

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PROTOTYPE TRANSFORMER: TOWARDS LANGUAGE MODEL ARCHITECTURES INTERPRETABLE BY DESIGN

Anonymous authors

Paper under double-blind review

ABSTRACT

While state-of-the-art language models (LMs) surpass the vast majority of humans in certain domains, their reasoning remains largely opaque, undermining trust in their output. Furthermore, while autoregressive LMs can output explicit reasoning, their true reasoning process is opaque, which introduces risks like deception and hallucination. In this work, we introduce the Prototype Transformer (ProtoT)—an autoregressive LM architecture based on prototypes (parameter vectors), posed as an alternative to the standard self-attention-based transformers. ProtoT works by means of two-way communication between the input sequence and the prototypes, and we show that this leads to the prototypes automatically capturing nameable concepts (e.g. “woman”) during training. They provide the potential to interpret the model’s reasoning and allow for targeted edits of its behavior. Furthermore, by design, the prototypes create communication channels that aggregate contextual information at different time scales, aiding interpretability. In terms of computation scalability, ProtoT scales linearly with sequence length vs the quadratic scalability of SOTA self-attention transformers. Compared to baselines, ProtoT scales well with model and data size, and performs well on text generation and downstream tasks (GLUE). ProtoT exhibits robustness to input perturbations on par or better than some baselines, but differs from them by providing interpretable pathways showing how robustness and sensitivity arises. Reaching close to the performance of state-of-the-art architectures, ProtoT paves the way to creating well-performing autoregressive LMs interpretable by design.

1 INTRODUCTION

Large-scale autoregressive language models have achieved strong performance across various domains, with architectures like GPT-4 and LLaMA (Achiam et al., 2023; Touvron et al., 2023a) demonstrating capabilities on benchmarks spanning mathematical reasoning, code generation, and natural language understanding tasks. However, these models exhibit limited transparency in their reasoning processes, creating challenges for understanding how they arrive at their outputs and potentially limiting their deployment in applications where interpretability is important. For example, it has been observed that there is a large disconnect between models’ explicit reasoning and their internal computational processes (Greenblatt et al., 2024): while language models can generate step-by-step explanations when prompted, research indicates that these explanations may not reflect their actual reasoning pathways (Turpin et al., 2023). This opacity also contributes to hallucination behaviors, where models generate confident but factually incorrect outputs without clear indicators of uncertainty (Zhang et al., 2025).

Current interpretability methods for language models primarily operate as post-hoc analysis tools on architectures not designed with interpretability as a primary consideration. Approaches such as attention visualization (Clark et al., 2019), probing techniques (Tenney et al., 2019), and causal intervention methods (Meng et al., 2022) provide insights into model behavior but face limitations imposed by the underlying self-attention architecture. More recent techniques like sparse autoencoders (Kissane et al., 2024) attempt to disentangle superposed features within existing architectures, though they still operate within the constraints of standard transformer designs.

In this work, we present the Prototype Transformer (ProtoT), an alternative autoregressive language model architecture that incorporates interpretability considerations directly into its design. ProtoT

054 replaces the standard self-attention mechanism with a prototype-based approach, where learnable
 055 parameter vectors engage in bidirectional communication with input sequences. This design choice
 056 allows prototypes to capture interpretable concepts during training, providing more direct access to
 057 the model’s reasoning components.

058 ProtoT offers several characteristics that distinguish it from standard transformer architectures. The
 059 prototype-based design enables direct inspection and modification of learned concepts, supporting
 060 targeted behavioral adjustments based on identifiable reasoning components. The architecture ag-
 061gregates contextual information across different temporal scales through prototype communication
 062 channels, which facilitates the interpretation of both local and global reasoning patterns. Addi-
 063tionally, ProtoT operates with linear computational complexity relative to sequence length, versus
 064 quadratic for the standard self-attention. The explicit prototype representations enable attribution of
 065 predictions to the internal pathways that generated them, allowing inspection of how information is
 066 routed. Our contributions are briefly as follows:

- 067 • We introduce ProtoT, a novel autoregressive language model architecture that replaces self-
 068 attention with prototype-based communication. The architecture uses learnable parameter vectors
 069 that engage in bidirectional communication with input sequences, achieving linear computational
 070 complexity while maintaining competitive performance.
- 071 • We demonstrate that prototypes automatically learn disentangled, nameable concepts during train-
 072 ing, across abstraction levels, enabling interpretation of model reasoning. We also show the per-
 073 prototype time preference, and “predict and consolidate” behavior patterns. We show that targeted
 074 behavior edits are possible for a wide range of concepts through selective prototype intervention.
- 075 • We provide extensive evaluation showing that ProtoT achieves competitive text generation qual-
 076 ity and downstream performance, while offering superior robustness analysis. The architecture
 077 demonstrates stability under meaning-preserving perturbations, mediated by the prototypes.

079 2 RELATED WORK

082 **Interpretability in Language Models.** One of the main goals when it comes to interpreting lan-
 083 guage models is to identify which components—such as heads, layers, or neurons—are responsible
 084 for specific behaviors (Zhang & Nanda, 2023). This is non-trivial, as attention magnitude does not
 085 necessarily imply causal importance (Jain & Wallace, 2019). Moreover, phenomena like *superposi-
 086 tion*, where multiple features are encoded in overlapping directions, make isolating concepts difficult
 087 (Elhage et al., 2022). Consequently, this problem is often approached via causal intervention, ana-
 088 lyzing activation differences between clean and corrupted prompts (Meng et al., 2022; Geva et al.,
 089 2023; Wang et al., 2022). A recent promising direction involves Sparse Autoencoders (SAEs), ap-
 090 plied not just to MLPs but also to attention outputs (Kissane et al., 2024), aiming to disentangle
 091 superposed features into interpretable units (Rai et al., 2024).

092 **Prototype Methods.** Prototype methods seek to render decisions interpretable by relating inputs
 093 to learned examples. In computer vision, this often involves comparing inputs to prototypical parts
 094 for classification (Chen et al., 2019; Rymarczyk et al., 2022). Recently, ProtoViT (Ma et al., 2024)
 095 adapted this to Vision Transformers, using prototypes as deformable parts in the final layer. In NLP,
 096 approaches like ProtoAttend (Arik & Pfister, 2020) use attention over entire training examples for
 097 decision-making. Other architectures, such as PrototyNet (Hong et al., 2023) and ProSeNet (Meng
 098 et al., 2022), introduce prototype trajectories or sparsity constraints to refine interpretability. Unlike
 099 many of these works which place prototypes only at the final classification stage, our architecture
 100 integrates prototype routing at every level of the hierarchy. Recent advances also include ProtoLens
 101 for sub-sentence span extraction (Wei & Zhu, 2025) and white-box frameworks for sentiment detec-
 102 tion (Wen & Rezapour, 2025).

102 **Alternatives to Self-Attention.** Recent work has explored replacing standard self-attention with
 103 mechanisms using fixed sets of latent vectors. Slot Attention (Locatello et al., 2020) employs a
 104 competitive binding mechanism (softmax over slots) to segment inputs, but relies on iterative refine-
 105 ment steps (e.g., GRU) over static inputs. The Perceiver family (Jaegle et al., 2022; Hawthorne et al.,
 106 2022) decouples compute from input size by projecting data into a latent space processed by a stan-
 107 dard transformer stack. Our ProtoT mixer differs fundamentally in both interaction and state update.
 108 Unlike Perceiver, where latents interact globally via self-attention ($O(R^2)$), ProtoT prototypes never

Figure 1: A single autoregressive step of the ProtoT mixer module. Prototypes P_1, \dots, P_R route inputs x_1, \dots, x_{i-1} (past-only – excluding x_i) into R channels via similarity scores at the *write gate*. Time-discount and time-wise mean are applied per channel. The *read gate* reads from each channel via the similarity between its prototype and x_i , followed by aggregation into the output y_i .

interact; they serve as filters for R independent, parallel channels ($O(R)$). And unlike Slot Attention’s iterative refinement, ProtoT updates state autoregressively via strict past-only time-discounted aggregation (EMA). This design creates a semantic routing bottleneck rather than a general-purpose processing workspace, encouraging prototypes to capture nameable concepts (Sec. 5.1).

3 PROTOTYPE TRANSFORMER

The prototype transformer (ProtoT) is an autoregressive LM architecture, based on prototypes. It is a transformer stack identical to LLaMA-3 (Grattafiori et al., 2024), apart from the mixer module: ProtoT uses a prototype-based mixer instead of standard self-attention. Like LLaMA-3, ProtoT has L blocks (“layers”), each consisting of a mixer and a SwiGLU (Shazeer, 2020) feed-forward (FFN) module with the same intermediate ratio of ~ 2.7 as in LLaMA-3, and skip-connections with RMS pre-layernorm (Zhang & Sennrich, 2019) around each of the mixer module and the FFN.

Prototype mixer: This module is a self-attention alternative that uses R prototypes (trainable parameter vectors) to route the communication across the sequence through R corresponding channels (Fig. 1). Communication in and out of the channel is mediated via a write gate (in) and read gate (out) (Eq. 1 and 2). Each prototype is used as a filter via the write gate to aggregate (time-discounted) information from the past, defining a communication channel, and reading back the information via the read gate into the sequence. The prototype mixer follows the following formula applied at any token position i , for linear maps U , V , and W , with full details below:

$$x_i \leftarrow U \left(\sum_{k=1, \dots, R} \underbrace{\text{Softmax}_k \left((W(x_i) \cdot \mathbf{P}_k) / \tau_r \right)_k}_{\text{Read Gate}} \underbrace{\text{PM}(\mathbf{P}_k, x_1, \dots, x_{i-1})}_{\text{Prefix Mean, channel } k} \right), \text{ where:} \quad (1)$$

$$\text{PM} = \left(\sum_{j:j < i} \beta_k^{i-j} \underbrace{\text{Softmax}_k \left((x_j \cdot \mathbf{P}_k) / \tau_w \right)_k}_{\text{Write Gate}} V(x_j) \right) / \underbrace{\sum_{j:j < i} \beta_k^{i-j} \text{Softmax}_k \left((x_j \cdot \mathbf{P}_k) / \tau_w \right)_k}_{\text{Mass Normalization}} \quad (2)$$

Communication passes through an R -channel bottleneck, each channel mediated by a prototype via the read and write gate. This bottleneck encourages the network to specialize the channels semantically, which in turn specializes the prototypes semantically. This is likely what leads to the prototypes capturing nameable concepts at the write gate (Sec. 5.1).

Write gate: a cross-attention-like gating mechanism between prototypes P_k and inputs x_j (Eq. 2), reweighing the values ($V(x_j)$). Unlike cross-attention, the Write Gate uses softmax over the prototypes, to do channel-aligned rather than sequence-aligned gating. It writes information from the

162 sequence into the R channels, and uses a learned temperature τ_w for added expressivity. At layers 0
 163 and 1 we also add a *local convolution* at the values stream (immediately after $V(x_j)$) – a convolution
 164 with kernel size 5, across the 4 past tokens and the current one, with h channels corresponding to the
 165 hidden dimension. It adds expressivity at the value stream, by capturing short-term relationships,
 166 and we show reduced perplexity and increased utility of layer 0, as measured by increased alpha-gate
 167 (Appendix A.7.1, Table 15). We also show kernel-size ablations in Appendix A.7.2, Table 16.

168
 169 **Read gate:** a cross-attention-like mechanism that reads information from the R channels according
 170 to similarity with the corresponding R prototypes Eq.2. It is identical to the write gate, except for
 171 the linear map $W(x_i)$ and separate temperature τ_r , which add expressivity and allow for read/write
 172 gate specialization. This specialization may also help with interpretability, by decoupling the reading
 173 and the writing mechanisms. At layer 0 we use *shared read/write routing* (removing the W
 174 linear map) and sharper τ_r initialization (3.0 vs 1.0) which we show (Appendix A.7.1, Table 15)
 175 reduce perplexity and increase utility (higher alpha-gate value, defined below), likely by providing
 176 an inductive bias that reduces noise.

177
 178 **Prefix mean (PM):** aggregator of past information via R communication channels, each corre-
 179 sponding to a prototype. In PM, a cumulative sum operation (Eq. 2) enforces a *strict autoregressive*
 180 *constraint* for next-token prediction. At position i , the aggregation is only on entries from pos-
 181 iitions $j < i$, so the representation used for predicting token i is a function of the past context only.
 182 In contrast, standard self-attention allows position i to attend directly to itself, providing a vertical
 183 shortcut from the input at position i to the output at the same position. By removing this direct path,
 184 the prefix mean encourages the write gate to base its updates on earlier positions and to anticipate
 185 the needs of the read gate, which we empirically demonstrate in Section 5.1. A *discounted prefix*
 186 gives per-channel time preference, allowing aggregation at different time scales. It is defined as
 187 exponential moving average (EMA) (time discount) on the Prefix Mean, via $\beta_k = \sigma(\gamma_k) \in (0, 1)$,
 188 parametrized by learnable γ_k . It can also be used to interpret the time preference of each prototype,
 189 as in Section 5.1. *Mass normalization* then turns the prefix cumulative sum into a prefix mean by
 190 dividing it by the sum of coefficients. This theoretically stabilizes the computation, and we have
 191 observed reduces perplexity at a small computational cost (Appendix A.7.2, Table 18). We also use
 192 *low-rank projection* at 1/2 of the hidden size (h) at the value stream ($V(x_j)$), which saves up to
 193 50% compute at the mixer module, with similar performance (Table 18). We keep the prototypes
 194 and routing (read and write gates) in the full size h as their computational cost is only linear in h .

195
 196 **Alpha Gate:** a ReZero-like (Bachlechner et al., 2020) scalar gate applied at the output of each Proto-
 197 type Mixer module before it merges with the residual stream (skip-connection). Unlike ReZero,
 198 which uses it to improve training of extremely-deep models, we use it as a low-computational-cost
 199 debugging tool: a low value of α at a given layer (declining rapidly during training) is a strong evi-
 200 dence that the mixer is not contributing to the overall prediction. Due to this role of α , we initialize
 201 it at identity (1.0) (vs ReZero’s 0.0), which also performs better (see Appendix A.7.2, Table 17).

202
 203 **Compute:** The ProtoT computational cost scales linearly in sequence length, as visible by Eq. 1
 204 and 2. Note the recurrence in Eq. 2: the Prefix Mean for x_i depends only on the Prefix Mean for
 205 x_{i-1} and on x_{i-1} , both of which can be cached. This means that the model can generate tokens at
 206 sequence-wise constant ($O(1)$) computational and memory cost.

207 4 EXPERIMENTAL SETUP

208
 209 **Baselines:** We compare ProtoT to three representative mixer families while keeping the backbone
 210 fixed: depth (6), hidden size (256), FFN ratio ($2.7\times$), RMSNorm, dropout (0.1), and the training
 211 recipe. We use the same tokenizer and optimizer across models and do not reuse any pre-trained
 212 weights. To isolate mixer effects, we exclude MoE (e.g., Qwen-3) (Yang et al., 2025) and hybrid
 213 architectures (e.g., Jamba) (Lieber et al., 2024). We compare against a *LLaMA-style Transformer*:
 214 a single-expert, decoder-only self-attention Transformer following LLaMA-3/3.1 (Grattafiori et al.,
 215 2024), matched to ProtoT in backbone hyperparameters and training setup. The only architectural
 216 difference is the mixer (self-attention vs. prototype); *Mamba* (Gu & Dao, 2023): a modern state-
 217 space model (SSM) instantiation with the same dimensionality (6 layers, hidden 256) and FFN

216 configuration as ProtoT; and *DeltaNet* (Yang et al., 2024) (*delta-rule linear transformer*): a linear-
 217 attention baseline, configured with the same width, depth, and FFN ratio as ProtoT.
 218

219 **Dataset:** We use a subset of the FineWeb-Edu dataset (Penedo et al., 2024), a high-quality web
 220 crawl dataset specifically curated for language model training. FineWeb-Edu consists of educational
 221 and informational web pages, providing diverse, coherent text that is well-suited for training
 222 autoregressive language models. The full dataset contains approximately 1.3 trillion tokens (with a
 223 less strict “score-2” filtering version containing 5.4 trillion tokens), but we use a manageable 250
 224 million token subset for our experiments. Our sampled dataset contains 360,313 documents, with
 225 an average document length of 694 tokens. We use a custom BPE tokenizer (Sennrich et al., 2015)
 226 trained on the dataset with a vocabulary size of 16,000 tokens. For training, we use 338,695 doc-
 227 uments (234.9M tokens) for the train split, 18,015 documents (12.5M tokens) for validation, and
 228 3,603 documents (2.6M tokens) for testing. We chose this dataset over alternatives like C4 or The
 229 Pile because of its focus on high-quality, educational content.
 230

231 **Hyperparameter search:** We do hyperparameter search on 18k examples for 10 epochs of the
 232 training data, with the default model sizes: hidden size $h=256$, layers $L=6$, and context $ctx=256$,
 233 unless otherwise specified. We use automatic search over batch size (32, 64, 128) and learning rate
 234 (from interval (3e-5, 3e-2)). For the search, we use Optuna with BoTorchSampler, with 15-trial
 235 warmup and 50 total trials, averaging over 3 seeds per trial. We found that batch size of 32 works
 236 best for all, but that the best learning rate varies across models. See Appendix A.2 for more details.
 237

238 **Learning rate (LR) and scheduler:** We use linear warmup over 2% of training, and cosine annealing
 239 towards 10% of the peak learning rate. This is common practice in large LM training (Kalra &
 240 Barkeshli, 2024) for two reasons: (1) warmup helps reduce divergence for large LMs (e.g., we ob-
 241 served that LLaMA had convergence issues without warmup when we tried the large-scale setting),
 242 and (2) cosine annealing helps with reaching higher peaks and lower lows of the LR (e.g., we found
 243 that values more than 1.6e-3 were best, compared to 7e-4 for flat LR), and lead to significantly lower
 244 perplexity (2-6 points less, depending on the model, in the default settings). We train all our mod-
 245 els with AdamW (Loshchilov & Hutter, 2017), following standard practice in language modeling.
 246 Compared to SGD, AdamW is more robust to hyperparameter choice (Zhao et al., 2024).
 247

248 **Dropout:** For all models, we use dropout (with probability 0.1) after the token embeddings, at
 249 the residual (block output) between blocks, and inside the FFN, because we find that it reduces
 250 perplexity for all models (Appendix A.7.2, Table 20). This is likely because it prevents overfitting in
 251 the multi-epoch training regime (10 epochs) that we use. For LLaMA, we additionally put dropout
 252 inside the self-attention (HuggingFace-supported option), which further decreases perplexity.
 253

254 **Attention heads and prototypes (R):** Similar to (Press & Wolf, 2017), we have found that sharing
 255 the weights between embeddings and LM head reduces perplexity at the hyperparameter search
 256 stage, for all models. This is likely because it provides a good inductive bias aligning the token
 257 embeddings between input and final projection. We keep this choice at large-scale experiments
 258 as well, for simplicity. We also select attention heads from {2, 4, 8}, but at both small-scale and
 259 large-scale runs we have found that 4 works best for all models with attention heads (LLaMA and
 260 DeltaNet), which is what we use. For ProtoT’s prototypes (R), we have found diminishing returns
 261 in terms of perplexity improvements beyond $R=32$ (Appendix A.7.2, Table 19), while computation
 262 scales linearly with R. Therefore, we use $R=32$ for all runs.
 263

5 EXPERIMENTS

264 **Large-scale training:** In Table 1, we compare ProtoT to the 3 baselines at large-scale training (first
 265 vs. last column). We study the effect of simultaneously scaling the hidden size 2x, the layers 2x, the
 266 context size by 2x, and the training data $\sim 19x$, versus the default training settings. The results show
 267 that ProtoT scales well to the large model/data scenario. We show that ProtoT maintains relative
 268 performance to LLaMA, or even improves it (15.0 \rightarrow 14.3% worse) with scale. Furthermore,
 269 ProtoT outperforms the DeltaNet linear-attention baseline (29.5 vs. 31.5 perplexity, respectively).
 270 However, a large gap remains versus LLaMA and the Mamba state-space model (29.5 vs. 25.8

270 Table 1: Long-context scalability: *Cols. 1–4*: scaling from the default 256 up to 2048; *Cols. 1 & 5*:
 271 Default (h=256, L=6, ctx=256, Ex=18k) vs. Large-scale training (h=512, L=12, ctx=512, Ex=339k).
 272 Test perplexity (lower is better). Best results in each section are in bold.

Model	Default	512	1024	2048	Large-scale
LLaMA	78.7	70.4	65.3	63.6	25.8
Mamba	86.0	78.0	70.5	69.5	26.5
DeltaNet	90.4	76.3	70.6	68.9	31.5
ProtoT	90.5	84.8	80.5	81.9	29.5
ProtoT (h=512)	97.2	82.0	73.7	73.0	–
ProtoT (L=12)	109.6	79.8	74.6	76.7	–
ProtoT (R=64)	94.0	83.2	79.1	80.5	–

281 and vs. 26.5, respectively). While we did our best to optimise ProtoT, this is the first iteration of the
 282 model, whereas established LMs like LLaMA have had multiple (Touvron et al., 2023a;b; Grattafiori
 283 et al., 2024). We expect with community feedback and further refinement to shrink this gap.

286 **Long-context scalability:** The results in Table 1 (columns 1–4) show that ProtoT scales poorly with
 287 context length (if other model dimensions are fixed), which suggests that ProtoT is running into a
 288 bottleneck. This is likely because the cross-sequence communications pass through the prefix mean
 289 (Fig. 1 and Eq. 1), over R channels with h hidden dimensions each, which can be restrictive. We
 290 further investigate this issue in the final 3 rows of Table 1, where we compare possible culprits:
 291 the hidden size h, the number of prototypes R, and the layers L (which can also play a role). The
 292 results show that the hidden dimension is the most restrictive as increasing it is the only one of the
 293 3 that keeps improving with context size beyond 1024. Our model is most affected by this likely
 294 because of our choice to project down to $h/2$ at the values ($V(x_j)$ in Eq.1) to save compute, further
 295 exacerbating this bottleneck. In practice, this is less of an issue because, in more realistic settings
 296 (e.g. *Large-Scale Training*), the larger capacity of the model would allow for larger context lengths.

297 **Text-Generation Performance:** To evaluate quality of outputs, we measure open-ended text-
 298 generation ability using an LLM-as-a-judge protocol, following the Chatbot-Arena style pairwise
 299 comparison setup. For each prompt, two model outputs are evaluated by a frozen judge model
 300 under a fixed rubric, providing win/tie statistics that are converted into Elo scores. As shown in
 301 Appendix B, ProtoT achieves competitive generation quality, outperforming DeltaNet while landing
 302 between LLaMA and Mamba in Elo ranking. See Appendix B for text generation samples from
 303 each model.

304 Table 2: GLUE downstream fine-tuning results (all metrics reported as percentages). For COLA we
 305 report Matthews correlation; for SST-2 accuracy; for MRPC F1; for STS-B Pearson correlation; for
 306 RTE, WNLI, QNLI, MNLI and MNLI-MM accuracy; for QQP F1. GLUE reports the unweighted
 307 average of the nine task-specific scores. Results are averaged over 3 seeds. Best results are in bold.

Model	COLA	SST-2	MRPC	STS-B	RTE	WNLI	QQP	QNLI	MNLI	MNLI-MM	GLUE
LLaMA	31.5	90.8	82.7	78.3	57.8	65.1	68.0	86.0	79.8	79.6	71.6
Mamba	31.1	88.6	80.3	72.8	54.4	65.1	64.8	82.4	74.7	74.7	68.6
DeltaNet	13.8	85.8	80.1	67.0	50.9	65.1	62.6	80.1	71.1	71.8	64.5
ProtoT	27.7	90.0	80.1	66.2	53.9	64.6	64.8	81.8	75.3	74.8	67.6

314 **Downstream performance:** To comprehensively evaluate the general-purpose language under-
 315 standing of ProtoT vs baselines, we fine-tune on the GLUE benchmark (Wang et al., 2018) consist-
 316 ing of 9 English NLU tasks spanning sentence- and sentence-pair classification as well as semantic
 317 textual similarity (more details in Appendix A.4).

319 As shown in Table 2, overall, LLaMA achieves the best overall performance, but ProtoT remains
 320 highly competitive and often matches or outperforms the dense baselines. In particular, ProtoT
 321 consistently attains the second-best scores on MNLI and MNLI-MM, indicating strong cross-domain
 322 robustness for large-scale natural language inference. On mainstream single-sentence and sentence-
 323 pair classification tasks such as SST-2, QQP and QNLI, ProtoT performs close to LLaMA and
 324 on par with Mamba while clearly outperforming DeltaNet, showing that its structured prototype

324 representations do not sacrifice accuracy on high-resource benchmarks. For low-resource tasks such
 325 as RTE and CoLA, ProtoT delivers performance comparable to dense models, suggesting that its
 326 inductive bias can maintain stable accuracy even when training data is limited. Taken together,
 327 these test-set results confirm that ProtoT preserves competitive GLUE performance while offering
 328 structural advantages, especially for robust inference under distribution shifts.

329 **330 Throughput Benchmarks:**

331 We evaluate both training and inference throughput. For training, we use identical conditions across
 332 models (same data pipeline, optimizer, BF16 precision, sequence length 256, batch sizes 32 and
 333 128). ProtoT achieves 25.2 and 7.6 it/s (batch 32/128), outperforming Mamba (11.9 and 3.2 it/s)
 334 and DeltaNet (3.5 and 1.8 it/s) while lagging behind the optimized LLaMA attention baseline (55.1
 335 and 23.6 it/s). For autoregressive inference with batch size 1 on a single H100 80GB GPU, LLaMA
 336 attains the highest throughput at short context lengths, whereas ProtoT scales more favorably with
 337 context and surpasses LLaMA at 32k tokens and beyond; DeltaNet maintains the highest throughput
 338 at long context lengths. See Appendix A.6 for detailed throughput benchmarks and FLOP analyses.

339 **340 5.1 INTERPRETABILITY**

341 Prototypes act as representational slots: contextual information is aggregated into R prototype chan-
 342 nels via the write gate and then read back through the read gate (Fig. 1). This structure allows
 343 features to be stored and reused within each sequence through the prototype-specific prefix means,
 344 enabling association of prototypes with identifiable concepts. Each prototype also has an associ-
 345 ated decay parameter β_k , applied in the prefix mean (Eq. 2) to discount past activations. Smaller
 346 β_k values produce faster decay, while larger values allow information to persist longer. For inter-
 347 pretability, we report the derived half-life $t_{1/2}^{(k)} = -\frac{\ln 2}{\ln(\beta_k)}$, specifying the expected number of steps
 348 for the contribution of prototypes to halve and providing a direct way to analyze specialization in
 349 short- or long-term dependencies. We analyze read–write interactions to understand how the model
 350 integrates and updates contextual information through prototype channels during sequence genera-
 351 tion.

352 **353 Experiments:** To investigate interpretability properties, we design four experiments with ProtoT
 354 (large-scale model from Table 1). We compute write routing activations across sequences from the
 355 FineWeb validation set for each prototype, aggregate them at the sequence level, and rank sequences
 356 by total activation strength. This identifies sequences that most strongly activate each prototype and
 357 allows us to visually inspect learned concepts and the relation between temporal locality and β_k
 358 parameter. We also use collected activations to compute widely adopted metrics (L1 sparsity, Gini
 359 Coefficient, Entropy, Mutual Information).

360 We analyze write and read phases during sequence generation. For a subset of prototypes, we
 361 select the most activating sequences and compute write and read routing activations for each token
 362 along the same prototype. This enables inspection of the internal dynamics of ProtoT, showing how
 363 sequence level information is aggregated and maintained during processing.

364 To quantitatively assess the presence of disentangled and nameable concepts and the impact of poly-
 365 semanticity, we introduce an extensive analysis and labeling method inspired by auto-interpretability
 366 score metrics (Bricken et al. (2023); Paulo et al. (2024)). For each prototype, we collect its ten most
 367 activating sequences and extract, within each sequence, the tokens with the highest activation. This
 368 compact summary of prototype usage is submitted to an LLM-based evaluator (GPT-5.1), which is
 369 prompted to produce the following:

- 370 • **Theme:** the main recurrent theme identified in the most activating sentences.
- 371 • **Disentanglement score:** score between 1 and 10 that assesses how well the main theme is
 372 disentangled from other themes.
- 373 • **Main topic coverage:** count between 1 and 10 that assesses how many of the most activat-
 374 ing sentences effectively contain the main theme.
- 375 • **Number of themes:** count between 1 and 10 that assesses how many uncorrelated themes
 376 are present in the most activating sentences (if the themes are at least 10, assign 10).
- 377 • **Explanation:** natural language explanation that describes the labeling and scoring process.

378 In order to compare the potential for interpretability in ProtoT and Transformer models, we collect
 379 activations, compute the same metrics and perform the LLM-aided evaluation experiment also on
 380 the trained LLaMA model from Table 1. We present statistics collected with the LLM-aided inter-
 381 pretability experiment in Figure 2 and an example of prototype visualization in Figure 3. The exact
 382 prompt used is in Appendix A.10. We show additional results in Appendix A.9 for LLM-aided
 383 interpretability experiments with LLaMA (Figure 24) and with multiple model configurations of
 384 ProtoT (Figures 19, 20, 21, 22, 23). Interpretability metrics for LLaMA and ProtoT are in Appendix
 385 A.8 in Figures 8 and 9.

386 We probe the functional role of individual prototypes through a targeted intervention experiment.
 387 Based on write-gate activations on the FineWeb validation set, we identified three functionally dis-
 388 tinct prototypes from Layer 9: $L9 P7$, which encodes a ‘female’ concept; $L9 P18$, which partially
 389 encodes a ‘male’ concept; and $L9 P2$, a gender-neutral control. Our intervention consists of disrupt-
 390 ing each of these prototypes via parameter re-initialization and measuring the subsequent change in
 391 the conditional probability of the target words ‘women’ and ‘girls’. We illustrate these prototypes in
 392 Figures 4, 5, and 6. Additional details on the construction of test sentences are in Appendix A.3.1.

393 **Interpreting prototypes at the write gate:** Human and LLM-aided evaluation reveal that proto-
 394 types capture disentangled concepts across varying levels of semantic abstraction, which naturally
 395 emerge as a result of training and encode interpretable patterns. For example, we identify concepts
 396 like entity names, functional words, verbs, as well as composite dates, illnesses, or school-related
 397 narratives. We also find that these concepts generally reflect the hierarchical organization of the
 398 model, with early layers tending to capture more superficial patterns and deeper layers representing
 399 composite and abstract semantics. We observe that polysemy is present in a few prototypes
 400 but remains limited overall and in fact, LLM aided evaluation reveals high disentanglement and a
 401 low number of uncorrelated themes for the vast majority of prototypes. Furthermore, we identify a
 402 correlation between half-life values and encoded concepts, where lower half-life values tend to cap-
 403 ture local elements (such as stop words, or punctuation). Finally, we observe that ProtoT performs
 404 significantly better than LLaMA on all LLM-aided evaluation scores, with higher disentanglement
 405 and coverage and a lower number of uncorrelated topics. These results show that gate-mediated
 406 communication at the write gate forms prototype hubs that can largely be treated as separate, dis-
 407 entangled concept hubs, highlighting their potential for interpretability. A study on the correlation
 408 between half-life values and locality can be found in Appendix A.8, Table 21.

409 **Results of the write-read alternation pattern:** We observe a consistent temporal pattern in read
 410 and write activations, with read activity peaking one step before write activity. For example, in the
 411 results shown in Figure 3 (right), for the token ‘protection’, the read gate activates prototype 4 at the
 412 preceding token ‘fall’, followed by write activation on ‘protection’. This pattern is consistently seen
 413 across the most strongly activating sequences for each prototype and suggests that read and write
 414 gates may develop coordinated interactions. This coordination is consistent with a predict-and-
 415 consolidate behavior, where the read gate appears to anticipate which prototype may be relevant
 416 for the upcoming tokens, and the write gate subsequently updates the memory based on the current
 417 token.

426 Figure 2: histograms of the numerical scores provided by LLM aided interpretability
 427

428 **Results of the prototype intervention:** Our intervention experiments demonstrate that proto-
 429 types function as specific and interacting semantic hubs. By employing gate masking (ablation the
 430 write/read channels) alongside random re-initialization, we isolated precise mechanistic roles. Dis-
 431 rupting the ‘female’ prototype $L9 P7$ significantly decreased the probability of related words (e.g.,

–17.80% for ‘women’ in seed sentence), highlighting its functional importance for this concept. The specificity of this effect was validated by the negligible impact of disrupting the control prototype, *L9 P2*, while disrupting the ‘male’ prototype *L9 P18* consistently *increased* the probability of female-coded words (e.g., +11.50% for ‘women’ in the seed sentence). These findings indicate that the model learns functionally distinct prototypes and uses them interactively to refine its predictions. This interactive behavior extends beyond gender concepts: we demonstrate similar necessity for geographic entities (e.g., ‘New Zealand’) and abstract states (e.g., ‘Mental Health’). Furthermore, cross-seeds experiments on ‘COVID’ confirm that the emergence of these concept-specific slots is a robust architectural property. Comprehensive results are detailed in the Appendix A.3.

Figure 3: *Left*: Sequences most strongly activating prototype 11 at layer 0, which encodes the concept of narrative in a scholastic context. *Right*: Write-gate, read-gate, and memory curves for a sequence that strongly activates prototype 23 at layer 4. Read-gate peaks precede write-gate activations, spiking on the token immediately before those that trigger write-gate routing.

5.2 ROBUSTNESS

We analyze robustness of ProtoT vs baselines (the large-scale models from Table 1) from three complementary perspectives: (1) robustness to *meaning-preserving noise perturbations*, (2) robustness to *prototype clamping perturbations*, and (3) behavior to *interventions* that alter semantics. This unified view clarifies both stability under benign variations and sensitivity to intended changes.

Noise perturbations: We first consider *black-box, surface-level perturbations* that preserve meaning (e.g., synonyms, typos, contractions). The perturbation benchmark (Appendix A.5) contains 3,500 semantically equivalent sentence pairs across seven categories. Robustness is quantified by the Jensen–Shannon divergence $JS(p(\cdot|x), p(\cdot|x'))$ between next-token distributions for an original input x and its perturbed variant x' . Lower values indicate greater stability. Table 3 shows that Mamba has the overall lowest JS , hence the strongest stability. ProtoT, however, consistently outperforms LLaMA on synonyms, typos, spelling, and morphology. This aligns with ProtoT’s design: prototypes aggregate contextual information into nameable concepts, yielding stability under lexical variation. While ProtoT lags LLaMA on punctuation (where precise attention alignment is beneficial), it reliably surpasses DeltaNet and is overall competitive with strong baselines.

Table 3: Slice-level robustness measured by Jensen–Shannon divergence (lower is better). Abbreviations: *abbr.*=abbreviation, *contr.*=contraction, *morph.*=morphology, *punct.*=punctuation, *spell.*=spelling, *syn.*=synonym, *typo*=typos. Best per column in bold.

Model	abbr.	contr.	morph.	punct.	spell.	syn.	typo
DeltaNet	1.0657	0.8310	0.6671	0.5804	0.3547	0.6363	0.6257
LLaMA	0.3325	0.0449	0.2267	0.1740	0.0634	0.1450	0.2269
Mamba	0.1441	0.0104	0.0476	0.4428	0.0054	0.0130	0.0761
ProtoAttn	0.4166	0.0823	0.0498	0.3982	0.0260	0.1132	0.2074

Prototype clamping: To test whether robustness is mediated by prototype routing, we compute *Prototype-Mediated Robustness (PMR)*. For a pair (x, x') , let $JS_{\text{base}} = JS(p(\cdot|x), p(\cdot|x'))$. We then clamp the prototype routing weights from x onto x' and recompute $JS_{\text{clamped}} = JS(p(\cdot|x), p^{\text{clamped}}(\cdot|x'))$. We define $PMR = (JS_{\text{base}} - JS_{\text{clamped}})/JS_{\text{base}}$. A positive PMR

486 indicates that prototypes mediate robustness, while negative values suggest residual pathways dom-
 487 inate. Table 4 shows that while the mean PMR is sometimes slightly negative, for 5 out of 7 slices
 488 the positive fraction $PMR_{>0}$ is around 0.5–0.6 and $JS_{\text{clamped}} < JS_{\text{base}}$. This shows that proto-
 489 types overall contribute to robustness, providing interpretable routing pathways rather than opaque
 490 head-level aggregation.

491 Table 4: Prototype-Mediated Robustness (PMR). Mean and std of **PMR**, fraction of positive cases,
 492 and average JSDs. Best per column in bold.
 493

Slice	PMR _{mean}	PMR _{std}	PMR _{>0}	JS _{base}	JS _{clamped}	n
abbreviation	-0.093	0.367	0.596	0.417	0.415	500
contraction	-0.027	0.104	0.330	0.082	0.083	500
morphology	-0.034	0.176	0.474	0.050	0.051	500
punctuation	-0.000	0.373	0.554	0.398	0.322	500
spelling	-0.033	0.225	0.610	0.026	0.025	500
synonym	0.013	0.075	0.606	0.113	0.109	500
typo	0.001	0.279	0.533	0.208	0.186	500

501
 502 **Intervention behavior:** Finally, we study sensitivity under *interventions* that alter semantics: gen-
 503 der, negation, and number tags. Unlike surface perturbations, these flips should change predictions.
 504 We measure JS , top- k overlap (Ov), Spearman correlation (Sp), and top-1 invariance (T1). Higher
 505 JS and lower Ov/Sp/T1 indicate greater sensitivity to the intervention. Table 5 shows that while
 506 DeltaNet attains the highest raw JS , ProtoT consistently yields lower Ov, Sp, and T1 compared to
 507 LLaMA and Mamba. This indicates that ProtoT adapts more reliably under meaning-altering inter-
 508 ventions, reflecting appropriate semantic sensitivity through prototype routing. LLaMA and Mamba
 509 often remain insensitive to such tags.
 510

511 Table 5: Intervention robustness on gender (gen), negation (neg), and number (num). Metrics: JS
 512 (higher better), Ov/Sp/T1 (lower better). Best values in bold.
 513

Model	JS (gen / neg / num)	Ov (gen / neg / num)	Sp (gen / neg / num)	T1 (gen / neg / num)
DeltaNet	0.054 / 0.173 / 0.282	0.754 / 0.540 / 0.474	0.610 / 0.176 / 0.033	0.616 / 0.388 / 0.330
LLaMA	0.004 / 0.028 / 0.022	0.946 / 0.875 / 0.843	0.966 / 0.815 / 0.824	0.890 / 0.770 / 0.930
Mamba	0.003 / 0.006 / 0.007	0.936 / 0.935 / 0.907	0.949 / 0.910 / 0.907	0.884 / 0.992 / 0.948
ProtoT	0.037 / 0.081 / 0.083	0.709 / 0.774 / 0.657	0.429 / 0.536 / 0.441	0.690 / 0.806 / 0.806

518 In conclusion, noise perturbation results establish that ProtoT is robust to lexical variation. PMR
 519 results show that prototypes actively mediate robustness, exposing interpretable mechanisms. Inter-
 520 vention behavior confirms that ProtoT is more sensitive to meaning-altering changes than Mamba or
 521 LLaMA for example. Together, these findings show that ProtoT not only matches or surpasses base-
 522 lines in robustness but also provides transparent pathways for analyzing where robustness arises.
 523

525 6 CONCLUSION

527 We have introduced the Prototype Transformer (ProtoT), an alternative autoregressive language
 528 model architecture that replaces standard self-attention mechanisms with prototype-based mixer to
 529 enhance model interpretability. Through bidirectional communication between learnable prototype
 530 vectors and input sequences, ProtoT demonstrates that architectural design choices can support inter-
 531 pretability with only small compromise in performance. It exhibits strong robustness, better text gen-
 532 eration than self-attention, while downstream performance (GLUE) is on par with linear-compute
 533 baselines. Furthermore, prototypes automatically learn coherent, nameable concepts during training.
 534 The architecture also provides practical advantages through linear computational complexity and en-
 535 ables strong attribution of predictions to specific conceptual components and targeted editability.

536 Future work will further explore the scope and boundaries of this approach, including broader eval-
 537 uation across diverse tasks and model scales. In summary, our results show that incorporating inter-
 538 pretability considerations into architectural design may be compatible with maintaining competitive
 539 performance. ProtoT contributes to ongoing research toward developing LMs that balance capability
 with transparency for applications where understanding and correcting model reasoning is essential.

540 7 REPRODUCIBILITY STATEMENT
541

542 We provide full details of the model architecture, training setup, and evaluation
543 protocols in the main paper and appendix. The perturbation benchmark dataset
544 (`perturbation_benchmark.jsonl`), along with its generation and filtering scripts,
545 is included in the supplementary material and will be released publicly upon accep-
546 tance. In addition, we introduce a manually constructed intervention benchmark dataset
547 (`intervention_benchmark.jsonl`), which tests semantic interventions on gender, negation,
548 and number. Since the dataset was curated directly rather than generated by scripts, we will
549 release it in full to ensure exact reproducibility of the intervention robustness experiments. We also
550 include the interactive html (`prototype_visualization_word_level.html`). All code to
551 reproduce our experiments will likewise be made available upon acceptance.

552 REFERENCES
553

554 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
555 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
556 report. *arXiv preprint arXiv:2303.08774*, 2023.

557 Sercan O Arik and Tomas Pfister. Protoattend: Attention-based prototypical learning. *Journal of
558 Machine Learning Research*, 21(210):1–35, 2020.

559 Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Garrison W. Cottrell,
560 and Julian McAuley. Rezero is all you need: Fast convergence at large depth. *arXiv preprint
561 arXiv:2003.04887*, 2020.

562 T. Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn, T. Conerly, N. Turner, C. Anil, C. Denison,
563 A. Askell, R. Lasenby, Y. Wu, S. Kravec, N. Schiefer, T. Maxwell, N. Joseph, Z. Hatfield-Dodds,
564 A. Tamkin, K. Nguyen, B. McLean, J. E. Burke, T. Hume, S. Carter, T. Henighan, and C. Olah.
565 Towards monosemanticity: Decomposing language models with dictionary learning, 2023.

566 Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
567 like that: deep learning for interpretable image recognition. *Advances in Neural Information
568 Processing Systems*, 32, 2019.

569 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
570 Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot
571 arena: An open platform for evaluating llms by human preference. In *Forty-first International
572 Conference on Machine Learning*, 2024.

573 Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does BERT look
574 at? An analysis of BERT’s attention. *arXiv preprint arXiv:1906.04341*, 2019.

575 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
576 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
577 tion. *arXiv preprint arXiv:2209.10652*, 2022.

578 Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
579 associations in auto-regressive language models. *arXiv preprint arXiv:2304.14767*, 2023.

580 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
581 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The Llama 3 herd
582 of models. *arXiv preprint arXiv:2407.21783*, 2024.

583 Ryan Greenblatt, Carson Denison, Benjamin Wright, Fabien Roger, Monte MacDiarmid, Sam
584 Marks, Johannes Treutlein, Tim Belonax, Jack Chen, David Duvenaud, Akbir Khan, Julian
585 Michael, Sören Minderma, Ethan Perez, Linda Petrini, Jonathan Uesato, Jared Kaplan, Buck
586 Shlegeris, Samuel R. Bowman, and Evan Hubinger. Alignment faking in large language models.
587 *arXiv preprint arXiv:2412.14093*, 2024.

588 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
589 preprint arXiv:2312.00752*, 2023.

594 Curtis Hawthorne, Andrew Jaegle, Catalin Cangea, Sebastian Borgeaud, Charlie Nash, Mateusz
 595 Malinowski, Sander Dieleman, Oriol Vinyals, Matthew Botvinick, Ian Simon, et al. General-
 596 purpose, long-context autoregressive modeling with Perceiver AR. In *International Conference
 597 on Machine Learning*, 2022.

598 Dat Hong, Tong Wang, and Stephen Baek. Prototypical-interpretable text classification via prototype
 599 trajectories. *Journal of Machine Learning Research*, 24(264):1–39, 2023.

600 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu,
 601 David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff,
 602 Matthew M Botvinick, Andrew Zisserman, Oriol Vinyals, and João Carreira. Perceiver IO: A
 603 general architecture for structured inputs & outputs. In *International Conference on Machine
 604 Learning*, 2022.

605 Sarthak Jain and Byron C. Wallace. Attention is not explanation. In *Proceedings of the 2019
 606 Conference of the North American Chapter of the Association for Computational Linguistics*.
 607 Association for Computational Linguistics, 2019.

608 Dayal Singh Kalra and Maissam Barkeshli. Why warmup the learning rate? underlying mechanisms
 609 and improvements. *Advances in Neural Information Processing Systems*, 37, 2024.

610 Connor Kissane, Robert Krzyzanowski, Joseph Isaac Bloom, Arthur Conmy, and Neel Nanda. In-
 611 terpreting attention layer outputs with sparse autoencoders. *arXiv preprint arXiv:2406.17759*,
 612 2024.

613 Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
 614 *Soviet Physics Doklady*, 10(8):707–710, 1966.

615 Shuaipeng Li, Penghao Zhao, Hailin Zhang, Xingwu Sun, Hao Wu, Dian Jiao, Weiyan Wang,
 616 Chengjun Liu, Zheng Fang, Jinbao Xue, Yangyu Tao, Bin Cui, and Di Wang. Surge phenomenon
 617 in optimal learning rate and batch size scaling. *Advances in Neural Information Processing Sys-
 618 tems*, 37, 2024.

619 Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. Dailydialog: A manually
 620 labelled multi-turn dialogue dataset. In *Proceedings of the Eighth International Joint Conference
 621 on Natural Language Processing (IJCNLP)*, 2017.

622 Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
 623 Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
 624 mamba language model. *arXiv preprint arXiv:2403.19887*, 2024.

625 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
 626 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
 627 tion. In *Advances in Neural Information Processing Systems*, volume 33, 2020.

628 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 629 arXiv:1711.05101*, 2017.

630 Chiyu Ma, Jon Donnelly, Wenjun Liu, Soroush Vosoughi, Cynthia Rudin, and Chaofan Chen. In-
 631 terpretable image classification with adaptive prototype-based vision transformers. *Advances in
 632 Neural Information Processing Systems*, 37, 2024.

633 Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks. *arXiv
 634 preprint arXiv:1804.07612*, 2018.

635 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 636 associations in GPT. *Advances in Neural Information Processing Systems*, 35, 2022.

637 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 638 models. *arXiv preprint arXiv:1609.07843*, 2016.

639 George A Miller. WordNet: A lexical database for English. *Communications of the ACM*, 38(11):
 640 39–41, 1995.

648 Gonçalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically Interpreting Millions
 649 of Features in Large Language Models. *arXiv preprint arXiv:2410.13928*, 2024.
 650

651 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
 652 Von Werra, Thomas Wolf, et al. The FineWeb datasets: Decanting the web for the finest text data
 653 at scale. *Advances in Neural Information Processing Systems*, 37, 2024.

654 Ofir Press and Lior Wolf. Using the output embedding to improve language models. In *Proceedings*
 655 *of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers*. Association for Computational Linguistics, 2017.
 656

658 Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A practical review of mechan-
 659 nistic interpretability for transformer-based language models. *arXiv preprint arXiv:2407.02646*,
 660 2024.

661 Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
 662 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language*
 663 *Processing (EMNLP)*, 2019.

664 Dawid Rymarczyk, Łukasz Struski, Michał Górszczak, Koryna Lewandowska, Jacek Tabor, and
 665 Bartosz Zieliński. Interpretable image classification with differentiable prototypes assignment. In
 666 *European Conference on Computer Vision*, 2022.

668 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
 669 subword units. *arXiv preprint arXiv:1508.07909*, 2015.

671 Noam Shazeer. GLU variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020.

672

673 Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. *arXiv*
 674 *preprint arXiv:1905.05950*, 2019.

675 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 676 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 677 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 678 language models. *arXiv preprint arXiv:2302.13971*, 2023a.

679

680 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 681 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 682 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 683 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 684 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 685 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 686 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 687 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 688 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 689 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 690 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 691 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
 692 *arXiv preprint arXiv:2307.09288*, 2023b.

693 Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don't always
 694 say what they think: Unfaithful explanations in chain-of-thought prompting. *Advances in Neural*
 695 *Information Processing Systems*, 36, 2023.

696 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
 697 GLUE: A multi-task benchmark and analysis platform for natural language understanding. *arXiv*
 698 *preprint arXiv:1804.07461*, 2018.

699

700 Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
 701 pretability in the wild: A circuit for indirect object identification in GPT-2 small. *arXiv preprint*
arXiv:2211.00593, 2022.

702 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. MiniLM: Deep self-
 703 attention distillation for task-agnostic compression of pre-trained transformers. *arXiv preprint*
 704 *arXiv:2002.10957*, 2020.

705 Bowen Wei and Ziwei Zhu. Protolens: Advancing prototype learning for fine-grained interpretability
 706 in text classification. In *Proceedings of the 63rd Annual Meeting of the Association for Compu-
 707 tational Linguistics (Volume 1: Long Papers)*, 2025.

708 Ximing Wen and Rezvaneh Rezapour. A transformer and prototype-based interpretable model for
 709 contextual sarcasm detection. *arXiv preprint arXiv:2503.11838*, 2025.

710 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 711 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 712 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 713 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 714 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 715 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 716 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 717 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 718 Qiu. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.

719 Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
 720 ers with the delta rule over sequence length. *Advances in Neural Information Processing Systems*,
 721 37, 2024.

722 Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and Youlong Cheng. Image classification at
 723 supercomputer scale. In *Proceedings of the Systems for Machine Learning Workshop at NeurIPS*
 724 2018, 2018.

725 Biao Zhang and Rico Sennrich. Root mean square layer normalization. In *Advances in Neural*
 726 *Information Processing Systems* 32, 2019.

727 Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models:
 728 Metrics and methods. *arXiv preprint arXiv:2309.16042*, 2023.

729 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
 730 sification. In *Advances in Neural Information Processing Systems*, 2015.

731 Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
 732 Yu Zhang, Yulong Chen, et al. Siren’s song in the AI ocean: A survey on hallucination in large
 733 language models. *Computational Linguistics*, pp. 1–46, 2025.

734 Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstruc-
 735 ting what makes a good optimizer for language models. *arXiv preprint arXiv:2407.07972*, 2024.

741 A APPENDIX

743 A.1 AI USAGE

744 We have used LLMs for proofreading the paper and to polish writing, for retrieval and discovery
 745 of related work, and for low-level coding help, e.g. to help us produce the prototype interpretability
 746 html. We have checked all AI output, and have verified that the resulting code is correct and works
 747 as expected.

750 A.2 ADDITIONAL DETAILS ON EXPERIMENT SETUP FOR LONG-CONTEXT SCALABILITY 751 AND LARGE-SCALE TRAINING

752 **Batch size:** We have found that batch size of 32 works best for training among 32, 64, 128, for
 753 all models. Lower batch size values were not considered to preserve parallelisability and reduce
 754 number of training steps. We keep this batch size (32) in larger experiments as well, for simplicity,
 755 and only select the learning rate from a handful of scaling options. Furthermore, smaller batch sizes

756 generalize better than large batch sizes even with large-scale data (Masters & Luschi, 2018); large
 757 batch sizes are mainly used for hardware utilization and training speed-up as they require fewer steps
 758 to finish training (Ying et al., 2018).

760 **Learning rate:** The best learning rates found via the automatic hyperparameter search for the
 761 default model sizes are: LLaMA: 1.6e-3, Mamba: 3.8e-3, DeltaNet: 6.8e-3, and ProtoT: 2.0e-3.

762 For the *long-context scalability experiment*, we have tried increasing the learning rate accordingly
 763 (by square root of context size ratio), as per AdamW scaling laws (Li et al., 2024), because extended
 764 context is computationally-similar to a larger batch size. However, we have found that scaling the
 765 learning rate helps only for DeltaNet and only in the large-scale model/data setting. In the results,
 766 we report only the best value from scaled vs non-scaled LR for all models.

767 For the *large-scale training experiment*, we ran each model with the best hyp-s from the hyp search,
 768 and with scaled version thereof. We observed instability with Mamba, so we reduced the LR until
 769 it reached stability (from 3.8e-3 down to 2.3e-3). For all other models, we report results with the
 770 best-found learning rates (above).

772 A.3 PROTOTYPE INTERVENTION EXPERIMENTS

773 To move beyond correlational observations, we designed an intervention experiment to probe the
 774 functional role of individual prototypes within the model’s predictive process. This methodology
 775 involves systematically manipulating a single prototype by either re-initializing it with random noise
 776 or zeroing-out the output of the write/read gate corresponding to the prototype, which is equivalent
 777 to zeroing-out/ablating the entire communication channel corresponding to it. We then measure the
 778 resulting impact on the model’s output probabilities for a targeted linguistic task. By quantifying
 779 this change, we can assess the prototype’s influence and determine its functional importance for a
 780 specific prediction.

781 A.3.1 IDENTIFYING AND TARGETING CONCEPT-SPECIFIC PROTOTYPES

782 To identify prototypes that appear to encode distinct, human-understandable concepts, we ana-
 783 lyze the top-activating sentences for each prototype from the visualization introduced in Sec. 5.1.
 784 Based on this analysis, we selected three prototypes from Layer 9 for our study. The prototype *L9*
 785 *P7*(Fig. 4), which consistently activates on sentences containing words such as ‘women’ and ‘girls’,
 786 we hypothesize that *L9 P7* is a key causal component in the model’s representation of the ‘female’
 787 concept. Similarly, we identified prototype *L9 P18*(Fig. 5) as a representation for the ‘male’ con-
 788 cept, as it shows high activation for words like ‘man’ and ‘boy’. Finally, prototype *L9 P2*(Fig. 6)
 789 was selected as a control, as it did not exhibit a clear, gender-coded semantic preference.

809 Figure 4: Visualization for prototype L9 P7

Figure 5: Visualization for prototype L9 P18

Figure 6: Visualization for the control prototype L9 P2

841 **Test Case Construction.** To create a controlled and relevant test set, we began with a seed sentence identified from our initial visualization analysis. This sentence was the top-ranked example from the FineWeb test set that maximally activated the ‘write’ gate of our primary target, prototype L9 P7. To expand our test set while maintaining semantic consistency, we then prompted a large language model (Gemini 2.5 Pro) to generate six additional sentences thematically similar to the seed sentence, each required to contain the keywords ‘women’ and ‘girls’.

842 The resulting corpus of seven sentences used in our experiments is as follows:

- 843 • “did you know that there is a government strategy for women and girls in sports and active recreation to address the inequalities of girls’ and women’s” (seed sentence from FineWeb)
- 844 • “Many organizations are working on programs that focus on empowering women and girls to participate equally in science and technology.”
- 845 • “Did you know that several global initiatives aim to protect the rights of women and girls from violence and discrimination?”
- 846 • “Education policies are increasingly emphasizing equal opportunities for women and girls to excel in leadership roles.”
- 847 • “Access to healthcare remains a critical issue, and governments are creating strategies to improve services for women and girls.”

- 864 • “International campaigns highlight how climate change disproportionately affects women
865 and girls in vulnerable communities.”
- 866
- 867 • “Did you know that mentorship networks are being created to support women and girls in
868 pursuing careers in engineering and mathematics?”

869 From this corpus, we defined our test cases. Each case consists of a context (the sentence preceding
870 a target word) and a completion token (the target word itself). For this study, we focused on the
871 probability of the target completions ‘women’ and ‘girls’.

872
873 **Results:** After establishing a baseline probability for each test case using the unmodified model,
874 we create a copy of the model for each intervention. The intervention method used is Disruption,
875 where the parameter vector of the target prototype (L9 P7, L9 P18, or L9 P2) is re-initialized with
876 random noise, scaled according to the model’s original initialization scheme. This procedure erases
877 the prototype’s learned knowledge while preserving the overall model architecture. We then measure
878 the post-intervention probability of the completion token.

879 The results of our intervention experiments are summarized in Table 6. To focus the analysis on
880 contexts where the target word is considered a plausible completion by the model, we excluded test
881 cases where the baseline probability of the target completion was below 1%.

882
883 Table 6: Comprehensive intervention results. We report the relative change in target probability (%)
884 under three conditions: *Rnd* (Random Re-initialization), *Wr* (Write Gate Mask), and *Rd* (Read Gate
885 Mask). *L9 P7* is the target ‘female’ prototype; *L9 P18* is the ‘male’ prototype, and *L9 P2* serve as
886 control.

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	Context (Truncated)	Base(%)	L9 P7 (‘female’)			L9 P18 (‘male’)			L9 P2 (Control)		
			Rnd	Wr	Rd	Rnd	Wr	Rd	Rnd	Wr	Rd
Target: ‘women’											
...inequalities of...		3.21	-17.80	-16.60	+7.57	+11.50	+16.95	+12.71	+0.74	+2.30	-0.61
...empowering...		4.24	-3.00	+1.43	-3.06	-0.13	+7.09	-0.18	-0.17	+0.35	-0.33
...protect rights of...		13.54	+1.37	-2.29	+1.56	+1.43	-1.03	+1.64	+0.09	-0.22	+0.38
...equal opps for...		10.14	-0.67	+3.45	-0.76	-0.31	+2.20	-0.31	-0.75	+0.49	-1.08
...climate affects...		11.87	+1.81	-1.65	+1.86	+0.12	-2.61	+0.22	+0.34	-0.32	+0.58
Target: ‘girls’											
...inequalities of...		2.80	-10.62	-10.67	+5.49	+0.50	-1.57	+0.19	+0.03	-0.46	+0.03
...empowering...		68.55	+0.11	+0.39	+0.23	+0.28	+0.79	+0.39	-0.28	+0.02	-0.26
...protect rights of...		78.63	-0.45	-0.41	+0.76	+0.64	+0.70	+0.64	-0.04	-0.03	-0.13
...equal opps for...		60.49	-0.17	+0.01	+0.58	+0.56	+0.84	+0.65	-0.19	+0.02	-0.27
...improve services...		64.33	-1.56	-1.43	+0.35	+0.62	+0.94	+0.72	-0.15	+0.05	-0.19
...climate affects...		68.66	-1.01	-0.95	+0.72	+1.39	+1.50	+1.52	-0.10	-0.05	-0.21
...support women in...		38.32	-3.89	-3.51	+1.68	+2.39	+4.15	+2.64	-0.55	-0.11	-1.10

903 For prototype re-initialization, our results reveal a clear causal link between prototype *L9 P7* and
904 the model’s representation of female-coded concepts. Disrupting this ‘female’ prototype signifi-
905 cantly *decreased* the probability of target words like ‘women’ (−17.80%) and ‘girls’ (−10.62%),
906 particularly in less constrained contexts. This effect, however, diminished in test cases where the
907 baseline probability was already very high (e.g., > 60%), suggesting that highly predictable com-
908 pletions are more robust and less reliant on any single prototype. The specificity of this function was
909 confirmed by a control experiment where disrupting an unrelated prototype, *L9 P2*, yielded only
910 negligible changes, proving our findings are not artifacts of random model perturbations. Further-
911 more, the interventions uncovered a more sophisticated dynamic: disrupting the ‘male’ prototype,
912 *L9 P18*, consistently *increased* the probability of female-coded words. This suggests an inhibitory
913 or competitive relationship, where the model refines its predictions by balancing between oppo-
914 sing semantic concepts. Taken together, these results demonstrate that the model utilizes specific,
915 functionally distinct, and interacting prototypes to represent and manipulate complex concepts like
916 gender.

917 For the gate-specific interventions, our results demonstrate that zeroing out the Write or Read gates
918 provides a more rigorous measure of causal influence. By acting as a deterministic ablation rather

than a stochastic disruption, Write Gate masking revealed a significantly sharper functional contrast between the opposing gender concepts. As shown in Table 6, the divergence between the inhibitory effect of the 'male' prototype (L9 P18) and the causal necessity of the 'female' prototype (L9 P7) was markedly amplified under the masking condition. Specifically, in contexts such as "...*inequalities of...*", the gap between the probability surge caused by masking the 'male' prototype (+16.95%) and the drop caused by masking the 'female' prototype (-16.60%) was substantially wider ($\Delta \approx 33.6\%$) compared to the spread observed under random disruption ($\Delta \approx 29.3\%$). These findings suggest that strict channel ablation effectively isolates the distinct semantic mechanisms (whether competitive or constructive) that prototypes engage in, with the Write Gate often serving as the primary causal bottleneck for concept storage.

A.3.2 ROBUSTNESS OF CONCEPT-SPECIFIC PROTOTYPES EMERGENCE ACROSS RANDOM SEEDS

To ensure that the localization of semantic concepts is a robust property of the architecture rather than an artifact of a specific initialization, we extended our analysis by training two additional models with different random seeds. We repeated the visualization process described in Sec. 5.1 for these new runs to observe if similar semantic clusters emerged. We focus on the concept of '*COVID-19*' as a representative case study. In all three models (the original and two replicates), we successfully identified a distinct prototype that was maximally activated by terms related to the pandemic.

To validate the functional consistency of these re-emerged prototypes, we conducted intervention experiments targeting the prediction of the token '*COVID*' in relevant contexts. For each model, we disrupted the identified COVID-specific prototype via random re-initialization, write gate masking and read gate masking. We followed the same workflow as in Sec. A.3.1. The test corpus for the COVID-specific prototype consisted of the following sentences:

- "covid - 19 lambda variant lambda variant cases of covid - 19 are emerging in the us. while nowhere near"
- "The World Health Organization declared the outbreak of COVID-19 a pandemic in March 2020."
- "Researchers identified the Alpha, Beta, Gamma, and Delta strains as variants of concern for COVID-19."
- "The Pfizer-BioNTech and Moderna vaccines use mRNA technology to protect against the COVID-19 virus."
- "Anosmia, the sudden loss of smell and taste, was identified as a specific symptom of COVID-19 infection."
- "To curb the spread, the government mandated a 14-day quarantine for anyone testing positive for COVID-19."
- "Hospitals faced a critical shortage of ventilators during the initial surge of severe COVID-19 cases."
- "The FDA granted emergency use authorization for Paxlovid, an oral antiviral pill for treating COVID-19."
- "Scientists continue to debate the zoonotic origins of COVID-19 and its potential transmission from bats."
- "Despite strict border controls, the Omicron variant of COVID-19 managed to spread rapidly across the globe."
- "Long-haulers are patients who suffer from debilitating symptoms months after recovering from acute COVID-19."
- "Public health officials urged the population to wear N95 masks to prevent the airborne transmission of COVID-19."
- "The CDC updated its guidelines regarding the isolation period for asymptomatic cases of COVID-19."
- "Herd immunity against COVID-19 became difficult to achieve due to the emergence of new escape variants."

- “Schools implemented social distancing and improved ventilation to reduce the risk of COVID-19 transmission in classrooms.”
- “The economic fallout from the COVID-19 pandemic led to supply chain disruptions and rising inflation.”
- “A negative PCR test result for COVID-19 was required for all passengers boarding international flights.”
- “Studies suggest that previous infection provides some level of natural immunity against reinfection with COVID-19.”
- “The global death toll attributed to COVID-19 has highlighted the vulnerabilities in health-care systems worldwide.”
- “Contact tracing apps were deployed to alert individuals who had been exposed to a confirmed case of COVID-19.”
- “Rehabilitation programs are being established to help patients recover from the respiratory damage caused by severe COVID-19.”

Table 7: *Cross-seed consistency of the ‘COVID’ prototype.* We compare the impact of interventions across three different model initializations. Cells with ‘-’ indicate that the baseline probability was below the 1% threshold for reliability. All values represent probabilities or probability changes (in percentage points).

Context (Truncated)	Original Model (L1 P14)				Seed 124 (L7 P29)				Seed 325 (L6 P31)			
	Base	Rnd	Wr	Rd	Base	Rnd	Wr	Rd	Base	Rnd	Wr	Rd
covid - 19 lambda variant...	12.4	+0.3	+0.5	-0.0	48.7	-8.6	-8.4	+0.1	27.4	+4.6	+6.3	-5.7
The World Health Organization...	6.4	-1.5	-1.7	+0.2	16.2	-0.4	+0.1	-0.1	9.7	+12.6	+13.0	+13.1
The Pfizer-BioNTech and Moderna...	0.6	-	-	-	0.9	-	-	-	1.4	+0.4	-0.4	+0.1
To curb the spread,...	10.4	-0.1	-0.6	+0.0	13.3	-0.9	-0.9	+0.4	17.3	-0.5	+0.3	-0.4
Hospitals faced a critical...	0.4	-	-	-	1.4	+1.7	+2.0	-0.1	2.4	+23.3	+27.3	+22.1
The FDA granted emergency...	0.7	-	-	-	3.4	+0.8	+0.8	-0.1	1.1	+9.3	+5.9	-3.8
Despite strict border controls,...	0.7	-	-	-	2.2	-3.7	-3.6	+0.0	2.4	+2.8	+2.6	+2.2
Public health officials urged...	6.0	+0.2	-0.2	-0.1	3.3	+0.5	+0.5	-0.0	12.7	-2.7	-8.1	-2.9
The CDC updated its...	2.5	-0.3	-0.1	+0.1	3.4	-0.9	-0.5	+0.1	3.5	+3.4	-10.8	+5.7
Herd immunity against COVID...	7.9	+0.2	+0.4	+0.0	5.4	-0.1	+0.0	+0.0	6.5	+1.4	-1.8	+1.6
Schools implemented social...	1.8	-0.4	-0.4	+0.1	2.3	+0.5	+0.9	-0.0	4.0	+1.2	-0.9	+1.3
The economic fallout from...	2.4	+2.0	+2.3	-0.2	2.0	+0.2	-0.0	-0.0	1.5	-4.9	+3.1	-5.1
Studies suggest that previous...	1.3	+0.8	+0.9	-0.1	1.0	-0.1	+0.2	+0.1	2.5	+0.0	-2.9	+0.3
The global death toll...	2.7	+0.3	+0.3	+0.0	2.9	+0.1	-0.0	+0.0	1.6	-6.5	-13.4	-6.8
Contact tracing apps were...	2.3	+0.4	+0.4	-0.1	4.0	-0.2	+0.2	+0.1	5.1	+0.3	-0.3	+1.6
Rehabilitation programs are...	0.2	-	-	-	0.9	-	-	-	2.9	+3.9	-22.0	+4.0

Results: Our analysis across different random seeds shows that the ProtoT architecture consistently localizes concepts within specific semantic regions, demonstrating strong robustness. However, the specific functional mechanisms used by these prototypes can differ significantly between model initializations. We acknowledge that the intervention effects for the COVID-19 prototype appear more variable than those observed in the gender experiments. This difference comes in part from the way the concepts are structured. Gender is modeled as a clear binary contrast (Male vs. Female), which allows relative comparisons, while COVID-19 is a single concept – it depends only on changes from a baseline probability and has no direct opposite reference. Despite this lack of contrastive referencing, the most significant finding is the robust emergence of the concept itself: across all three random seeds, the model consistently allocated a dedicated prototype slot to encode pandemic- or disease-related knowledge without explicit supervision.

A.3.3 EXTENDED INTERVENTION ANALYSIS ON DIVERSE CONCEPTS

To demonstrate that the functional localization of semantic concepts is a general property of the ProtoT architecture and not limited to the social (Gender) or event-specific (COVID-19) cases discussed in the above, we extended our discovery pipeline to additional semantic domains. Here, we present intervention results for geographic entity (“e.g. New Zealand”) and an abstract state (“e.g. Mental Health”).

The test corpus for the ‘New Zealand’ prototype consisted of the following sentences:

- “The Dutch explorer Abel Tasman named New Zealand as Nova Zeelandia after the Dutch province of Zeeland”
- “The Treaty of Waitangi signed in 1840 was instrumental in establishing British sovereignty over New Zealand”
- “Regular Quaker meetings began in Nelson in 1842 and later spread across New Zealand”
- “The first Quaker to visit Aotearoa / New Zealand was Sydney Parkinson”

The test corpus for the ‘Mental Health’ prototype consisted of the following sentences:

- “Meditation and mindfulness practices are beneficial for maintaining mental clarity.”
- “Regular exercise can improve mental well-being and reduce symptoms of anxiety.”
- “She sought professional help to manage her mental stress during the exam period.”
- “Many people face mental health challenges but do not seek support due to stigma.”

We identified a prototype in L5 P9 that maximally activated for contexts related to the country including *New Zealand*. To validate its causal role, we constructed a test set containing historical and geographical facts. We then measured the impact of masking the prototype to see the change on the prediction of the target token ‘zealand’.

The results (Table 8) show striking causal efficacy. For instance, in the context of “...*abel tasman named new [zealand]*”, masking the write gate caused a massive probability drop of 21.54%. Similarly, references to the *Treaty of Waitangi* saw a 12.52% drop. This confirms that this specific slot (L5 P9) is critical for storing and retrieving knowledge specific to this geographic entity.

Table 8: Intervention results for the ‘New Zealand’ prototype (L5 P9). We report the relative change in probability for the target token ‘zealand’ when masking the Write Gate (Wr), Read Gate (Rd), or applying Random Noise to the Prototype (Rnd).

Context (Truncated)	Baseline	Relative Change (%)		
		Wr	Rd	Rnd
...explorer abel tasman named new...	35.7%	-21.5	-21.0	-20.7
...treaty of waitangi signed in 1840...	91.9%	-12.5	-12.9	-12.4
...regular quaker meetings began in...	33.4%	-2.3	-1.2	-1.1
...first quaker to visit aotearoa...	99.7%	-0.2	-0.2	-0.2

Moving beyond concrete entities, we investigated whether abstract concepts are similarly localized. We identified a prototype in L6 P9 responsive to *Mental Health* and communication. We tested this using sentences involving psychological states and well-being, targeting the token ‘mental’.

As shown in Table 9, while the baseline probabilities for this abstract adjective are generally lower than for proper nouns, intervention still yields consistent causal effects, further supporting the functional diversity discussed in the main text.

Table 9: Intervention results for the ‘Mental Health’ prototype (L6 P9). Target token: ‘mental’.

Context (Truncated)	Baseline	Relative Change (%)		
		Wr	Rd	Rnd
...mindfulness practices are beneficial...	5.0%	-2.2	-2.3	-1.6
...exercise can improve mental...	2.1%	-0.4	-0.7	-0.6
...sought professional help to manage...	1.4%	-0.2	-0.2	-0.2
...face mental health challenges...	1.3%	-0.1	-0.0	-0.0

A.4 DOWNSTREAM (DETAILS)

We provide the training protocol and hyperparameter configuration used for the GLUE downstream experiments, covering datasets and splits, pre-processing, optimization, early-stopping/selection on

1080 dev, and the hyperparameter sweep and choice rules, and we additionally report the corresponding
 1081 GLUE dev-set results for completeness.
 1082

1083
 1084 **Training protocol:** We evaluate four language model architectures: ProtoT, LLaMA, Mamba, and
 1085 DeltaNet, on the GLUE benchmark under a unified experimental protocol to ensure fair comparison.
 1086 Unless stated otherwise, all details follow the Experimental Setup 4. Inputs are formed as single-
 1087 sentence or sentence-pair prompts according to the task, with a maximum sequence length of 512.
 1088 To avoid leakage, we fine-tune on the official training split, select hyperparameters and checkpoints
 1089 on the official development split using early stopping, and export test predictions in the official TSV
 1090 format for submission to the GLUE server. We follow the official GLUE metrics: accuracy for
 1091 SST-2, QNLI, MNLI, QQP, RTE, and WNLI (or the primary metric reported by the official script),
 1092 the accuracy and F1 pair for MRPC and QQP, Matthews correlation for CoLA, and Pearson and
 1093 Spearman correlations for STS-B.

1094 Optimization and regularization are aligned across models. We use the AdamW optimizer together
 1095 with a linear learning-rate schedule with warmup. We apply selective weight decay consistent with
 1096 pre-training: decay is applied to affine weights that benefit from it, while embeddings, normalization
 1097 layers, and biases receive no decay. For GLUE downstream fine-tuning, we use a batch size of 16
 1098 for all models. Compared to pre-training, the GLUE datasets are much smaller, so we prefer a
 1099 moderately small batch size that provides more stochasticity in the updates and typically leads to
 1100 better generalization in low-data regimes. Fine-tuning runs for up to 3 epochs with early stopping
 1101 on dev, and the dev-best checkpoint is used to generate test predictions. Unless otherwise specified,
 1102 a fixed random seed is used across tasks and models to support reproducibility.

1103
 1104 **Hyperparameter selection:** Because architectures differ in optimization sensitivity, we conduct
 1105 per-model hyperparameter selection. For each model we run small grid searches on two represen-
 1106 tative tasks, SST-2 (medium-scale binary classification) and MNLI (large-scale multi-class classi-
 1107 fication). We sweep learning rates over a grid that includes 2.5e-5, 3.5e-5, 5.5e-5, 1e-4, 2e-4, 3e-4,
 1108 4e-4, 5e-4, 7e-4, 8.5e-4, 1e-3, and we sweep warmup ratios over 6% and 10%. The best learning
 1109 rate and warmup found per model on these representative tasks are then fixed for that model across
 1110 the remaining GLUE tasks, where “best” is defined as the (learning-rate, warmup) configuration that
 1111 achieves the highest average dev performance over SST-2 and MNLI. All other training details, such
 1112 as batch size, maximum length, optimizer settings, and early-stopping criterion, remain identical
 1113 across models.

1114 The final per-model settings in our environment are as follows. PrototypeAttn uses a learning rate
 1115 of 3.5e-5 with 6% warmup. LLaMA uses a learning rate of 5.5e-5 with 10% warmup. Mamba uses
 1116 a learning rate of 1e-4 with 10% warmup. DeltaNet uses a learning rate of 7e-4 with 10% warmup.

1117
 1118 **GLUE dev downstream fine-tuning results:** For completeness, we also report the GLUE dev
 1119 set results in Table 10, using the same evaluation metrics as in the main text (Matthews correlation
 1120 for CoLA, accuracy for SST-2/RTE/WNLI/QNLI/MNLI/MNLI-MM, F1 for MRPC and QQP, and
 1121 Pearson correlation for STS-B). These dev numbers were used during model development and are
 1122 largely consistent with the test-set trends in the results in Section 5, Table 2: LLaMA achieves the
 1123 strongest overall performance, while ProtoT remains competitive with dense baselines and shows
 robust behavior across multiple tasks.

1124 Table 10: GLUE dev downstream fine-tuning results (all metrics reported as percentages). For
 1125 COLA we report Matthews correlation; for SST-2 accuracy; for MRPC F1; for STS-B Pearson
 1126 correlation; for RTE, WNLI, QNLI, MNLI and MNLI-MM accuracy; for QQP F1. Results are
 1127 averaged over 3 seeds. Best results are in bold.
 1128

Model	COLA	SST-2	MRPC	STS-B	RTE	WNLI	QQP	QNLI	MNLI	MNLI-MM
LLaMA	36.4	91.2	84.9	85.8	60.1	56.3	85.9	86.4	80.5	79.7
Mamba	30.6	89.1	82.3	79.4	55.8	56.3	82.7	82.2	75.1	74.9
DeltaNet	8.9	85.5	81.4	75.7	56.1	56.3	81.2	80.1	71.6	72.5
ProtoT	29.3	89.8	81.7	73.3	54.5	54.9	83.6	82.6	75.4	76.0

1134 A.5 ROBUSTNESS (DETAILS)
11351136 This section details the perturbation set, construction pipeline, and slice-level statistics for the black-
1137 box robustness experiments.1138 A.5.1 PERTURBATION DATASET CONSTRUCTION
11391140 We construct a dedicated perturbation benchmark with seven categories of *meaning-preserving* sur-
1141 face noise, 500 pairs per category (3,500 total). Source sentences are sampled from three public
1142 corpora under simple length and formatting constraints: WikiText-2 (Merity et al., 2016), DailyDi-
1143 alog (Li et al., 2017), and AG News (Zhang et al., 2015).

1144 The final slices are:

1145

- **Synonyms:** Replacements derived from WordNet (Miller, 1995). We select candidate lemmas
1146 that differ from the original token, avoid multi-word expressions, and have similar length. The
1147 generator enforces a mix of 1/2/3 substitutions per sentence. This slice is further filtered us-
1148 ing Sentence-BERT (all-MiniLM-L6-v2; (Reimers & Gurevych, 2019; Wang et al., 2020)) and
1149 lexical heuristics (see below).
- **Typos:** Single-character keyboard noise applied to one token (internal character substitution),
1150 ensuring short, localized corruption.
- **Spelling variants:** American \leftrightarrow British spelling changes (e.g., *color* \rightarrow *colour*, *organize* \rightarrow *or-
1151 ganise*) using a fixed mapping and a curated example pool.
- **Morphological variants:** Simple inflection changes (e.g., singular \rightarrow plural) using rule-based
1152 morphology patterns plus a curated pool.
- **Contractions/Expansions:** Deterministic mappings between standard and contracted forms
1153 (e.g., *do not* \rightarrow *don't*, *it is* \rightarrow *it's*).
- **Punctuation/Casing:** Insertion or removal of punctuation (e.g., sentence-final periods or
1154 comma adjustments), while keeping word order intact.
- **Abbreviations/Short forms:** Systematic long-form \rightarrow abbreviation mappings (e.g., *Doc-
1155 tor* \rightarrow *Dr.*, *United States* \rightarrow *U.S.*).

1156 After generating the dataset, a separate cleaning and rebalancing script was run:
11571158

- 1159 filter by Sentence-BERT similarity (≥ 0.75),
- 1160 apply lexical checks (rare tokens, casing),
- 1161 backfill missing items from curated fallback pools, and
- 1162 sample exactly 500 pairs per slice.

1163 Table 11: Example sentence pairs from the perturbation benchmark.
1164

1165 Category	1166 Original	1167 Perturbed
1168 Abbreviation	1169 <i>Doctor Smith arrived.</i>	1170 <i>Dr. Smith arrived.</i>
1171 Contraction	1172 <i>I cannot go.</i>	1173 <i>I can't go.</i>
1174 Synonym	1175 <i>He was happy.</i>	1176 <i>He was glad.</i>
1177 Spelling	1178 <i>I like this color.</i>	1179 <i>I like this colour.</i>

1180 A.5.2 VARIANCE STATISTICS
11811182 To characterize the perturbation strength of each slice, we compute: (i) cosine similarity of all-
1183 MiniLM-L6-v2 embeddings between original and perturbed sentences, (ii) character-level Leven-
1184 shtein distance (Levenshtein, 1966).1185 Table 12 reports the per-slice averages. As expected, some categories (e.g., typos) introduce very
1186 small character edits but can cause non-trivial distributional shifts, while others (e.g., synonyms,
1187 abbreviations) involve larger form changes yet maintain high semantic similarity.

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Table 12: Variance statistics for the perturbation benchmark (3,500 pairs total).

	Synonym	Typo	Spelling	Morphology	Contraction	Punctuation	Abbreviation
Avg. Similarity	0.828	0.775	0.956	0.881	0.895	0.983	0.894
Avg. Edit Distance	5.89	1.03	1.20	1.00	2.54	1.09	7.23

Table 13: Training throughput (it/s; higher is better) and elapsed time (s; lower is better) for matched-depth/width models at seq. len. 256 (BF16). FLOPs are reported in units of $\times 10^5$ (forward+backward). *When compilation was unavailable, values reflect the fastest steady-state runs without compilation.*

Model	Batch	it/s	Elapsed (s)	FLOPs/sample ($\times 10^5$)	Total FLOPs ($\times 10^5$)	Params
ProtoT	32	25.2	34.57	41,583.0	1,330,657.0	12,205,266
ProtoT	128	7.6	31.32	41,583.0	5,322,625.2	12,205,266
Mamba	32	11.9	58.17	34,734.9	1,111,517.4	6,724,352
Mamba	128	3.2	54.26	34,734.9	4,446,069.4	6,724,352
DeltaNet	32	3.5	222.88	—	—	12,963,456
DeltaNet	128	1.8	182.06	—	—	12,963,456
LLaMA	32	55.1	26.16	49,341.5	1,578,929.0	12,938,496
LLaMA	128	23.6	22.30	49,341.5	6,315,714.3	12,938,496

A.6 THROUGHPUT BENCHMARKS (PROTOT, MAMBA, LLAMA, DELTANET)

We evaluate under identical conditions: same data pipeline, optimizer, precision (BF16), sequence length 256, and batch sizes 32 and 128. FLOP counts are per-sample (forward+backward) where obtainable. *Observations:* Table 13 summarizes training throughput at batch sizes 32 and 128 for matched-depth/width models. LLaMA attains the highest throughput overall (**55.1** and **23.6** it/s). ProtoT sustains **25.2** and **7.6** it/s and is $\sim 2.1\text{--}2.4\times$ faster than Mamba (11.9 and 3.2 it/s) at the same backbone. The FLA-based DeltaNet baseline, evaluated without fused delta kernels and with `torch.compile` disabled, reaches 3.5 and 1.8 it/s (batch 32/128).

A.6.1 LONG-CONTEXT THROUGHPUT

Throughput Evaluation Methodology To evaluate the computational efficiency of the models at varying context lengths, we measured the processing throughput on a single NVIDIA A100 80GB GPU. The benchmark measured the number of forward pass iterations per second (it/s) for a batch size of 1 across context lengths ranging from 2,048 to 131,072 tokens.

For a fair comparison, all models were run in standard PyTorch eager mode without `torch.compile` optimization. This ensures that the results reflect the raw architectural performance characteristics rather than compiler-specific optimizations which may vary in maturity across different architectures.

Throughput Results Table 14 shows the long-context inference throughput results. LLaMA achieves the highest throughput at short context lengths. However, ProtoT scales better as context increases, surpassing LLaMA at 32k tokens and above. DeltaNet maintains the highest throughput at long context lengths.

A.7 ABLATIONS

A.7.1 LAYER-0 ROUTING ABLATIONS

We ablate the three mitigations that stabilize the layer-0 router: (i) sharing the write/read routing distribution, (ii) sharpening the initial temperature ($\tau_0 = 3.0$), and (iii) adding a $k = 5$ depth-wise convolution to the write-value path of layers 0–1. Each configuration fine-tunes a 6-layer ProtoT on the FineWeb 18k/4k split (sequence length 256, seed 0) for three epochs, using the same optimizer,

1242 Table 14: Long-context inference throughput (iterations per second; higher is better). Measured on
 1243 a single NVIDIA H100 80GB GPU, batch size 1, PyTorch eager mode without `torch.compile`.
 1244

1245	Context	LLaMA	ProtoT	Mamba	DeltaNet
1246	2,048	100.47	38.74	35.50	43.54
1247	4,096	47.90	20.61	19.04	42.35
1248	8,192	21.72	10.82	9.89	44.89
1249	16,384	8.08	5.49	5.05	40.20
1250	32,768	2.61	2.78	2.55	27.78
1251	65,536	0.74	1.40	1.28	17.34
1252	131,072	0.20	0.65	0.57	9.41

1253
 1254
 1255 tokenizer, and learning rate as the main experiments. We report best validation perplexity alongside
 1256 routing diagnostics logged on the dev set.
 1257

1258 Table 15: Layer-0 routing ablations on FineWeb. Metrics come from the final validation epoch
 1259 (`val_router_stats.csv`) and the best dev perplexity tracked during training. Lower perplexity,
 1260 Gini, and top-1 probability imply healthier routing; higher $\bar{\alpha}_0$ indicates that the ReZero gate remains
 1261 active. Best values are in bold.

1262 1263 Variant	Shared	L_0	τ_0 init	Write conv	Best val ppl \downarrow	$\bar{\alpha}_0 \uparrow$	Gini \downarrow	top-1 \downarrow
1264 All mitigations (baseline)	On	3.0	$k = 5$		133.3	0.672	0.034	0.079
1265 No shared routing	Off	3.0	$k = 5$		133.4	0.658	0.064	0.082
1266 τ reset to 1.0	On	1.0	$k = 5$		133.6	0.653	0.035	0.088
1267 No write conv	On	3.0	Off		145.7	0.354	0.097	0.177
1268 All mitigations off	Off	1.0	Off		149.9	0.261	0.243	0.373

1269
 1270 The convolution contributes most to stability: removing it roughly doubles the router concentration
 1271 (top-1 rises from 0.079 to 0.177), increases hub inequality, and halves the layer-0 ReZero gate,
 1272 ultimately worsening perplexity by +12.4 points. Shared routing and the sharpened τ_0 have smaller
 1273 individual effects on perplexity, but together they keep hub utilisation uniform (gini 0.034) while
 1274 allowing the gate to stay near its baseline value. Disabling every mitigation reproduces the original
 1275 alpha-collapse, dropping $\bar{\alpha}_0$ to 0.261 and letting a single hub monopolise 37% of the mass.
 1276

1277 **Interpretation.** Shared write/read routing and the sharper initial temperature primarily act as reg-
 1278 ularisers: they prevent the router from collapsing mass onto a few hubs without hurting sample
 1279 efficiency. The depth-wise convolution, in contrast, provides an expressivity boost that both im-
 1280 proves perplexity and raises the effective signal scale entering layer 0; once it is removed the router
 1281 cannot maintain broad support and the ReZero gate decays. The combination of all three mitigations
 1282 therefore offers a balanced trade-off between stability and performance.

1283 A.7.2 VALIDATING THE HYPERPARAMETER CHOICES

1285 These experiments motivate the choice of kernel size (5) for the local convolution, the alpha-gate
 1286 initialization (1.0), the number of prototypes (32), the use of mass normalization, low-rank projec-
 1287 tion at the value stream, and dropout. In these experiments, we use the default model, data, and
 1288 training configurations, unless otherwise specified. We search over learning rates values (1.0e-3,
 1289 2.0e-3, 3.0e-3) for ProtoT, (0.8e-3, 1.6e-3, 3.2e-3) for LLaMA, (1.9e-3, 3.8e-3, 7.6e-3) for Mamba,
 1290 and (3.4e-3, 6.8e-3, 13.6e-3) for DeltaNet (the middle values of each interval are informed by the
 1291 best learning rates from the automatic hyperparameter search, Section 4), and average the results
 1292 over 3 seeds.

1293
 1294 **Kernel size of local convolution** The results in Table 16 show that kernel size 5 and 6 are the best
 1295 values in terms of dev perplexity, with an insignificant difference ($\approx 0.2\%$) between the two (97.1 vs
 96.9), which confirms our choice of kernel size = 5.

1296 Table 16: Kernel size ablation of the local convolution in ProtoT. Reported best dev perplexity (lower
 1297 is better), averaged over 3 seeds. Best values are in bold.

Variant	Kernel size	Performance (dev perplexity) ↓
ProtoT (k=4)	4	98.3
ProtoT (k=5)	5	97.1
ProtoT (k=6)	6	96.9
ProtoT (k=7)	7	97.5

1306 **Alpha-gate initialization:** The results in Table 17 show that 0.8 and 1.0 are the best values for
 1307 α initialization, without significant difference in performance, which confirms our choice of 1.0.
 1308 In particular, $\alpha = 1.0$ performs better than ReZero’s $\alpha = 0.0$ (Bachlechner et al., 2020), with
 1309 97.1 vs 99.2 perplexity. This is likely because ReZero trains extremely-deep NNs, where it may
 1310 be beneficial to start from zero contribution from the layers, to avoid noise accumulation early in
 1311 training.

1312 Table 17: Alpha-gate initialization study for ProtoT. Reported best dev perplexity (lower is better),
 1313 averaged over 3 seeds. Best values are in bold.

Alpha initialization value	Performance (dev perplexity) ↓
0.0	99.2
0.5	97.9
0.8	97.0
1.0	97.1
1.2	98.7

1324 **Mass Normalization and Low-Rank Projection at the Value Stream:** The results in Table 18
 1325 show that the mass normalization (used in the default setting) brings $\approx 9\%$ slowdown, while improv-
 1326 ing perplexity by $\approx 4.6\%$. This is a trade-off, where we have chosen the performance gain over the
 1327 slowdown. On the other hand, the low-rank projection to half the hidden size performs about the
 1328 same in terms of dev perplexity (97.1 vs 97.3), while introducing a massive speed-up ($\approx 59\%$ faster).

1329 Table 18: Ablation study for ProtoT: mass normalization and low-rank projection. Reported best
 1330 dev perplexity (lower is better), averaged over 3 seeds. Best values are in bold.

Setting	Performance (dev perplexity)	Speed after torch.compile() [it/s]
Default settings	97.1	89
No mass normalization	101.8	98
No low-rank projection	97.3	56

1338 **Optimal number of prototypes (R):** The results in Table 19 show that ProtoT’s performance
 1339 plateaus after $R=32$ ($97.1 \rightarrow 97.3$ perplexity), whereas speed drops substantially ($89 \rightarrow 60$ it/s). This
 1340 shows that $R=32$ is the optimal trade-off between model performance and speed.

1342 Table 19: Optimal number of prototypes (R) for ProtoT. Reported best dev perplexity (lower is
 1343 better), averaged over 3 seeds. Best values are in bold.

R value	Performance (dev perplexity)	Speed after torch.compile() [it/s]
16	98.5	116
32	97.1	89
64	97.3	60

1350 **Dropout:** The results in Table 20 show that the default dropout configuration we use in Section 4
 1351 yields the best perplexity for ProtoT and all baseline models.
 1352

1353 Table 20: Dropout study for ProtoT, LLaMA, Mamba, and DeltaNet. Reported best dev perplexity
 1354 (lower is better), averaged over 3 seeds. Best values are in bold.
 1355

1356 Model settings	1357 Performance (dev perplexity) ↓
1358 ProtoT (default: dropout=0.1)	97.1
1359 ProtoT (no dropout)	107.6
1360 LLaMA (default: dropout=0.1)	84.8
1361 LLaMA (no dropout at self-attn)	85.2
1362 LLaMA (no dropout at all)	92.4
1363 Mamba (default: dropout=0.1)	91.1
1364 Mamba (no dropout)	96.6
1365 DeltaNet (default: dropout=0.1)	99.4
1366 DeltaNet (no dropout)	103.5

1368 A.8 ADDITIONAL INTERPRETABILITY METRICS

1370 In this appendix, we report results on correlation between half life values and locality of a concept
 1371 as well as four complementary metrics that characterize how prototype activations of ProtoT and LLaMA
 1372 attention heads value norms evolve across depth. Each metric captures a different aspect of how the routing
 1373 distribution changes from early to deeper layers. Let $a_{l,p}(x)$ denote the activation of prototype $p \in \{1, \dots, P\}$ at layer $l \in \{1, \dots, L\}$ for input x , and let
 1374 $\mathbf{a}_l(x) = (|a_{l,1}(x)|, \dots, |a_{l,P}(x)|)$ denote the vector of absolute activations.
 1375

1376 **Correlation Between Half-Life and Locality** To assess whether prototype half-life reflects concept
 1377 locality, we require an operational proxy for locality. Empirically, low-level lexical prototypes (e.g., punctuation, stopwords) exhibit highly repetitive sets of most-activating-tokens, whereas more
 1378 abstract prototypes show greater token diversity. This aligns with the intuition that local prototypes
 1379 focus on neighboring tokens and as a result, activate more strongly based on token identity, while
 1380 longer half-life prototypes aggregate information over wider contexts. Motivated by this observation,
 1381 we use the *token repetition score* as a proxy for locality.
 1382

1384 Low half-life prototype (L2P6)	1385 HL = 5.04, repetition = 0.73	1386 Function-word clusters	1387 (e.g., “in the”, “of the”)	1388 the , the , ,	1389 in the , the of , ,	1390 a many of the , ,	1391 , or of the most and	1392 the a , in , this	1393 in the , in other ,	1394 guide for aim deliver their close	1395 converted to homeless converted an into	1396 adaptation of through applied to the	1397 delegation responsibility shifts from	1398 ‘‘common’’ delegation	1399 manage . bring our home from	1400 uses encourage invite your to build

1394 Figure 7: Two example prototypes illustrating the relationship between half-life and repetition. The
 1395 short half-life prototype (left) exhibits tightly localized, highly repetitive lexical patterns, whereas
 1396 the longer half-life prototype (right) activates on broader transformation expressions.
 1397

1398 We quantify the relationship between half-life and repetition using two standard statistical tools: (i)
 1399 a Spearman rank correlation between half-life and repetition scores, and (ii) quantile-based group
 1400 comparisons in which prototypes are divided into half-life quartiles. For the latter, we compare
 1401 mean repetition scores across quartiles and compute the effect size (Cohen’s d) between the lowest
 1402 and highest half-life groups.
 1403

The results show a robust negative association between half-life and repetition, with a highly significant Spearman correlation and a large effect size ($d = 0.825$) between the lowest and highest

Metric	Value	Interpretation
Spearman ρ	-0.2192	Negative association
p -value	8.3×10^{-10}	Very significant
Q1 repetition ($HL \leq 7.8$)	0.4060	High repetition
Q2 repetition	0.3429	Medium
Q3 repetition	0.4017	High
Q4 repetition ($HL > 13.4$)	0.2695	Low repetition
Cohen's d (Q1–Q4)	0.825	Large effect

Table 21: Relationship between prototype half-life and repetition score. Lower half-life prototypes exhibit substantially higher repetition.

quartiles. This provides strong evidence that **prototypes with shorter half-lives encode more local, repetitive lexical patterns**, whereas longer half-life prototypes correspond to broader, less repetitive activation structure.

L1 SPARSITY RATIO. To measure the degree of “winner–take–all” behavior among prototypes, we compute

$$S_l = \mathbb{E}_x \frac{\max_p |a_{l,p}(x)|}{\frac{1}{P} \sum_{p=1}^P |a_{l,p}(x)|}. \quad (3)$$

A high value indicates that a single prototype (or a small subset) dominates the activation mass, reflecting strong concentration and effective sparsity.

GINI COEFFICIENT. To quantify the inequality of the activation distribution, we compute the Gini index

$$G_l = \mathbb{E}_x \frac{1}{P} \left(P + 1 - 2 \frac{\sum_{p=1}^P (P + 1 - p) a_{l,p}^\uparrow(x)}{\sum_{p=1}^P a_{l,p}(x)} \right), \quad (4)$$

where $a_{l,p}^\uparrow(x)$ are the activations sorted in increasing order. Low values correspond to uniform activation across prototypes, while high values indicate strong inequality and specialization.

ENTROPY. To measure the spread or concentration of activations, we normalize $p_{l,p}(x) = |a_{l,p}(x)| / \sum_{q=1}^P |a_{l,q}(x)|$ and compute the Shannon entropy

$$H_l = -\mathbb{E}_x \sum_{p=1}^P p_{l,p}(x) \log p_{l,p}(x). \quad (5)$$

High entropy indicates diffuse activation across many prototypes, whereas lower entropy reflects concentrated, low-uncertainty routing.

MUTUAL INFORMATION. To assess how strongly prototype activations depend on surface lexical identity, we compute the mutual information between the discretized activations $\tilde{a}_{l,p}$ and the token identity T :

$$I_l = I(T; \tilde{a}_{l,p}). \quad (6)$$

High mutual information indicates that activations are predictive of the specific token type. A decrease in mutual information with depth does *not* by itself establish that deeper prototypes encode “more abstract” concepts; however, it is *consistent* with the broader pattern observed across our sparsity, entropy, and interpretability analyses, where later layers appear less tied to local lexical identity and more shaped by contextual or compositional signals.

Together, these metrics provide a multifaceted view of how prototype representations of ProtoT sharpen, specialize, and suggest a transition from local lexical cues to increasingly structured or context-sensitive behaviors as depth increases. LLaMA metrics by contrast, do not show clear systematic patterns, entropy remains uniform across layers while the Gini coefficient and L1 sparsity oscillate. Mutual Information follows a pattern similar to that of ProtoT

Figure 8: ProtoT interpretability metrics across depth.

Figure 9: LLaMA interpretability metrics across depth.

A.9 ADDITIONAL CONCEPTS VISUALIZATION AND LLM-AIDED EVALUATION RESULTS

Prototype visualizations We provide additional examples from the write gate activation interpretability experiment, useful to better illustrate results about learned concept representation. This section also contains result statistics for LLM-aided evaluation experiment for multiple model configuration of ProtoT and for LLaMA.

Figure 10: Visualization for prototype **L0 P18**. Half-life = 12.8Figure 11: Visualization for prototype **L1 P14**. Half-life = 13.2

1563 **LLM scoring and labeling** We provide visualizations of some random selected examples and
 1564 resulting statistics of the LLM scoring process. We also show ablation for different model configu-
 1565 rations, including R=16, R=64, two extra seeds for R=32 and R=32 without low rank projection.

Figure 12: Visualization for prototype L7 P31. Half-life = 12.7

Figure 13: Visualization for prototype L8 P5. Half-life = 0.140

Figure 14: Visualization for prototype **L10 P8**. Half-life = 0.510Figure 15: LLM aided interpretability results for prototype **L0 P21 R=32 (S=135)**.

1674
 1675
 1676
1677 Prototype L1 / P27
 1678

Metric	Score
Disentanglement	6
Coverage (Main Theme)	9
Theme number_of_themes	3

 1679 **Main Theme:** descriptions of significant risks, problems, or stressors and their impacts in various domains
 1680 **Explanation:** Across almost all sentences, the activating tokens highlight situations involving threats, stressors, or problematic conditions (environmental stress on crops, fire emergencies, performance issues in manufacturing, risk management in business, earthquakes, addiction crises, social turmoil in the 1960s, vaccine shortages). Sentence 5 fits as well by focusing on studied relationships in an educational/clinical context, which is somewhat adjacent but still about conditions with important consequences. Sentence 3 is the least clearly about risk but still centers on a potentially significant artifact. The main pattern is not tied to a specific topic area but to the semantic field of hazards/problems and their effects. There are a few secondary themes (scientific/technical/exposition, time-period or event descriptions), so the representation is not perfectly clean, but the risk/problem motif is clearly dominant in 8-9 of the 10 examples. Hence a moderate-to-strong disentanglement score, high coverage of the main theme, and a small number of overlapping secondary themes.
 1681 ▼ View sentence snippets used for analysis
 1682

- sentence[1]: plants are exposed to several stresses
- sentence[2]: fire emergency alert australia ' combined perfect
- sentence[3]: ring that might have behind '
- sentence[4]: wire bonding in tends to
- sentence[5]: studies demonstrated a positive relationship between
- sentence[6]: management is something that has in '
- sentence[7]: earthquakes are moderate of) magnitude
- sentence[8]: working in recovery has witnessed
- sentence[9]: 1960s had share ups downs lows
- sentence[10]: not enough for shots will be to

 1683 ▼ View full sentences
 1684

1. Rank 1: crop plants are exposed to several environmental stresses, which all affect plant growth and development and consequently hamper the productivity of crop plants. drought is considered to be
2. Rank 2: australian fire emergency alert australia 's record high temperatures combined with record low rainfall are a perfect (fire) storm. rivers are either dry or at record lows
3. Rank 3: a ring that might have been the inspiration behind jrr tolkien 's 'lord of the rings' and 'the hobbit' books has
4. Rank 4: traditional wire bonding used in the semiconductor manufacturing industry tends to have performance related issues that are tied to inductance and capacitance. flip
5. Rank 5: previous studies demonstrated a positive relationship between deaf children 's sign acquisition and their english literacy skills and the importance of parental language input. this study examined the
6. Rank 6: risk management is something that has to be given special attention in today 's complex business environment. market in which the businesses operate today is totally different to
7. Rank 7: glacial earthquakes are moderate earthquakes of (surface - wave) magnitude up to 5 on the richter scale. they are closely related to ice motion. they occur
8. Rank 8: anyone working in the field of addiction and recovery has witnessed firsthand the devastating effects of america 's dependence on opioid narcotics.
9. Rank 9: the 1960s had its share of ups and downs, highs and lows. it was marred by protests, fights for injustice, the vietnam war.
10. Rank 10: still not enough for entire population, shots will be restricted to high risk only november 10, 2004 state and local health officials and the cdc have worked together to

 1685 **Figure 16: LLM aided interpretability results for prototype L1 P27 R=32 (S=135).**

1691
 1692
 1693
 1694
 1695
 1696
1697 Prototype L5 / P7
 1698

Metric	Score
Disentanglement	4
Coverage (Main Theme)	4
Theme number_of_themes	7

 1699 **Main Theme:** educational or expository texts presenting facts, questions, or explanations
 1700 **Explanation:** Several sentences are explicitly educational or expository: Sentence 2 lists "five fun facts"; Sentence 7 is about a school board class guide; Sentence 8 outlines a Bible lesson with main point and key passage; Sentence 10 poses a history exam-style prompt. Others (3, 4, 5, 6) are informational research or academic-style descriptions, which loosely fit the same expository/educational flavor. However, there is notable heterogeneity: classical rhetoric (1), numbered fun facts (2), paleontology (3), engineering colleagues (4), economics inscription (5), plant research (6), school textbook (7), religious teaching guide (8), devotional reflection (9), and a history assignment (10). This diversity suggests multiple overlapping themes: academic/research context, religious instruction, historical or exam-like questions, numbered fact lists, and named professionals. The main theme of educational or explanatory discourse is present in roughly 4-6 sentences strongly and others more weakly, giving a moderate but not dominant pattern. Hence coverage_main_theme is 4 and number_of_themes is relatively high at 7, yielding a low-to-moderate disentanglement score of 4.
 1701 ▼ View sentence snippets used for analysis
 1702

- sentence[1]: of there [...] secondly , persuasion
- sentence[2]: five fun facts : 1 . 2
- sentence[3]: ancient half continue says drn .
- sentence[4]: the colleagues dr soper drn mike
- sentence[5]: irving fisher professor fisher irving fisher
- sentence[6]: striped , researcher jennifer blake was
- sentence[7]: back : class 6th table .
- sentence[8]: bible : key : mark question
- sentence[9]: jesus . . ellis , it
- sentence[10]: prove give . october | education

 1703 ▼ View full sentences
 1704

1. Rank 1: of the modes of persuasion furnished by the spoken word there are three kinds. [...] secondly, persuasion may come through the hearers, when the
2. Rank 2: five fun facts about the irish holiday: 1. st. patrick was not born in ireland, but in britain. 2. green was not always the color
3. Rank 3: ancient crocodile swim traces found in tumber ridge half a decade ago continue to contribute to global research of the reptiles, says paleontologist dr.
4. Rank 4: the measurements reported in this post were made by colleagues of the school of engineering at the university of birmingham - dr david soper and dr mike jesson -
5. Rank 5: inscribed by irving fisher to his famous economics rival, professor frank a. fetter fisher, irving and fisher, herbert w. constructive income taxation. a
6. Rank 6: striped maples wait to last minute before choosing their sex a few years ago, rutgers researcher jennifer blake - mahmud was working on a bot
7. Rank 7: back to: karnataka board class 6th english guide and notes table of contents - madhava: a father of a young child who takes his son
8. Rank 8: bible passage: luke 15 main point; jesus is the one who seeks and saves the lost. key passage: mark 6: 34 big picture question:
9. Rank 9: jesus was no stranger... by ellis atchison during lent and holy week, it is appropriate for us to reflect on places in today 's
10. Rank 10: prove that in the time of nero, no one was protected from the emperor 's arbitrariness. give examples. october 31, 2020 | education

 1705 **Figure 17: LLM aided interpretability results for prototype L5 P7 R=32 (S=135).**

1728 **Prototype L9 / P14**

1729

Metric	Score
Disentanglement	9
Coverage (Main Theme)	10
Theme number_of_themes	2

1730 **Main Theme:** Temporal expressions specifying historical periods, date ranges, and years (often with prepositions like during/from/in)

1731 **Explanation:** All ten examples center on temporal expressions: specific years, year ranges, and periods such as 'late 19th and early 20th centuries,' 'from July 4, 1941 to 1943,' and '1632–1723.' The most activating tokens consistently include prepositions plus time markers (during, from, in, till) tied to explicit dates or bounded time spans. Sentences cover historical events, movements, or seasons, but those topics are secondary to the consistent temporal-range pattern. There is a minor secondary theme of historical description, but it is tightly bound to the use of precise time references. Because nearly every trigger is a time phrase, the coverage is maximal and the number of distinct themes is low. This yields a highly, though not perfectly, clean temporal-range feature, justifying a disentanglement score of 9.

1732 ▼ View sentence snippets used for analysis

1733

- sentence[1]: during late 19th early 20th
- sentence[2]: from July 4, 1941 to
- sentence[3]: during 17 - 23 , 1939
- sentence[4]: presidential in the states first in
- sentence[5]: in from the early 1940s to
- sentence[6]: of the of the early 20th
- sentence[7]: with season from July till in
- sentence[8]: has been this to the 2018
- sentence[9]: of the last few hundreds of
- sentence[10]: 1632 - 1723 in

1734 ▼ View full sentences

1735

- 1. Rank 1: emanuel jules joseph descomps was a french sculptor and jeweller working in paris during the late 19th and early 20th centuries, known as
- 2. Rank 2: pink (belarus) was under soviet rule for seven months and under the german occupation from July 4, 1941 to 1943, at the start
- 3. Rank 3: military parade marks hitler 's birthday adolf hitler and nazi germany gathered the most headlines during the week of April 17 - 23, 1939, as world
- 4. Rank 4: 1792 presidential election the united states presidential election of 1792 was the second presidential election in the united states, and the first in which each of the original
- 5. Rank 5: McCarthyism is a term describing the intense anti - communist suspicion in the united states in a period that lasted roughly from the early 1940s to
- 6. Rank 6: the anti - sexual violence movement has a rich history, one that began long before the feminist movement of the 1970s or the suffragists of the early 20th
- 7. Rank 7: the gambar has a tropical climate, with a hot and rainy season from July till October and the dry period, in which cooler temperatures predominate.
- 8. Rank 8: as the u. s. flu season has been churning away, with nearly double the number of pediatric deaths at this point compared to the 2018 flu
- 9. Rank 9: dodo - the emblem of extinction the dodo is probably the most famous in the long line of extinct animals of the last few hundreds of years.
- 10. Rank 10: anton van leeuwenhoek (1632 - 1723) was a tradesman and scientist from delft, in the netherlands.

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Figure 18: LLM aided interpretability results for prototype L9 P14 R=32 (S=135).

Figure 19: histograms for LLM aided interpretability for model configuration R=16

Figure 20: histograms for LLM aided interpretability for model configuration R=32 (S=124)

Figure 21: histograms for LLM aided interpretability for model configuration R=32 (S=135)

Figure 22: histograms for LLM aided interpretability for model configuration R=64

Figure 23: histograms for LLM aided interpretability for R=32 (S=124) and no low rank projection

Figure 24: histograms for LLM aided interpretability for LLaMA model trained for 1)

1836 A.10 PROMPT FOR LLM-AIDED INTERPRETABILITY EXPERIMENT
1837

1838

1839

1840

1841

1842

1843 "You are analyzing a single prototype (a neuron-like feature) from a neural
language model.\n"
1844 "For this prototype you are given, for each of its top-ranked sentences, the
full sentence and the subset "
1845 "of its most activating tokens. Each example is formatted as:\n\n"
1846 " Most activating tokens sentence: <token1 token2 ...>\n\n"
1847 " Sentence: <full sentence text>\n"
1848 "A **theme** is any recurrent characteristic that appears across multiple
high-activation token sets or their "
1849 "sentences. Themes can be narrative motifs, entities, stylistic elements,
punctuation patterns, lexical fields, "
1850 "or any other shared property that appears across more than one example. ALL
PREVIOUS EXAMPLES ARE CONSIDERED THEMES. It can be local (individuated by single"
1851 "isolated words (like numbers or punctuation) or more sentence level
(individuated by composing multiple tokens)\n\n"
1852
1853 "Your task is to determine whether there is a meaningful main theme shared
across the provided sentences, "
1854 "and how strongly that theme characterizes this prototype.\n\n"
1855 "You should first of all observe the most activating tokens to check if there
is a main theme that is already observable there"
1856 "then if by observing only the tokens it is hard to find a common theme, you
should check the sentences to observe if there is"
1857 " a more 'sentence level' theme like a narrative or a motif. Remember that the
first indication is given by the most activating tokens,"
1858 " if they are clearly forming a visible coherent pattern, that's enough to
conclude the analysis. If instead the pattern they are forming is not that clear,"
1859 " then move to observe and analyze the full sentences."
1860
1861 "For example in these sentences and most activating tokens there is everywhere
a common theme of comitative structure with the use of the word 'with' that is already
very visible with the most activating tokens"
1862 " Sentence Rank 1: how are nigeria à\200\231 s trading and political
relationships changing? what relationship did nigeria have with britain? trade between
britain and west africa has occurred for over"
1863 " Sentence Rank 2: the teens at risk series deals with powerful and relevant
issues facing teenagers today. this series reveals first - hand how young people deal with
and overcome the very real"
1864 " Sentence Rank 3: the only country that south korea shares a land border with
is north korea. the land border between the two countries is 148 miles in length, disse"
1865 " Sentence Rank 4: communication with families: a plan for every child keep
communicating with parents and pave the way for continued progress! by carla poole summer
is on the"
1866 " Most activating tokens[1]: trading relationships relationship with trade
between"
1867 " Most activating tokens[2]: deals with issues facing deal with overcome"
1868 " Most activating tokens[3]: shares border with border between two"
1869 " Most activating tokens[4]: communication with families communicating with
parents"
1870
1871 " or in this other example list of most activating tokens, we have knowledge
and questions, this can be safely identified as a single common main theme. the list of
sentences reinforce what was already observable"
1872 " Sentence Rank 1: did you know that something called chronic fatigue existed?
well, many of us do not know about this ailment, but it is actually quite common. the"
1873 " Sentence Rank 2: how to do homework quicker the best way to do homework
sooner is a problem most college students have. doing homework isn à\200\231 t as
enjoyable as mother and"
1874 " Sentence Rank 3: what does shingles look like? how does shingles start? how
does shingles affect the body? how is the diagnosis made and treatment"
1875 " Sentence Rank 4: norovirus information guide noroviruses (previously known
as norwalklike viruses) are widely recognized as the agents known to cause outbreaks of
illness among"
1876 " Most activating tokens[1]: did know well do know quite"
1877 " Most activating tokens[2]: do do isn t as as"
1878 " Most activating tokens[3]: does ? does ? does ?"
1879 " Most activating tokens[4]: known as recognized as known"
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Figure 25: Full prompt used for LLM aided evaluation and labeling experiment

1944
1945

B APPENDIX: COMPREHENSIVE EVALUATION DETAILS

1946
1947

B.1 QUALITATIVE EVALUATION METHODOLOGY

1948
1949
1950
1951
1952
1953
1954
1955
1956

We adopted an LLM-as-a-judge protocol inspired by Chatbot Arena (Chiang et al., 2024). For a given evaluation prompt, we present the two model outputs (Response A and Response B) to a frozen judge model (Gemma-3-4B-IT) using a fixed system instruction that asks the judge to select the better response based on coherence, relevance, fluency, and correctness, and to reply with a single token in “A”, “B”, “Tie”. To reduce position bias, we query the judge twice per example: once with the order (A, B) and once with the order (B, A). The two decisions are mapped back to the original models and converted into soft pairwise scores (win = 1, tie = 0.5 per model). Aggregating over all prompts yields pairwise win/tie statistics between the two systems, which we then use to compute Elo ratings following the standard Chatbot Arena procedure.

1957

B.2 COMPREHENSIVE RESULTS

1958
1959
1960

Table 22 presents the qualitative ELO rankings of the models.

1961
1962

Table 22: Evaluation of Model Quality. ELO scores are derived from pairwise judge evaluations (higher is better).

1963
1964

Model	ELO
LLaMA	938.59
Mamba	1150.78
ProtoT	1015.93
DeltaNet	894.70

1965
1966

B.3 QUALITATIVE SAMPLES

1967
1968
1969
1970

We decode 50-token continuations for each model on a shared set of FineWeb validation prompts, score every output with BLEU against the held-out reference, and then extract the highest-BLEU prompt for each model. The examples below present those prompts alongside every model’s completion and BLEU score, enabling apples-to-apples qualitative inspection.

1971
1972
1973
1974
1975
1976

Each subsection lists the prompts where a model achieved its highest BLEU scores. For every selected prompt, we show the prompt, the reference completion, and the completions (with BLEU) for all available models.

1977
1978
1979

B.3.1 PROMPT — PROTOT WINNER

1980
1981
1982
1983
1984
1985
1986

Prompt: *..can also be caused by other conditions such as benign prostate enlargement. there are no known causes for prostate cancer. however, between 5% and 10% of cases run in families, where the patient inherits a high risk of this type of cancer. prostate cancer is very rare in men under 50. the risk increases after the age of 50 with half of all cases occurring in men over 70. men from families with a history of prostate cancer are at higher risk than normal. race also has*

1987
1988
1989
1990
1991

Reference: *an effect: men of afro-caribbean descent are about twice as likely to get it whereas men of asian descent have a lower risk of prostate cancer. some evidence suggests that a diet high in tomatoes, vitamin e, cruciform vegetables (such as broccoli, cabbage, cauliflower and brussels sprouts) and selenium may reduce the risk of prostate cancer. however, other studies have failed to confirm these effects, so the findings of this prostate cancer research have*

1992
1993
1994
1995

ProtoT (BLEU 0.0359): a higher risk of prostate cancer. the risk of prostate cancer is higher in men than women. the risk of prostate cancer is higher in men than women. the risk of prostate cancer is higher in men than in women. the risk of prostate cancer is

1996
1997

DeltaNet (BLEU 0.0334): a higher risk of developing prostate cancer. the risk of prostate cancer is higher in women with a high risk of developing the disease. the risk of prostate cancer is higher in women with a high risk of developing the disease. the risk of prostate cancer is

1998 **LLaMA (BLEU 0.0000):** a risk. men from family with a history of prostate cancer are at higher
 1999 risk than normal. men from family with a history of prostate cancer are at higher risk than
 2000 normal. men from family with a history of prostate cancer are at higher risk than normal
 2001
 2002 **Mamba (BLEU 0.0000):** a significant impact on the risk of developing prostate cancer. african
 2003 american men are at a higher risk of developing prostate cancer than caucasian men. african
 2004 american men are at a higher risk of developing prostate cancer than caucasian men. cau-
 2005 casian men are at

2006 **B.3.2 PROMPT — LLAMA WINNER**

2007
 2008 **Prompt:** .. grow out of control to form a mass or tumour. it is a very variable disease. some
 2009 tumours remain small and grow so slowly that they cause no problems for the rest of a man's life;
 2010 others are aggressive, grow quickly and become life-threatening. many of these aggressive cases
 2011 will eventually spread to the bones, where they can cause severe pain. prostate cancer is now the
 2012 most commonly diagnosed male cancer in many western countries. currently there are 37,000 new
 2013 cases a year

2014 **Reference:** in the uk; 218,000 in the usa; 25,000 in canada and 17,000 new cases a year in aus-
 2015 tralia. the number of recorded cases has increased a lot in recent years. this is partly due to the
 2016 increased use of the psa test, which has resulted in more cases being detected, and partly due to the
 2017 fact that men are living longer. like most cancers, prostate cancer is more common in those over 60.
 2018 main symptoms include: however, all of these symptoms

2019 **LLaMA (BLEU 0.0228):** there are more than 1,000 new cases a year. there are more than 1,000
 2020 new cases a year. there are more than 1,000 new cases a year. there are more than 1,000
 2021 new cases a year. there

2022 **Mamba (BLEU 0.0203):** in the uk. the number of new cases is expected to rise to more than 1,000
 2023 by 2050. the disease is also becoming more common in the uk, with more than half of all
 2024 new cases diagnosed in the uk in the last decade

2025 **ProtoT (BLEU 0.0000):** in the united states. prostate cancer is the most common cancer in men
 2026 and women. it is the most common cancer in men and women. it is the most common
 2027 cancer in men and women. it is the most common cancer in men and women.

2028 **DeltaNet (BLEU 0.0000):** in the u. the most common form of the disease is prostate cancer. the
 2029 most common form of the disease is prostate cancer. the most common form of the disease
 2030 is prostate cancer. the most common form of the disease is prostate cancer. the most

2032 **B.3.3 PROMPT — DELTANET WINNER**

2034 **Prompt:** averages and comparatives – hotter, colder, more, less, the highest, the lowest and so on.
 2035 the students also learnt the basic elements of the water cycle. the biology unit included learning the
 2036 characteristics of things that are alive: movement, the ability to eat and drink, the ability to breathe,
 2037 reproduction (plants only !!), growth and excretion. the students were introduced to the process of
 2038 photosynthesis to illustrate the fact that plants make their own food and ex

2039 **Reference:** create oxygen and water. this was a completely new concept for them and they found it
 2040 fascinating. the students also learnt how insects pollinate plants to create new seeds. the phonics
 2041 programme used the multisensory jolly phonics system, which we have introduced to all our beginner
 2042 classes. each letter sound has an accompanying action. students and teachers have fun miming out
 2043 words and students discover that they are able to spell long words if they listen for individual sounds
 2044 and that they can decode

2045 **DeltaNet (BLEU 0.0143):** create it. the students also learned how to use the system to make their
 2046 own food. the students also learned how to use the system to make their own food. the
 2047 students also learned how to use the system to make their own food. the students

2048 **ProtoT (BLEU 0.0134):** creation. the students also learned about the different types of plants and
 2049 animals. the students also learned about the different types of plants and animals. the
 2050 students also learned about the different types of plants and animals. the students also
 2051 learned about the different types

2052
 2053 **Mamba (BLEU 0.0114):** crete it. the students also learned about the process of photosynthesis
 2054 and how it works. the students also learned about the process of photosynthesis and how it
 2055 works. the students also learned about the process of photosynthesis and

2056 **LLaMA (BLEU 0.0000):** eat them. the students learnt the importance of the importance of the
 2057 water cycle to explain how it is important to the life of the plants. the students learnt the
 2058 importance of the water cycle to explain how it is important to the life of the plants.

2059 **B.3.4 PROMPT — MAMBA WINNER**

2060
 2061 **Prompt:** *babies that are smarter, taller or better athletes. hair and eye color could be manipulated.*
 2062 *iqs could be boosted or lowered. it raises all kind of brave new world issues about genetically*
 2063 *engineering the human race. moratorium gains momentum in the last week or so, there's been a*
 2064 *flurry of statements from several groups of scientists warning about all this. mit's technology review*
 2065 *had an in-depth report on the whole issue a couple of weeks back*

2066 **Reference:** *, if you want to learn more. this week, groups that include the university of california's*
 2067 *jennifer doudna, one of the researchers who developed crispr, essentially called for a moratorium on*
 2068 *any attempt to do modification of the human germline using these techniques – at least until there's*
 2069 *been more time for public discussion and more research to understand how well it works and how*
 2070 *safe it is. in interviews, several of the scientists and bioethicists issuing these statements*

2071 **Mamba (BLEU 0.0135):** the report, which was published in the journal science, was a response
 2072 to a recent study by the university of california, berkeley, which found that the number of
 2073 people who were genetically engineered to be genetically engineered was about 1 in 4.

2074 **LLaMA (BLEU 0.0000):** the report was published in the journal science. the report was published
 2075 in the journal science. the report was published in the journal science. the report was
 2076 published in the journal science. the report was published in the journal science. the report
 2077 was published

2078 **ProtoT (BLEU 0.0000):** the report, “the future of science,” was released on thursday. the report,
 2079 which was released on thursday, was based on a study of the effects of the covid-19 pan-
 2080 demic on the human body. the study found that

2081 **DeltaNet (BLEU 0.0000):** the report was published in the journal of the american society. the
 2082 report was published in the journal of the american society. the report was published in
 2083 the journal of the american society. the report was published in the journal of the american
 2084 society. the

2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105