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ABSTRACT

The pursuit of optimal 3D representations remains both a long-standing challenge
and an exciting frontier within the vision and graphics communities. We argue
that compressing 3D data into low-dimensional components improves parameter
efficiency and captures essential features, providing a parsimonious representation
that enhances shape generation. To this end, we propose Tri-Vectors, a parsimo-
nious 3D representation tailored for shape generation. Tri-Vectors instantiates the
classical CANDECOMP/PARAFAC (CP) decomposition of a shape’s continuous
signed distance field (SDF) into orthogonal tri-vector sets, yielding a compact,
resolution-independent, and highly adaptable structure. Specifically, Tri-Vectors
has three major advantages: (i) direct shape reconstruction through linear combi-
nations of components, (ii) adjustable dimension and number of components to
suit varying shape complexities, and (iii) robustness across arbitrary resolutions.
Extensive experiments across multiple datasets show that Tri-Vectors outperforms
state-of-the-art methods in terms of parameter efficiency and geometric fidelity.
Moreover, we extend its application to textured and deformable shapes, demon-
strating the scalability and versatility of the representation.

1 INTRODUCTION

“Entities should not be multiplied unnecessarily.”
– William of Ockham

With the rapid growth of virtual and augmented worlds, the demand for high-quality 3D assets has
increased dramatically. Efficiently generating 3D models is, however, substantially more challeng-
ing than learning in 2D. This is due not only to the higher ambient dimensionality but also to the
irregular and complex topology of 3D shapes, leading to increased memory traffic and computational
demands. As curated 3D datasets continue to expand, a central question emerges: What makes an
ideal 3D representation for generative tasks? The choice of representation serves as the interface be-
tween geometry and the generator, directly affecting parameter count, memory bandwidth, and how
gradient signals capture geometric structure. Yet, despite significant progress (Kang et al., 2025;
Zhang et al., 2024b; Lai et al., 2025; Chen et al., 2025; Xiang et al., 2025; Wu et al., 2025), existing
representations face fundamental trade-offs between expressiveness, efficiency, and generalization.

Neural implicit functions have demonstrated strong ability to represent diverse shapes (Zhang et al.,
2024b; 2023), but capturing fine-grained details often requires high-capacity networks, resulting
in heavy compute and memory footprints. Beyond implicit fields, recent works explore tensor-
structured parameterizations for shapes or scenes (Shue et al., 2023; Gao et al., 2023; Chen et al.,
2022; 2023; Hui et al., 2024; Hu et al., 2024; Hui et al., 2022), but are inherently scene-specific and
often rely on auxiliary neural decoders, limiting out-of-distribution generalization and scalability for
shape generation. These limitations point to a persistent gap: current approaches fail to uncover and
leverage the intrinsic low-dimensional structures of 3D data. This motivates our central research
question: “How can we design a parsimonious 3D representation that is both parameter-efficient
and structurally simple, while retaining adaptability and fidelity for shape generation?”

Among classical tensor factorizations, the CP decomposition (Carroll & Chang, 1970) provides
a parsimonious way to represent a 3D tensor as a sum of separable rank-one components. CP
has been widely studied in mathematics, signal processing, and scientific computing. Moreover,
CP-style factorizations have been adopted to parameterize shapes or scenes for reconstruction and
rendering (Chen et al., 2022; Gao et al., 2023); however, their potential as a representation for 3D
shape generation has not been explored. This gap motivates us to revisit CP in a generative setting.
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Figure 1: 3D shape generation process based on our Tri-Vectors representation using Flow-Matching
model. Top: illustrates the generation process applied to Tri-Vectors. Bottom: displays the corre-
sponding 3D volumes reconstructed from tri-vectors at each timestep.

We present Tri-Vectors, a simple yet effective representation that brings CP decomposition to 3D
shape generation, (see Fig. 1). It decomposes the continuous SDF into multiple orthogonal tri-vector
sets, addressing key limitations in existing methods. Tri-Vectors offers three essential properties:
(1) Efficiency: Tri-Vectors reconstruct shapes via a linear combination of structured components
without auxiliary neural decoder, enabling a compact and efficient shape representation. (2) Adapt-
ability: The vector dimensionality and component count are adjustable, allowing flexible adaptation
to shapes of varying complexity and enhancing generalization across tasks. (3) Scalability: Unlike
grid-based methods, Tri-Vectors are resolution-independent, supporting reconstruction at arbitrary
detail levels while maintaining geometric fidelity.

We conduct extensive experiments across multiple datasets, covering 3D reconstruction and gener-
ation tasks of varying complexity. The results reveal that Tri-Vectors compresses shape information
effectively and outperforming state-of-the-art methods in terms of parameter efficiency and geomet-
ric fidelity. Moreover, we explore the potential of Tri-Vectors for textured and deformable shapes,
decomposing color spaces for textures and incorporating a temporal dimension to represent 4D de-
formable shapes. This further demonstrates its scalability and adaptability, making Tri-Vectors a
promising foundation for future 3D generative applications.

2 RELATED WORKS

2.1 3D SHAPE REPRESENTATIONS

Accurate and efficient representation of 3D data has been a longstanding challenge. Point cloud
(Chen et al., 2024a; Qi et al., 2017a;b; Nichol et al., 2022) captures spatial positions but lacks con-
nectivity, complicating surface inference. Mesh (Alliegro et al., 2023; Chen et al., 2024b; Siddiqui
et al., 2024; Chen et al., 2024c; Nash et al., 2020) provides detailed topology but is difficult for
neural networks to process due to structural irregularities. Voxel grid (Wu et al., 2015; 2016; Zheng
et al., 2022; Wang et al., 2024; Ren et al., 2024) offers regularity for convolutions but memory-
intensive, limiting scalability. Octree (Wang et al., 2017; 2022; Zheng et al., 2023) uses hierarchical
partitioning to allocate resources adaptively, but introduces additional computational complexity.
Neural field (Park et al., 2019; Mescheder et al., 2019; Chen & Zhang, 2019; Erkoç et al., 2023;
Zhang et al., 2022; 2023) represents shapes as continuous functions, offering compactness but often
requires high-capacity networks or auxiliary encoders for detail.

Recent advances in hybrid representations (Shue et al., 2023; Hui et al., 2022; Chen et al., 2022;
2023; Müller et al., 2022; Gao et al., 2023; Yariv et al., 2024), summarized in Tab. 1, try to balance
efficiency and expressiveness across applications. Methods such as TensoRF (Chen et al., 2022),
DictionaryFields (Chen et al., 2023), and StriVec (Gao et al., 2023) decompose scenes into multiple
tensor components, enabling fast querying and rendering. However, these methods are inherently
designed for scene-specific tasks and, despite being applicable to SDF representation, are not in-
tended for generalizable shape generation. Additionally, when applied to shape modeling via SDF,
they introduce significant parameter redundancy. For shape generation, Triplanes (Shue et al., 2023)
encodes shapes using tri-planes but highly relies on an additional MLP decoder, increasing compu-
tational complexity and restricting generalization. NeuralWavelet (Hui et al., 2022) applies wavelet
decomposition to fixed-resolution SDF grids, limiting adaptability to continuous spaces and high-
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Method Generation MLP-free Scalability

TensoRF (Chen et al., 2022) ✗ ✗ ✓

InstantNGP (Müller et al., 2022) ✗ ✗ ✓

DictionaryFields (Chen et al., 2023) ✗ ✗ ✓

StriVec (Gao et al., 2023) ✗ ✓ ✓

Tri-plane (Shue et al., 2023) ✓ ✗ ✓

NeuralWavelet (Hui et al., 2022) ✓ ✓ ✗

MSDF (Yariv et al., 2024) ✓ ✓ ✗

Ours ✓ ✓ ✓

Table 1: Comparison of different 3D representations in terms of their suitability for shape generation,
reliance on MLP-based decoding, and scalability (resolution-independent).

resolution modeling. MSDF (Yariv et al., 2024) builds local SDF grids around sampled surface
points, with accuracy dependent on sampling density and grid resolution, and requiring careful de-
sign for global consistency. Ultimately, both NeuralWavelet (Hui et al., 2022) and MSDF (Yariv
et al., 2024) remain discretized representations of SDFs, where their expressiveness is inherently
constrained by predefined grid resolution or sampling density. This fundamental problem reinforces
the challenge of balancing structural efficiency with representational flexibility.

2.2 3D SHAPE GENERATION

The development of diverse 3D datasets (Chang et al., 2015; Collins et al., 2022; Zhou & Jacobson,
2016; Deitke et al., 2023b;a) has enabled researchers to generate high-fidelity 3D assets, driving the
continuous innovation of 3D generative models.

Transformer-based auto-regressive models generate 3D assets by modeling sequential dependencies
(Yan et al., 2022; Nash et al., 2020; Jayaraman et al., 2023; Sun et al., 2020; Medi et al., 2023; Ma
et al., 2025; Zhang et al., 2024a). Decoder-only transformers predict triangle meshes, with some
incorporating VQ-VAE for discrete encoding (Siddiqui et al., 2024; Chen et al., 2024b;c). However,
token length limitations necessitate mesh simplification or extra processing, restricting complex
scene generation. SDF-based approaches partition SDFs into grids and use progressive prediction
but require additional models for SDF encoding (Mittal et al., 2022; Yan et al., 2022). Diffusion
models (Ho et al., 2020) have demonstrated strong potential in 3D generation, being applied to point
clouds (Luo & Hu, 2021), voxel grids (Hu et al., 2024; Hui et al., 2022; 2024; Wang et al., 2024;
Chou et al., 2023; Zheng et al., 2023), polygon meshes (Alliegro et al., 2023), and neural fields (Chen
& Zhang, 2019; Erkoç et al., 2023). However, the high dimensionality of 3D data poses challenges
in efficiency and quality. Inspired by latent diffusion models (Rombach et al., 2022), recent works
train diffusion models in the latent space using VAE-encoded 3D representations (Zhang et al., 2023;
Xiong et al., 2024; Ren et al., 2024; Zhang et al., 2024b; Wu et al., 2024; Cui et al., 2024; Gupta
et al., 2023; Zhang et al., 2022).

As 3D generative models continue to evolve, the emergence of more compact and expressive repre-
sentations plays a key role in improving efficiency, fidelity, and scalability (Hui et al., 2024; Yariv
et al., 2024; Wu et al., 2024; Lee et al., 2024; Zhang et al., 2024b). By instantiating a CP decom-
position, Tri-Vectors achieves high geometric fidelity with significantly fewer parameters due to
its inherent compactness. Its simple, structured design integrates seamlessly with neural networks,
ensuring efficient processing and accurate learning.

3 METHOD

We aim to represent redundant SDFs as parsimonious Tri-Vectors. A key observation is that most
geometric information in 3D shapes concentrates near the surface, while off-surface regions con-
tribute little. However, SDF ignores this pattern, encoding shapes as dense, continuous volumetric
fields, leading to redundancy. Our Tri-Vectors eliminate this inefficiency by leveraging CP decom-
position to efficiently factorize SDFs, preserving their smooth global structure while concentrating
parameters on localized details, resulting in a compact yet expressive representation. The method
overview is shown in Fig. 2.
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Figure 2: Overview of our approach. (a): Shape Learning introduces how Tri-Vectors decompose
the shape’s truncated signed distance field (TSDF) into multiple orthogonal tri-vector sets. (b):
Training shows how to train a flow-based generative model to produce Tri-Vectors from a random
noise sampled from Gaussian distribution. (c): Shape Generation employs the trained model to
generate a Tri-Vectors and then reconstruct a dense SDF grid with an arbitrary resolution, flowed by
marching cube (Lorensen & Cline, 1987) we can generate the output 3D shape.

3.1 TRI-VECTORS REPRESENTATION

Our Tri-Vectors approximates the original dense continuous SDF by expressing it as a sum of dis-
crete, orthogonal tri-vector sets. This results in a significantly more compact representation while
preserving the key geometric features of the original shape. Mathematically, the original CP decom-
position of a 3D tensor T ∈ R3 is given by Eq. 1.

T ≈
R∑

r=1

ar ⊗ br ⊗ cr, (1)

where ar, br, and cr are one-dimensional vectors that encode the information along each axis, and
⊗ denotes the out product. By adjusting the rank R (the number of components in the summation)
and the resolution of each vector, we can effectively control the balance between compression rate
and reconstruction fidelity. This approach reduces the memory footprint of the shape representation,
making it feasible to store complex shapes.

Shape learning. Given an input 3D shape S, our goal is to compute its Tri-Vectors representation:
STV = {(x1,y1, z1), . . . , (xR,yR, zR)}. Fig. 2 (a) illustrates the process of convert a shape into
Tri-Vectors. We start by normalizing the shape within a unit cube (−0.5, 0.5). To optimize the Tri-
Vectors, we sample 6 million points: 2 million points are uniformly distributed throughout the cube,
and 4 million points are concentrated near the shape’s surface to capture finer geometric details, of
these, 2 million are sampled directly on the surface, while the other 2 million are obtained by adding
uniformly distributed noise in the range [−0.01, 0.01] to the surface points. For each sampled point
pn, we compute the ground-truth SDF value s(pn) and truncate them to [−0.05, 0.05]. The Tri-
Vectors approximates the truncated SDF value at any point pn by combining the contributions from
each tri-vector as follows:

ŝ(pn) =

R∑
r=1

xr,i · yr,j · zr,k, (2)

where xr,i, yr,j , and zr,k are the elements of the vectors corresponding to the coordinates of pn =
(i, j, k) in the 3D space. For any point in the space, we use linear interpolation on each vector to
obtain the corresponding value.

To optimize this representation, we minimize the distance between the reconstructed values ŝ(pn)
and the ground-truth truncated SDF values s(pn). The objective function is defined as an L2 loss:

Lrecon =

N∑
n=1

∥ŝ(pn)− s(pn)∥22 , (3)

where N is the total number of sample points.

Additionally, we include L2 regularization term with weight λL2 to discourage outlying values and
total variation regularization term (Shue et al., 2023) with weight λvar (shown Eq. 4) to make the
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representation become smoother:

Lvar =

(√∑
(∆2

e) +
√∑

(∆2
c)

)
, (4)

where ∆e represents the differences between adjacent elements within each vector, and ∆c denotes
the differences between corresponding elements of adjacent components.

The final loss function combines these components to balance shape reconstruction accuracy and
smoothness:

Ltotal = Lrecon + λL2 · LL2 + λvar · Lvar, (5)

in our experiments, λL2 = 1e-10 and λvar = 1e-8.

The Tri-Vectors seeks the optimal vectors {xr,yr, zr}Rr=1 that minimize this total loss, which can
be formulated as:

{xr,yr, zr} = arg min
{xr,yr,zr}

Ltotal. (6)

By iteratively optimizing these factors using gradient descent, we obtain a compact Tri-Vectors that
can accurately approximate a shape. This method enables efficient storage and reconstruction of
the shape, capturing essential geometric details with high fidelity, without the need for any neural
networks. Fig. 3 illustrates the progressive improvement in reconstruction quality as both resolution
and rank increase, demonstrating the trade-off between parameter count and reconstruction fidelity.

3.2 SHAPE GENERATION

Figure 3: Shape reconstruction from Tri-Vectors
with different configurations.

Tri-Vectors’ simplicity and highly structured
form make it ideal for seamless integra-
tion into modern neural networks, especially
transformer-based architectures, without addi-
tional processing. Specifically, we transform
3D shape generation into 1D sequence gener-
ation, which can not only capture essential ge-
ometric information with much fewer param-
eters but also transform spatial dependencies
into sequential dependencies, rather than rely-
ing on multiple convolutions to obtain a large
receptive field. By doing so, it reduces train-
ing complexity while still accurately modeling
long-range dependencies, making the genera-
tive process more effective and scalable.

To instantiate this idea, we introduce SiT (Ma et al., 2024) as our base generative model. SiT
proposes an interpolant process I(t) that smoothly transforms noise to data over time t. This process
is governed by a transform function Tt(x), where Tt : x → data for t ∈ [0, 1], bridging flow and
diffusion models. In this case, Tri-Vectors can be seamlessly integrated into SiT (see Fig. 2), using
its powerful modeling capabilities for shape generation. We also adopt score estimation ∇ log p(x)
for data distribution learning, and leverage transformers to capture dependencies across time steps.

Moreover, to enhance the network’s learning capabilities, we introduce specialized positional em-
beddings designed for Tri-Vectors: (1) axis embeddings that indicate whether the input token corre-
sponds to the x, y, or z axis; (2) component embeddings that identify the specific component within
the sequence; and (3) sequence position embeddings that mark the position of each token within the
overall sequence. Note that all embeddings in this framework are learnable, allowing for adaptive
learning that accelerates convergence and improves final performance.

4 EXPERIMENTS

Through our comprehensive experiments, we aim to answer four central questions regarding the
effectiveness of Tri-Vectors. Q1: Can Tri-Vectors achieve greater efficiency and parsimony in geo-
metric representation compared to existing approaches? Q2: As representation capacity increases,
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how do Tri-Vectors balance expressiveness with parameter efficiency? Q3: What advantages does
the parsimonious nature of Tri-Vectors bring to practical 3D generative tasks? Q4: Do Tri-Vectors
exhibit extensibility and scalability, enabling adaptation to more complex scenarios such as textured
and deformable shapes?

Figure 4: Reconstruction results from Tri-Vectors with different parameter counts (3K: rank=16,
resolution=64; 12K: rank=32, resolution=128; 74K: rank=128, resolution=192; 147K: rank=128,
resolution=384), showing improved detail capture as parameter capacity scales. Our method follows
a scaling law that enhances expressiveness while maintaining parsimonious use of parameters.

Figure 5: Shape reconstruction from Tri-Vectors with varying parameter counts (18K: rank=32,
resolution=192; 37K: rank=64, resolution=192; 98K: rank=128, resolution=256) compared to other
representations: NW, TP, MSDF and Dense Grid.

4.1 SHAPE LEARNING

To answer Q1 and Q2, we first evaluate the performance of Tri-Vectors in compression and recon-
struction in different parameter configurations, then, we compare it to existing SDF based repre-
sentations commonly used in 3D generative models such as dense 3D volumetric grids at 128 spa-
tial resolution (DG), Triplane (Shue et al., 2023) (TP), NeuralWavelet (Hu et al., 2024) (NW), and
MSDF (Yariv et al., 2024) (MSDF). Furthermore, we compare our method against methods designed
for fast query and rendering, including StriVec (Gao et al., 2023), InstantNGP (Müller et al., 2022)
(NGP), and DictionaryFields (Chen et al., 2023) (DF). Please refer to the supplementary materials
for more experimental details.

Results and Discussion. Fig. 4 illustrates the Tri-Vectors representing shapes with different param-
eter counts. Even with only 3K parameters, Tri-Vectors captures the global geometric structure well.
As the parameter count increases, the representation progressively reveals finer details, demonstrat-
ing a smooth and efficient scaling in expressiveness and robustness. This because a shape’s SDF
naturally exhibits a globally smooth with localized complexity structure, which aligns well with the
strength of CP decomposition in capturing separable structures. Thus, by instantiating CP decom-
position, Tri-Vectors achieves efficient compression while preserving geometric detail.

Fig. 6 displays that Tri-Vectors preserve global shape structure under partial information loss: ran-
domly masking subsets of tri-vector components leaves the coarse geometry intact while only mildly
degrading fine-scale detail. This resilience improves training stability and enables high-quality re-
constructions even with noisy or incomplete inputs.
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Model #Param. Thingi10K ShapeNet

CD (↓) IoU (↑) F-Score (↑) Time (↓) CD (↓) IoU (↑) F-Score (↑) Time (↓)

MSDF(Yariv et al., 2024) 355K 12.4 0.9573 0.61 120 s 10.1 0.9950 0.73 120 s
NW(Hui et al., 2022) 536K 10.2 0.9681 0.65 – 6.67 0.9986 0.84 –
TP(Shue et al., 2023) 1.6M 15.9 0.9934 0.53 100 s 13.7 0.9901 0.56 100 s

DG(1283) 2M 15.1 0.9914 0.31 – 17.9 0.9933 0.48 –

Ours
18K 6.09 0.9982 0.77 30 s 4.89 0.9991 0.88 30 s
37K 5.52 0.9989 0.81 60 s 4.93 0.9992 0.88 60 s
98K 5.25 0.9994 0.83 80 s 4.55 0.9995 0.90 80 s

Table 2: Reconstruction performance from representation of Tri-Vectors compared to other meth-
ods on Thingi10K and ShapeNet datasets. Note the Tri-Vectors are evaluated with three different
parameter counts, and CD is reported in units of 10−3.

Figure 6: Shape reconstruction from Tri-Vectors
with random mask. We randomly masking differ-
ent numbers of tri-vector of shape’s Tri-Vectors.

Tab. 2 shows the reconstruction performance of
different methods. Our Tri-Vectors consistently
outperforms other methods on both simple and
complex shapes with much fewer parameters,
such as 18K, verifying its parsimony in geo-
metric representation. Among the methods that
require optimization, Tri-Vectors also achieves
the best performance in terms of optimization
time. The visual comparisons in Fig. 5 further
confirm that Tri-Vectors captures fine details
more effectively than competing approaches,
even with a compact parameter budget.

Model CD (↓) IoU (↑) F-Score (↑)

NGP (Müller et al., 2022) 5.98 0.9987 0.81
DF (Chen et al., 2023) 6.04 0.9983 0.77
StriVec (Gao et al., 2023) 6.77 0.9965 0.75
Ours 6.28 0.9981 0.77

(a) Metrics comparison. (b) Parameter comparison.
Figure 7: Quantitative reconstruction results and parameter comparison on Thingi10K. (a) While
NGP achieves the best metrics, it requires over 12M parameters. In contrast, Tri-Vectors attain
comparable reconstruction quality with only 98K parameters—more than 100× fewer than NGP and
significantly lower than DF and StriVec. (b) This highlights the superior parameter efficiency of
Tri-Vectors without sacrificing geometric fidelity.

Fig. 7 further shows the reconstruction comparison results across different methods, these methods
are designed for fast querying and rendering within a single scene, making them unsuitable for
generative tasks. In addition, they require significantly more parameters to represent scenes, leading
to redundancy in the context of SDF compression. In contrast, Tri-Vectors achieves comparable
reconstruction quality while leveraging the intrinsic structure of SDFs to eliminate redundancy. Its
ability to capture global structure with localized detail aligns well with global CP decomposition,
facilitating compact yet expressive representations.

4.2 SHAPE GENERATION

For Q3, we train the 3D shape generative model using Tri-Vectors on ShapeNet (Chang et al., 2015)
dataset, focusing on four primary categories: airplane, car, chair and desk which containing more
than 4000 shapes each. Please refer to the supplementary materials for details of implementation.

Baselines. We compare our approach with TP (Shue et al., 2023), NW (Hui et al., 2022), and
S2VS (Zhang et al., 2023). Both TP and NW compress shape’s SDF or occupancy information and
transform it into another domain for generative model training, making them the most comparable
to our Tri-Vectors. S2VS, on the other hand, employs a VAE to encode shape’s occupancy into a
latent space before training a generative model.

7
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Figure 8: Comparisons with state-of-the-art methods. From top to bottom: TP (Shue et al., 2023),
NW (Hui et al., 2022), S2VS (Zhang et al., 2023), and our Tri-Vectors (18K: rank=32, resolu-
tion=192).

Model

Airplane Car
COV (%, ↑) MMD (↓) 1-NN (%) COV (%, ↑) MMD (↓) 1-NN (%)

CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

TP (Shue et al., 2023) 50.12 50.03 2.83 3.07 69.51 71.81 21.47 23.79 3.81 3.07 73.07 81.70
NW (Hui et al., 2022) 47.90 46.67 2.67 2.53 70.98 69.89 - - - - - -

S2VS (Zhang et al., 2023) 48.15 51.11 2.52 2.61 70.86 66.30 45.26 44.91 2.36 2.49 86.73 80.17
Ours 55.60 52.81 2.49 2.31 60.74 64.12 43.13 45.81 2.77 2.52 70.19 77.37

Model

Chair Table
COV (%, ↑) MMD (↓) 1-NN (%) COV (%, ↑) MMD (↓) 1-NN (%)

CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

TP (Shue et al., 2023) 43.97 41.97 7.83 5.17 59.27 63.37 - - - - - -
NW (Hui et al., 2022) 46.31 46.09 7.60 4.56 61.50 61.52 48.29 49.80 6.45 4.11 55.05 54.68

S2VS (Zhang et al., 2023) 53.24 50.01 7.48 4.73 58.78 59.38 54.64 53.71 6.37 4.25 53.47 57.32
Ours 53.38 54.29 7.21 4.37 51.86 53.17 56.05 56.44 5.35 3.97 54.67 52.66

Table 3: Comparison of models based on COV, MMD, and 1-NN metrics across different categories
(Airplane, Car, Chair, and Table).

Results and Discussion. Tab. 3 presents the quantitative comparison of COV, MMD, and 1-NNA
metrics against baselines. Our Tri-Vectors generative model demonstrates better performance,
achieving the best results across most metrics. Fig. 8 provides a qualitative comparison for two
representative classes chairs and airplanes that are shared by all baselines. The results reveal that
Tri-Vectors generate shapes with higher fidelity and better-preserved details. This performance is
attributed to Tri-Vectors’ ability to compress shapes into a compact representation, capturing es-
sential features with fewer parameters, making it easier for the model to learn data patterns and
improve generation quality. Moreover, the simple structure of Tri-Vectors enables the use of ad-
vanced Transformer-based generative networks, further enhancing the quality of shape generation.

Figure 9: Gallery of generated models showcasing complex structures, each represented by Tri-
Vectors (37K: rank=64, resolution=192). Left: samples generated from models trained on the Build-
ingNet dataset. Right: samples generated from models trained on the Thingi10K dataset.

Additionally, to further validate the efficiency of Tri-Vectors in representing complex shapes,
we curated approximately 1000 samples from both the BuildingNet (Selvaraju et al., 2021) and
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Thingi10K, converting each into the Tri-Vectors format. We then trained separate generative models
on these datasets. Fig. 9 presents samples generated from the trained models, demonstrating Tri-
Vectors’ capability to effectively capture and represent intricate geometric details, handling complex
models with diverse internal and external structures.

Figure 10: Generated shape novelty analysis. For
each generated shape (orange), we retrieve top
three most similar shapes (blue) in training set by
Chamfer Distance.

Shape Novelty Analysis. Here, we evaluate
whether our method can generate shapes be-
yond merely memorizing the training set. To
verify this point, we generated 512 random
shapes and retrieved the top three most similar
shapes from the training set using Chamfer Dis-
tance (CD). Fig. 10 illustrates examples of our
generated shapes (orange) alongside their clos-
est matches from the training set (blue). While
the generated shapes share overall structural
similarities with their nearest counterparts, they
also exhibit distinct variations in local features,
demonstrating our method’s ability to produce
novel and realistic structures. More details can
be found in supplementary.

4.3 MORE APPLICATIONS

Apart from geometric compression, our Tri-Vectors can be extended to handle textured and de-
formable shapes, demonstrating its adaptability and scalability across diverse 3D tasks. Fig. 11
showcases examples of textured and deformable shape reconstructions using Tri-Vectors. This part
answers Q4 and more details and results are included in the supplementary materials.

Figure 11: Gallery of applications using Tri-Vectors representation. Top: textured shapes recon-
struction with 92K parameters. Bottom: deformable shapes reconstruction with 98K parameters.

Tri-Vectors for Textured Shapes. We represent textured shapes from (Collins et al., 2022) using
a multi-component Tri-Vectors formulation, defined as STVC = {STV,SR,SG,SB}. Here, STV en-
codes the geometry, while SR, SG, and SB independently represent the color fields for the RGB
channels. By querying the color fields at the vertex positions, we obtain per-vertex RGB values and
thus recover the textured geometry.

Tri-Vectors for Deformable Shapes. We incorporate an additional time vector for each component,
expressing deformable shapes from (Li et al., 2021) as f(x, y, z, t) = SDF. This extension preserves
compactness while facilitating smooth interpolation over time, enabling seamless shape transitions.

5 CONCLUSION

In this work, we introduce Tri-Vectors, a parsimonious 3D representation that instantiates CP de-
composition for shape generation. By adhering to the principles of parameter efficiency and struc-
tural simplicity, Tri-Vectors provides a resolution-independent and highly adaptable approach for
3D shape representation, making it easy to integrate with modern generative framework. Across
reconstruction and generation benchmarks, Tri-Vectors achieves higher geometric fidelity with sub-
stantially fewer parameters than prior methods. We also extend its applicability to textured and
deformable shapes, revealing its scalability and versatility in diverse downstream tasks.
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