also learnt how insects pollinate plants to create new seeds. the phonics
programme used the multisensory jolly phonics system, which we have introduced to all our beginner
classes. each letter sound has an accompanying action. students and teachers have fun miming out
words and students discover that they are able to spell long words if they listen for individual sounds
and that they can decode

DeltaNet (BLEU 0.0143): crete it. the students also learned how to use the system to make their
own food. the students also learned how to use the system to make their own food. the
students also learned how to use the system to make their own food. the students

ProtoT (BLEU 0.0134): cretion. the students also learned about the different types of plants and
animals. the students also learned about the different types of plants and animals. the
students also learned about the different types of plants and animals. the students also
learned about the different types
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Mamba (BLEU 0.0114): crete it. the students also learned about the process of photosynthesis
and how it works. the students also learned about the process of photosynthesis and how it
works. the students also learned about the process of photosynthesis and

LLaMA (BLEU 0.0000): eat them. the students learnt the importance of the importance of the
water cycle to explain how it is important to the life of the plants. the students learnt the
importance of the water cycle to explain how it is important to the life of the plants.

B.3.4 PROMPT — MAMBA WINNER

Prompt: babies that are smarter, taller or better athletes. hair and eye color could be manipulated.
iqs could be boosted or lowered. it raises all kind of brave new world issues about genetically
engineering the human race. moratorium gains momentum in the last week or so, there’s been a
flurry of statements from several groups of scientists warning about all this. mit’s technology review
had an in-depth report on the whole issue a couple of weeks back

Reference: , if you want to learn more. this week, groups that include the university of california’s
jennifer doudna, one of the researchers who developed crispr, essentially called for a moratorium on
any attempt to do modification of the human germline using these techniques – at least until there’s
been more time for public discussion and more research to understand how well it works and how
safe it is. in interviews, several of the scientists and bioethicists issuing these statements

Mamba (BLEU 0.0135): the report, which was published in the journal science, was a response
to a recent study by the university of california, berkeley, which found that the number of
people who were genetically engineered to be genetically engineered was about 1 in 4.

LLaMA (BLEU 0.0000): the report was published in the journal science. the report was published
in the journal science. the report was published in the journal science. the report was
published in the journal science. the report was published in the journal science. the report
was published

ProtoT (BLEU 0.0000): the report, “the future of science,” was released on thursday. the report,
which was released on thursday, was based on a study of the effects of the covid-19 pan-
demic on the human body. the study found that

DeltaNet (BLEU 0.0000): the report was published in the journal of the american society. the
report was published in the journal of the american society. the report was published in
the journal of the american society. the report was published in the journal of the american
society. the
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