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ABSTRACT

While state-of-the-art language models (LMs) surpass the vast majority of hu-
mans in certain domains, their reasoning remains largely opaque, undermining
trust in their output. Furthermore, while autoregressive LMs can output explicit
reasoning, their true reasoning process is opaque, which introduces risks like de-
ception and hallucination. In this work, we introduce the Prototype Transformer
(ProtoT)—an autoregressive LM architecture based on prototypes (parameter vec-
tors), posed as an alternative to the standard self-attention-based transformers.
ProtoT works by means of two-way communication between the input sequence
and the prototypes, and we show that this leads to the prototypes automatically
capturing nameable concepts (e.g. “woman’) during training. They provide the
potential to interpret the model’s reasoning and execute targeted edits of its behav-
ior. Furthermore, by design, the prototypes create communication channels that
aggregate contextual information at different time scales, aiding interpretability.
In terms of computation scalability, ProtoT scales linearly with sequence length vs
the quadratic scalability of SOTA self-attention transformers. Compared to base-
lines, ProtoT scales well with model and data size, and achieves good performance
on downstream benchmarks (GLUE). ProtoT exhibits robustness to input pertur-
bations on par or better than some baselines, but differs from them by providing
interpretable pathways showing how robustness and sensitivity arises. Reaching
close to the performance of state-of-the-art architectures, ProtoT paves the way
towards creating well-performing autoregressive LMs interpretable by design.

1 INTRODUCTION

Large-scale autoregressive language models have achieved strong performance across various do-
mains, with architectures like GPT-4 and LLaMA (Achiam et al.l 2023; Touvron et al.| 2023a)
demonstrating capabilities on benchmarks spanning mathematical reasoning, code generation, and
natural language understanding tasks. However, these models exhibit limited transparency in their
reasoning processes, creating challenges for understanding how they arrive at their outputs and po-
tentially limiting their deployment in applications where interpretability is important. For example,
it has been observed that there is a large disconnect between models’ explicit reasoning and their
internal computational processes (Greenblatt et al., 2024)): while language models can generate step-
by-step explanations when prompted, research indicates that these explanations may not reflect their
actual reasoning pathways (Turpin et al.| 2023)). This opacity also contributes to hallucination be-
haviors, where models generate confident but factually incorrect outputs without clear indicators of
uncertainty (Zhang et al., |2025).

Current interpretability methods for language models primarily operate as post-hoc analysis tools
on architectures not designed with interpretability as a primary consideration. Approaches such as
attention visualization (Clark et al.,|2019)), probing techniques (Tenney et al.,|2019)), and causal in-
tervention methods (Meng et al., |2022) provide insights into model behavior but face limitations
imposed by the underlying self-attention architecture. More recent techniques like sparse autoen-
coders (Kissane et al.,2024) attempt to disentangle superposed features within existing architectures,
though they still operate within the constraints of standard transformer designs.

In this work, we present the Prototype Transformer (ProtoT), an alternative autoregressive language
model architecture that incorporates interpretability considerations directly into its design. ProtoT
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replaces the standard self-attention mechanism with a prototype-based approach, where learnable
parameter vectors engage in bidirectional communication with input sequences. This design choice
allows prototypes to capture interpretable concepts during training, providing more direct access to
the model’s reasoning components.

ProtoT offers several characteristics that distinguish it from standard transformer architectures. The
prototype-based design enables direct inspection and modification of learned concepts, supporting
targeted behavioral adjustments based on identifiable reasoning components. The architecture ag-
gregates contextual information across different temporal scales through prototype communication
channels, which facilitates the interpretation of both local and global reasoning patterns. Addi-
tionally, ProtoT operates with linear computational complexity relative to sequence length, versus
quadratic for the standard self-attention. The explicit prototype representations also enable more
direct causal attribution by connecting specific predictions to their contributing components. Our
contributions are briefly as follows:

* We introduce ProtoT, a novel autoregressive language model architecture that replaces self-
attention with prototype-based communication. The architecture uses learnable parameter vectors
that engage in bidirectional communication with input sequences, achieving linear computational
complexity while maintaining competitive performance.

* We demonstrate that prototypes automatically learn coherent, nameable concepts during training,
enabling direct interpretation of model reasoning. Our analysis reveals that prototypes capture
disentangled semantic concepts across abstraction levels, with intervention experiments showing
measurable causal effects on “predict and consolidate” behavior patterns.

* We provide extensive evaluation showing that ProtoT achieves competitive GLUE performance
while offering superior robustness analysis. The architecture demonstrates appropriate stabil-
ity under meaning-preserving perturbations and semantic sensitivity under interventions, with
prototype-mediated robustness providing interpretable pathways for understanding behavior.

2 RELATED WORK

One of the main goals when it comes to interpreting language models is to identify which compo-
nents (e.g., heads, layers, neurons) are responsible for specific outputs or behaviors of the model
(Zhang & Nandal [2023). This is a complex task, as it is not possible to simply look at the mag-
nitude of the attention head: does not necessarily imply causal importance, as it has been shown
that such weights can often be perturbed without changing downstream behavior (Jain & Wallace,
2019). Moreover, due to superposition, where multiple concepts or features are encoded together
in overlapping neurons or activation directions—it becomes difficult to isolate representations for
individual concepts (Elhage et al., [2022). To this end, this problem is often tackled via causal inter-
vention, where we analyze the difference in components between a clean and a corrupted prompt,
as well as how the output changes when such activations are swapped (Meng et al., [2022). This
technique has been used to understand where information is stored both in individual weights and
layers (Geva et al.l [2023)), and in larger subnetworks (Wang et al.,[2022)). One promising approach
in this domain is sparse autoencoders (SAEs) applied not just to MLPs or residual streams but, more
recently, to attention layer outputs (Kissane et al.|[2024). The goal of this line of work is to disentan-
gle individual features embedded within activations and attention heads, so that superposed features
become more separable and interpretable (Rai et al., 2024).

Prototype methods in NLP seek to render model decisions interpretable by relating inputs to pro-
totypical examples, following the idea from computer vision, where the model learns prototypical
parts of images and compares them to input images for classification (Chen et al.,|2019). Recently
in computer vision, ProtoViT (Ma et al.| 2024) integrates Vision Transformer backbones with adap-
tive prototype-based learning, using prototypes as deformable parts in a final classification layer for
case-based reasoning, demonstrating how prototype methods can be successfully adapted to modern
transformer architectures. More generally, works in computer vision all have prototype features in
the final layer (Rymarczyk et al.l 2022)), whereas our architecture learns prototype features at every
level of the hierarchy. In NLP, ProtoAttend (Arik & Pfister, [2020) uses attention over learned pro-
totypes (entire training examples) so that decisions are made via similarity, offering sample-based
interpretability with modest accuracy loss. ProtoryNet (Hong et al.,[2023) introduces prototype tra-
jectories, mapping each sentence in a multi-sentence input to a prototype and modeling how these
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activations evolve, for finer-grained interpretability and reduced prototype set size. ProSeNet adapts
prototype reasoning for text classification with constraints for sparsity/diversity so that prototypes
are more meaningful, and allows inspection of which prototypes are most relevant (Meng et al.,
2022). To conclude, two very recent works are ProtoLens, that advance prototype interpretability by
going to sub-sentence span extraction (Wei & Zhu, 2025), and a white box framework for sarcasm
detection, where prototype tensors are built over transformer embeddings and sentiment embeddings
(Wen & Rezapour, 2025)).

Recent work has explored alternatives to self-attention using fixed sets of latent vectors for informa-
tion routing. Slot Attention (Locatello et al., [2020) uses iterative competitive binding where slots
compete to capture distinct entities, while the Perceiver family employs latents as processing bot-
tlenecks—with Perceiver IO (Jaegle et al., [2022) using bidirectional cross-attention and Perceiver
AR (Hawthorne et al.l [2022) adding causal masking for autoregressive tasks. Our prototype-based
approach differs fundamentally by treating proto-s as semantic routing vectors that create R distinct
communication channels, each with separate read/write gates and learnable time-discount param-s.

3 PROTOTYPE TRANSFORMER

The prototype transformer (ProtoT) is an autoregressive LM architecture, based on prototypes. It
is a transformer stack similar to LLaMA-3 (Grattafiori et al.l [2024), with a mixer and feed-forward
module, skip-connections, and RMSNorm, with the only difference in the mixer module. Instead of
standard self-attention, ProtoT uses a prototype-based mixer.

Prototype mixer: This module is a self-attention alternative that uses R prototypes to route the com-
munication across the sequence through R corresponding channels, according to the dot-products
with the prototypes (read gate) (Eq. [I)). Each communication channel is used to aggregate informa-
tion from the past, modulated by the dot-products between the prototype for that channel and the
tokens (write gate). A per-channel learned time-discount Sy, is applied to modulate the time sensitiv-
ity of each channel. On a high level, the prototype mixer follows the following formula (simplified
for clarity) applied at any token position ¢, for linear maps U, V, and W, with full details below:
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This mixer can be interpreted as splitting a token representation into R semantic channels (via pro-
totypes), then for each channel, aggregating semantic information from past tokens by using the
corresponding prototype as a filter. Note the strict causality (past-only aggregation, over x; for
7 < 1 only) in Eq.[l} in contrast to self-attention where each token position can attend to itself.
See Prefix Mean below for more details. We also use low-rank projection at 1/2 of the hidden size
(h) at the value path (V(z;)), which saves up to 50% compute at the mixer module, at a very mi-
nor perplexity cost. We keep the prototypes and routing (read and write gates) in the full size h as
they have only linear compute in h. Each mixer module is followed by a single feed-forward mod-
ule, transformer-style, in L blocks (“layers”). Following LLaMA-3 (Grattafiori et al., [2024), we use
SwiGLU (Shazeer, 2020) with the same intermediate ratio of ~2.7. We also use RMS pre-layernorm
(Zhang & Sennrichl 2019) around each of the Proto Mixer and MLP, as in LLaMA.

Prototypes. They are R parameter vectors of dimension the model’s hidden size h. They are shared
between the read gate and write gate in Eq. (1| via dot-products with the contextualized sequence
(z;). As prototypes are a fixed number of vectors directly communicating with the contextualized
token embeddings, they can capture concepts as vectors, which we demonstrate in Section

Write gate: cross-attention between prototypes P and contextualized token representations x;:
[Iw = softmaxi((z; - Py)/7w), with softmax over the prototypes and a learned temperature
Tw. It works as follows: each sequence member (x;), after communicating with the prototypes in
[ Iy writes to the communication channels corresponding to those prototypes (with P, serving as
filters). A local convolution at the values stream (immediately after V' (z;)) at layers 0 and 1 applies
a convolution across the 4 past tokens and the current one, with one channel per each unit of hidden
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dimension h. It adds expressivity at the value stream, by capturing short-term relationships, and we
observed reduced perplexity and increased utility of layer O (as measured by increased alpha-gate).

Read gate: a cross-attention-like mechanism that routes communication to the R channels according
to similarity with the corresponding R prototypes. It is identical to the write gate (above), except for
the linear map W (x;) and separate temperature 7,.: [ [;, = softmax((W (x;)-Py)/7,), which add
expressivity and reduce perplexity. Using this gate (vs. using a copy of the write gate) may also help
with interpretability, by decoupling the interpretability of channel routing from the interpretability
of sequence aggregation. At layer O we use shared gating (i.e., removing the W linear map in Eq.[I))
which we observed reduces perplexity and increases utility (higher alpha-gate value, see definition
below), likely by providing an inductive bias that reduces noise.

Prefix mean: a cumulative sum operation (as shown in Eq. [l)) which enforces causality in the LM
(for next-token-prediction): at any given sequence position, entries are summed for all previous po-
sitions (j < 1), so the model cannot cheat in the next-token-prediction task. Furthermore, this is a
stronger causality constraint than self-attention, where each positions can also attend to itself. Re-
moving this direct vertical path aims to encourage the write gate to anticipate (predict) the read gate,
and as we show in Section [5.1] this is exactly what happens. The prefix mean has R communica-
tion channels, each corresponding to a prototype. This allows it to aggregate long-context features
in a more expressive ways (versus using one channel). A discounted prefix gives per-channel time
preference, allowing aggregation at different time scales across channels. It is defined an expo-
nential moving average (EMA) (time discount) on the Prefix Mean (Eq. , Br = o(y) € (0,1),
parametrized by learnable ~. It can also be used to interpret the time preference of each prototype, as
in Section[5.1} Mass normalization then turns the prefix cumulative sum into a prefix mean by divid-

ing it by the sum of coefficients 3 _; _; ,B,i_j (x; - Pi). This theoretically stabilizes the computation,
and we have observed reduced perplexity at only minor computational cost.

Alpha Gate: a ReZero-like (Bachlechner et al.| |2020) scalar gate applied at the output of each Pro-
totype Mixer module before it merges with the residual stream (skip-connection). It modulates the
contribution of the mixer to the residual stream, slightly reducing perplexity at almost no computa-
tional cost. It also helps with debugging the model: a low value of alpha at a given layer (declining
rapidly over the course of training) is strong evidence that the mixer is not contributing to the overall
prediction. We initialize o = 1.0 (versus ReZero’s 0.0), which we found works best for ProtoT.

Compute: The ProtoT computational cost scales linearly in sequence length, as visible by Eq.
Note the recurrence in Eq. |1} the Prefix Mean for z; depends only on the Prefix Mean for z;_; and on
x;_1, both of which can be cached. This means that the model can generate tokens at sequence-wise
constant (O(1)) computational and memory cost.

Ablation note. We ablate the layer-0 stabilizers—shared read/write routing, the layer-0 temperature
init 70=3.0, and a k=>5 write-value convolution—in Table [10] (Appendix). The all-mitigations set-
ting is our ProtoT baseline: removing only the convolution degrades perplexity by +12.4 and halves
Q, while disabling all three reproduces the layer-0 collapse.

4 EXPERIMENTAL SETUP

Baselines: We compare Prototype Transformer (ProtoT) to three representative mixer families while
keeping the backbone fixed: depth (6), hidden size (256), FFN ratio (2.7x), RMSNorm, dropout
(0.1), and the training recipe. We use the same tokenizer and optimizer across models and do not
reuse any pre-trained weights. To isolate mixer effects, we exclude MoE and hybrid architectures
(e.g., Jamba) (Lieber et al.|[2024)). We compare against a LLaMA-style Transformer: a single-expert,
decoder-only self-attention Transformer in the LLaMA-3/3.1 style (Grattafiori et al., 2024)), matched
to ProtoT in backbone hyperparameters and training setup. The only architectural difference is the
mixer (self-attention vs. prototype); Mamba: a modern state-space model (SSM) instantiation with
the same dimensionality (6 layers, hidden 256) and FFN configuration as ProtoT (Gu & Dao, [2023)
and DeltaNet (delta-rule linear transformer): a linear-attention baseline following the DeltaNet
formulation, configured with the same width, depth, and FFN ratio as ProtoT (Yang et al., 2024).
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Throughput Benchmarks: We evaluate training throughput under identical conditions (same data
pipeline, optimizer, precision BF16, sequence length 256, batch sizes 32 and 128). ProtoT achieves
25.2 and 7.6 it/s (batch 32/128), outperforming Mamba (11.9 and 3.2 it/s) and DeltaNet (3.5 and
1.8 it/s) while lagging behind the optimized LLaMA attention baseline (55.1 and 23.6 it/s). See
Appendix [A.6|for detailed benchmarks and FLOP analyses.

Dataset: We use a subset of the FineWeb-Edu dataset (Penedo et al., [2024)), a high-quality web
crawl dataset specifically curated for language model training. FineWeb-Edu consists of educa-
tional and informational web pages, providing diverse, coherent text that is well-suited for training
autoregressive language models. The full dataset contains approximately 1.3 trillion tokens (with a
less strict “score-2” filtering version containing 5.4 trillion tokens), but we use a manageable 250
million token subset for our experiments. Our sampled dataset contains 360,313 documents, with
an average document length of 694 tokens. We use a custom BPE tokenizer (Sennrich et al.l 2015)
trained on the dataset with a vocabulary size of 16,000 tokens. For training, we use 338,695 doc-
uments (234.9M tokens) for the train split, 18,015 documents (12.5M tokens) for validation, and
3,603 documents (2.6M tokens) for testing. We chose this dataset over alternatives like C4 or The
Pile because of its focus on high-quality, educational content.

Hyperparameter search: We do hyperparameter search on 18k examples for 10 epochs of the
training data, with the default model sizes: hidden size h=256, layers L=6, and context ctx=256,
unless otherwise specified. We use automatic search over batch size (32, 64, 128) and learning rate
(from interval (3e-5, 3e-2)). For the search, we use Optuna with BoTorchSampler, with 15-trial
warmup and 50 total trials, averaging over 3 seeds per trial. We found that batch size of 32 works
best for all, but that different models have different best LR. See Appendix for more details.

Learning rate and scheduler: We use linear warmup over 2% of training, and cosine annealing
towards 10% of the peak learning rate. This is common practice in large LM training (Kalra &
Barkeshli} [2024)) for two reasons: (1) warmup helps reduce divergence for large LMs (e.g., we ob-
served that LLaMA had convergence issues without warmup when we tried the large-scale setting),
and (2) cosine annealing helps with reaching higher peaks and lower lows of the LR (e.g., we found
that values more than 1.6e-3 were best, compared to 7e-4 for flat LR), and lead to significantly
lower perplexity numbers (2-6 perplexity points lower, depending on the model, in the default data
and model size setting). We train all our models with AdamW (Loshchilov & Hutter; 2017)), fol-
lowing standard practice in language modeling. Compared to SGD, AdamW is more robust to hyp.
choice (Zhao et al., [2024)).

Dropout: For all models, we use dropout (with probability 0.1) after the token embeddings, at the
residual (block output) between blocks, and inside the FFN, because we find that it reduces ppl for all
models. This is likely because it prevents overfitting in the multi-epoch training regime (10 epochs)
that we use. For LLaMA, we additionally put dropout inside the self-attention (HuggingFace-
supported option), which further decreases ppl slightly.

Attention heads and prototypes (R): Similar to (Press & Wolf}, 2017), we have found that shar-
ing the weights between embeddings and LM head reduces perplexity at the hyperparameter search
stage, for all models. This is likely because it provides a good inductive bias aligning the token em-
beddings between input and final projection. We keep this choice at large-scale experiments as well,
for simplicity. We also select attention heads from {2, 4, 8}, but at both small-scale and large-scale
runs we have found that 4 works best for all models with attention heads (LLaMA and DeltaNet),
which is what we use. For ProtoT’s prototypes (R), we have found diminishing returns in terms of
perplexity improvements beyond R=32, while computation scales linearly with R. Therefore, we use
R=32 for all runs. Unless noted, all ProtoT results use the stabilized layer-0 router; see Table@}

5 EXPERIMENTS

Large-scale training: In Table[I] we compare ProtoT to the 3 baselines at large-scale training (first
vs. last column). We study the effect of simultaneously scaling the hidden size 2x, the layers 2x,
the context size by 2x, and the training data ~19x, versus the default training settings. The results
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Table 1: Long-context scalability: Cols. I—4: scaling from the default 256 up to 2048; Cols. 1 & 5:
Default (h=256, L=6, ctx=256, Ex=18k) vs. Large-scale training (h=512, L=12, ctx=512, Ex=339k).
Perplexity (lower is better). Best result in each section in bold.

Model Default 512 1024 2048 Large-scale
LLaMA 81.2 72.6 674 65.6 26.2
Mamba 88.9 80.6 730 71.8 26.9
DeltaNet 93.5 786 729 71.2 32.1
ProtoT 93.6 87.5 834 84.6 30.0

ProtoT (h=512) 100.5 848 763 754 -
ProtoT (L=12) 1133 825 772 793 -
ProtoT (R=64) 97.3 86.0 81.8 83.1 -

show that ProtoT scales well to the large model/data scenario. We show that ProtoT maintains rela-
tive performance to LLaMA, or even improves it (15.3 — 14.5% worse) with scale. Furthermore,
ProtoT outperforms the DeltaNet linear-attention baseline (30.0 vs. 32.1 ppl, respectively). How-
ever, a large gap remains versus LLaMA and the Mamba state-space model (30.0 vs. 26.2 and vs.
26.9, respectively). While we did our best to optimise ProtoT, this is the first iteration of the model,
whereas established LMs like LLaMA have had multiple (Touvron et al.|, [2023ajb; |Grattafiori et al.,
2024). We expect with community feedback and further refinement to shrink this gap.

Long-context scalability: The results in Table [I] (columns 1-4) show that ProtoT scales poorly
with context length (if other model dimensions are fixed), which suggests that ProtoT is running
into a bottleneck. This is likely because the cross-sequence communications pass through the prefix
mean (Eq. E]), over R channels with h hidden dimensions each, which can be restrictive. We further
investigate this issue in the final 3 rows of Table[I} where we compare possible culprits: the hidden
size h, the number of prototypes R, and the layers L (which can also play a role). The results show
that the hidden dimension is the most restrictive as increasing it is the only one of the 3 that keeps
improving with context size beyond 1024. Our model is most affected by this likely because of our
choice to project down to h/2 at the values (V(z;) in Eq to save compute, further exacerbating
this bottleneck. In practice, this is less of an issue because, in more realistic settings (e.g. Large-
Scale Training), the larger capacity of the model would allow for larger context lengths.

Downstream performance: To comprehensively evaluate the general-purpose language under-
standing of ProtoT vs baselines, we fine-tune on the GLUE benchmark (Wang et al., 2018) consist-
ing of 9 English NLU tasks spanning sentence- and sentence-pair classification as well as semantic
textual similarity (more details in Appendix [A.4).

As shown in Table [2] Overall, LLaMA performs best among the compared models, while ProtoT
attains first- or second-place results on multiple tasks, demonstrating stable overall performance.
Specifically, ProtoT achieves the best score on RTE, indicating a structural advantage in natural
language inference under small-sample/low-resource settings; it obtains the second-best score on
COLA, reflecting strong sensitivity to syntactic/local structural cues; and on mainstream single-
sentence/sentence-pair classification tasks such as SST-2 and QNLI, ProtoT maintains consistently
strong performance. For QQP/MRPC (sentence-pair paraphrase/duplicate detection), ProtoT is
slightly behind the top system yet remains competitive. Moreover, ProtoT demonstrates strong
cross-domain robustness on MNLI/MNLI-mm. Taken together with its best result on RTE (a low-
resource NLI task), we believe ProtoT can maintain stable competitiveness on large-scale inference
benchmarks while exhibiting structural advantages in low-resource settings.

Table 2: GLUE dev downstream fine-tuning results (all metrics reported as percentages). For COLA
we report Matthews correlation; for SST-2 accuracy; for MRPC F1; for STS-B Pearson correlation;
for RTE, WNLI, QNLI, MNLI and MNLI-MM accuracy; for QQP F1. Best results are in bold.

Model COLA SST-2 MRPC STS-B RTE WNLI QQP QNLI MNLI MNLI-MM

LLaMA  36.2 923 85.3 85.7 556 46.5 857 863 79.6 80.6
Mamba 31.7  89.2 82.5 783 55.6 563 824 823 752 75.8
DeltaNet 14.2  85.3 81.5 75.7 534 437 813 806 717 2.7
ProtoT 32.7  90.0 81.9 75.1 581 563 816 824 754 74.9
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5.1 INTERPRETABILITY

Prototypes act as explicit representational slots, with each token routed into R prototype channels
through the read gate and updating them via the write gate (Eq. [I). This discrete structure al-
lows features to be stored and reused across the sequence, enabling association of prototypes with
identifiable concepts. Each prototype also has an associated decay parameter [y, applied in the
prefix mean (Eq. [I)) to discount past activations. Larger (; values produce faster decay, while
smaller values allow information to persist longer. For interpretability, we report the derived half-

life t%’;)g = In(2)/Bk, specifying the expected number of steps for a prototype’s contribution to
halve, providing a direct way to analyze specialization in short- or long-term dependencies. By
analyzing the interactions between read and write gates, we inspect Generation behavior—how the
model integrates context for next-token prediction. Studying the resulting activation patterns reveals
the read-write dynamics that guide token generation and shows how the model leverages prototype

representations to process sequences effectively.

Experiments: To investigate intepretability properties, we design three experiments. For concepts
and half-life, we compute write routing activations across sequences from the FineWeb validation
set for each prototype, aggregate them at the sequence level, and rank sequences by total activation
strength. This identifies sequences that most strongly activate each prototype and allows to visually
inspect learned concepts and relation between temporal locality and () parameter.

We also analyze the alternation of write and read phases across the sequence. For a subset of pro-
totypes, we select the most activating sequences and compute write and read routing activations
for each token along the same prototype. This enables inspection of the internal dynamics of Pro-
toT, showing how sequence level information is aggregated and maintained during processing. We
present illustrative examples in Figure[I] Additional examples are included in Figures[5][6] [7] B and
9

We probe the functional role of individual prototypes through a targeted intervention experiment.
Based on ‘write‘ gate activations from the FineWeb validation set, we identified three functionally
distinct prototypes from Layer 9: L9 P7, which encodes a ‘female’ concept; L9 P18, which partially
encodes a ‘male’ concept; and L9 P2, a gender-neutral control. Our intervention consists of disrupt-
ing each of these prototypes via parameter re-initialization and measuring the subsequent change in
the conditional probability of the target words ‘women’ and ‘girls’. We illustrate those prototypes in
Figures and[d] Additional details on the construction of test sentences are in Appendix

Write gate activations results: Analysis reveals that prototypes capture disentangled concepts
across varying levels of semantic abstraction, which naturally emerge as a result of training and
encode interpretable patterns. For example, we can identify concepts like entity names, functional
words, verbs, as well as composite dates, illnesses, or school-related narratives. We also find that
these concepts generally reflect the hierarchical organization of the model, with early layers tending
to capture more superficial patterns and deeper layers representing composite and abstract semantics.
Polysemanticity is present in a few prototypes but remains limited overall. Furthermore, we identify
a correlation between half-life values and the encoded concepts, where lower half-life values tend
to capture local elements (like entities, stop words, or punctuation). These results show that dual-
channel communication forms prototype hubs that can largely be treated as separate, disentangled
concept hubs, highlighting their potential for interpretability.

Write-read alternation pattern results: We observe a consistent temporal pattern in read and
write activations, with read activity peaking one step before write activity. For example, in the
results shown in Figure[T] (right), for the token ‘protection’, the read gate activates prototype 4 at the
preceding token ‘fall’, followed by write activation on ‘protection’. This pattern is consistently seen
across the most strongly activating sequences for each prototype and suggests that read and write
gates may develop coordinated interactions. Such coordination is consistent with a “predict and
consolidate” behavior, where the read gate appears to anticipate which prototype may be relevant for
upcoming tokens, and the write gate subsequently updates the memory based on the current token.

Prototype intervention results: Our intervention experiments, demonstrate that prototypes func-
tion as specific and interacting semantic hubs. Disrupting the ‘female’ prototype L9 P7 significantly
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decreased the probability of related words (e.g., —17.80% for ‘women’ in seed sentence), high-
lighting its functional importance for this concept. The specificity of this effect was validated by
the negligible impact of disrupting the control prototype, L9 P2, as disrupting the ‘male’ prototype
L9 P18 consistently increased the probability of female-coded words (e.g., +11.50% for ‘women’
in seed sentence). These findings indicate that the model learns functionally distinct prototypes
and uses them in an interactive manner to refine its predictions. Additional examples and detailed
descriptions are in Appendix [A3.T]
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Figure 1: Left: Sequences most strongly activating prototype 11 at layer 0, which encodes the con-
cept of narrative in a scholastic context. Right: Write-gate, read-gate, and memory curves for a
sequence that strongly activates prototype 23 at layer 4. Read-gate peaks precede write-gate activa-
tions, spiking on the token immediately before those that trigger write-gate routing.

5.2 ROBUSTNESS

We analyse robustness of ProtoT from three complementary perspectives: (1) robustness to
meaning-preserving noise perturbations, (2) robustness to prototype clamping perturbations, and
(3) robustness to causal interventions that alter semantics. This unified view clarifies both stability
under benign variations and sensitivity to intended changes.

Noise perturbations: We first consider black-box, surface-level perturbations that preserve mean-
ing (e.g., synonyms, typos, contractions). The perturbation benchmark (Appendix [A.3) contains
3,500 semantically equivalent sentence pairs across seven categories. Robustness is quantified by
the Jensen—Shannon divergence JS(p(+|x), p(-|z")) between next-token distributions for an original
input = and its perturbed variant . Lower values indicate greater stability. Table [3| shows that
Mamba attains the lowest J.S overall, confirming strong noise robustness. ProtoT, however, consis-
tently outperforms LLaMA on synonyms, typos, and spelling, and closely matches it on morphology.
This aligns with ProtoT’s design: prototypes aggregate contextual information into nameable con-
cepts, yielding stability under lexical variation. While ProtoT lags LLaMA on punctuation (where
precise attention alignment is beneficial), it reliably surpasses DeltaNet and is overall competitive
with strong baselines.

Table 3: Slice-level robustness measured by Jensen—Shannon divergence (lower is better).
Abbreviations: abbr.=abbreviation, contr.=contraction, morph.=morphology, punct.=punctuation,
spell.=spelling, syn.=synonym, typo=typos. Best per column in bold.

Model abbr. contr. morph. punct. spell. syn. typo

DeltaNet 1.0657 0.8310 0.3784 0.5804 0.3547 0.6363 0.6257
LLaMA 0.3325 0.0449 0.0542 0.1740 0.0634 0.1450 0.2269
Mamba  0.1441 0.0104 0.0308 0.4428 0.0054 0.0130 0.0761
ProtoT  0.4166 0.0823 0.0542 0.3982 0.0260 0.1132 0.2074

Prototype clamping: To test whether robustness is mediated by prototype routing, we com-
pute Prototype-Mediated Robustness (PMR). For a pair (x,z’), let JSpse = JS(p(+|2), p(-|2")).
We then clamp the prototype routing weights from z onto 2’ and recompute JSciamped =
JS(p(-|x), p?mred(.|2")). We define PM R = (J Spase — J Sctamped )/ J Soase- A positive PM R indi-
cates that prototypes mediate robustness, while negative values suggest residual pathways dominate.
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Table [4] shows that mean PM R is sometimes slightly negative, but the positive fraction PM R~
is consistently 0.5-0.6, and JS¢iamped < JSpase across slices. This demonstrates that prototypes
systematically contribute to robustness, providing interpretable routing pathways rather than opaque
head-level aggregation.

Table 4: Prototype-Mediated Robustness (PMR). Mean and std of PMR, fraction of positive cases,
and average JSDs. Best per column in bold.

Slice PMRyecan PMRga PMR o JSpase JSclamped n

abbreviation  -0.093 0.367 0596 0417 0415 500
contraction -0.027 0.104 0.330 0.082 0.083 500
morphology  -0.102 0.689 0426  0.054 0.047 500
punctuation  -0.000 0.373 0.554 0398 0322 500

spelling -0.033 0.225 0.610 0.026 0.025 500
synonym 0.013 0.075 0.606 0.113  0.109 500
typo 0.001 0.279 0.533  0.208 0.186 500

Intervention robustness: Finally, we study robustness under causal interventions that alter seman-
tics: gender, negation, and number tags. Unlike surface perturbations, these flips should change
predictions. We measure .J.S, top-k overlap (Ov), Spearman correlation (Sp), and top-1 invariance
(T1). Higher JS and lower Ov/Sp/T1 indicate greater sensitivity to the intervention. Table [5]shows
that while DeltaNet attains the highest raw .J.S, ProtoT consistently yields lower Ov, Sp, and T1
compared to LLaMA and Mamba. This indicates that ProtoT adapts more reliably under meaning-
altering interventions, reflecting appropriate semantic sensitivity through prototype routing. LLaMA
and Mamba often remain insensitive to such tags.

Table 5: Intervention robustness on gender (gen), negation (neg), and number (num). Metrics: JS
(higher better), Ov/Sp/T1 (lower better). Best values in bold.

Model JS (gen/neg /num) Ov (gen/neg/num) Sp (gen/neg/num) T1 (gen/neg/num)

DeltaNet 0.054/0.173/0.282 0.754/0.540/0.474 0.610/0.176/0.033 0.616/0.388 /0.330
LLaMA 0.004/0.028/0.022 0.946/0.875/0.843 0.966/0.815/0.824 0.890/0.770/0.930
Mamba  0.003/0.006/0.007 0.936/0.935/0.907 0.949/0.910/0.907 0.884/0.992/0.948
ProtoT  0.037/0.081/0.083 0.709/0.774/0.657 0.429/0.536/0.441 0.690/0.806/0.806

Noise perturbation results establish that ProtoT is robust to lexical variation. PMR shows that pro-
totypes actively mediate robustness, exposing interpretable mechanisms. Intervention robustness
confirms that ProtoT distinguishes meaning-preserving from meaning-altering changes. Together,
these findings show that ProtoT not only matches or surpasses baselines in robustness but also pro-
vides transparent pathways for analysing where robustness arises.

6 CONCLUSION

We have introduced the Prototype Transformer (ProtoT), an alternative autoregressive language
model architecture that replaces standard self-attention mechanisms with prototype-based compu-
tation to enhance model interpretability. Through bidirectional communication between learnable
prototype vectors and input sequences, ProtoT demonstrates that architectural design choices can
support interpretability with only small compromise in performance. Our evaluation on GLUE
benchmarks shows competitive results compared to standard transformers, while analysis reveals
that prototypes automatically learn coherent, nameable concepts during training. The architecture
also provides practical advantages through linear computational complexity and enables direct shape
attribution of predictions to specific conceptual components and targeted editability.

Future work will study broader evaluation across diverse tasks and model scales, as well as a more
fine-grained study of the interpretability benefits. In summary, our results show that incorporating
interpretability considerations into architectural design may be compatible with maintaining com-
petitive performance, though the full scope and boundaries of this approach require continued in-
vestigation. ProtoT contributes to ongoing research toward developing LMs that balance capability
with transparency for applications where understanding and correcting model reasoning is essential.
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7 REPRODUCIBILITY STATEMENT

We provide full details of the model architecture, training setup, and evaluation protocols in the
main paper and appendix. The perturbation benchmark dataset (perturbation[...].jsonl),
along with its generation and filtering scripts, is included in the supplementary material
and will be released publicly upon acceptance. In addition, we introduce a manually con-
structed intervention benchmark dataset (intervention_benchmark. jsonl), which tests
semantic interventions on gender, negation, and number. Since the dataset was curated di-
rectly rather than generated by scripts, we will release it in full to ensure exact repro-
ducibility of the intervention robustness experiments. We also include the interactive html
(prototype_visualization.word-level.html). All code to reproduce our experiments
will likewise be made available upon acceptance.
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A APPENDIX

A.1 AI USAGE

We have used LLMs for proofreading the paper and to polish writing, for retrieval and discovery
of related work, and for low-level coding help, e.g. to help us produce the prototype interpretability
html. We have checked all Al output, and have verified that the resulting code is correct and works
as expected.

A.2 ADDITIONAL DETAILS ON EXPERIMENT SETUP FOR LONG-CONTEXT SCALABILITY
AND LARGE-SCALE TRAINING

Batch size: 'We have found that batch size of 32 works best for training among 32, 64, 128, for
all models. Lower batch size values were not considered to preserve parallelisability and reduce
number of training steps. We keep this batch size (32) in larger experiments as well, for simplicity,
and only select the learning rate from a handful of scaling options. Furthermore, smaller batch sizes
generalize better than large batch sizes even with large-scale data (Masters & Luschi, 2018); large
batch sizes are mainly used for hardware utilization and training speed-up as they require fewer steps
to finish training (Ying et al.,[2018).

Learning rate: The best learning rates found via the automatic hyperparameter search for the
default model sizes are: LLaMA: 1.6e-3, Mamba: 3.8e-3, DeltaNet: 6.8e-3, and ProtoT: 2.0e-3.

For the long-context scalability experiment, we have tried increasing the learning rate accordingly
(by square root of context size ratio), as per AdamW scaling laws (Li et al.,|2024), because extended
context is computationally-similar to a larger batch size. However, we have found that scaling the
learning rate helps only for DeltaNet and only in the large-scale model/data setting. In the results,
we report only the best value from scaled vs non-scaled LR for all models.
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For the large-scale training experiment, we ran each model with the best hyp-s from the hyp
search, and with scaled version thereof. We observed instability with Mamba, so we reduced the LR
until it reached stability (from 3.8e-4 down to 2.3e-4). For all other models, we report results with
the best-found learning rates (above).

A.3 PROTOTYPE INTERVENTION EXPERIMENTS

To move beyond correlational observations, we designed an intervention experiment to probe the
functional role of individual prototypes within the model’s predictive process. This methodology
involves systematically manipulating a single prototype by re-initializing it with random noise, and
then measuring the resulting impact on the model’s output probabilities for a targeted linguistic task.
By quantifying this change, we can assess the prototype’s influence and determine its functional
importance for a specific prediction.

A.3.1 IDENTIFYING AND TARGETING CONCEPT-SPECIFIC PROTOTYPES

To identify prototypes that appear to encode distinct, human-understandable concepts. We analyze
the top-activating sentences for each prototype from the visualization reports [need to ref to Matteo’s
part about this visualization]. Based on this analysis, we selected three prototypes from Layer 9
for our study. The prototype L9 P7(Fig. [2), which consistently activates on sentences containing
words such as ‘women’ and ‘girls’, we hypothesize that L9 P7 is a key causal component in the
model’s representation of the "female’ concept. Similarly, we identified prototype L9 P18(Fig.[3) as
a representation for the male’ concept, as it shows high activation for words like ‘man’ and ‘boy’.
Finally, prototype L9 P2(Fig.[d) was selected as a control, as it did not exhibit a clear, gender-coded
semantic preference.

Rank: #1 | Avg: 0.04228 | Sum: 1.31069 | Perplexity: 24.04899 | Tokens: 31

1 5 ] mumiEEE

Full sentence: <bos> did you know that there is a government strategy for women and girls in sports and active recreation to address the in equ alities of girls ' and wom ens '

Rank: #2 | Avg: 0.03370 | Sum: 1.04462 | Perplexity: 19.23349 | Tokens: 31
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Full sentence: <bos> the 11th of february 2016 marked the first international day of women and girls in science. women are often overlooked for their scientific accomplishments and
so the united nations (

Rank: #3 | Avg: 0.03258 | Sum: 1.01011 | Perplexity: 11.18712 | Tokens: 31

Full sentence: <bos> an international team of researchers has found a connection between vitanin d and an increased survival rate in elderly woman. the study, which will be publish
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Rank: #5 | Avg: 0.03175 | Sum: 0.98440 | Perplexity: 46.44048 | Tokens: 31

B e e EEIGEENE I EI

Full sentence: <bos> teenage pregnancy during co
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Figure 2: Visualization for prototype L9 P7

Test Case Construction. To create a controlled and relevant test set, we began with a seed sen-
tence identified from our initial visualization analysis. This sentence was the top-ranked example
from the FineWeb test set that maximally activated the ‘write‘ gate of our primary target, prototype
L9 P7. To expand our test set while maintaining semantic consistency, we then prompted a large
language model (Gemini 2.5 Pro) to generate six additional sentences thematically similar to the
seed sentence, each required to contain the keywords ‘women‘ and ‘girls°.

The resulting corpus of seven sentences used in our experiments is as follows:

* “did you know that there is a government strategy for women and girls in sports and active
recreation to address the inequalities of girls’ and women’s” (seed sentence from FineWeb)

* “Many organizations are working on programs that focus on empowering women and girls
to participate equally in science and technology.”
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Figure 3: Visualization for prototype L9 P18
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Rank: #2 | Avg: 0.07422 | Sum: 2.30096 | Perplexity: 78.61736 | Tokens: 31

1 I - N - [ K e

Full sentence: <bos> save on america ' s first 12 ¢ stamps — they ' re surprisingly affordable... in 1851, new us stamps were issued to replace america ' s very first

Rank: #3 | Avg: 0.06774 | Sum: 2.09985 | Perplexity: 30.76435 | Tokens: 31

1 1 2 Y ) D S T DB

Full sentence: <bos> over time, the fair banks mining district became alaska ' s largest producer of gold, earning it the title “ america ' s k lon di ke.” 15

Rank: #4 | Avg: 0.06469 | Sum: 2.00554 | Perplexity: 53.39868 | Tokens: 31

‘ H - mmunn

Full sentence: <bos> stanford professor ' s new book explo res stein beck ' s range and depth in stories about humanity * s relationship to the natural world analyzing the works of
20th

Rank: #5 | Avg: 0.06338 | Sum: 1.96479 | Perplexity: 37.83271 | Tokens: 31

’ IH W

FULL sentence: <bos> if there ’ s a red - flag word in any head line that should keep people from getting too excited, it ' s the word * may.” still

Figure 4: Visualization for the control prototype L9 P2

* “Did you know that several global initiatives aim to protect the rights of women and girls
Jfrom violence and discrimination?”

* “Education policies are increasingly emphasizing equal opportunities for women and girls
to excel in leadership roles.”

* “Access to healthcare remains a critical issue, and governments are creating strategies to
improve services for women and girls.”

» “International campaigns highlight how climate change disproportionately affects women
and girls in vulnerable communities.”

* “Did you know that mentorship networks are being created to support women and girls in
pursuing careers in engineering and mathematics?”

From this corpus, we defined our test cases. Each case consists of a context (the sentence preceding
a target word) and a completion token (the target word itself). For this study, we focused on the
probability of the target completions ‘women’ and ‘girls’.

Results:  After establishing a baseline probability for each test case using the unmodified model,
we create a copy of the model for each intervention. The intervention method used is Disruption,
where the parameter vector of the target prototype (L9 P7, L9 P18, or L9 P2) is re-initialized with
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random noise, scaled according to the model’s original initialization scheme. This procedure erases
the prototype’s learned knowledge while preserving the overall model architecture. We then measure
the post-intervention probability of the completion token.

The results of our intervention experiments are summarized in Table [6| To focus the analysis on
contexts where the target word is considered a plausible completion by the model, we excluded test
cases where the baseline probability of the target completion was below 1%.

Table 6: Results of disrupting prototypes L9 P7, L9 P18, and L9 P2. The table shows the relative
percentage change in the probability of the target completion word (‘women* or ‘girls‘) compared
to the baseline.

Relative Change in Probability (%) After Intervention

Context Sentence (Truncated) Baseline Prob. (%) L9 P7 ('female’) L9 P18 ('male’) L9 P2 (Control)
Target Completion: ‘women’
...inequalities of girls’ and women’s 3.21 -17.80% +11.50% +0.74%
...empowering women and girls to participate... 4.24 -3.00% -0.13% -0.17%
...protect the rights of women and girls... 13.54 +1.37% +1.43% +0.09%
...equal opportunities for women and girls... 10.14 -0.67% -0.31% -0.75%
...climate change disproportionately affects women... 11.87 +1.81% +0.12% +0.34%
Target Completion: ‘girls’
...inequalities of girls’ and women’s 2.80 -10.62% +0.50% +0.03%
...empowering women and girls to participate... 68.55 +0.11% +0.28% -0.28%
...protect the rights of women and girls... 78.63 -0.45% +0.64% -0.04%
...equal opportunities for women and girls... 60.49 -0.17% +0.56% -0.19%
...improve services for women and girls. 64.33 -1.56% +0.62% -0.15%
...climate change disproportionately affects women... 68.66 -1.01% +1.39% -0.10%
..support women and girls in pursuing careers... 38.32 -3.89% +2.39% -0.55%

Our results reveals a clear causal link between prototype L9 P7 and the model’s representation of
female-coded concepts. Disrupting this *female’ prototype significantly decreased the probability
of target words like ‘women’ (—17.80%) and ‘girls’ (—10.62%), particularly in less constrained
contexts. This effect, however, diminished in test cases where the baseline probability was already
very high (e.g., > 60%), suggesting that highly predictable completions are more robust and less
reliant on any single prototype. The specificity of this function was confirmed by a control experi-
ment where disrupting an unrelated prototype, L9 P2, yielded only negligible changes, proving our
findings are not artifacts of random model perturbations. Furthermore, the interventions uncovered
a more sophisticated dynamic: disrupting the *'male’ prototype, L9 P18, consistently increased the
probability of female-coded words. This suggests an inhibitory or competitive relationship, where
the model refines its predictions by balancing between opposing semantic concepts. Taken together,
these results demonstrate that the model utilizes specific, functionally distinct, and interacting pro-
totypes to represent and manipulate complex concepts like gender.

A.4 DOWNSTREAM (DETAILS)

We provide the training protocol and hyperparameter configuration used for the GLUE downstream
experiments, covering datasets and splits, preprocessing, optimization, early-stopping/selection on
dev, and the hyperparameter sweep and choice rules.

Training protocol: We evaluate four language model architectures: ProtoT, LLaMA, Mamba,
and DeltaNet, on the GLUE benchmark under a unified experimental protocol to ensure fair com-
parison. Unless stated otherwise, all models use the same tokenizer and preprocessing, namely a
BPE tokenizer trained on FineWeb with a 16K vocabulary. Inputs are formed as single-sentence
or sentence-pair prompts according to the task, with a maximum sequence length of 512. To avoid
leakage, we fine-tune on the official training split, select hyperparameters and checkpoints on the
official development split (dev) using early stopping We follow the official GLUE metrics: accu-
racy for SST-2, QNLI, MNLI, QQP, RTE, and WNLI (or the primary metric reported by the official
script), the accuracy and F1 pair for MRPC and QQP, Matthews correlation for CoL A, and Pearson
and Spearman correlations for STS-B.

Optimization and regularization are aligned across models. We use the AdamW optimizer together
with a linear learning-rate schedule with warmup. We apply selective weight decay consistent with
pre-training: decay is applied to affine weights that benefit from it, while embeddings, normalization
layers, and biases receive no decay. The weight-decay coefficient is 0.01. The batch size is 16. Fine-
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tuning runs for up to 3 epochs with early stopping on dev, and the dev-best checkpoint is used to
generate test predictions. Unless otherwise specified, a fixed random seed is used across tasks and
models to support reproducibility.

Hyperparameter selection: Because architectures differ in optimization sensitivity, we conduct
per-model hyperparameter selection. For each model we run small grid searches on two represen-
tative tasks, SST-2 (medium-scale binary classification) and MNLI (large-scale multi-class classifi-
cation). We sweep learning rates over a logarithmic grid that includes 2.5e-5, 3.5e-5, 5.5e-5, le-4,
2e-4, 3e-4, 4e-4, Se-4, Te-4, 8.5¢e-4, 1e-3, and we sweep warmup ratios over 6% and 10%. The best
learning rate and warmup found per model on these representative tasks are then fixed for that model
across the remaining GLUE tasks. All other training details, such as batch size, maximum length,
selective decay, optimizer settings, and early-stopping criterion, remain identical across models.

The final per-model settings in our environment are as follows. PrototypeAttn uses a learning rate
of 3.5e-5 with 6% warmup. LLaMA uses a learning rate of 5.5e-5 with 10% warmup. Mamba uses
a learning rate of le-4 with 10% warmup. DeltaNet uses a learning rate of 7e-4 with 10% warmup.

A.5 ROBUSTNESS (DETAILS)

This appendix details the perturbation set, metrics, and slice-level statistics for the black-box robust-
ness experiments.

A.5.1 PERTURBATION DATASET CONSTRUCTION

We created a dedicated perturbation dataset (perturbation_benchmark_clean. jsonl)
spanning seven categories of meaning-preserving surface noise, 500 pairs each (3,500 total): Syn-
onyms (WordNet (Miller, |1993)), filtered by semantic similarity and lexical heuristics), Typos (single-
character keyboard noise), Spelling variants (AmE vs. BrE; e.g., color — colour), Morpholog-
ical variants (e.g., singular — plural), Contractions/Expansions (e.g., do not <> don’t), Punc-
tuation/Casing (insertion/removal), and Abbreviations/Short forms (e.g., Doctor — Dr.). Pairs
were generated via rule-based perturbations, curated resources (abbreviation/contraction pools),
and WordNet substitutions, then filtered with a two-stage pipeline: (i) Sentence-BERT similar-
ity (Reimers & Gurevychl 2019) (MiniLM (Wang et al., 2020)), and (ii) lexical heuristics (fre-
quency/casing). Source corpora: WikiText-2 (Merity et al.|[2016), DailyDialog (Li et al., 2017), and
AG News |Zhang et al.| (2015).

Table 7: Example sentence pairs from the perturbation benchmark.

Category Original Perturbed
Abbreviation Doctor Smith arrived. Dr. Smith arrived.
Contraction [ cannot go. I can’t go.
Synonym He was happy. He was glad.
Spelling 1 like this color. 1 like this colour.

A.5.2 VARIANCE STATISTICS

To quantify dataset quality, we report variance in terms of (i) semantic similarity (cosine similarity
of MiniLM embeddings) and (ii) character-level edit distance (Levenshtein, [1966)). Table E] summa-
rizes per-slice averages. We observe that some slices produce small lexical changes but potentially
large distributional effects (e.g., typos), while others involve more extensive edits but maintain high
semantic similarity (e.g., abbreviations, synonyms), confirming that the dataset spans a wide spec-
trum of perturbation difficulty.

A.6 THROUGHPUT BENCHMARKS (PROTOT, MAMBA, LLAMA, DELTANET)

We evaluate under identical conditions: same data pipeline, optimizer, precision (BF16), sequence
length 256, and batch sizes 32 and 128. FLOP counts are per-sample (forward+backward) where

17



Under review as a conference paper at ICLR 2026

Table 8: Variance statistics for the perturbation benchmark (3,500 pairs total). Best values in bold.

Synonym Typo Spelling Morphology Contraction Punctuation Abbreviation

Avg. Similarity 0.828  0.775  0.956 0.881 0.895 0.983 0.894
Avg. Edit Distance ~ 5.89 1.03 1.20 1.00 2.54 1.09 7.23

Table 9: Training throughput (it/s; higher is better) and elapsed time (s; lower is better) for
matched-depth/width models at seq. len. 256 (BF16). FLOPs are reported in units of x10° (for-
ward+backward). When compilation was unavailable, values reflect the fastest steady-state runs
without compilation.

Model Batch it/s Elapsed (s) FLOPs/sample (x10°) Total FLOPs (x10°) Params

ProtoT 32 252 34.57 41,583.0 1,330,657.0 12,205,266
ProtoT 128 7.6 31.32 41,583.0 5,322,625.2 12,205,266
Mamba 32 119 58.17 34,734.9 1,111,517.4 6,724,352
Mamba 128 3.2 54.26 34,734.9 4,446,069.4 6,724,352
DeltaNet 32 35 222.88 — — 12,963,456
DeltaNet 128 1.8 182.06 — — 12,963,456
LLaMA 32 551 26.16 49,341.5 1,578,929.0 12,938,496
LLaMA 128 23.6 22.30 49,341.5 6,315,714.3 12,938,496

obtainable. Observations: Table [0] summarizes training throughput at batch sizes 32 and 128 for
matched-depth/width models. LLaMA attains the highest throughput overall (55.1 and 23.6 it/s).
ProtoT sustains 25.2 and 7.6 it/s and is ~ 2.1-2.4x faster than Mamba (11.9 and 3.2 it/s) at the
same backbone. The FLA-based DeltaNet baseline, evaluated without fused delta kernels and with
torch.compile disabled, reaches 3.5 and 1.8 it/s (batch 32/128).

A.7 ABLATIONS
A.7.1 LAYER-0 ROUTING ABLATIONS

We ablate the three mitigations that stabilise the layer-O router: (i) sharing the write/read routing
distribution, (ii) sharpening the initial temperature (79 = 3.0), and (iii) adding a k = 5 depth-wise
convolution to the write-value path of layers 0—1. Each configuration fine-tunes a 6-layer ProtoT on
the FineWeb 18k/4k split (sequence length 256, seed 0) for three epochs, using the same optimiser,
tokenizer, and learning rate as the main experiments. We report best validation perplexity alongside
routing diagnostics logged on the dev set.

Table 10: Layer-0 routing ablations on FineWeb. Metrics come from the final validation epoch
(val_router_stats.csv)and the best dev perplexity tracked during training. Lower perplexity,
Gini, and top-1 probability imply healthier routing; higher &y indicates the ReZero gate remains
active. Best values are in bold.

Variant Shared Ly 7o init Write conv Bestvalppl| &o T Gini] top-1]
All mitigations (baseline) On 30 k=5 133.3 0.672 0.034 0.079
No shared routing Off 30 k=5 133.4 0.658 0.064 0.082
T reset to 1.0 On 1.0 k=5 133.6 0.653 0.035 0.088
No write conv On 3.0 Off 145.7 0.354 0.097 0.177
All mitigations off Off 1.0 Off 149.9 0.261 0.243 0.373

The convolution contributes most to stability: removing it roughly doubles router concentration
(top-1 rises from 0.079 to 0.177), increases hub inequality, and cuts the layer-0 ReZero gate in half,
ultimately worsening perplexity by +12.4 points. Shared routing and the sharpened 7 have smaller
individual effects on perplexity, but together they keep hub utilisation uniform (gini 0.034) while
allowing the gate to stay near its baseline value. Disabling every mitigation reproduces the original
alpha-collapse, dropping & to 0.261 and letting a single hub monopolise 37% of the mass.
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Interpretation. Shared write/read routing and the sharper initial temperature primarily act as reg-
ularisers: they prevent the router from collapsing mass onto a few hubs without hurting sample
efficiency. The depth-wise convolution, in contrast, provides an expressivity boost that both im-
proves perplexity and raises the effective signal scale entering layer O; once it is removed the router
cannot maintain broad support and the ReZero gate decays. The combination of all three mitigations
therefore offers a balanced trade-off between stability and performance.

A.8 ADDITIONAL INTEPRETABILITY EXAMPLES

In this section we provide additional examples from the write gate activation interpretability experi-
ment, useful to better illustrate results about learned concept representation.

Rank: #1 | Avg: 0.06017 | Sum: 1.50422 | Perplexity: 20.39187 | Words: 25

national anuatty B auou TR ] EEERSRERRER B et O PR v e [ ceteoraes R

Full sentence: liechtenstein national day observed annually on august 15th, liechtenstein ' s national day is a holiday that ' s celebr
ated in the world ’

Rank: #2 | Avg: 0.05802 | Sum: 1.27646 | Perplexity: 62.08203 | Words: 22

et - I- feieareed HI e i I s cateprated

Full sentence: national democracy day, also known as rashtriya prajatantra diwas is celebrated in falgun 7 every year. this day is cele
brated

Rank: #3 | Avg: 0.05756 | Sum: 1.72691 | Perplexity: 88.66944 | Words: 30

shs nekll-zzialzzlnlmatthew HIHIBZMME

Full sentence: sick of religion? week 7: devotional day 2 day 2 — tuesday mark 3: 23 - 27; matthew 12: 22 - 32 why does jesus

Rank: #4 | Avg: 0.05741 | Sum: 1.54996 | Perplexity: 15.89892 | Words: 27

84 incernationa, notocaust (TSR O P soruary 2 [ [ 2o e e P FEOPRMONR vy 27 B B it scervations [BB) ) comenraion [ enory

Full sentence: the international holocaust remembrance day is january 27. in 2605 the united nations designated january 27 as an annual
international day of commemoration in memory of

Rank: #5 | Avg: 0.05710 | Sum: 1.71297 | Perplexity: 707.04768 | Words: 30

australia since federation defining moments l 1901 H present investigation 6 l m groups 6 I 4 the dunera H the defining moment I australian history l

Full sentence: australia since federation defining moments, 1901 — present investigation 6: significant groups 6. 4 1940 the dunera boy
s based on the defining moment in australian history:

Figure 5: Visualization for prototype L0 P18. Half-life = 12.8
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Rank: #1 | Avg: 0.03446 | Sum: 0.86152 | Perplexity: 15.69676 | Words: 25

wine 35 an atconoric [Beveraoe| wade ot semmencea grape [ f] e noruren

Full sentence: wine is an alcoholic beverage, typically made of fermented grape juice. the natural chemical balance of grapes is such t
hat they can ferment

balance of grapes is such that they can ferment

Rank: #2 | Avg: 0.03421 | Sum: 0.64992 | Perplexity: 4.57287 | Words: 19

coronavirus [T zenlccvmll  caused by severe - SN coronavirus zsarsl

Full sentence: coronavirus disease 2019 ( covid - 19 ), caused by severe acute respiratory syndrome coronavirus 2 ( sars -

Rank: #3 | Avg: 0.03410 | Sum: 0.78437

-ﬂ baby health disposable nappies contain many [Rlaie] <o [ cren 1ty ]

Full sentence: chemicals in disposable nappies: chemical products and baby health disposable nappies contain many types of chemicals to
make them fluffy, white

Perplexity: 39.65157 | Words: 23

chemicals in disposable napDiesI

Rank: #4 | Avg: 0.03403 | Sum: 0.64666 | Perplexity: 8.34172 | Words: 19

conjugated linoleic I cla ) the amount of conjugated linoleic

Full sentence: conjugated linoleic acid ( cla ) the amount of conjugated linoleic acid ( cla ) in the american diet

cla ) I the american

Rank: #5 | Avg: 0.03398 | Sum: 0.88355 | Perplexity: 13.66257 | Words: 26

15 the bipotar bipotar affective ish caused E disorders of the _ functions In is characterized I the n

Full sentence: what is the bipolar disorder? bipolar affective disorder is a disease caused by disorders of the cerebral functions. it
is characterized by the alter

Figure 6: Visualization for prototype L1 P14. Half-life = 13.2

Rank: #1 | Avg: 0.02746 | Sum: 0.68651 | Perplexity: 20.30275 | Words: 25
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Full sentence: combating childhood obesity by michelle ballasiotes global childhood obesity rates are on the rise. in the united states
, there have been many efforts

Rank: #2 | Avg: ©.02491 | Sum: 0.77217 | Perplexity: 32.07494 | Words: 31

w adhd I I adhd

Full sentence: adhd impact and the right diagnosis the impact of adhd around 4 - 6 % of the school age population receive a diagnosis o
f adhd but not all of them require

Rank: #3 | Avg: 0.02455 | Sum: 0.63832 | Perplexity: 31.71039 | Words: 26

prevatence premypertension

Full sentence: prevalence of hypertension and prehypertension among children and adolescents in a semi - urban area of uyo metropolis,
nigeria introduction: in the past,

Rank: #4 | Avg: 0.02320 | Sum: 0.58011 | Perplexity: 151.92471 | Words: 25

o fhenk M

Full sentence: chettinad - sarvalokaa education teaching gratitude to children saying " thank - you " is one of the first rules for goo
d manners that parents

Rank: #5 | Avg: ©.02293 | Sum: 0.61900 | Perplexity: 17.68938 | Words: 27

el m IM. - -

Full sentence: march 30 is world bipolar day bipolar disorder is a mood disorder that typically has its onset in the late teens to earl
y twenties. while bipolar

Figure 7: Visualization for prototype L7 P31. Half-life = 12.7
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Rank: #1 | Avg: 0.54276 | Sum: 14.65447

ol i . & I 22 e

Full sentence: - development & aid - economy & trade - human rights - global governance - civil society tuesday, may 30, 2023 daniel b
haber darjeeling

Perplexity: 10.83833 | Words: 27

Rank: #2 | Avg: 0.37589 | Sum: 11.27661 | Perplexity: 5.47651 | Words: 30

-
B ccotooy untscarson [P pw-- Js interpretive [EONPH

Full sentence: submitted to: applied soil ecology publication type: peer reviewed journal publication acceptance date: 11 / 1 / 1998 pu
y:

blication date: n / a interpretive summar

B date I &

Rank: #3 | Avg: 0.36520 | Sum: 10.59088

[ reicres R rovny fentires [ oeneran arictes || EE

Full sentence: - articles index - monthly features - general history articles - ancient near east - classical europe and mediterranean
- east asia - steppes & central asia - south

Perplexity: 48.74968 | Words: 29

east I classical europe and mediterranean I

Rank: #4 | Avg: 0.33228 | Sum: 9.30394 | Perplexity: 1.31854 | Words: 28

Full sentence: our editors will review what you ’ ve submitted and determine whether to revise the article. join britannica ' s publish
ing partner program and our community of

Rank: #5 | Avg: 0.33228 | Sum: 9.30394 | Perplexity: 1.31854 | Words: 28

mm ."dm“herln

britannica IH publishing partner program M@a community

ve submitted and determine whether to revise the article. join britannica ' s publish

Full sentence: our editors will review what you
ing partner program and our community of

Figure 8: Visualization for prototype L8 PS. Half-life = 0.140

Rank: #1 | Avg: 0.18802 | Sum: 5.07651 | Perplexity: 34.16148 | Words: 27

.“’e"C"es wr frenehes --- fesrenes H

Full sentence: the german trenches the first world war trenches recreate both french and german trenches from the early war period. thi
s was an area that saw heavy

Rank: #2 | Avg: ©.14767 | Sum: 4.55921 | Perplexity: 22.11215 | Words: 31

[t it I i I

Full sentence: crying is an emotional response to many different feelings, including sadness, anger, happiness and pain. people cry for
an emotional release and also as a survival mechanism

Rank: #3 | Avg: 0.12061 | Sum: 3.49765 | Perplexity: 41.52935 | Words: 29

v T B

Full sentence: military parade marks hitler ' s birthday adolf hitler and nazi germany gathered the most headlines during the week of a
pril 17 - 23, 1939, as world

Rank: #4 | Avg: ©.10958 | Sum: 3.17774 | Perplexity: 36.50332 | Words: 29

Dm“ e““szs R I .

Full sentence: secret german postwar project more than 1, 500 german scientists, engineers and technicians ( many of whom were formerly
registered members of the nazi party, some

Rank: #5 | Avg: 0.10371 | Sum: 2.69643 | Perplexity: 29.32880 | Words: 26

- prorted - et

Full sentence: after the end of the second world war, messerschmitt — the storied german aircraft manufacturer, were forced to abandon
aircraft production given the sanc

Figure 9: Visualization for prototype L10 P8. Half-life = 0.510
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