
Under review as a conference paper at ICLR 2024

DLCNET: LONG-RANGE CONVOLUTION NEED DATA
DEPENDENCY

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, the Transformer architecture and self-attention mechanism have
become the first choice for sequence modeling, but they encounter significant
computational challenges when processing lengthy sequences. Long-range con-
volution has emerged as a promising alternative to self-attention, offering distinct
advantages across various domains. However, current long-range convolution ar-
chitectures still face several issues, such as excessive parameter usage and lim-
ited in-context learning capabilities. To tackle these challenges, we propose a
Data-dependent Long-range Convolution Network (DLCNet) that introduces data
dependency through three key modules: Layer-Wise Mapping, Rectify SideNet,
and SWEAP Operator. DLCNet effectively facilitates in-context learning within a
reasonable parameter scale. Extensive experiments have demonstrated that DLC-
Net surpasses the state-of-the-art baselines in processing lengthy sequences, even
when trained with short sequences.

1 INTRODUCTION

In the realm of Artificial Intelligence (AI) and Natural Language Processing (NLP), the emergence
of Large Language Models (LLMs) has marked a transformative era (Press et al., 2022; Ouyang
et al., 2022). These models, leveraging the influential Transformer architecture (Vaswani et al.,
2017), undergo unsupervised training on extensive text corpora, showcasing impressive proficiency
in understanding and generating human language. Their ability to grasp intricate patterns, contextual
subtleties, and even emulate human-like conversational interactions has positioned LLMs at the
forefront of cutting-edge research and practical applications (Chen et al., 2021; Brown et al., 2020;
Touvron et al., 2023).

Despite the remarkable achievements of LLMs based on the Transformer architecture, the inherent
self-attention mechanism in Transformer brings forth several significant challenges. One of these
challenges is the quadratic time and memory complexity during computation, which results in a
growing demand for computational resources and limitations when it comes to expanding the length
of text they can handle. Additionally, these models tend to exhibit suboptimal parameter extrap-
olation characteristics, as demonstrated in recent research (Chen et al., 2023) when dealing with
lengthier sequences.

In response to these challenges, a diverse array of alternative architectures have emerged, such as the
Linear Transformer (Wang et al., 2020; Katharopoulos et al., 2020; Zhang et al., 2023), paralleled
RNN (Stollenga et al., 2015; Peng et al., 2023), and State Space Model (Mehta et al., 2022; Gu
et al., 2020; 2022). Among these approaches, the Long-Range Convolution has garnered substantial
attention as a promising solution (Li et al., 2022; Qin et al., 2023; Poli et al., 2023). By harnessing
global convolution to capture sequential information, the Long-Range Convolution achieves perfor-
mance comparable to that of conventional Transformers while typically maintaining subquadratic
time complexity, making it particularly well-suited for handling lengthier sequences.

The major drawback of Long-Range Convolution is that, compared to self-attention, its kernels
remain unchanged across various input data, limiting its capability to deal with complex tasks. In this
study, we propose a novel Data-dependent Long-range Convolution Network, denoted as DLCNet.
It harnesses the efficiency of long-range convolutional computations while dynamically adapting
convolution kernels to accommodate the input data.

1

Under review as a conference paper at ICLR 2024

First, to create a convolutional kernel with reasonable parameter count, we introduce a Layer-Wise
Mapping technique to project a single adaptable decay rate onto multi-dimensional long convolution
kernels, ensuring efficient mapping with minimal parameter expansion. The term ‘Layer-Wise’
underscores our approach of introducing initial features at different layers, each associated with
distinct decay rates, thus enhancing performance.

Second, we propose the Rectify SideNet, which introduces data dependency into the convolution
kernels. In conventional convolution processes, kernels remain unaltered across diverse input data.
This lack of adaptability can impede advanced feature learning, potentially constraining the model’s
performance on complex tasks. To mitigate this limitation, we introduce the Rectify SideNet, profi-
cient at extracting input data features and seamlessly integrating these features into data-independent
convolution kernels, yielding highly effective outcomes.

Furthermore, we analyze the straightforward addition of input data to the convolutional kernel can
introduce noise to the kernel itself. Consequently, we design a SWEAP Operator (Stable Weighted
Exponential Average Pooling Operator). This operator serves to filter out the noise introduced by
the input data, thereby ensuring the stability and reliability of the convolutional kernels.

Our main contributions can be summarized as follows:

• We introduce a Data-dependent Long Convolutional Network, or DLCNet for short. DLC-
Net combines the computational efficiency of traditional convolutional networks on lengthy
data sequences while addressing their limitation in adapting to different types of input data.

• We achieve this by incorporating three specialized modules into DLCNet. Specifically, we
design Layer-Wise Mapping to obtain learnable convolutional kernels for different layers,
and design Rectify SideNet and SWEAP Operator to efficiently leverage the input data to
obtain updated data-dependent convolutional kernels.

• Extensive experiments demonstrate that DLCNet achieves mostly better or comparable per-
formance on both self-supervised pretraining and downstream tasks. Moreover, DLCNet
excels in generalization and extrapolation, even when applied to longer sequences not en-
countered during training.

2 PRELIMINARIES AND RELATED WORKS

2.1 TRANSFORMER AND ITS VARIANTS

The Transformer architecture (Vaswani et al., 2017), with its self-attention mechanism, has shown
great proficiency in natural language processing (Brown et al., 2020; Touvron et al., 2023). However,
a significant challenge arises due to quadratic time and memory complexities to the input sequence’s
length. These complexities pose significant challenges when dealing with lengthy sequences. Vari-
ous approaches have been explored to address this issue, and we give a comparison of these methods
in terms of data dependency and complexity in Table 1. One line of recent works involves revis-
iting the attention mechanism itself, e.g., Reformer (Kitaev et al., 2020), Performer (Choromanski
et al., 2021), LS Attention (Zhong et al., 2019), AFT-full (Zhai et al., 2021). Another avenue of
research has abandoned the attention mechanism entirely. For instance, RWKV (Peng et al., 2023)
utilizes Recurrent Neural Networks (RNNs) to achieve linear time and memory complexity. S4 (Gu
et al., 2022) and DSS (Gupta et al., 2022), on the other hand, simulate a fundamental State Space
Model (SSM) to represent sequences. However, attention-based methods still face the problem of
high complexity, RNN-based methods struggle with longer sequences, and SSM-based methods fail
to achieve data dependency. Recent efforts have also explored the use of convolution to address
these challenges, such as TNN (Qin et al., 2023) and Hyena (Poli et al., 2023). Nevertheless, these
approaches also face challenges related to capturing data dependencies. In this work, we employ
long-range convolution to efficiently model extended sequences and introduce data-dependent con-
volution kernels to enhance the model’s expressive capabilities.

2.2 LONG-RANGE CONVOLUTION AND FFT-BASED ACCELERATION

Long-Range Convolution stands as a cutting-edge strategy harnessed in the realms of signal pro-
cessing and deep learning. It comes to the fore when optimizing the computation of convolutions

2

Under review as a conference paper at ICLR 2024

Table 1: Comparison with the Transformer architecture and its variants. T indicates sequence length
and d indicates hidden dimension.

Data Dependency Complexity

Token Mixing Channel Mixing Time Memory

Attention-based

Transformer ✔ ✘ O(T 2d) O(T 2 + Td)
Reformer ✔ ✘ O(T logTd) O(T logT + Td)
Performer ✔ ✘ O(Td2logd) O(Tdlogd+ d2logd)
LS Attention ✔ ✘ O(Trd) O(Lr + Ld+ rd)
AFT-full ✘ ✘ O(T 2d) O(Td)

RNN-based

RWKV ✔ ✱ O(Td) O(Td)

State Space Model-based

S4 ✔ ✘ O(T (logT + logd)) + dlogT O(Td)
DSS ✔ ✘ O(TdlogT) O(Td)

Convolution-based

TNN ✱ ✱ O(TdlogT) O(Td
Hyena ✱ ✱ O(TdlogT) O(Td)
DLCNet ✔ ✱ O(TdlogT) O(Td)

✔: fully dependency; ✘: no dependency; ✱: partial dependency (GLU-based dependency, etc.)

entailing extensive sequences becomes imperative. For an input sequence X ∈ Rl×h with length l
and hidden state dimension size h, the FFT accelerated convolution (Mathieu et al., 2014) on X can
be formulated as:

O = FFT(X,K) = IFFT (FFT(X) · FFT(K)) , (1)

where K ∈ Rl×h is the long-range convolution kernel and O ∈ Rl×h is the output. FFT represents
the Fast Fourier Transform, and IFFT denotes the Inverse Fast Fourier Transform. The multiplication
in the frequency domain is computationally efficient, particularly when dealing with long sequences,
as it requires only element-wise multiplications.

If we focus on one channel of the whole hidden state dimension, for input sequence x ∈ Rl, the 1-d
convolution kernel k = [k0, k1, · · · , kl−1] ∈ Rl, a long-range convolution operation over the whole
sequence can be expressed as:

K ∈ Rl×l,Kij =

{
ki−j , i ≥ j

0, i < j
, (2)

Kx =

k0 0 0 · · · 0
k1 k0 0 · · · 0
k2 k1 k0 · · · 0
...

...
...

. . .
...

kl−1 kl−2 kl−3 · · · k0

x0

x1

x2

...
xl−1

 =

o0
o1
o2
...

ol−1

 . (3)

Clearly, in each dimension, long convolution, like models such as Transformer, adheres to the rules
of casual decoding.

2.3 MIXING AND DATA DEPENDENCY

Without loss of generality, the operations performed on the input sequence X can be broadly divided
into two categories as discussed in (Hè & Kabic, 2023).

Token Mixing. This involves left-multiplying X by a square matrix A of size l× l. In essence, it’s
a process where information between different elements (tokens) within the matrix X is combined
and adjusted. The result is represented as O, where:

O = AX,A ∈ Rl×l. (4)

3

Under review as a conference paper at ICLR 2024

Decay Rate

Low-Parameter
Bottleneck

Rectify SideNet

 Convolution

SWEAP
Operator

Convolution Kernel

Exponential Decay Curve

Layer-Wise Mapping

Data-Dependent Long-
Range Convolution

Gated Linear Unit

Input

Output

× N
Input-adaptive Kernel

Figure 1: DLCNet contains three modules, Layer-Wise Mapping translates the decay rate r into a
convolution kernel K; Rectify SetNet takes input X to dynamically transform the data-independent
kernel K into an adaptive convolution kernel Ψ; and SWEAP Operator eliminates input data noise
to enhance the effectiveness of the convolution kernel Ψ.

Channel Mixing. Here, we right-multiply X by a square matrix A of size h× h. In this case, the
aim is to adjust information from different aspects or channels present within the hidden states of
X. The result is represented as O, where:

O = XA,A ∈ Rh×h. (5)
Expanding upon this idea, we can delve into the crucial concept of data dependency. In the case
where A remains unaltered regardless of variations in the input data, as in conventional convo-
lution techniques (LeCun et al., 1995), we categorize both A and the entire operation as “data-
independent”. Conversely, when A exhibits variations in response to changes in the input data,
as in Transformer (Vaswani et al., 2017), where A essentially represents the self-attention scores
and is computed based on input data, we classify it as “data-dependent”. In this context, the
GLU (Dauphin et al., 2017) (Gated Linear Unit)-based dependency is a special case, which can be
seen as left-multiplying X by a matrix that is diagonalized by itself:

GLU(X) = X · σ(Wg ·X) =

wg0 · x0 0 0 · · · 0

0 wg1 · x1 0 · · · 0
0 0 wg2 · x2 · · · 0
...

...
...

. . .
...

0 0 0 · · · wg(l−1) · xl−1

x0

x1

x2

...
xl−1

 .

(6)
While this operation does not allow the mixing of information between different positions, it enables
the entire operation’s output to be controlled by itself. Therefore, we consider this to be a “partially
data-dependent” method.

3 DATA-DEPENDENT LONG-RANGE CONVOLUTION

In this section, we present the proposed DLCNet. Similar to the architectural conventions of most
Large Language Models (LLMs), DLCNet comprises two key components: token mixing and chan-
nel mixing. We accomplish token mixing through the proposed Data-Dependent Long-Range Con-
volution while employing the Gated Linear Unit (GLU) for channel mixing (Dauphin et al., 2017).
Our principal innovation centers on the token mixing aspect, which encompasses three primary ele-
ments: Layer-Wise Mapping, Rectify SideNet, and SWEAP Operator.

Layer-Wise Mapping in Section 3.1 is a position-agnostic, low-parameter process capable of map-
ping a set of learnable decay parameters into multiple exponential decay convolution kernels. Its
position-agnostic characteristic ensures excellent extrapolation capabilities. Furthermore, as the
number of layers increases, the initialized decay rate decreases, allowing the model to preserve
more macroscopic information in higher layers.

Rectify SideNet in Section 3.2 is responsible for generating kernel weights across different input
data to rectify the original data-independent convolution kernels, thus introducing data dependency
during the convolution process.

4

Under review as a conference paper at ICLR 2024

SWEAP Operator in Section 3.3, or the Stable Weighted Exponential Average Pooling operator,
contributes to the reconstruction of kernels, transforming them from chaotic input data into a set of
exponential-decay-like kernels, resulting in a significant improvement in our model’s performance.

3.1 LAYER-WISE MAPPING

Traditionally, long convolutional kernels impose a significant parameter load, directly proportional
to the product of their length l and height h. This results in l × h learnable parameters in total.
However, this approach becomes increasingly impractical as sequence length grows, causing models
oversized and potentially hampering their overall performance (Li et al., 2022). Moreover, when the
entire parameter matrix becomes learnable, each parameter becomes tightly coupled to its specific
position within the sequence. Fixed parameters mean that when the model’s input sequence length is
extended, there won’t be corresponding positional parameters for it, and its extrapolation ability will
be weakened. Therefore, there arises a need for efficiently mapping a smaller subset of learnable
parameters onto convolutional kernels. And the parameters should be decoupled from the sequence
length, to ensure a promising extrapolation capability regardless the context (Qin et al., 2023).

Based on the aforementioned principles, we propose the Layer-Wise Mapping. Layer-Wise Mapping
can generate convolution kernels with sub-linear parameter quantities, where stay in the best ability
of extrapolation. Initially, there is typically a characteristic of information decay, meaning that
information tends to diminish as we move further away from the current position. We often use
exponential decay to describe this process. The exponential decay curve starts at a specific initial
point, and as we move away from that point, the degree of information loss gradually increases. The
decay speed is controlled by the decay rate. For a multi-layer model like Transformers, previous
experiment results in Peng et al. (2023) show that the decay rate should decrease as the number of
layers in the model increases. In other words, at lower layers, information typically decays rapidly,
indicating that the model primarily focuses on local information. Conversely, at relatively higher
layers, the model often requires a lower decay rate to attend to global information. Therefore, we
consider designing different decay rates for layers from low to high. Specifically, we define the total
number of layers in the model as M , and the layers are numbered from 0 to M − 1 , starting from
the lowest layer. With a base decay rate of rinit, to shift down the decay speed as the number of
layers increases, the decay rate rm in layer m can be expressed as follows:

rm =
rinit + τ(m+ 1)

M
∈ (0, 1), τ ∈ (0, 1). (7)

Here τ is a fixed layer-wise penalty factor used to control the decay of the layer number on the decay
effect. As the number of layers increases, the value of rm becomes larger, leading to a lower decay
speed. With the decay rate, we further extend it to a decay curve. We follow the settings in most
recent works to introduce an exponential decay curve which has been experimentally proven to be
the most effective among various decay methods (Qin et al., 2023). This process is expressed as:

Cm = [(rm)0, (rm)1, · · · , (rm)l−1] ∈ Rl×1. (8)

Now Cm can be considered as the exponential decay curve in layer m constructed on the basis of
rm, and (rm)p denotes the value at the p-th position equals to the value of p-th power of rm. As
the position increases, the decay value gradually diminishes towards zero. However, in our earlier
derivation, there are no other trainable parameters aside from rm. This implies that the curve of
Cm remains relatively unchanged during training, considerably elevating the training complexity.
Therefore, additional steps are required to render Cm learnable.

To do that, we extend this non-trainable curve Cm to all hidden state channels and introduce learn-
ability. Additionally, we aim to prevent overfitting, as employing a significant number of learnable
parameters could lead to increased complexity, high computational cost, and the risk of overfitting.
Therefore, we employ a concise solution: a MLP network with low-parameter bottleneck.

First we expand Cm along the last dimension to a bottleneck dimension d that is smaller than the
hidden dimension h:

Cm
0 = CmW0,C

m ∈ Rl×1,W0 ∈ R1×d,Cm
0 ∈ Rd×d. (9)

Here h is the dimension of the hidden state. Then Cm
0 will go through L linear layers, for the i-th

layer, this process can be expressed as:
Cm

i = SiLU(Cm
i−1Wi),C

m
i ∈ Rl×d,Wi ∈ Rd×d. (10)

5

Under review as a conference paper at ICLR 2024

As shown in Section 2.2, all the operations mentioned above are channel mixing. Therefore, the
number of parameters in Wi is independent of the context length. As a result, the number of
parameters does not increase with the growth of sequence length. Finally we get the Cm

L ∈ Rl×h :

Cm
L = Cm

L−1WL,WL ∈ Rd×h. (11)

As we mentioned in Section 2.2, in the FFT accelerated convolution, we pass X,K ∈ Rl×h to the
operation FFT(X,K) and the output is O ∈ Rl×h. Apparently, Cm

L is the K we need in layer m.

It’s important to note that while we represent the convolution process on each dimension as a K
matrix of size l × l left-multiplied on our input sequence X, in the actual implementation, we
perform a fast Fourier transform (FFT) on both the K and X matrices, which are both of size l*h.
After multiplication, we then perform the inverse transform.

3.2 RECTIFY SIDENET

Another notable aspect of DLCNet is the proposed Rectify SideNet. As Equation 1 in Section 2.2, in
traditional long-range convolutions, regardless of the layer number m, the convolution process can
be simply expressed as: O = FFT(X,K),X ∈ Rl×h,K ∈ Rl×h. The kernel K is independent to
input data and remains unchanged. This inflexibility potentially constrains the model’s performance
across complex tasks. To address this limitation, we introduce data dependence into K, enabling it
to adapt to different input data.

We first consider expanding the width of the convolution analogous to the multi-head attention mech-
anism in Transformers. In other words, we use h convolutional kernels at each layer per channel. In
this scenario, our convolutional kernel K can be represented as a combination of h sub-convolutional
kernels for each channel in hidden state dimension:

K = [k0,k1, · · · ,kh−1],ki ∈ Rl×1.

To adaptively tailor K to input X, we transform X to a data-dependent matrix D:

D = Sigmoid(XWD), (12)

where WD ∈ Rh×h is a trainable matrix. We use D to assign adaptive weights among dif-
ferent sub-convolutional kernels ki. Specifically, we reformulate D as a series of vectors as
D = [d0,d1, · · · ,dh−1],di ∈ Rl×1, and use K and D as input to obtain a adaptive kernel Ψ
for each sub-kernels ki in K:

Ψ = [ψ0,ψ1, · · · ,ψh−1] = [k0 ⊙ d0,k1 ⊙ d1, · · · ,kh−1 ⊙ dh−1], (13)

where Ψ has the same size of K and ⊙ denotes element-wise product. We can simplify the above
formula as:

Ψ = K⊙D. (14)
Finally, we employ the FFT-accelerated convolution with the input-adaptive kernel Ψ:

O = FFT(SiLU(XWV),Ψ), (15)

where WV ∈ Rh×h is a trainable matrix and O ∈ Rl×h is the convolution output.

3.3 SWEAP OPERATOR

We aspire to maintain the exponential decay form of D during the rectification process to ensure that
the output remains the exponential decay characteristics. Nevertheless, since K exhibits a tendency
to decay exponentially, we postulate that D also needs to exhibit this same tendency otherwise
noise will be introduced. As shown in Figure 2, we select 16 channels in D for visualization. The
horizontal axis is the length of the input sequence and the vertical axis is the numerical value of the
convolution kernel. For a convolution kernel K composed of exponential decay curves, the absence
of an exponential decay trend in D can be considered a form of noise. Multiplying K by D will
cause K to lose some of its exponential decay characteristics, and we find such loss significantly
impact the model’s learning capacity (in Section 4.3). Thus, our current inquiry is: Can we also
transform D into a low-noise exponential decay form?

6

Under review as a conference paper at ICLR 2024

exponential
decay

Conv

average
pooling

Figure 2: The SWEAP Operator. For the input D which contains noise, first the D′ with exponential
decay form is obtained by multiplying it using the exponential decay kernel K, and then the filtered
D′′ is obtained by using average pooling.

To elaborate on how to transform D (defined in Equation 12) into an exponential decay form and
get the final data-dependent kernel Ψ in Equation 15, we design a Stable Weighted Exponential
Averaging Processing (SWEAP) Operator. This operator optimizes the process of obtaining Ψ in
Equation 14, and mainly consists of two parts: adding exponential decay factors and performing
sliding window exponential decay (shown in Figure 2). Firstly, to ensure that the curve exhibits an
exponential decay form overall, we multiply D by the exponential decay kernel K:

D′ = K⊙D. (16)
Now D′ is in the form of exponential decay. However, D′ still contains tons of noise. To filter
out these noises, we draw on the idea of sliding window averaging and design a Stable Weighted
Exponential Averaging operator. This operator uses a sliding convolution kernel with a window size
w to perform convolution over the entire curve with a learnable window kernel:

D′′ = SWEAP(D′,Kwindow) =
FFT(D′,Kwindow)

FFT(E,Kwindow)
. (17)

Kwindow ∈ Rw is a sliding window kernel of size w smaller than l, containing a set of learn-
able parameters [p0, p1, · · · , pw−1]. In practice, we implement Kwindow with zero padding as
[p0, p1, · · · , pw−1, 0, · · · , 0] ∈ Rl, and employ a denominator FFT(E,Kwindow) serves a regular-
ization to eliminate the influence of padding, where E = [1, 1, · · · , 1] ∈ Rl. We add the stable and
exponential-decay style kernel D′′ to the original kernel K to obtain the input-adaptive kernel Ψ
defined in Equation 14, and do an additional normalization on D′′ for the purpose of stabilizing the
training process. Formulaically,

Ψ = K+
D′′√∑l

i=1

∑h
j=1 |D′′

ij |2
. (18)

We then use this Ψ as a kernel of Equation 15 to finally get the output of the convolution operation.

4 EXPERIMENT

In this section, we present the following research questions as a guide to conduct empirical inves-
tigations. (RQ1) Can the DLCNet achieve state-of-the-art pretraining performance on large-scale
corpus? (RQ2) Can the DLCNet achieve state-of-the-art performance across various downstream
tasks? (RQ3) What is the contribution of each individual DLCNet module to the final performance?
(RQ4) Can the DLCNet generalize and extrapolate for inputs longer than the training sequences?

4.1 PRETRAINING PERFORMANCE (RQ1)

We validate the pretraining performance on the commonly used WikiText-103 dataset (Merity,
2016). We use the pretraining perplexity (PPL) as the evaluation metric, and report the results after
training 50K steps on the datase. The detailed experimental settings are illustrated in Appendix A.2.
And the following groups of methods are selected as compared baselines, including (1) attention-
based, GPT2, GPT-Neo, Performer (Choromanski et al., 2021), Reformer (Kitaev et al., 2020),
Linear Attention (Zhong et al., 2019), AFT-Conv (Zhai et al., 2021); (2) rnn-based, RWKV (Peng
et al., 2023); (3) ssm-based, H3(Fu et al., 2023), S4 (Gu et al., 2022); (4) cnn-based, Hyena (Poli
et al., 2023). Table 2 reports the results on WikiText-103. It is evident that DLCNet achieves per-
formance on par with other Linear Attention architectures while maintaining lower time and space
complexity. This standard will be consistently applied in our subsequent evaluations.

7

Under review as a conference paper at ICLR 2024

Table 2: Pretraining PPL on WikiText-103. The best and second best for each metric are in bold
and underlined format, respectively.

attention-based ssm-based cnn-based

GPT2 GPT-Neo Performer Reformer Linear Attention AFT-conv H3 S4 Hyena DLCNet

Params 137M 125M 125M 125M 125M 125M 125M 249M 125M 128M

PPL ↓ 29.9 26.3 26.8 25.6 25.6 28.2 23.7 21.0 18.6 20.8

4.2 PERFORMANCE ON DOWNSTREAM TASKS (RQ2)

We proceed to evaluate the performance of DLCNet on downstream tasks. In this experiment, we se-
lect the following methods as baselines: RWKV-4 (Peng et al., 2023), GPT-2 (Radford et al., 2019),
GPT-Neo (Black et al., 2021), Pythia (Biderman et al., 2023), Hyena Poli et al. (2023). For the model
trained on the WikiText-103 dataset, we test its in-context learning ability on the SuperGLUE bench-
mark (Wang et al., 2019). For the model trained on the Pile, we employ several natural language
understanding datasets as the downstream task: Lambada (Storks et al., 2020), PIQA (Bisk et al.,
2019), StoryCloze (Roemmele et al., 2011), COPA (Mostafazadeh et al., 2017), Winogrande (ai2,
2019), ARC (Yadav et al., 2019), SciQ (Welbl et al., 2017), OpenBookQA (Mihaylov et al., 2018).
In the SuperGLUE benchmark, we compared our language understanding capabilities with Hyena.

Table 3: Performance on SuperGLUE benchmark.

Params WSC WIC RTE CB MultiRC ReCoRD BoolQ Average
(M) (acc↑) (acc↑) (acc↑) (acc↑) (acc↑) (acc↑) (acc↑) (acc↑)

Hyena 125 21.2 50.5 46.6 39.3 1.1 59.4 51.8 38.6
DLCNet 128 22.3 51.2 45.3 41.5 0.0 59.5 55.6 39.4

It can be observed in Table 3 that, although DLCNet’s perplexity during pre-training was worse than
that of Hyena, DLCNet outperforms Hyena in downstream tasks across various scenarios with the
same parameter count. Results in Table 4 on other datasets also demonstrate that DLCNet, while
maintaining superior time and space complexity compared to traditional transformer architectures,
can achieve performance on par with transformers.

Table 4: Performance on downstream natural language understanding tasks. The best and second
best for each metric are in bold and underlined format, respectively.

Params Lambada PIQA StoryCloze COPA Winogrande ARC-e ARC-c SciQ OBQA
(M) (ppl↓) (acc↑) (acc↑) (acc↑) (acc↑) (acc norm↑) (acc↑) (acc↑) (acc nrom↑)

RWKV-4 169 29.33 65.07 58.79 66.00 50.83 47.47 24.15 77.50 29.60
GPT-2 137 40.11 62.9 51.6 64.00 51.62 39.48 22.70 - 16.40

GPT-Neo 125 30.27 63.06 58.26 64.00 50.43 43.73 23.12 76.50 26.20
Pythia 160 24.38 62.68 58.47 64.00 52.01 45.12 23.81 76.60 29.20

DLCNet 128 28.59 63.61 58.92 66.00 51.78 45.41 23.89 78.10 29.60

4.3 ABLATION EXPERIMENT (RQ3)

We conduct a series of ablation experiments to analyze each component of DLCNet and explore
their respective contributions to the final performance.

Analysis of Layer-Wise Mapping. Firslty, we analyze the performance contributions of Layerwise
Mapping module proposed in Section 3.1. Here we consider three different variants, namely: (1)
Dim, different dimensions in the bottleneck network,with Low representing dimension d = h/8,
and High representing d = h, where d and h are bottleneck and hidden dimension, respectively; (2)
Layer-Wise, whether it has a layer-wise decay rate, if not, all layers share the same decay rate rinit;
(3) Mapping, whether mapping the exponential decay in one dimension to the entire hidden state, if
not, it is straightforward to make all hidden states share the same kernel by repetition. We evaluate
these variants with the pretraining loss after 50000 steps under the same setting in Section 4.1. The

8

Under review as a conference paper at ICLR 2024

results are in the first group in Table 5. Clearly, the parameterized curves require mapping, and
the low-parameter mapping along with varying decay rates per layer to some extent reduces the
complexity of curve mapping and enhances the model’s capabilities.

Table 5: Results of ablation experiments.

Dim Layer-Wise Mapping PPL ↓
Low ✔ ✔ 20.8
High ✔ ✔ 21.7
Low ✘ ✔ 21.5
High ✘ ✔ 22.3
Low ✔ ✘ 22.5
High ✘ ✘ 23.1
DLCNet 20.8
w/o SideNet 21.1
w/o SWEAP 21.0
w/o SideNet & SWEAP 21.9

Analysis of Rectify SideNet and SWEAP Opera-
tor. Next we investigate the effects of removing the
Rectify SideNet (Section 3.2) and SWEAP Opera-
tor (Section 3.3) through the following variants: (1)
w/o SideNet, removing the Rectify SideNet to disable
the ability obtaining data-dependent convolutional ker-
nels; (2) w/o SWEAP, removing the SWEAP Op-
erator to understand its role to the reconstruction of
kernels from chaotic input data; (3) w/o SideNet &
SWEAP, removing the Rectify SideNet and SWEAP
Operator together. We evaluate these variants with the
pretraining loss after 50000 steps under the same set-
ting in Section 4.1. The results are in the second group
in Table 5, which clearly demonstrate that in the ab-
sence of the SWEAP Operator, the Rectify SideNet
exhibits limited improvement. This aligns with our
speculation that unprocessed data may introduce noise
to the convolutional kernels. We give the results of
visualizing the role of the SWEAP Operator in Ap-
pendix A.3.

4.4 LONG TEXT LENGTH EXTRAPOLATION TEST (RQ4)

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

51
2
76
8
10
24
20
48
30
72
40
96
51
20
61
44
71
68
81
92
92
16
10
24
0

Lo
g

PP
L

Sequence Length

Transformer Performer LS DSS S4 DLCNet

Figure 3: Extrapolation evaluation.

We conduct experiments on the Wikitext-103 to
validate the extrapolation ability of the model.
Specifically, we use input sequences of length
512 during training, and then randomly select
1000 sequences of length ranging from 512 to
10240 during testing. We employ PPL as a
criterion to measure the extrapolation perfor-
mance in an autoregressive manner. Figure 3
presents the results, with some baseline results
taken from Qin et al. (2023). It is demonstrated
that DLCNet exhibits excellent extrapolation
capabilities, as its text perplexity remains con-
sistent regardless of the increase in input text
length, and it has a consistent performance ad-
vantage over other methods, thereby validating
the effectiveness of our model design.

5 CONCLUSION

In this paper, we propose a data-dependent long-range convolution method for efficiently pro-
cessing long sequences. Our method realizes the advantage of low time and memory complexity
with the benefit of convolution operations. We address the problem that traditional convolution is
data-independent by proposing three modules, namely Layer-Wise Mapping, Rectify SideNet, and
SWEAP Operator, to effectively incorporate the information from the input data. Experimental
results demonstrate that DLCNet exhibits excellent performance on both the self-supervised pre-
training task and the downstream natural language understanding task. Notably, DLCNet has excel-
lent extrapolation and generalization characteristics, and is able to maintain good performance on
inputs that are longer than those encountered during training, which proves the superiority of our
approach in dealing with long sequences.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Winogrande: An adversarial winograd schema challenge at scale. 2019.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Autore-
gressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.org/
10.5281/zenodo.5297715. If you use this software, please cite it using these metadata.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation, 2023.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with per-
formers. In ICLR. OpenReview.net, 2021.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In ICML, volume 70 of Proceedings of Machine Learning Research, pp.
933–941. PMLR, 2017.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry
hungry hippos: Towards language modeling with state space models, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Re. Hippo: Recurrent memory
with optimal polynomial projections, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=RjS0j6tsSrf.

Hongyu Hè and Marko Kabic. A unified view of long-sequence models towards modeling million-
scale dependencies, 2023.

10

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://openreview.net/forum?id=RjS0j6tsSrf
https://openreview.net/forum?id=RjS0j6tsSrf

Under review as a conference paper at ICLR 2024

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In ICLR.
OpenReview.net, 2020.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey. What makes convolutional
models great on long sequence modeling?, 2022.

Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through
ffts, 2014.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language model-
ing via gated state spaces, 2022.

Stephen Merity. The wikitext long term dependency language modeling dataset. Salesforce Meta-
mind, 9, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Conference on Empirical Methods
in Natural Language Processing, 2018.

Nasrin Mostafazadeh, Michael Roth, Annie Louis, Nathanael Chambers, and James Allen. Lsdsem
2017 shared task: The story cloze test. In Proceedings of the 2nd Workshop on Linking Models of
Lexical, Sentential and Discourse-level Semantics, pp. 46–51, 2017.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou, Prze-
myslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau, Krishna Sri Ipsit
Mantri, Ferdinand Mom, Atsushi Saito, Xiangru Tang, Bolun Wang, Johan S. Wind, Stansilaw
Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng Zhou, Jian Zhu, and Rui-Jie
Zhu. Rwkv: Reinventing rnns for the transformer era, 2023.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models, 2023.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation, 2022.

Zhen Qin, Xiaodong Han, Weixuan Sun, Bowen He, Dong Li, Dongxu Li, Yuchao Dai, Lingpeng
Kong, and Yiran Zhong. Toeplitz neural network for sequence modeling, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In 2011 AAAI Spring Symposium Series, 2011.

Marijn F. Stollenga, Wonmin Byeon, Marcus Liwicki, and Juergen Schmidhuber. Parallel multi-
dimensional lstm, with application to fast biomedical volumetric image segmentation, 2015.

Shane Storks, Qiaozi Gao, and Joyce Y. Chai. Recent advances in natural language inference: A
survey of benchmarks, resources, and approaches, 2020.

11

Under review as a conference paper at ICLR 2024

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions,
2017.

Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Quick and (not so) dirty: Unsupervised selec-
tion of justification sentences for multi-hop question answering. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, 2019. doi: 10.18653/v1/d19-1260.

Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, and
Josh M. Susskind. An attention free transformer. CoRR, abs/2105.14103, 2021.

Li Zhang, Jiachen Lu, Junge Zhang, Xiatian Zhu, Jianfeng Feng, and Tao Xiang. Softmax-free
linear transformers, 2023.

Guoqiang Zhong, Xin Lin, Kang Chen, Qingyang Li, and Kaizhu Huang. Long short-term attention.
In BICS, volume 11691 of Lecture Notes in Computer Science, pp. 45–54. Springer, 2019.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 FFT ACCELERATED CONVOLUTION

In each channel of the Long-Range Convolution, we denotes that the following operation is done:

O = TX, T ∈ Rl×l, X ∈ Rl×h (19)

We can optimize this matrix multiplication through FFT.

y0
y1
y2
...

yn−1

 =

t0 0 0 . . . 0
t1 t0 0 . . . 0
t2 t1 t0 . . . 0
...

...
...

. . .
...

tn−1 tn−2 tn−3

... t0

x0

x1

x2

...
xn−1

 (20)

Firstly, we observe that matrix T is a discrete matrix. We can expand the matrix T into a cyclic
matrix, and at the same time fill in the X matrix with zeros, so that the value of Y does not change.

Afterwards, zero fill the vectors Y and X so that their lengths reach m (m is the smallest power of
2 greater than or equal to n). The length of the filled vector T is m, and the length of vector X is m.

Perform Fast Fourier Transform (FFT) on the zeroed vectors T and X , respectively, to obtain their
frequency domain representations. Record as That and Xhay .

That[k] =

N−1∑
n=0

t[n] · exp
(
−2πikn

N

)
k ∈ [0,m− 1] (21)

Xhat[k] =

N−1∑
n=0

x[n] · exp
(
−2πikn

N

)
k ∈ [0,m− 1] (22)

Multiply these two vectors point by point to obtain the frequency domain representation of cyclic
convolution. Mark as Yhat = That ∗Xhat.

Then perform inverse Fourier transform (IFFT) on the obtained vector to obtain the first n bits of
the vector, which is the matrix Y we need.

Y [k] = (

m−1∑
l=0

Y [l] · ei2π lk
m)/m, k ∈ [0, n− 1] (23)

In this way, we optimized the complexity from O(n2) to O(nlogn).

If we assign

T =

t0 0 0 · · · 0
t1 t0 0 · · · 0
t2 t1 t0 · · · 0
...

...
...

. . .
...

tn−1 tn−2 tn−3 · · · t0

 , X =

x0

x1

x2

...
xn−1

 (24)

this operation can be rewritten as: which also satisfies the simplified form of Self −
AttentionMechanism. Also, it is clear to see that the above operations can be accelerated us-
ing FFT to achieve a complexity of O(n log n).

It’s important to note that we have omitted the hidden states here. In NLP tasks, each token is
typically represented as a hidden state vector. In actual FFT computations, the formula is usually
expressed as follows: We use vector cross product here:

13

Under review as a conference paper at ICLR 2024

r = (r0, r1, r2, . . . , rn−1) ∈ Rh

x = (x0, x1, x2, . . . , xn−1) ∈ Rh

o = r ⊙ x = (ro × x0, r1 × x1, · · · , rn−1 × xn−1) ∈ Rh (25)

We can say that TX is the operation of FFT convolution within one dimension of the hidden state.
The entire FFT convolution can be understood as performing every TX operations within h chan-
nels:

FFT (X,K) → (TX)× htimes → [T0X0,T1X1, · · · ,Th−1Xh−1].

A.2 EXPERIMENTAL SETTINGS

We conducted pre-training on a server equipped with V100 × 4 GPUs. Following the same bench-
marks as other test models, we configured the model with 12 layers, a hidden layer dimension of
512, and a text length of 512. Detailed parameter settings can be found in the following table:

DLCNet HyperParameter Settings for Pile in 162M
ddp

Precision fp16
Optimizer Adam
Optimizer momentum 0.9 0.98
Peak learning rate 6e-4
Warmup learning rate init 1e-5
Final learning rate 1e-5
Weight decay 0.1
Learning rate schedule Linear
Warmup schedule cosine

We initially conducted training for 50,000 steps on the Wikitext-103 dataset. Subsequently, we
evaluated the perplexity of the generated text on the test set. Following that, we retrained the model
on The Pile dataset, and after training on 300 billion tokens, we conducted zero-shot testing of its
in-context learning ability on the SuperGLUE dataset.

A.3 FURTHER ANALYSIS OF SWEAP OPERATOR

Figure 4: Visualization of D.

We analyze D (defined in Equa-
tion 12) that has not been processed
by the SWEAP Operator in Figure 4
and D′′ (defined in Equation 17) that
is processed by the SWEAP Operator
with different window sizes in Fig-
ure 5. We select 16 channels for vi-
sualization. The horizontal axis is the
length of the input sequence and the
vertical axis is the numerical value
of the convolution kernel. We ob-
serve that the information obtained
without SWEAP Operator processing
could not exhibit an exponential de-
cay trend, but this trend appears after
SWEAP Operator processing. And as
the window increases, the curve grad-
ually shows an exponential decay and
becomes smoother.

14

Under review as a conference paper at ICLR 2024

window size = 2 window size = 8

window size = 16 window size = 32

Figure 5: Visualization of D′′ with different window size.

15

	Introduction
	Preliminaries and Related Works
	Transformer and its Variants
	Long-Range Convolution and FFT-based Acceleration
	Mixing and Data Dependency

	Data-dependent Long-Range Convolution
	Layer-Wise Mapping
	Rectify SideNet
	SWEAP Operator

	Experiment
	Pretraining Performance (RQ1)
	Performance on Downstream Tasks (RQ2)
	Ablation Experiment (RQ3)
	Long Text length Extrapolation Test (RQ4)

	Conclusion
	Appendix
	FFT Accelerated Convolution
	Experimental settings
	Further analysis of SWEAP Operator

