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Abstract

Adversarial examples are helpful for analyz-
ing and improving the robustness of text clas-
sifiers. Generating high-quality adversarial ex-
amples is a challenging task as it requires the
generation of adversarial sentences that are flu-
ent, semantically similar to the original ones
and should lead to misclassification. Existing
methods prioritize misclassification by max-
imizing each perturbation’s effectiveness at
misleading a text classifier; thus, the generated
adversarial examples fall short in terms of flu-
ency and similarity. In this paper, we define a
critique score that synthesizes the fluency, sim-
ilarity, and misclassification metrics. We pro-
pose a rewrite and rollback (R&R) framework
guided by the optimization of this score to im-
prove the adversarial attack. R&R generates
high-quality adversarial examples by allowing
exploration of perturbations without immedi-
ate impact on the misclassification, and yet op-
timizing critique score for better fluency and
similarity. We evaluate our method on 5 repre-
sentative datasets and 3 classifier architectures.
Our method outperforms current state-of-the-
art in attack success rate by +16.2%, +12.8%,
and +14.0% on the classifiers respectively. All
code and results will be publicly available.

1 Introduction

Recently, adversarial attacks in text classification
have received a great deal of attention. Adversar-
ial attacks are defined as subtle perturbations in
the input text such that a classifier misclassifies it.
They can serve as a tool to analyze and improve
the robustness of text classifiers, thus being more
and more important because security-critical clas-
sifiers are being widely deployed (Wu et al., 2019;
Torabi Asr and Taboada, 2019; Zhou et al., 2019).

Existing attack methods either adopt a synonym
substitution approach (Jin et al., 2020; Zang et al.,
2020) or use a pre-trained language model to pro-
pose substitutions for better fluency and natural-
ness (Li et al., 2020; Garg and Ramakrishnan, 2020;

Liet al., 2021). They follow a similar framework:
first, construct some candidate perturbations, and
then, use the perturbations that most effectively
mislead the classifier to modify the sentence. This
process is repeated multiple times until an adver-
sarial example is found. This framework prioritizes
misclassification by picking perturbations that most
effectively mislead the classifier. Despite the suc-
cess in changing the classifier prediction, it has two
main disadvantages. First, it is prone to modify
words that are critical to the sentence’s meaning, or
introduce low-frequency words to mislead the clas-
sifier, causing the similarity and fluency to decrease.
Second, some perturbations do not have immedi-
ate impacts on misclassification, but can trigger it
when combined with other perturbations, while this
framework cannot find adversarial examples with
these perturbations.

To overcome these problems, the attack method
needs to consider jointly fluency, similarity, and
misclassification, while also efficiently exploring
various perturbations that do not show direct im-
pacts on the latter. We define a critique score that
synthesizes fluency, similarity and misclassifica-
tion metrics. Then, we present our design for a
Rewrite and Rollback framework (R&R) which
optimizes this score to generate better adversarial
examples. In the rewrite stage, we explore multi-
word substitutions proposed by a pre-trained lan-
guage model. We accept or reject a substitution
according to the critique score. We can generate a
high-quality adversarial example after multiple it-
erations of rewrite. Rewrite may introduce changes
that do not contribute to misclassification and may
also reduce similarity and fluency. Therefore, we
periodically apply the rollback operation to reduce
the number of modifications without changing the
misclassification result. Figure 1 illustrates the pro-
cess using an example.

Our contributions are summarized as follows:

* We synthesize similarity, fluency, and misclassi-



Original sentence:
Everywhere the camera looks there is something worth seeing
Classifier: Positive

Rewrite 1

Everywhere the camera|looks there is [something worth seeing
Everywhere the camera| goes there is|something worth seeing

Classifier: Positive , Similarity: High , Fluency: Good
Sample a decision: Accept rewrite.

B

Rewrite 2

Everywhere the camera goes there|is something worth |seeing
Everywhere the camera goes there|is nothing interesting| seeing

—

-
Classifier: Negative , Similarity: Low , Fluency: Good @\
Sample a decision: Reject rewrite s
Rewrite 3
Everywhere the camera goes |there is something |worth seeing
Everywhere the camera goes worth seeing
¥
Classifier: Negative , Similarity: High , Fluency: Fair <
Sample a decision: Accept rewrite. s
Rollback
looks something there is
1 (keep) ) 1 (discard) t
goes stuff is some

Adversarial Sentence:
Everywhere the camera goes there is stuff worth seeing

Figure 1: R&R generates adversarial examples by
rewrite and rollback. The rewrite step explores possible
perturbations stochastically and is guided by similarity
metric and fluency metric to ensure better quality of the
example. The rollback operation further improves the
similarity.

fication metrics into a single optimization objec-
tive called critique score;

* We propose R&R to optimize the critique score,
whereas traditional methods only optimize mis-
classification;

* We carry out extensive experimentation on 5
representative datasets and 3 classifier architec-
tures to show the wide range of applications and
generalizability of our framework;

* Both automatic evaluations and human evalua-
tions show R&R outperforms existing methods
by large margin;

* We provide the code and datasets for repro-
ducible experiments.

2 Problem Formulation

The adversarial attack consists of modifying a sen-
tence such that it keeps its meaning and correct-
ness but gets a label different from the original one
when using the same classifier. Specifically, let
X = x1,...,x; be a sentence of length [, y be its
classification label, and f(x) be a text classifier
that predicts a probability distribution over classes.

The objective of an attack method A(x, f) is to

construct u = uy, ..., uy satisfying 3 conditions:

u is misclassified, i.e., f(u) # y,
Human considers u as a fluent sentence,

Human considers u to be semantically similar to x.

where [’ is the length of the adversarial sentence.
However, this formulation requiring human evalua-
tion is intractable for large-scale data. Therefore,
we approximate the sentence fluency with the per-
plexity of the sentence. It is defined as

ppl(x) = exp [— % 22:1 log p(zi|zy ... xi_l)],

where p(z;|z1 ... x;—1) is measured by a language
model. Low perplexity means the sentence is pre-
dictable by the language model, which usually indi-
cates the sentence is fluent. Sentence similarity can
be quantified as cos (H (x), H(u)), where H(-) is
a pre-trained sentence encoder that encodes the
meaning of a sentence into a vector. Thus, find-
ing the adversarial sentence u is formulated as a
multi-objective optimization problem as follows:

Construct u = uy, ..., uy to minimize ppl(u)

and maximize cos (H(x), H(u))
subject to f(u) # y.

In this paper, we use a fine-tuned BERT-base model
to measure perplexity and use USE to measure sen-
tence similarity. Ultimately, fluency and similarity
need to be verified by humans. We discuss human
verification in Section 4.3.

Threat Model. We assume the attacker can
query the classifier for the prediction (i.e., the prob-
ability distribution over all classes). But they do
not have knowledge on architecture of the classifier
nor query for the gradient. They can also access
some unlabeled text in the domain of the classifier.

3 Metric-Guided Rewrite and Rollback

In this section, we first give an overview of the
R&R framework. Then, we introduce the rewrite
and rollback components respectively. Finally, we
give a summary of pre-trained models used in the
framework.

3.1 Overview

R&R solves the multi-objective optimization prob-
lem by synthesizing the fluency, similarity and
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Figure 2: R&R Framework.

misclassification objectives into a single critique
score, and maximizing this score. Therefore, our
framework can construct adversarial sentences with
lower perplexity and higher similarity. R&R con-
tains the rewrite and rollback steps.

In the rewrite step, we randomly mask several
consecutive words, and compute a proposal distri-
bution, which is a distribution over the vocabulary
on each masked position. We construct a multi-
word substitution for the masked positions accord-
ing to the distribution, then compute the critique
score. If the score increases, we accept the substi-
tution. If the score decreases, we accept it with a
probability depending on the degree of decrease.
The rewrite step contains randomness to encourage
exploration of different modifications, while the
critique score will guide the rewritten sentence to
a high-quality adversarial example. After several
steps of rewriting, we apply a rollback operation on
the sentences that have already been misclassified
to reduce the number of changes introduced in the
rewriting. In the rollback step, we identify a min-
imum set of edits required to change the current
sentence back to the original sentence. We rollback
an edit if it does not affect the misclassification.

We implement the framework in batch so that
it simultaneously perturbs multiple copies of the
input text in different ways. The loop ends when
half of the sentences in the batch are misclassified
to make the algorithm more efficient. Figure 2
shows the R&R framework.

3.2 Rewrite

In each rewrite, we mask then substitute a span of
words. It is composed of the following steps.

Apply mask in the sentence. First, we randomly
pick m consecutive words in the sentence, and
replace them with ¢ mask, where ¢ can be m, m —
1, or m + 1 meaning replace, delete, and insert
operation respectively. Compared with CLARE (Li
et al., 2021) which masks one word at a time (i.e.,
m = 1), masking multiple words can make it easier
to modify common phrases. We use u to denote
the masked sentence.

Compute proposal distribution. Then, we com-
pute proposal distribution for £ masks in the sen-
tence. This distribution assigns a high probability
to words that can construct a fluent and legitimate
paraphrase. Let z1, . . . z; be the words to be placed
at the masked positions. The distribution is

pproposal(zi|ﬁa X) X plm(zz’|ﬁ) X penforce(zi|ﬁa X)

where pi, 1S a language model distribution that
ensures the sentence will be fluent and meaning-
ful, and penforce 18 the enforcing distribution, which
improves the semantic similarity. py,, is computed
by sending u into BERT and taking the predicted
word distribution on masked positions. Depending
on the position, the word distributions for ¢ masks
are different. The enforcing distribution is mea-
sured by word embeddings. We use the sum of
word embeddings R(u) = >, E(uy) as a sen-
tence embedding, where E(-) is the counter-fitted



word embedding (MrkSic et al., 2016). Then we
define the enforcing distribution as

Penforce (21|11, X) o< exp [wenforce

x (cos(R(x) — R(w), E(z)) — 1)].

Wenforce 1S @ hyper-parameter. If the embedding
of a word E(z) perfectly aligns with the sentence
representation difference R(x) — R(u), it gets the
largest probability. The enforcing distribution aims
at making the candidate modification more simi-
lar to the original sentence. Note that enforcing
distribution is identical on all £ masks.

Sample a candidate sentence. We sample a can-
didate word for each masked position by z; ~
Pproposal (2|1, x). We do not consider the effect of
sampling one word on other masked positions (i.e.,
we do not recompute proposal distribution for the
remaining masks after sampling a word) because
language model distribution already considers the
position of the mask and assigns a different dis-
tribution for each mask, meanwhile recomputing
is inefficient. We use 01 to denote the candidate
sentence.

Critique score and decision function. We de-
cide whether to accept the candidate sentence using
a decision function. The decision function com-
putes a heuristic critique score

C(u) = (wpp min(1 — ppl(u)/ppl(x),0) (1)
+ wyim min(cos (H (u), H(x)) — ¢sim,0) (2)
+ Weir min(g}i;(f(u)y’ — f(a)y, O)) 3

Eq. 1 penalizes sentences with high perplexity,
where ppl(x) is perplexity measured by a BERT
model. Eq. 2 penalizes sentences with sentences
with cosine similarity lower than ¢gjm,, where H (-)
is the sentence representation by USE. Eq. 3 penal-
izes sentences that cannot be misclassified where
f(u), means the log probability of class y pre-
dicted by the classifier. Let « = exp[C'(a)—C(u)].
If a > 1, the decision function accepts u; oth-
erwise it accepts & with probability «. The cri-
tique score is a straightforward way to convert the
multi-objective optimization problem into a single
objective. Although it introduces several hyper-
parameters, R&R is no more complicated than
conventional methods, which also require hyper-
parameter setting.

3.3 Rollback

In the rollback step, we eliminate modifications
that do not correct the misclassification. It contains
the following steps.

Find a minimum set of simple edits. We first
find a set of simple edits that change the current
rewritten sentence back to the original sentence.
Simple edits mean the insertion, deletion or re-
placement of a single word, which is different from
the modification in the rewrite step.

Rollback edits. For each edit, if reverting it does
not correct the misclassification, then we revert the
edit. For convenience, we scan each word in the
sentence from right to left, and try to rollback each
edit. Note that rollback may introduce grammar
errors, but they can be fixed in future rewrite steps.

3.4 Vocabulary Adaptation

The computation of ppropose is challenging because
of the inconsistent vocabulary. The BERT language
model used in pyy(+) uses a 30k-word-piece vocab-
ulary. It contains common words and affixes. Rare
words will be handled as multiple affixes. For ex-
ample “hyperparameter” does not appear in the
vocabulary, so it is handled as “hyper” and “##pa-
rameter”. The counter fitted word embeddings in
PDenforce () Works on a 65k-word vocabulary. Since
the BERT model is more complicated, we keep it
as it is and transfer word embeddings to BERT vo-
cabulary. We train the word-piece embeddings as
follows. Letw = {wq, ..., wr} be a plain text cor-
pus tokenized by words. Let T'(w) be word-piece
tokenization of a word. Let F/(w) be the original
word embeddings and E’ () be the transferred em-
beddings on word-piece. We train the word-piece
embeddings F’ by minimizing the absolute error
Pwew [EW) =3 e E'(2)[]1. We initialize
E' by copying the embedding on words shared by
two vocabularies and set other embeddings to 0.
We optimize the absolute error using stochastic gra-
dient descent. In each step, we sample 5000 words
from w, then update E’ accordingly.

3.5 Summary of pre-trained models in R&R

In R&R, we employ several pre-trained models.
Choices are made according to the different char-
acteristics of these pre-trained models.

BERT for masked word prediction and perplex-
ity: Because BERT is originally trained for masked



word prediction, it can predict the word distribu-
tion given context from both sides. Thus, BERT
is preferable for generating py,,. Estimating the
perplexity for a sentence requires BERT to run in
decoder mode and be fine-tuned. Perplexity can
also be measured by other language models such as
GPT2 (Radford et al., 2019). We use BERT mainly
for the consistent vocabulary with pyy,.

Word embeddings and USE for similarity. Word
embeddings is more efficient as it only computes
the sum of vectors and cosine similarity. In enforc-
ing distribution, we need to replace the selected
position with all possible z’s and measure the simi-
larity, so we use word embeddings for efficiency. In
the critique score, only the proposal sentence needs
to be measured, so we can afford more computation
time of USE.

4 Experiments

We conducted experiments on a wide range of
datasets and multiple victim classifiers to show
the efficacy of R&R. We first evaluate the quality
of adversarial examples using automatic metrics.
Then, we conducted human evaluation to show the
necessity to generate highly similar and fluent ad-
versarial examples. Finally, we conduct an ablation
study to analyze each component of our method,
and discuss defense against the attack.

4.1 Experimental Setup

Datasets. We use 3 conventional text classification
datasets, including topic classification, sentiment
classification, and question type classification. We
also use 2 security-critical datasets, including hate
speech detection and fake news detection. Dataset
details are given in Table 1.

Name #C Len Description
AG 4 43 News topic classification.
MR 2 32 Moview review dataset by Pang

and Lee (2005).

Question type classification by
Li and Roth (2002).

Hate speech detection dataset by
Kurita et al. (2020).

Fake news detection dataset by
Yang et al. (2017). We use the
first sentence of the news for
classification.

TREC 6 8

HATE 2 23

FAKE 2 30

Table 1: Dataset details. #C means number of classes.
Len is the average number of words in a sentence.

Victim Classifiers. For each dataset, we use the
full training set to train three victim classifiers:

AG MR TREC HATE FAKE

BERT-base 92.8 882 97.8 94.0 81.2
RoBERTa-large 92.7 91.6 97.3 95.0 75.5
FastText 89.2 79.5 85.8 91.5 72.4

Log Perplexity 3.38 527 391 3.56 4.92

Table 2: Accuracy of 3 classifers and sentence log per-
plexity on the clean test set.

(1) bert-base classifier (Devlin et al., 2019); (2)
RoBERTa-large classifier (Liu et al., 2019), and (3)
FastText classifier (Joulin et al., 2017).
Baselines. We compare our method against two
strong baselines: TextFooler (Jin et al., 2020) and
CLARE (Li et al., 2021).
Hyperparameters. In R&R, we use the BERT-
base language model for py,. For each dataset,
we fine-tune the BERT language model using 5k
batches on the training set' with batch size 32
and learning rate 0.0001, so it is adapted to the
dataset. We set the enforcing distribution hyper-
parameters Wepforce = H. The decision function
hyper-parameters wpp = 5, Wsim = 20, Qsim =
0.95, weir = 2. To generate each paraphrase, we set
maximum rewrite iterations to be 200, and replace
a 3-word span in each iteration. We implement
R&R in a 50-sentence batch and apply early-stop
when half of the batch are misclassified. We apply
rollback operation every 10 steps of rewrite. Then,
we return the adversarial example with the best
critique score.
Hardware and Efficiency. We conduct experi-
ments on Nvidia RTX Titan GPUs. One attack
on a BERT-base classifier using R&R takes 15.8
seconds on average. CLARE takes 14.4 seconds on
average. TextFooler is the most efficient algorithm
which takes 0.45 seconds.
Automatic Metrics. We evaluate the efficacy of
the attack method using 3 automatic metrics:
 Similarity (1): We use Universal Sentence En-
coder to encode the original and adversarial sen-
tence, then use the cosine distance of two vec-
tors to measure the similarity. We set a similarity
threshold at 0.95, so the similarity of a legitimate
adversarial example should be greater than 0.95.

* Log Perplexity (].) shows the fluency of adver-
sarial sentences.

* Attack success rate (ASR) (1) shows the ratio of

'We use the plain text to fine-tune the language model,
and do not use the label. In the threat model, we assume the
attacker can access plain text data from a similar domain.



AG MR TREC HATE FAKE

Attack ASR Sim PPL ASR Sim PPL ASR Sim PPL ASR Sim PPL ASR Sim PPL
. TextFooler 16.83 0.98 400 260 097 592 18 097 530 306 097 3.53 299 098 5.44
& CLARE 288 097 3.60 484 097 570 25 096 558 31.0 097 399 489 0.98 5.02
# R&R (Ours) 54.1 0.98 3.64 634 098 536 10.8 0.97 529 553 098 4.06 57.0 0.98 5.05
g TextFooler 15.6 098 521 18.0 0.97 606 04 096 7.09 24.0 098 420 266 0.98 545
& CLARE 233 097 524 459 097 567 25 097 653 357 097 437 46.0 098 5.20
g R&R (Ours) 41.2 098 3.73 48.5 0.97 553 125 097 517 557 097 4.07 59.6 098 525
¢ TextFooler 258 098 4.16 33.1 098 585 65 098 504 21.7 098 344 353 098 546
%; CLARE 289 097 391 415 097 579 85 097 6.06 356 097 424 760 098 5.15
& R&R (Ours) 37.8 098 3.84 489 098 548 44.1 098 4.68 533 098 4.03 764 098 5.10

Table 3: Automatic evaluation results. “Sim” and “PPL” represent similarity measured by USE and the log per-

plexity measured by BERT respectively.

AG MR TREC HATE FAKE
S. F. M. S. F. M. S. F. M. S. F. M. S. F.
TextFooler 393 358 09 33 349 092 325 288 088 376 361 046 358 3.58
CLARE 375 3.65 093 244 333 074 300 3.00 0.75 389 441 081 3.67 3.65
R&R (Ours) 412 387 099 348 361 085 359 314 089 359 394 0.76 381 3.87

Table 4: Human evaluation. “S.”, “F”” and “M.” represents the similarity, fluency and label match annotated by

human.

correctly classified text that can be successfully

attacked.
Human Metrics: Automatic metrics are not al-
ways reliable. We use Mechanical Turk to verify
the similarity, fluency, and whether the label of the
text is preserved with respect to human evaluation.

Table 6 in Appendix shows some examples. We
find R&R makes natural modifications to the sen-
tence and preserves the semantic meanings.

4.2 Automatic Evaluation

Table 3 shows the ASR, similarity and perplexity
metrics on the three victim classifiers.

Since we already apply a rigorous 0.95 threshold
on similarity to ensure the adversarial examples
are similar to the original sentences, the similarity
metrics do not show significant differences. R&R
achieves the best ASR on all datasets and across
all classifiers. The average improvement compared
with CLARE baseline is +16.2%, +12.8%, +14.0%
on BERT-base, RoBERTa-large and FastText classi-
fiers respectively. It means with the same similarity
threshold, R&R is capable of finding more adver-
sarial examples, i.e. for some text, R&R can find
adversarial examples with similarity higher than
0.95 while baseline methods cannot. Thus it shows
R&R can find adversarial examples with high simi-
larity.

On AG, MR, TREC and FAKE datasets, R&R

outperforms baseline methods on 9 cases. Baseline
methods outperforms by a tiny margin on the other
3 cases. It shows R&R keeps sentence fluency as
good as baseline methods. It does not sacrifice
sentence fluency for higher ASR. The only failure
case is on the HATE dataset, where Textfooler out-
performs R&R in perplexity. Thus we investigate
the average log perplexity of corresponding origi-
nal sentences for each method. We find it is 3.24
for TextFooler and 3.94 for R&R. So TextFooler
achieves low perplexity because it succeeds on orig-
inal sentences with low perplexity while fails on
those with higher perplexity.

We further measure ASR with various similarity
and perplexity thresholds. On Figure 3, we set dif-
ferent thresholds and show the corresponding ASR.
We observe that the curves of R&R are above the
baseline curves in most cases, showing that R&R
outperforms baselines on most threshold settings.
It means R&R can achieve a higher ASR with the
same similarity or perplexity threshold.

4.3 Human Evaluation

We use Mechanical Turk to evaluate the following
metrics.

Sentence similarity (1): Turkers are shown pairs of
original and adversarial sentences, and are asked
whether the two sentences have the same semantic
meaning. They annotate the sentence in a 5-likert,




AG FAKE
100

75

50

ASR (%)

25

0
0.8 0.9

Similarity threshold

1.0 0.8 0.9 1.0
Similarity threshold

100
75

50

ASR (%)

------- TextFooler
CLARE
—— R&R (Ours)

25

4 6 8 4 6 8
Log Perplexity threshold  Log Perplexity threshold

Figure 3: Attack success rate with respect to different
similarity and perplexity constraints on BERT classi-
fier. When evaluating different similarity thresholds,
we do not set thresholds on perplexity. When evalu-
ating perplexity thresholds, we fix the similarity thresh-
old to 0.95. See Figure 8 in Appendix for other datasets
and classifiers.

where 1 means strongly disagree, 2 means disagree,
3 means not sure, 4 means agree, and 5 means
strongly agree.

Sentence fluency (1): Turkers are shown a random
shuffle of adversarial sentences, and are asked to
rate the fluency in a 5-likert, where 1 describes a
bad sentence, 3 describes a meaningful sentence
with a few grammar errors, and 5 describes a per-
fect sentence.

Label match (1): Turkers are shown a random shuf-
fle of adversarial sentences and are asked whether it
belongs to the class of the original sentence. They
are asked to rate 0 as disagree, 0.5 as not sure, and
1 as agree.

We sample 100 adversarial sentences from each
method, and each task is annotated by 2 Turkers.
We do not annotate label matches on the FAKE
dataset because identifying fake news is too chal-
lenging for Turkers. We require the location of
the Turkers to be in United States, and their Hit
Approval Rate to be greater than 95%. The screen-
shots of the annotation task is shown on Figure 7
in Appendix.

Table 4 shows the human evaluation results.
R&R outperforms baselines on similarity and flu-
ency on 4 datasets. It shows that by optimizing
the critique score, R&R improves the similarity
and fluency of adversarial sentences. Our method
fails on the HATE dataset despite good automatic
metrics. We hypothesize that this dataset collected
from Twitter is more noisy than the others, causing

the malfunction of automatic similarity and fluency
metrics.

4.4 Ablation Study

We conduct ablation study on AG and FAKE
datasets to understand the contribution of stochas-
tic decision function, and periodic rollback. We
also show the effect of multiple-word masking in
Appendix A.

Decision Function In the Rewrite stage, we use
a stochastic decision function based on the critique
score. One alternative can be a deterministic greedy
decision function, which accepts a rewrite only if
the rewrite increases the critique score. Figure 4
shows the ASR with respect to different similarity
thresholds. We find that the stochastic decision
function outperforms the greedy one. We interpret
the phenomenon as the greedy decision function
gets stuck in local maxima, whereas the stochastic
one can overcome this issue by accepting a slightly
WOorse rewrite.

....... TextFooler —— R&R (Default)
CLARE --=- R&R (Greedy)

AG FAKE
100 100

ASR (%)

0.80 0.85 0.90 0.95 1.00 0.80 0.85 0.90 0.95 1.00
Similarity threshold Similarity threshold

Figure 4: The ASR of R&R using different decision
settings. “Greedy”” means using a greedy decision func-
tion, which accepts a rewrite only if it has a higher cri-
tique score.

Rollback We apply rollback periodically during
the attack. We compare it with two alternatives:
(1) no rollback (NRB) which only uses rewrite to
construct the adversarial sentences, and (2) single
rollback (SRB) which applies rollback once on
the NRB results. Figure 5 shows the result. We
find that rollback has a significant impact. NRB
performs the worst. Without rollback, it is difficult
to get high cosine similarity when many words in
the sentence have been changed. Single rollback
increases the number of overlapped words, which
usually increases the similarity measurement. By
periodically applying the rollback, the rollbacked
sentence can be further rewritten to improve the



similarity and fluency metrics, thus yielding to the
best performance.

------- TextFooler
CLARE

—— R&R (Default)
---- R&R (NRB)

—— R&R(SRB)

AG FAKE

)

ASR (%

0 - 0
0.80 0.85 0.90 0.95 1.00 0.80 0.85 0.90 0.95 1.00
Similarity threshold Similarity threshold

Figure 5: The ASR of R&R using different rollback set-
tings. “NRB” means no rollback operation and “SRB”
means single rollback.

4.5 Defense

We further explore the defense against this attack:

* Adversarial attack methods sometimes introduce
outlier words to trigger misclassification. There-
fore we follow Qi et al. (2020) and apply a
perplexity-based filtering to eliminate outlier
words in sentences. We generate adversarial
sentences on vanilla classifier, then apply the
filtering.

e SHIELD (Le et al., 2022) is a recently proposed
algorithm that modifies the last layer of a neural
network to defend against adversarial attack. We
apply this method to classifiers and attack the
robust classifier.

AG FAKE
+Filter +SHIELD +Filter +SHIELD
TextFooler 6.2 8.2 13.8 16.7
CLARE 5.6 18.2 19.0 51.1
R&R (ours) 22.3 30.6 23.1 59.4

Table 5: The ASR of attack methods when applying
the perplexity-based filtering (Filter) and the SHIELD
defense on the BERT classifier.

Table 5 shows the ASR of attack methods with
the a defense applied. We show that existing de-
fense methods cannot effectively defend against
R&R. It still outperforms existing methods in ASR
by large margin.

5 Related Work

Several recent works proposed word-level adver-
sarial attacks on text classifiers. This type of attack

misleads the classifier’s predictions by perturbing
the words in the input sentence. TextFooler (Jin
et al., 2020) shows the adversarial vulnerability of
the state-of-the-art text classifiers. It uses heuris-
tics to replace words with synonyms to mislead
the classifier effectively. It relies on several pre-
trained models, such as word embeddings (MrkSic
et al., 2016), part-of-speech tagger, and Universal
Sentence Encoder (Cer et al., 2018) to perturb the
sentence without changing its meaning. However,
simple synonym substitution without considering
the context results in unnatural sentences. Several
works (Garg and Ramakrishnan, 2020; Li et al.,
2020, 2021) address this issue by using masked lan-
guage models such as BERT (Devlin et al., 2019)
to propose more natural word substitutions. Our
method also belongs to this category. But R&R
does not maximize the efficacy of each perturba-
tion, instead it allows exploring combinations of
perturbations to generate adversarial examples with
high similarity with the original sentence. Besides
word-level attacks, there are also character-level
attacks which introduce typos to trigger misclassi-
fication (Papernot et al., 2016; Liang et al., 2017;
Samanta and Mehta, 2018), and sentence-level at-
tacks which attack a classifier by altering the sen-
tence structure (Iyyer et al., 2018). Zhang et al.
(2020) gives a comprehensive survey on such attack
methods. Other work on robustness to adversarial
attacks in NLP includes robustness of the machine
translation models (Cheng et al., 2019), robustness
in domain adaptation (Oren et al., 2019), adversar-
ial examples generated by reinforcement learning
(Wong, 2017; Vijayaraghavan and Roy, 2019), and
certified robustness (Jia et al., 2019).

6 Conclusion

In this paper, we formulate the textual adversarial
attack as a multi-objective optimization problem.
We use a critique score to synthesize the similar-
ity, fluency, and misclassification objectives, and
propose R&R that optimizes the critique score to
generate high-quality adversarial examples. We
conduct extensive experiments. Both automatic and
human evaluation show that the proposed method
succeeds in optimizing the automatic similarity and
fluency metrics to generate adversarial examples of
higher quality than previous methods.



Ethical Considerations

In this paper, we propose R&R to generate adver-
sarial sentences. Like all other adversarial attack
methods, this method could be abused by malicious
users to attack NLP systems and obtain illegitimate
benefits. However, it is still necessary for the re-
search community to develop methods to exploit
all vulnerabilities of a classifier based on which
more robust classifiers can be developed.
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A Ablation Study: Multiple-Word
Masking

In the Rewrite stage, we mask a span of multiple
words in each iteration. Intuitively, when using a
smaller span size, the masked words are easier to
predict. The proposal distribution will assign high
probability to the original words at masked posi-
tions. Therefore, the candidate sentences are likely
to be identical to the original sentence, thus limit-
ing the number of perturbations explored. When
the span is large, predicting words becomes more
difficult. Thus, we can sample different candidate
sentences. But it is more likely to construct dis-
similar or influential sentences. We vary the span
size from 1, 2, 3, to 4 and show the results on Fig-
ure 6. We find that using span size 3 yields the best
performance over most similarity thresholds.

------- TextFooler —— R&R-3 (Default) —— R&R-2
CLARE --=- R&R-1 ---= R&R-4
AG FAKE
100 100

80

60

ASR (%)

40

20

0
0.80

0
0.80

0.85 0.90 0.95
Similarity threshold

1.00

0.85
Similarity threshold

0.90 0.95 1.00

Figure 6: The ASR of R&R using different masking
span sizes. R&R-1 to R&R-4 represent the span size of
1 to 4 respectively. We use span size 3 by default.
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Similarity

Do you agree that the following two sentences have the same
meaning?

Note: The texts in this task come from a fake news dataset, so some
sentences contain false information. Please do not trust the events
described in the following sentences.

Text 1: Evan Dolmer , bassist for local avant jazz band Unexpected Corn ,
expressed frustration and confusion after attempting fruitlessly to explain to
girlfriend Gina Wagner the significance of the 5 4 time signature .

Text 2: Evan Dolmer , bassist for regional avant jazz band Undeclared
Corn, depicted frustration and confusion after attempting fruitlessly to
explain to girlfriend Gina Wagner the significance of the 5 4 moment
signature .

Fluency

Is the and free of errors?

fluent,

This is getting monotonous . For the second straight night , a candidate
from Boston was looking good after some exit polling , but when the last
points / votes were counted , the adversaries had the plurality .

Rating Criteria
1 - bad: The sentence makes absolutely no sense
2: The sentence is full of grammar errors and can barely make sense.

3 - ok: The sentence contains some grammar errors, but can be
understood.

4: The sentence is fluent, meaningful with few grammar errors.

5 - excellent The sentence is fluent, meaningful and free of grammar
errors.

Label Match

Consider 4 news categories: World, Sport, Business, Science/Technology.

Does the following sentence belong to Sports category?

This is getting monotonous . For the second straight night , a candidate
from Boston was looking good after some exit polling , but when the last
points / votes were counted , the adversaries had the plurality .

Select an option

vos wN

- Strongly Disagree
- Disagree

- Not Sure

- Agree

o s W om o

- Strongly Agree

Select an option

1-bad 1
2 2
3-0k 3
4 4
S-excellent 5

Select an option
1-Disagree 1
2-Not Sure 2

3-Agree 3

Figure 7: The screenshots of MTurk tasks.



Original (prediction: Technology): GERMANTOWN , Md . A Maryland - based private lab that analyzes criminal - case
DNA evidence has fired an analyst for allegedly falsifying test data .

Adversarial (prediction: Business): GERMANTOWN , Md . A Maryland - based bio testing company that analyzes
criminal - case DNA evidence has fired an analyst for allegedly falsifying test data .

Original (prediction: Sport): LeBron James scored 25 points , Jeff McInnis added a season - high 24 and the Cleveland
Cavaliers won their sixth straight , 100 - 84 over the Charlotte Bobcats on Saturday night .

Adversarial (prediction: World): LeBron James scored 25 points , Jeff McInnis added a season - high 24 and the Cleveland
Cavaliers won their sixth straight , 100 - 84 Saturday over the visiting Charlotte Bobcats on Saturday night ..

Original (prediction: Negative): don ’ t be fooled by the impressive cast list - eye see you is pure junk .
Adpversarial (prediction: Positive): don ’ t be fooled by this impressive cast list - eye see you is pure junk .

Original (prediction: Ask for description): What is die - casting ?
Adpversarial (prediction: Ask for entity): What is the technique of die - casting ?

Original (prediction: Toxic) go back under your rock u irrelevant party puppet
Adpversarial (prediction: Harmless) go back under the rock u irrelevant party puppet

Table 6: A few adversarial examples generated by R&R with the perturbation in red
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Classifier: BERT
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N,
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Classifier: FastText
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Figure 8: Attack success rate with respect to different similarity and perplexity constraints. When evaluating

different similarity thresholds, we do not set thresholds on perplexity. When evaluating perplexity thresholds, we
fix the similarity threshold to 0.95.
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