
Diffusion Policy Policy Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract: We introduce Diffusion Policy Policy Optimization, DPPO, an algorith-1

mic framework including best practices for fine-tuning diffusion-based policies2

(e.g. Diffusion Policy [1]) in continuous control and robot learning tasks using3

the policy gradient (PG) method from reinforcement learning (RL). PG methods4

are ubiquitous in training RL policies with other policy parameterizations; never-5

theless, they had been conjectured to be less efficient for diffusion-based policies.6

Surprisingly, we show that DPPO achieves the strongest overall performance and7

efficiency for fine-tuning in common benchmarks compared to other RL methods8

for diffusion-based policies and also compared to PG fine-tuning of other policy9

parameterizations. We further demonstrate the strengths of DPPO in a range of re-10

alistic settings, including simulated robotic tasks with pixel observations, and via11

zero-shot deployment of simulation-trained policies on robot hardware. Website12

with videos: diffusionppoanon.github.io.13

Keywords: Reinforcement learning, diffusion policy14

1 Introduction15

Behavior cloning with expert data [2] is rapidly emerging as dominant paradigm for pre-training16

robot policies [3, 4, 5, 6, 7], but their performance can be suboptimal [8] due to expert data being17

suboptimal or expert data exhibiting limited coverage of possible environment conditions. As robot18

policies entail interaction with their environment, reinforcement learning (RL) [9] is a natural candi-19

date for further optimizing their performance beyond the limits of demonstration data. However, RL20

fine-tuning can be nuanced for pre-trained policies parameterized as diffusion models [10], which21

have emerged as a leading parameterization for action policies [1, 11, 12].22

Contribution 1 (DPPO). We introduce Diffusion Policy Policy Optimization (DPPO), a generic23

framework as well as a set of carefully chosen design decisions for fine-tuning a diffusion-based24

robot learning policy via popular policy gradient methods [13, 14] in reinforcement learning.25

The literature has already studied improving/fine-tuning diffusion-based policies using RL [15, 16,26

17]. Yet policg gradient (PG) methods have been believed to be inefficient in training Diffusion27

Policy for continuous control tasks [15, 18]. On the contrary, we show that for a Diffusion Policy pre-28

trained from expert demonstrations, our methodology for fine-tuning via PG updates yields robust,29

high-performing policies with favorable training behavior.30

Contribution 2 (Demonstration of DPPO’s Performance). We show that for fine-tuning a pre-31

trained Diffusion Policy, DPPO yields consistent and marked improvements in training stability and32

often final policy performance in comparison to those based on off-policy Q-learning [16, 17, 18, 15]33

and weighted regression [19, 20, 21], other demo-augmented RL methods [22, 23, 24], as well as34

common policy parameterizations such as Gaussian and Gaussian Mixture models.35

Through ablations, we further show that our design decisions overcome the speculated limitation of36

PG methods for fine-tuning Diffusion Policy. Finally, to justify the broad utility of DPPO, we verify37

its efficacy across both simulated and real environments, and in situations when either ground-truth38

states or pixels are given to the policy as input.39
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Figure 1: We introduce DPPO, Diffusion Policy Policy Optimization, that fine-tunes pre-trained
Diffusion Policy using policy gradient. DPPO affords structured exploration and training stability
during policy fine-tuning, and the fine-tuned policy exhibits strong robustness and generalization.

2 Preliminaries40

Markov Decision Process. We consider a Markov Decision Process (MDP) MENV :=41

(S,A, P0, P,R) with states s ∈ S, actions a ∈ A, initial state distribution P0, transition proba-42

bilities P , and reward R. At each timestep t, the agent (e.g., robot) observes the state st ∈ S, takes43

an action at ∼ π(at | st) ∈ A, transitions to the next state st+1 according to st+1 ∼ P (st+1 | st, at)44

while receiving the reward R(st, at). We aim to train a policy to optimize the cumulative reward,45

discounted by a function γ(·), J (πθ) = Eπθ,P0 [
∑
t≥0 γ(t)R(st, at)].46

Diffusion models. A denoising diffusion probabilistic model (DDPM) [25, 10, 26] represents a47

data distribution p(·) = p(x0) as the reverse process of a forward noising process q(xk|xk−1) that48

iteratively adds Gaussian noise to the data. The reverse process is parameterized by εθ(xk, k), pre-49

dicting the added noise ε that converts x0 to xk [10]. Sampling starts with xK ∼ N (0, I) and iter-50

atively generates the denoised sample: xk−1 ∼ pθ(x
k−1|xk) := N (xk−1;µk(x

k, εθ(x
k, k)), σ2

kI).51

σ2
k is a variance term that abides by a fixed schedule from k = 1, . . . ,K.52

Diffusion models as policies. Diffusion Policy (DP; see Chi et al. [1]) is a policy πθ parameterized53

by a DDPM which takes in s as a conditioning argument, and parameterizes pθ(a
k−1 | ak, s).54

DPs can be trained via behavior cloning by fitting the conditional noise prediction εθ(a
k, s, k) to55

predict the added noise. Notice that unlike more standard policy parameterizations such as unimodal56

Gaussian policies, DPs do not maintain an explicit likelihood of pθ(a0 | s).57

3 DPPO: Diffusion Policy Policy Optimization58
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Figure 2: We treat the denoising process as an MDP, and the whole environment episode can be
considered as a chain of such MDPs. Now the entire chain (“Diffusion Policy MDP”,MDP) involves
a Gaussian likelihood at each (denoising) step and thus can be optimized with policy gradient.

As observed in [27] and [15], a denoising process can be represented as a multi-step MDP in which59

policy likelihood of each denoising step can be obtained directly. We extend this formalism by60

embedding the Diffusion MDP into the environmental MDP, obtaining a larger “Diffusion Policy61

MDP” denotedMDP, visualized in Fig. 2. The Diffusion MDPMDP uses indices t̄(t, k) = tK +62

(K − k − 1) corresponding to (t, k), which increases in t but (to keep the indexing conventions of63

diffusion) decreases lexicographically with K − 1 ≥ k ≥ 0. The states, actions and rewards are64

s̄t̄(t,k) = (st, a
k+1
t ), āt̄(t,k) = akt , R̄t̄(t,k)(s̄t̄(t,k), āt̄(t,k)) =

{
0 k > 0

R(st, a
0
t ) k = 0

,
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where the bar-action at t̄(t, k) is the action akt after one denoising step. Reward is only given at65

times corresponding to when a0t is taken. The initial state distribution is P̄ 0 = P0 ⊗ N (0, I),66

corresponding to s0 ∼ P0 is the initial distribution from the environmental MDP and aK0 ∼ N (0, I)67

independently. Finally, the transitions are68

P̄ (s̄t̄+1 | s̄t̄, āt̄) =

{
(st, a

k
t ) ∼ δ(st,akt ) t̄ = t̄(t, k), k > 0

(st+1, a
K
t+1) ∼ P (st+1 | st, a0t )⊗N (0, I) t̄ = t̄(t, k), k = 0

.

That is, the transition moves the denoised action akt at step t̄(t, k) into the next state when k > 0, or69

otherwise progresses the environment MDP dynamics with k = 0. The policy inMDP is70

π̄θ(āt̄(t,k) | s̄t̄(t,k)) = πθ(a
k
t | ak+1

t , st) = N (akt ;µ(a
k+1
t , εθ(a

k+1
t , k + 1, st)), σ

2
k+1I). (3.1)

Fortunately, (3.1) is a Gaussian likelihood, which can be evaluated analytically and is amenable to71

the policy gradient updates (see also [15] for an alternative derivation):72

∇θJ̄ (π̄θ) = Eπ̄θ,P̄ ,P̄
0

[
∑
t̄≥0

∇θ log π̄θ(āt̄ | s̄t̄)r̄(s̄t̄, āt̄)], r̄(s̄t̄, āt̄) :=
∑
τ≥t̄

γ(τ)R̄(s̄τ , āτ ). (3.2)

Evaluating the above involves sampling through the denoising process, which is the usual “forward73

pass” that samples actions in Diffusion Policy.74

3.1 Instantiating DPPO with Proximal Policy Optimization75

Definition 3.1 (Generalized PPO, clipping variant). Consider a general MDP. Given an advantage76

estimator Â(s, a), the PPO update [14] is the sample approximation to77

∇θ E(st,at)∼πθold min
(
Âπθold (st, at)

πθ(at | st)
πθold(at | st)

, Âπθold (st, at) clip
( πθ(at | st)
πθold(at | st)

, 1− ε, 1 + ε
))

,

where ε, the clipping ratio, controls the maximum magnitude of the policy updated. We instantiate78

PPO in our diffusion MDP with (s, a, t)← (s̄, ā, t̄). Our advantage estimator respects the two-level79

nature of the MDP: let γENV ∈ (0, 1) be the environment discount and γDENOISE ∈ (0, 1) be the80

denoising discount. Consider the environment-discounted return:81

r̄(s̄t̄, āt̄) :=
∑
t′≥t

γtENVr̄(s̄t̄(t′,0), āt̄(t′,0)), t̄ = t̄(t, k),

since R̄(t̄) = 0 at k > 0. This fact also obviates the need of estimating the value at k > 1 and allows82

us to use the following denoising-discounted advantage estimator:83

Âπθold (s̄t̄, āt̄) := γkDENOISE

(
r̄(s̄t̄, āt̄)− V̂ π̄θold (s̄t̄(t,0))

)
Lastly, we choose the value estimator to only depend on the “s” component of s̄: V̂ π̄θold (s̄t̄(t,0)) :=84

Ṽ π̄θold (st), which we find leads to more efficient and stable training compared to also estimating the85

value of applying the denoised action ak=1
t (part of s̄t̄(t,0)) as shown in Appendix D.3.86

4 Performance Evaluation of DPPO87

We study the performance of DPPO in popular RL and robotics benchmarking environments in-88

cluding OpenAI GYM, ROBOMIMIC, and FURNITURE-BENCH. Due to the limited space, we defer89

descriptions of the benchmarks, baselines, and experimental details to Appendix G.90

4.1 Comparison to diffusion-based RL algorithms91

We compare DPPO to an extensive list of RL methods for fine-tuning diffusion models in Fig. 3. We92

evaluate on the three OpenAI GYM tasks and the four ROBOMIMIC tasks with state input. Overall,93

DPPO performs consistently, exhibits great training stability, and enjoys strong fine-tuning perfor-94

mance across tasks. In the GYM tasks (top row), IDQL and DAWR exhibit competitive performance,95

while the other methods perform worse and train less stably. DPPO is the strongest performer in96
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the ROBOMIMIC tasks (bottom row), especially in the challenging Transport tasks. Surprisingly,97

DRWR is a strong baseline in {Lift, Can, Square} but underperforms in Transport, while98

all other baselines fare worse still. We postulate that the other baselines, using off-policy updates,99

suffers from training instability in sparse-reward ROBOMIMIC tasks given continuous action space100

plus large action chunk sizes (see furtuer studies in Appendix D.3).101

Figure 3: Comparing to other diffusion-based RL algorithms. Top row: GYM tasks [28] averaged
over five seeds. Bottow row: ROBOMIMIC tasks [29], averaged over three seeds.

4.2 Comparison to other policy parameterizations102

We compare DPPO with popular RL policy parameterizations: unimodal Gaussian with diagonal103

covariance [13] and Gaussian Mixture Model (GMM), using either MLPs or Transformers [30], and104

also fine-tuned with the PPO objective. We compare these to DPPO-MLP and DPPO-UNet, which105

use either MLP or UNet as the network backbone. We evaluate on the four tasks from ROBOMIMIC106

(Lift, Can, Square, Transport) with both state and pixel input.107

6

Figure 4: Comparing to other policy parameterizations in the more challenging Square and
Transport tasks from ROBOMIMIC. Results are averaged over three seeds.

Fig. 4 display results for the more challenging Square and Transport — we defer the results108

in Lift and Can to Fig. 15. With state input, DPPO outperforms Gaussian and GMM policies,109

with faster convergence to ∼100% success rate in Lift and Can, and greater final performance110

on Square and the challenging Transport, where it reaches > 90%. With pixel inputs, we111

use a Vision-Transformer-based (ViT) image encoder introduced in Hu et al. [24] and an MLP head112

and compare the resulting variants DPPO-ViT-MLP and Gaussian-ViT-MLP (we omit GMM due113

to poor performance in state-based training). While the two are comparable on Lift and Can,114

DPPO trains more quickly and to higher accuracy on Square, and drastically outperforms on115

Transport, whereas Gaussian does not improve from its 0% pre-trained success rate.116

4.3 Evaluation on Furniture-Bench, and sim-to-real transfer117

Here we evaluate DPPO on the long-horizon manipulation tasks from FURNITURE-BENCH [31].118

We compare DPPO to Gaussian-MLP, the overall most effective baseline from Section 4.2. Overall,119

DPPO exhibits strong training stability and improves policy performance in all six settings. DPPO120

also transfers well to physical hardware zero-shot. Please see Appendix D.1 for detailed results.121
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A Extended Related Work298

A.1 RL training of robot policies with offline data299

Here, we discuss related work in training robot policies using RL augmented with offline data to300

help RL better explore online in sparse reward settings.301

One simple form is to use offline data to pre-train the policy, typically using behavior cloning, and302

then fine-tune the policy online. This is the approach that DPPO takes. Often, a regularization loss is303

applied to constrain the fine-tuned policy to stay close to the base policy, leading to natural fine-tuned304

behavior and often better learning [32, 33, 34]. DPPO does not apply regularization at fine-tuning305

as we find the on-manifold exploration helps DPPO maintain natural behavior after fine-tuning306

Section 4.3. Another popular approach is to learn a residual policy with RL on top of the frozen307

base policy [35, 36]. A closer work to ours is Ankile et al. [37], which trains a one-step residual non-308

diffusion policy with on-policy RL on top of a pre-trained chunked diffusion policy. This approach309

has the benefit of being fully closed-loop but lacks the structured on-manifold exploration of DPPO.310

Another hybrid approach is from Hu et al. [24], which uses pre-trained and fine-tuned policies to311

sample online experiences.312

Another popular line of work, instead of training a base policy using offline data, directly adds the313

data in the replay buffer for online, off-policy learning in a single stage [38, 39, 40]. One recent314

approach from Ball et al. [22], RLPD, further improves sample efficiency from previous off-policy315

methods incorporating, e.g., critic ensembling. Luo et al. [41] demonstrates RLPD solving real-316

world manipulation tasks (although generally less challenging than ones solved by DPPO). Other317

approaches including Cal-QL build on offline RL to learn from offline data and then switch to318

online RL [23, 17]. IBRL from Hu et al. [24] pre-trains the base policy and samples offline data in319

fine-tuning.320

A.2 Diffusion-based RL methods321

This section discusses related methods that directly train or improve diffusion-based policies with322

RL methods. The baselines to which we compare in Section 4.1 are discussed below as well, and323

are highlighted in their corresponding colors. We also refer the readers to Zhu et al. [42] for an324

extensive survey on diffusion models for RL.325

Most previous works have focused on the offline setting with a static dataset. One line of work fo-326

cuses on state trajectory planning and guiding the denoising sampling process such that the sampled327

actions satisfy some desired objectives. Janner et al. [43] applies classifier guidance that generates328

trajectories with higher predicted rewards. Ajay et al. [44] introduces classifier-free guidance that329

avoids learning the value of noisy states. There is another line of work that uses diffusion models330

as an action policy (instead of state planner) and generally applies Q-learning. DQL [16] introduces331

Diffusion Q-Learning that learns a state-action critic for the final denoised actions and backpropa-332

gates the gradient from the critic through the entire Diffusion Policy (actor) denoising chain, akin333

to the usual Q-learning. IDQL [17], or Implicit Diffusion Q-learning, proposes learning the critic334

to select the actions at inference time for either training or evaluation while fitting the actor to all335

sampled actions. Kang et al. [21] instead proposes using the critic to re-weight the sampled actions336

for updating the actor itself, similar to weighted regression baselines DAWR and DRWR introduced337

in our work. Goo and Niekum [45] similarly extracts the policy in the spirit of AWR [19]. Chen338

et al. [46] trains the critic using value iteration instead based on samples from the actor.339
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We note that methods like DQL and IDQL can also be applied in the online setting. A small amount340

of work also focuses entirely on the online setting. DIPO [18] differs from DQL and related work341

in that it uses the critic to update the sampled actions (“action gradient”) instead of the actor — the342

actor is then fitted with updated actions from the replay buffer. QSM, or Q-Score Matching [15],343

suggests that optimizing the likelihood of the entire chain of denoised actions can be inefficient344

(contrary to our findings in the fine-tuning setting) and instead proposes learning the optimal policy345

by iteratively aligning the gradient of the actor (i.e., score) with the action gradient of the critic.346

Rigter et al. [47] proposes learning a diffusion dynamic model to generate synthetic trajectories for347

online training of a non-diffusion RL policy.348

B Best Practices for DPPO349

Fine-tune only the last few denoising steps. Diffusion Policy often uses up to K = 100 denoising350

steps with DDPM to better capture the complex data distribution of expert demonstrations. With351

DPPO, we can choose to fine-tune only a subset of the denoising steps instead, e.g., the last K ′352

steps. We find this speeds up DPPO training and reduces GPU memory usage without sacrificing353

the asymptotic performance. Instead of fine-tuning the pre-trained model weights θ, we make a copy354

θFT — θ is frozen and used for the early denoising steps, while θFT is used for the last K ′ steps and355

updated with DPPO.356

Fine-tune DDIM. Instead of fine-tuning all K or the last few steps of the DDPM, one can also357

apply Denoising Diffusion Implicit Model (DDIM) [48] during fine-tuning, which greatly reduces358

the number of sampling steps KDDIM ≪ K, e.g., as few as 5 steps, and thus potentially improves359

DPPO efficiency as fewer steps are fine-tuned.360

xk−1 ∼ pDDIM
θ (xk−1|xk) := N (xk−1;µDDIM(xk, εθ(x

k, k)), ησ2
kI), k = KDDIM, ..., 0. (B.1)

Although DDIM is typically used as a deterministic sampler by setting η = 0 in (B.1), we can use361

η > 0 for fine-tuning that provides exploration noise and avoids calculating Gaussian likelihood362

with a Dirac distribution. In practice, we set η = 1 for training (equivalent to applying DDPM [48])363

and then η = 0 for evaluation. We reserve DDIM sampling for our pixel-based experiments and364

long-horizon furniture assembly tasks, where the efficiency improvements are much desired.365

Diffusion noise scheduling. We use the cosine schedule for σk introduced in [25], which was366

originally annealed to a small value on the order of 1E − 4 at k = 0. In DPPO, the value of σk367

also translates to the exploration noise that is crucial to training efficiency. Empirically, we find368

that clipping σk to a higher minimum value (denoted σexp
min, e.g., 0.01− 0.1) when sampling actions369

helps exploration (see sensitivity analysis in Appendix D.3). Additionally we clip σk to be at least370

0.1 (denoted σprob
min ) when evaluating the Gaussian likelihood log π̄θ(āt̄|s̄t̄), which improves training371

stability by avoiding large magnitude.372

Network architecture. We study both Multi-layer Perceptron (MLP) and UNet [49] as the policy373

heads in Diffusion Policy. An MLP offers simpler setup and we find it generally fine-tunes more374

stably with DPPO. Moreover, since the UNet applies convolution to the denoised action, we can375

pre-train and fine-tune with different action chunk size Ta (the number of environment timesteps376

that the policy predicts future actions with), e.g., 16 and 8. We find that DPPO benefits from pre-377

training with larger Ta (better prediction) and fine-tuning with smaller Ta (more amenable to policy378

gradient)1.379

1With fully-connected layers in MLP, empirically we find that using different chunk sizes for pre-training
and fine-tuning with MLP leads to training instability.
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C Summary of All Baselines380

Comparison to Other Diffusion RL Methods

Method Name Summary

DPPO (ours) Competitive on GYM; much stronger on ROBOMIMIC;
the only one to solve Transport.

DAWR (ours) Competitive on GYM; much weaker on ROBOMIMIC.

DRWR (ours) Weaker on GYM; competitive on all of ROBOMIMIC but
Transport

IDQL [17] Competitive on GYM, much weaker on ROBOMIMIC.
DQL [16] Much weaker on GYM and ROBOMIMIC.
QSM [15] Much weaker on GYM and ROBOMIMIC.
DIPO [18] Much weaker on GYM and ROBOMIMIC.

381

Comparison to Other Demonstration-Augmented RL Methods

Method Name Summary

DPPO (ours) Much stronger on ROBOMIMIC; underperforms RLPD
and Cal-QL on HalfCheetah-v2.

RLPD [22] Very efficient on HalfCheetah-v2; zero reward on
ROBOMIMIC.

Cal-QL [23] More efficient than DPPO but less efficient than RLPD
on HalfCheetah-v2; zero reward on ROBOMIMIC.

IBRL [24] Weaker than DPPO on ROBOMIMIC

382

Comparison to Other Policy Parameterization/Architecture

ROBOMIMIC State Summary
DPPO-MLP (ours) Performs best overall; attains max reward on Square.
DPPO-UNet (ours) Slightly underperforms DPPO-MLP; second best.
Gaussian-MLP Competitive on Square; zero reward on Transport.
Gaussian-Transformer Weaker on Square; zero reward on Transport.
GMM-MLP Low reward on Square; zero reward on Transport.
GMM-Transformer Low reward on Square and Transport.

ROBOMIMIC Pixel

DPPO-ViT-MLP (ours) Performs better overall; attains strong reward on
Square and Transport.

Gaussian-ViT-MLP Much weaker on Square; zero reward on Transport.

FURNITURE-BENCH

DPPO-UNet (ours) Performs better overall except slightly weaker on Lamp
(Low randomness) and tied on One-leg Low.

Gaussian-MLP Slightly stronger on Lampwith Low randomness and tied
on One-leg Low; much weaker otherwise.

Sim-to-Real

DPPO-UNet (ours) Tied with Gaussian-MLP in sim; much stronger in trans-
fer to real.

Gaussian-MLP Strong in sim; zero success in real

Gaussian w/ BC Loss Markedly weaker in sim; markedly weaker than DPPO
(but non-zero reward) in real.

383

384
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D Additional experimental results385

D.1 Evaluation on Furniture-Bench, and sim-to-real transfer386

Figure 5: (Top) DPPO vs. Gaussian-MLP baseline in simulated FURNITURE-BENCH tasks. Re-
sults are averaged over three seeds. (Bottom) Sim-to-real transfer results in One-leg.

Here we evaluateDPPO on the long-horizon manipulation tasks from FURNITURE-BENCH [31]. We387

compare DPPO to Gaussian-MLP, the overall most effective baseline from Section 4.2. Fig. 5 (top388

row) shows the evaluation success rate over fine-tuning iterations. DPPO exhibits strong training389

stability and improves policy performance in all six settings. DPPO also transfers well to phys-390

ical hardware zero-shot. Please see Appendix D.1 for detailed results. Gaussian-MLP collapses391

to zero success rate in all three tasks with Med randomness (except for one seed in Lamp) and392

Round-table with Low randomness.393

Note that we are only using 50 human demonstrations for pre-training; we expect DPPO can lever-394

age additional human data (better state space coverage) to further improve in Med, which is corrob-395

orated by ablation studies in Appendix D.4.396

Sim-to-real transfer. We evaluate DPPO and Gaussian policies trained in the simulated397

One-leg task on physical hardware zero-shot (i.e., no real data fine-tuning / co-training) over 20398

trials. Please see additional simulation training and hardware details in Appendix G.8. Fig. 5 (bot-399

tom row) shows simulated and hardware success rates after pre-training and fine-tuning. Notably,400

DPPO improves the real-world performance to 80% (16 out of 20 trials). Though the Gaussian pol-401

icy achieves a high success rate in simulation after fine-tuning (88%), it fails entirely on hardware402

(0%). Supplemental video suggests it exhibits volatile and jittery behavior. For stronger compari-403

son, we also fine-tune the Gaussian policy with an auxiliary behavior-cloning loss [34] such that the404

fine-tuned policy is encouraged to stay close to the base policy. However, this limits fine-tuning and405

only leads to a 53% success rate in simulation and 50% in reality.406

Qualitatively, we find fine-tuned policies to be more robust and exhibit more corrective behaviors407

than pre-trained-only policies, especially during the insertion stage of the task; Fig. 6 shows repre-408

sentative rollouts on hardware. Overall, these results demonstrate the strong sim-to-real capabilities409

of DPPO; Appendix F provides a conjectural mechanism for why this may be the case.410

D.2 Comparing to other demo-augmented RL methods411

We also find DPPO leads to superior final performance in manipulation tasks compared to other412

RL methods leveraging offline data, including RLPD [22], Cal-QL [23], and IBRL [24]. The413

full results are shown in Fig. 7 below. We use action chunk size Ta = 1 following the setup from414

these methods (DPPO may benefit from longer chunk size, albeit). The three baselines all achieve415

high reward in HalfCheetah-v2 with much higher sample efficiency thanks to performing off-416

policy updates. However, in sparse-reward ROBOMIMIC tasks including Can and Square, DPPO417
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(C) Fine-tuned DPPO policy performs successful rollout

(B) Policy pushes peg down without proper alignment with the hole before releasing the peg, making it topple over

Initialization Grasp tabletop Place tabletop Grasp leg Insert leg Screw leg

(A) Pre-trained Diffusion policy performs successful rollout

(D) Initial peg alignment is off, the policy corrects placement until it is properly inserted in the hole before letting go

DP Pre-trained

DP Fine-tuned

Figure 6: Qualitative comparison of pre-trained vs. fine-tuned DPPO policies in real evalua-
tion. (A) Successful rollout with the pre-trained policy. (B) Failed rollout with the pre-trained policy
due to imprecise insertion. (C) Successful rollout with the fine-tuned policy. (D) Successful rollout
with the fine-tuned policy that requires corrective behavior.

outperforms all three significantly and achieves ∼100% final success rates. RLPD and Cal-QL418

fail to achieve any success (0%) during evaluation, while IBRL saturates at lower success levels.419

Our results with RLPD in Can and Square corroborates those from Hu et al. [24]. IBRL is420

shown to achieve high success rates (> 90%) in both tasks in Hu et al. [24]; we hypothesize here it421

underperforms possibly due to (1) the noisier expert data (Multi-Human dataset from ROBOMIMIC)422

affects gradient update with mixed batches of online and offline data, and (2) our setup not using423

any history observation unlike Hu et al. [24] stacking three observations.424

Lastly, we note that although DPPO uses more environment steps, it runs significantly faster than the425

baselines as it leverages sampling from highly parallelized environments (40 in HalfCheetah-v2426

and 50 in Can and Square), while off-policy methods may fail to fully leverage such parallelized427

setup as the policy is updated less often and the performance may be affected.428

Figure 7: Comparing to other demo-augmented RL methods. Results are averaged over five
seeds in HalfCheetah-v2 and three seeds in Can and Square.
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D.3 Ablation studies on design decisions in DPPO429

1. Choice of advantage estimator. In Section 3.1 we demonstrate how to efficiently estimate the430

advantage used in PPO updates by learning Ṽ (st) that only depends on the environment state; the431

advantage used in DPPO is formally432

Â = γkDENOISE(r̄(s̄t̄, āt̄)− Ṽ (st)).

We now compare this choice with learning the value of the full state s̄t̄(t,0) that includes environ-433

ment state st and denoised action ak=1
t . We additionally compare with the state-action Q-function434

estimator used in Psenka et al. [15]2, Q̃(st, a
k=0
t ), that does not directly use the rollout reward r̄ in435

the advantage.436

Fig. 8 shows the fine-tuning results in Hopper-v2 and HalfCheetah-v2 from GYM, and Can437

and Square from ROBOMIMIC. On the simpler Hopper-v2, we observe that the two baselines,438

both estimating the value of some action, achieves higher reward during fine-tuning than DPPO’s439

choice. However, in the more challenging tasks, the environment-state-only advantage used in440

DPPO consistently leads to the most improved performance. We believe estimating the accurate441

value of applying a continuous and high-dimensional action can be challenging, and this is exac-442

erbated by the high stochasticity of diffusion-based policies and the action chunk size. The results443

here corroborate the findings in Section 4.1 that off-policy Q-learning methods can perform well444

in Hopper-v2 and Walker2D-v2, but exhibit training instability in manipulation tasks from445

ROBOMIMIC.446

Figure 8: Choice of advantage estimator. Results are averaged over five seeds in Hopper-v2 and
HalfCheetah-v2 and three seeds in Can and Square.

Denoising discount factor. We further examine how γDENOISE in the DPPO advantage estimator447

affects fine-tuning. Using a smaller value (i.e., more discount) has the effect of downweighting448

the contribution of earlier denoising steps in the policy gradient. Fig. 9 shows the fine-tuning re-449

sults in the same four tasks with varying γDENOISE ∈ [0.5, 0.8, 0.9, 1]. We find in Hopper-v2450

and HalfCheetah-v2 γDENOISE = 0.8 leads to better efficiency while smaller γDENOISE = 0.5451

slows training. The value does not affect training noticeably in Can. In Square the smaller452

γDENOISE = 0.5 works slightly better. Overall in manipulation tasks, DPPO training seems relatively453

robust to this choice.454

Figure 9: Choice of denoising discount factor. Results are averaged over five seeds in Hopper-v2
and HalfCheetah-v2 and three seeds in Can and Square.

2Psenka et al. [15] applies off-policy training with double Q-learning (according to its open-source imple-
mentation) and policy gradient over the denoising steps. Note that this is a baseline in Psenka et al. [15] that is
conjectured to be inefficient. We follow the same except for applying on-policy PPO updates.
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2. Choice of diffusion noise schedule. We find it helpful to clip the diffusion noise σk to a455

higher minimum value σexp
min to ensure sufficient exploration. In Figure 10, we perform analysis456

on varying σexp
min ∈ {.001, .01, .1, .2} (keeping σprob

min = .1 to evaluate likelihoods). Although in457

Can the choice of σexp
min does not affect the fine-tuning performance, in Square a higher σexp

min =458

0.1 is required to prevent the policy from collapsing. We conjecture that this is due to limited459

exploration causing policy over-optimizing the collected samples that exhibit limited state-action460

coverage. We also visualize the trajectories at the beginning of fine-tuning in Avoid task from461

D3IL. With higher σexp
min, the trajectories still remain near the two modes of the pre-training data462

but exhibit a higher coverage in the state space — we believe this additional coverage leads to463

better exploration. Anecdotally, we find terminating the denoising process early can also provide464

exploration noise and lead to comparable results, but it requires a more involved implementation465

around the denoising MDP.466
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Figure 10: Choice of minimum diffusion noise. Results are averaged over three seeds. Note in
Left, with higher minimum noise level, the sampled trajectories exhibit wider coverage at the two
modes but still maintain the overall structure.

3. Choice of the number of fine-tuned denoising steps. We examine how the number of fine-467

tuned denoising steps in DPPO, K ′, affects the fine-tune performance and wall-clock time in Fig. 11.468

We show the curves of individual runs (three for each K ′) instead of the average as their wall-clock469

times (X-axis) are not perfectly aligned. Generally, fine-tuning too few denoising steps (e.g., 3) can470

lead to subpar asymptotic performance and slower convergence especially in Can. Fine-tuning 10471

steps leads to the overall best efficiency. Similar results are also shown in Fig. 14 with Avoid task.472

Lastly, we note that the GPU memory usage scales linearly with K ′.473

We note that the findings here mostly correlate with those from varying the denoising discount474

factor, γDENOISE. Discounting the earlier denoising steps in the policy gradient can be considered as475

a soft version of hard limiting the number of fine-tuned denoising steps. Depending on the amount476

of fine-tuning needed from the pre-trained action distribution, one can flexibly adjust γDENOISE and477

K ′ to achieve the best efficiency.478

Figure 11: Choice of number of fine-tuned denoising steps, K ′. Individual runs are shown. The
curves are smoothed using a Savitzky–Golay filter.

D.4 Effect of expert data479

We investigate the effect of the amount of pre-training expert data on fine-tuning performance. In480

Fig. 12 we compare DPPO and Gaussian in Hopper-v2, Square, and One-leg task from FUR-481

NITURE-BENCH, using varying numbers of expert data (episodes) denoted in the figure. Overall,482

we find DPPO can better leverage the pre-training data and fine-tune to high success rates. Notably,483

DPPO obtains non-trivial performance (60% success rate) on One-leg from only 10 episode of484

demonstrations.485
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Training from scratch. In Fig. 13 we compare DPPO (10 denoising steps) and Gaussian trained486

from scratch (no pre-training on expert data) in the three OpenAI GYM tasks. As using larger action487

chunk sizes Ta leads to poor from-scratch training shown in Fig. 12, we focus on single-action488

chunks Ta = 1 as is typical in RL benchmarking. Though we find Gaussian trains faster than DPPO489

(expected since DPPO solves an MDP with longer effective horizon), DPPO still attains reasonable490

final performance. However, due to the multi-step (10) denoising sampling, DPPO takes about 6×491

wall-clock time compared to Gaussian. We hope that future work will explore how to design the492

training curriculum of denoising steps for the best balance of training performance and wall-clock493

efficiency.494

Figure 13: No expert data / pre-training with GYM tasks. Results are averaged over five seeds.

D.5 Comparing to other policy parameterizations in Avoid495

Figure 14 depicts the performance of various parameterizations of DPPO (with differing numbers496

of fine-tuned denoising steps, K ′) to Gaussian and GMM baselines. We study the Avoid task from497

D3IL, after pre-training with the data from M1, M2, M3 as described in Appendix F. We find that,498

for K ′ ∈ {15, 20}, DPPO attains the highest performance of all methods and trains the quickest in499

terms of environment steps; on M1, M2, it appears to attain the greatest terminal performance as500

well. K ′ = 10 appears slightly better than, but roughly comparable to, the Gaussian baseline, with501

GMM and K ′ < 10 performing less strongly.502

Figure 14: Fine-tuning performance (averaged over five seeds, standard deviation not shown) after
pre-training with M1, M2, and M3 in Avoid task from D3IL. DPPO (K = 20), Gaussian, and
GMM policies are compared. We also sweep the number of fine-tuned denoising steps K ′ in DPPO.

17



D.6 Comparing to other policy parameterizations in the easier tasks from ROBOMIMIC503

Figure 15 compares the performance of DPPO to Gaussian and GMM baslines, across a variety of504

architectures, and with state and pixel inputs, in Lift and Can environments in the ROBOMIMIC505

suite. Compared to the Square and Transport (results shown in Section 4), these environments506

are considered to be “easier”, and this is reflected in the greater performance of DPPO and Gaussian507

baselines (GMM still exhibits subpar performance). Nonetheless, DPPO still achieves similar or508

even better sample efficiency compared to Gaussian baseline.509

9

Figure 15: Comparing to other policy parameterizations in the easier Lift and Can tasks from
ROBOMIMIC, with state (left) or pixel (right) observation. Results are averaged over three seeds.

D.7 Comparing to policy gradient using exact likelihood of Diffusion Policy510

Here we experiment another novel method (which, to our knowledge, has not been explicitly stud-511

ied in any previous work) for performing policy gradient with diffusion-based policies. Although512

diffusion model does not directly model the action likelihood, pθ(a0|s), there have been ways to513

estimate the value, e.g., by solving the probability flow ODE that implements DDPM [50]. We refer514

the readers to Appendix. D in Song et al. [50] for a comprehensive exposition. We follow the official515

open-source code from Song et al.3, and implement policy gradient (single-level MDP) that uses the516

exact action likelihood πθ(at|st).517

Fig. 16 shows the comparison between DPPO and diffusion policy gradient using exact likelihood518

estimate. Exact policy gradient improves the base policy in Hopper-v2 but does not outperform519

DPPO. It also requires more runtime and GPU memory as it backpropagates through the ODE.520

In the more challenging Can its success rate drops to zero. Moreover, policy gradient with exact521

likelihood does not offer the flexibility of fine-tuning fewer-than-K denoising steps or discounting522

the early denoising steps that DPPO offers, which have shown in Appendix D.3 to often improve523

fine-tuning efficiency.524
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Figure 16: Comparing to diffusion policy gradient with exact action likelihood. Results are
averaged over five seeds in Hopper-v2 and HalfCheetah-v2, and three seeds in Can.

E Reporting of Wall-Clock Times525

Comparing to other diffusion-based RL algorithms Section 4.1. Table 1 and Table 2 shows the526

the wall-clock time used in each OpenAI GYM task and ROBOMIMIC task. In GYM tasks, on average527

3https://github.com/yang-song/score_sde_pytorch
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DPPO trains 41%, 37%, and 12% faster than DAWR, DIPO, and DQL, respectively, which all528

require a significant amount of gradient updates per sample to train stably. QSM, DRWR, and IDQL529

trains 43%, 33%, and 7% faster than DPPO, respectively. ROBOMIMIC tasks are more expensive530

to simulate, especially with Transport task, and thus the wall-clock difference is smaller among531

the different methods. All methods use comparable time except for DIPO that uses slightly more532

on average.533

Method
Task

Hopper-v2 Walker2D-v2 HalfCheetah-v2

DRWR 11.3 12.7 10.4
DAWR 30.4 30.7 27.1
DIPO 27.8 27.9 26.0
IDQL 16.3 16.1 15.5
DQL 20.5 20.5 17.6
QSM 9.6 9.9 9,7
DPPO 16.6 18.3 16.8

Table 1: Wall-clock time in seconds for a single training iteration in OpenAI GYM tasks when
comparing diffusion-based RL algorithms. Each iteration involves 500 environment timesteps in
each of the 40 parallelized environments running on 40 CPU threads and a NVIDIA RTX 2080
GPU (20000 steps total).

Method
Task

Lift Can Square Transport

DRWR 32.5 39.5 59.8 346.1
DAWR 38.6 46.0 70.5 354.3
DIPO 43.9 51.6 73.3 359.7
IDQL 33.8 41.7 63.7 349.9
DQL 36.9 44.4 68.5 353.5
QSM 31.8 44.5 68.7 322.5
DPPO 35.2 42.0 65.6 350.3

Table 2: Wall-clock time in seconds for a single training iteration in ROBOMIMIC tasks with
state input when comparing diffusion-based RL algorithms. Each iteration involves 4 episodes
(1200 environment timesteps for Lift and Can, 1600 for Square, and 3200 for Transport)
from each of the 50 parallelized environments running on 50 CPU threads and a NVIDIA L40 GPU
(60000, 80000, 160000 steps).

Comparing to other policy parameterizations and architecture Section 4.2 and Section 4.3.534

Table 3 and Table 4 shows the wall-clock time used in fine-tuning in each ROBOMIMIC task with535

state or pixel input, respectively. Gaussian and GMM use similar times and Transformer is slightly536

more expensive than MLP. On average with state input, DPPO-MLP trains 24%, 21%, 24%, and537

22% slower than baselines due to the more expensive diffusion sampling. DPPO-UNet requires538

more time with the extensive use of convolutional and normalization layers and trains on average539

49% slower than DPPO-MLP. On average with pixel input, DPPO-ViT-MLP trains 14% slower540

than Gaussian-ViT-MLP — the difference is smaller than the state input case as the rendering in541

simulation can be expensive. Table 5 shows the wall-clock time used in FURNITURE-BENCH tasks.542

DPPO-UNet trains 20% slower than Gaussian-MLP on average.543
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Method
Task

Lift Can Square Transport

Gaussian-MLP 27.7 35.7 56.2 255.6
Gaussian-Transformer 29.8 37.1 57.8 266.1

GMM-MLP 28.0 36.2 55.2 254.5
GMM-Transformer 29.5 37.4 58.1 260.2

DPPO-MLP 35.6 43.3 65.0 350.5
DPPO-UNet 83.6 92.7 130.4 431.1

Table 3: Wall-clock time in seconds for a single training iteration in ROBOMIMIC tasks with
state input when comparing policy parameterizations. Each iteration involves 4 episodes (1200
environment timesteps for Lift and Can, 1600 for Square, and 3200 for Transport) from
each of the 50 parallelized environments running on 50 CPU threads and a NVIDIA L40 GPU
(60000, 80000, 160000 steps).

Method
Task

Lift Can Square Transport

Gaussian-ViT-MLP 153.6 173.1 277.0 770.0
DPPO-ViT-MLP 194.9 202.5 328.5 871.3

Table 4: Wall-clock time in seconds for a single training iteration in ROBOMIMIC tasks with
pixel input when comparing policy parameterizations. Each iteration involves 4 episodes (1200
environment timesteps for Lift and Can, 1600 for Square, and 3200 for Transport) from
each of the 50 parallelized environments running on 50 CPU threads and a NVIDIA L40 GPU
(60000, 80000, 160000 steps).

Method
Task

One-leg Lamp Round-table

Gaussian-MLP 101.8 202.8 168.7
DPPO-UNet 148.4 258.2 188.6

Table 5: Wall-clock time in seconds for a single training iteration in FURNITURE-BENCH tasks
when comparing policy parameterizations. Each iteration involves 1 episodes (700 environment
timesteps for One-leg, and 1000 for Lamp and Round-table) from each of the 1000 paral-
lelized environments running on a NVIDIA L40 GPU (700000, 1000000, 1000000 steps).

F Understanding the performance of DPPO544

We study the factors contributing to DPPO’s improvements in performance over the popular Gaus-545

sian and GMM methods introduced in Section 4.2. We use the Avoid environment from D3IL546

benchmark [51], where a robot arm needs to reach the other side of the table while avoiding an array547

of obstacles (Fig. 17, top-left). The action space is the 2D target location of the end-effector. D3IL548

provides expert demonstrations that covers different possible paths to the goal line — we consider549

three subsets of the demonstrations, M1, M2, and M3 in Fig. 17, each with two distinct modes; with550

only two modes in each setting, Gaussian (with exploration noise)4 and GMM can fit the expert data551

distribution reasonably well, allowing fair comparisons in fine-tuning.552

We pre-train MLP-based Diffusion, Gaussian, and GMM policies (Ta = 4 unless noted) with the553

demonstrations. For fine-tuning, we assign (sparse) reward when the robot reaches the goal line554

from the topmost mode. Gaussian and GMM policies are also fine-tuned with the PPO objective.555

Benefit 1: Structured, on-manifold exploration. Fig. 17 (right) shows the sampled trajectories556

(with exploration noise) from DPPO, Gaussian, and GMM during the first iteration of fine-tuning.557

DPPO explores in wide coverage around the expert data manifold, whereas Gaussian generates558

less structured exploration noise (especially in M2) and GMM exhibits narrower coverage. More-559

4Without noise, Gaussian policy is fully deterministic and cannot capture the two modes.
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Figure 17: (Left) We use the Avoid environment from Jia et al. [51] to visualize the DPPO’s
exploration tendencies. The task is to reach the green goal line from the topmost mode. (Right)
Structured exploration. We show sampled trajectories at the first iteration of fine-tuning for DPPO,
Gaussian, and GMM after pre-training on three sets of expert demonstrations, M1, M2, and M3.

over, the combination of diffusion parameterization with the denoising of action chunks means that560

policy stochasticity in DPPO is structured in both action dimension and time horizon.561

Benefit 2: Training stability from multi-step denoising process. In Fig. 18 (left), we run fine-562

tuning after pre-training with M2 and attempt to de-stabilize fine-tuning by gradually adding noise563

to the action during the fine-tuning process (see Appendix G.9 for details). We find that Gaussian564

and GMM’s performance both collapse, while with DPPO, the performance is robust to the noise if565

at least four denoising steps are used. This property also allows DPPO to apply significant noise to566

the sampled actions, simulating an imperfect low-level controller to facilitate sim-to-real transfer in567

Section 4.3. In Fig. 18 (right), we also find DPPO enjoys greater training stability when fine-tuning568

long action chunks, e.g., up to Ta = 16, while Gaussian and GMM can fail to improve at all.569
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Figure 18: Training stability. Fine-tuning performance (averaged over five seeds, standard devia-
tion not shown) after pre-training with M2. (Left) Noise is injected into the applied actions after a
few training iterations. (Right) The action chunk size Ta is varied.

Fig. 19 visualizes how DPPO affects the multi-step denoising process. Over fine-tuning iterations,570

the action distribution gradually converges through the denoising steps — the iterative refinement571

is largely preserved, as opposed to, e.g., “collapsing” to the optimal actions at the first fine-tuned572

denoising step or the final one. We postulate this contributes to the training stability of DPPO.573

Benefit 3: Robust and generalizable fine-tuned policy. DPPO also generates final policies574

robust to perturbations in dynamics and the initial state distribution. In Fig. 20, we again add noise575

to the actions sampled from the fine-tuned policy (no noise applied during training) and find that576

DPPO policy exhibits strong robustness to the noise compared to the Gaussian policy. DPPO policy577

also converges to the (near-)optimal path from a larger distribution of initial states. This finding578

echoes theoretical guarantees that Diffusion Policy, capable of representing complex multi-modal579

data distribution, can effectively deconvolve noise from noisy states [52], a property used in Chen580

et al. [53] to stabilize long-horizon video generation.581
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Figure 19: Preserving the iterative refinement. The 2D actions from 50 trajectories at the branch-
ing point through fine-tuning iterations after pre-training with M2. For DPPO, we also visualize the
action distribution through the final denoising steps at each fine-tuning iteration.
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Figure 20: Policy robustness after fine-tuning. Green dot / box indicates the initial state region.

G Additional Experimental Details582

G.1 Details of policy architectures used in all experiments583

MLP. For most of the experiments, we use a Multi-layer Perceptron (MLP) with two-layer residual584

connection as the policy head. For diffusion-based policies, we also use a small MLP encoder for the585

state input and another small MLP with sinusoidal positional encoding for the denoising timestep586

input. Their output features are then concatenated before being fed into the MLP head. Diffusion587

Policy, proposed by Chi et al. [1], does not use MLP as the diffusion architecture, but we find it588

delivers comparable (or even better) pre-training performance compared to UNet.589

Transformer. For comparing to other policy parameterizations in Section 4.2, we also consider590

Transformer as the policy architecture for the Gaussian and GMM baselines. We consider decoder591

only. No dropout is used. A learned positional embedding for the action chunk is the sequence into592

the decoder.593

UNet. For comparing to other policy parameterizations in Section 4.2, we also consider UNet [49]594

as a possible architecture for DP. We follow the implementation from Chi et al. [1] that uses sinu-595

soidal positional encoding for the denoising timestep input, except for using a larger MLP encoder596

for the observation input in each convolutional block. We find this modification helpful in more597

challenging tasks.598

ViT. For pixel-based experiments in Section 4.2 we use Vision-Transformer(ViT)-based image599

encoder introduced by Hu et al. [24] before an MLP head. Proprioception input is appended to each600

channel of the image patches. We also follow [24] and use a learned spatial embedding for the ViT601

output to greatly reduce the number of features, which are then fed into the downstream MLP head.602
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G.2 Additional details of GYM tasks and training in Section 4.1603

Pre-training. The observations and actions are normalized to [0, 1] using min/max statistics from604

the pre-training dataset. For all three tasks the policy is trained for 3000 epochs with batch size 128,605

learning rate of 1e-3 decayed to 1e-4 with a cosine schedule, and weight decay of 1e-6. Exponential606

Moving Average (EMA) is applied with a decay rate of 0.995.607

Fine-tuning. All methods from Section 4.1 use the same pre-trained policy. Fine-tuning is done608

using online experiences sampled from 40 parallelized MuJoCo environments [54]. Reward curves609

shown in Fig. 3 are evaluated by running fine-tuned policies with σexp
min = 0.001 (i.e., without extra610

noise) for 40 episodes. Each episode terminates if the default conditions are met or the episode611

reaches 1000 timesteps. Detailed hyperparameters are listed in Table 7 and Table 8.612

Task Obs dim - State Obs dim - Pixel Act dim T Sparse reward ?

GYM

Hopper-v2 11 - 3 1000 No
Walker2D-v2 17 - 6 1000 No

HalfCheetah-v2 17 - 6 1000 No

ROBOMIMIC, state input

Lift 19 - 7 300 Yes
Can 23 - 7 300 Yes

Square 23 - 7 400 Yes
Transport 59 - 14 800 Yes

ROBOMIMIC, pixel input

Lift 9 96×96 7 300 Yes
Can 9 96×96 7 300 Yes

Square 9 96×96 7 400 Yes
Transport 18 2×96×96 14 800 Yes

FURNITURE-BENCH

One-leg 58 - 10 700 Yes
Lamp 44 - 10 1000 Yes

Round-table 44 - 10 1000 Yes

D3IL Avoid 4 - 2 100 Yes

Table 6: Comparison of the different tasks considered. “Obs dim - State”: dimension of the state
observation input. “Obs dim - State”: dimension of the pixel observation input. “Act dim - State”:
dimension of the action space. T : maximum number of steps in an episode. “Sparse reward ?”:
whether sparse reward is used in training instead of dense reward.

G.3 Descriptions of diffusion-based RL algorithm baselines in Section 4.1613

DRWR: This is a customized reward-weighted regression (RWR) algorithm [20] that fine-tunes614

a pre-trained DP with a supervised objective with higher weights on actions that lead to higher615

reward-to-go r.616

The reward is scaled with β and the exponentiated weight is clipped at wmax. The policy is updated617

with experiences collected with the current policy (no buffer for data from previous iteration) and a618

replay ratio of Nθ. No critic is learned.619

Lθ = Eπ̄θ,εt
[
min(eβrt , wmax)∥εt − εθ(a

0
t , st, k)∥2

]
.

DAWR: This is a customized advantage-weighted regression (AWR) algorithm [19] that builds on620

DRWR but uses TD-bootstrapped [9] advantage estimation instead of the higher-variance reward-621

to-go for better training stability and efficiency. DAWR (and DRWR) can be seen as approximately622

optimizing (3.2) with a Kullback–Leibler (KL) divergence constraint on the policy [19, 27].623

The advantage is scaled with β and the exponentiated weight is clipped at wmax. Unlike DRWR, we624

follow [19] and trains the actor in an off-policy manner: recent experiences are saved in a replay625

buffer D, and the actor is updated with a replay ratio of Nθ.626

Lθ = ED,εt
[
min(eβÂϕ(st,a

0
t ), wmax)∥εt − εθ(a

0
t , st, k)∥2

]
.
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The critic is updated less frequently (we find diffusion models need many gradient updates to fit the627

actions) with a replay ratio of Nϕ.628

Lϕ = ED[∥Âϕ(st, a0t )−A(st, a
0
t )∥2

]
,

where A is calculated using TD(λ), with λ as λDAWR and the discount factor γENV.629

DIPO [18]: This baseline applies “action gradient” that uses a learned state-action Q function to630

update the actions saved in the replay buffer, and then has DP fitting on them without weighting.631

Similar to DAWR, recent experiences are saved in a replay buffer D. The actions (k = 0) in the632

buffer are updated for MDIPO iterations with learning rate αDIPO.633

am+1,k=0
t = am,k=0

t + αDIPO∇ϕQ̂ϕ(st, a
m,k=0
t ), m = 0, . . . ,MDIPO − 1.

The actor is then updated with a replay ratio of Nθ.634

Lθ = ED[∥εt − εθ(a
MDIPO,k=0
t , st, k)∥2

]
.

The critic is trained to minimize the Bellman residual with a replay ratio of Nϕ. Double Q-learning635

is also applied.636

Lϕ = ED[∥(Rt + γENVQ̂ϕ(st+1, π̄θ(a
k=0
t+1 |st+1))− Q̂ϕ(st, a

m=0,k=0
t )∥2

]
IDQL [17]: This baseline learns a state-action Q function and state V function to choose among637

the sampled actions from DP. DP fits on new samples without weighting.638

Again recent experiences are saved in a replay bufferD. The state value function is updated to match639

the expected Q value with an expectile loss, with a replay ratio of Nψ .640

Lψ = ED[|τIDQL − 1(Q̂ϕ(st, a
0
t ) < V̂ 2

ψ (st))|
]
.

The value function is used to update the Q function with a replay ratio of Nϕ.641

Lϕ = ED[∥(Rt + γENVV̂ψ(st+1)− Q̂ϕ(st, a
0
t )∥2

]
.

The actor fits all sampled experiences without weighting, with a replay ratio of Nθ.642

Lθ = ED[∥εt − εθ(a
0
t , st, k)∥2

]
.

At inference time, MIDQL actions are sampled from the actor. For training, Boltzmann exploration643

is applied based on the difference between Q value of the sampled actions and and the V value at644

the current state. For evaluation, the greedy action under Q is chosen.645

DQL [16]: This baseline learns a state-action Q function and backpropagates the gradient from the646

critic through the entire actor (with multiple denoising steps), akin to the usual Q-learning.647

Again recent experiences are saved in a replay buffer D. The actor is then updated using both a648

supervised loss and the value loss with a replay ratio of Nθ.649

Lθ = ED[∥εt − εθ(a
0
t , st, k)∥2 − αDQLQ̂ϕ(st, π̄θ(a

0
t |st))

]
,

where αDQL is a weighting coefficient. The critic is trained to minimize the Bellman residual with a650

replay ratio of Nϕ. Double Q-learning is also applied.651

Lϕ = ED[∥(Rt + γENVQ̂ϕ(st+1, π̄θ(a
0
t+1|st+1))− Q̂ϕ(st, a

0
t )∥2

]
QSM [15]: This baselines learns a state-action Q function, and then updates the actor by aligning652

the score of the diffusion actor with the gradient of the Q function.653

Again recent experiences are saved in a replay buffer D. The critic is trained to minimize the654

Bellman residual with a replay ratio of Nϕ. Double Q-learning is also applied.655

Lϕ = ED[∥(Rt + γENVQ̂ϕ(st+1, π̄θ(a
0
t+1|st+1))− Q̂ϕ(st, a

0
t )∥2

]
.

The actor is updated as follows with a replay ratio of Nθ.656

Lθ = ED[∥αQSM∇aQ̂ϕ(st, at)− (−εθ(a0t , st, k))∥2
]
,

where αQSM scales the gradient. The negative sign before εθ is from taking the gradient of the mean657

µ in the denoising process.658
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G.4 Descriptions of RL fine-tuning algorithm baselines in Appendix D.2659

In this subsection, we detail the baselines RLPD, Cal-QL, and IBRL. All policies πθ are param-660

eterized as unimodal Gaussian with an action chunk size of 1.661

RLPD [22]: This baseline is based on Soft Actor Critic (SAC, Haarnoja et al. [55]) — it learns662

an entropy-regularized state-action Q function, and then updates the actor by maximizing the Q663

function w.r.t. the action.664

A replay buffer D is initialized with offline data, and online samples are added to D. Each gradient665

update uses a batch of mixed 50/50 offline and online data. An ensemble of Ncritic critics is used,666

and at each gradient step two critics are randomly chosen. The critics are trained to minimize the667

Bellman residual with replay ratio Nϕ:668

Lϕ = ED[∥(Rt + γENVQ̂ϕ′(st+1, πθ(at+1|st+1))− Q̂ϕ(st, at)∥2
]
.

The target critic parameter ϕ′ is updated with delay. The actor minimizes the following loss with a669

replay ratio of 1:670

Lθ = ED[− Q̂ϕ(st, at) + αent log πθ(at|st)
]
,

where αent is the entropy coefficient (automatically tuned as in SAC starting at 1).671

Cal-QL [23]: This baseline trains the policy µ and the action-value function Qµ in an offline672

phase and then an online phase. During offline phase only offline data is sampled for gradient673

update, while during online phase mixed 50/50 offline and online data are sampled. The critic is674

trained to minimize the following loss (Bellman residual and calibrated Q-learning):675

Lϕ =ED[∥(Rt + γENVQ̂ϕ′(st+1, πθ(at+1|st+1)))− Q̂ϕ(st, at)∥2
]

+ βcql(ED[max(Qϕ(st, at), V (st))
]
− ED[Qϕ(st, at)

]
),

where βcql is a weighting coefficient between Bellman residual and calibration Q-learning and V (st)676

is estimated using Monte-Carlo returns. The target critic parameter ϕ′ is updated with delay. The677

actor minimizes the following loss:678

Lθ = ED[− Q̂ϕ(st, at) + αent log πθ(at|st)
]
,

where αent is the entropy coefficient (automatically tuned as in SAC starting at 1).679

IBRL [24]: This baseline first pre-trains a policy µψ using behavior cloning, and for fine-tuning680

it trains a RL policy πθ initialized as µψ . During fine-tuning recent experiences are saved in a replay681

buffer D. An ensemble of Ncritic critics is used, and at each gradient step two critics are randomly682

chosen. The critics are trained to minimize the Bellman residual with replay ratio Nϕ:683

Lϕ = ED[∥(Rt + γENV max
a′∈{aIL,aRL}

Q̂ϕ′(st+1, a
′)− Q̂ϕ(st, at)∥2

]
where aIL = µψ(st+1) (no noise) and aRL ∼ πθ′(st+1), and πθ′ is the target actor. The target critic684

parameter ϕ′ is updated with delay. The actor minimizes the following loss with a replay ratio of 1:685

Lθ = −ED[Q̂ϕ(st, at)
]
.

The target actor parameter θ′ is also updated with delay.686

G.5 Additional details of DPPO implementation in all tasks687

Similar to all baselines in Appendix G.3, we denote Nθ and Nϕ the replay ratio for the actor (Dif-688

fusion Policy) and the critic (state value function) in DPPO; in practice we always set Nθ = Nϕ in689

DPPO, with the combined loss L = Lθ+Lϕ. Similar to usual PPO implementations [56], the batch690

updates in an iteration terminate when the KL divergence between πθ and πθold reaches 1.691
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We also find the PPO clipping ratio, ε, can affect the training stability significantly in DPPO (as692

well as in Gaussian and GMM policies) especially in sparse-reward manipulation tasks. In practice693

we find that, a good indicator of the amount of clipping leading to optimal training efficiency, is694

to aim for a clipping fraction (fraction of individual samples being clipped in a batch) of 10% to695

20%. For each method in different tasks, we vary ε in {.1, .01, .001} and choose the highest value696

that satisfies the clipping fraction target. Empirically we also find that, using a higher ε for earlier697

denoising steps in DPPO further improves training stability in manipulation tasks. Denote εk the698

clipping value at denoising step k, and in practice we set εk=(K−1) = 0.1εk=0, and it follows an699

exponential schedule among intermediate k.700

G.6 Additional details of ROBOMIMIC tasks and training in Section 4.2701

Tasks. We consider four tasks from the ROBOMIMIC benchmark [29]: (1) Lift: lifting a cube702

from the table, (2) Can: picking up a Coke can and placing it at a target bin, (3) Square: picking703

up a square nut and place it on a rod, and (4) Transport: two robot arms removing a bin cover,704

picking and placing a cube, and then transferring a hammer from one container to another one.705

Pre-training. ROBOMIMIC provides the Multi-Human (MH) dataset with noisy human demon-706

strations for each task, which we use to pre-train the policies. The observations and actions are707

normalized to [0, 1] using min/max statistics from the pre-training dataset. No history observation708

(pixel, proprioception, or ground-truth object states) is used. All policies are trained with batch size709

128, learning rate 1e-4 decayed to 1e-5 with a cosine schedule, and weight decay 1e-6. Diffusion-710

based policies are trained with 8000 epochs, while Gaussian and GMM policies are trained with711

5000 epochs — we find diffusion models require more gradient updates to fit the data well.712

Fine-tuning. Diffusion-based, Gaussian, and GMM pre-trained policies are then fine-tuned using713

online experiences sampled from 50 parallelized MuJoCo environments [54]. Success rate curves714

shown in Fig. 3, Fig. 4, and Fig. 15 are evaluated by running fine-tuned policies with σexp
min = 0.001715

(i.e., without extra noise) for 50 episodes. Episodes terminates only when they reach maximum716

episode lengths (shown in Table 6). Detailed hyperparameters are listed in Table 10.717

Pixel training. We use the wrist camera view in Lift and Can, the third-person camera view in718

Square, and the two robot shoulder camera views in Transport. Random-shift data augmenta-719

tion is applied to the camera images during both pre-training and fine-tuning. Gradient accumulation720

is used in fine-tuning so that the same batch size (as in state-input training) can fit on the GPU. De-721

tailed hyperparameters are listed in Table 11.722

G.7 Descriptions of policy parameterization baselines in Section 4.2723

Gaussian. We consider unimodal Gaussian with diagonal covariance, the most commonly used724

policy parameterization in RL. The standard deviation for each action dimension, σGau, is fixed725

during pre-training; we also tried to learn σGau from the dataset but we find the training very unstable.726

During fine-tuning σGau is learned starting from the same fixed value and also clipped between 0.01727

and 0.2. Additionally we clip the sampled action to be within 3 standard deviation from the mean.728

As discusses in Appendix G.5, we choose the PPO clipping ratio ε based on the empirical clipping729

fraction in each task. This setup is also used in the FURNITURE-BENCH experiments. We note that730

we spend significant amount of efforts tuning the Gaussian baseline, and our results with it are some731

of the best known ones in RL training for long-horizon manipulation tasks (exceeding our initial732

expectations), e.g., reaching ∼100% success rate in Lamp with Low randomness.733

GMM. We also consider Gaussian Mixture Model as the policy parameterization. We denote734

MGMM the number of mixtures. The standard deviation for each action dimension in each mixture,735

σGMM, is also fixed during pre-training. Again during fine-tuning σGMM is learned starting from the736

same fixed value and also clipped between 0.01 and 0.2.737
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G.8 Additional details of FURNITURE-BENCH tasks and training in Section 4.3738

Tasks. We consider three tasks from the FURNITURE-BENCH benchmark [31]: (1) One-leg:739

assemble one leg of a table by placing the tabletop in the fixture corner, grasping and inserting the740

table leg, and screwing in the leg, (2) Lamp: place the lamp base in the fixture corner, grasp, insert,741

and screw in the light bulb, and finally place the lamp shade, (3) Round-table: place a round742

tabletop in the fixture corner, insert and screw in the table leg, and then insert and screw in the table743

base. See Fig. 21 for the visualized rollouts in simulation.744

Pre-training. The pre-training dataset is collected in the simulated environments using a Space-745

Mouse5, a 6 DoF input device. The simulator runs at 10Hz. At every timestep, we read off the state746

of the SpaceMouse as δa = [∆x,∆y,∆z,∆roll,∆pitch,∆yaw], which is converted to a quaternion747

before passed to the environment step and stored as the action alongside the current observation in748

the trajectory. If |∆ai| < ε ∀i for some small ε = 0.05 defining the threshold for a no-op, we do749

not record any action nor pass it to the environment. Discarding no-ops is important for allowing750

the policies to learn from demonstrations effectively. When the desired number of demonstrations751

has been collected (typically 50), we process the actions to convert the delta actions stored from the752

SpaceMouse into absolute pose actions by applying the delta action to the current EE pose at each753

timestep.754

The observations and actions are normalized to [−1, 1] using min/max statistics from the pre-training755

dataset. No history observation (proprioception or ground-truth object states) is used, i.e., only the756

current observation is passed to the policy. All policies are trained with batch size 256, learning rate757

1e-4 decayed to 1e-5 with a cosine schedule, and weight decay 1e-6. Diffusion-based policies are758

trained with 8000 epochs, while Gaussian policies are trained with 3000 epochs. Gaussian policies759

can easily overfit the pre-trained dataset, while diffusion-based policies are more resilient. Gaussian760

policies also require a very large MLP (∼10 million parameters) to fit the data well.761

Fine-tuning. Diffusion-based and Gaussian pre-trained policies are then fine-tuned using online762

experiences sampled from 1000 parallelized IsaacGym environments [57]. Success rate curves763

shown in Fig. 5 are evaluated by running fine-tuned policies with σexp
min = 0.001 (i.e., without ex-764

tra noise) for 1000 episodes. Episodes terminate only when they reach maximum episode length765

(shown in Table 6). Detailed hyperparameters are listed in Table 12. We find a smaller amount of766

exploration noise (we set σexp
min and σGau to be 0.04) is necessary for the pre-trained policy achieving767

nonzero success rates at the beginning of fine-tuning.768

Solving multi-stage dexterous manipulation tasks from Furniture-Bench

Robust sim-to-real transfer in zero-shot

Corrective 
behavior

Round-table

Lamp

One-leg

Figure 21: Representative rollouts from simulated FURNITURE-BENCH tasks.

Hardware setup - robot control. The physical robot used is a Franka Emika Panda arm. The769

policies output a sequence of desired end-effector poses in the robot base frame to control the robot.770

These poses are converted into joint position targets through differential inverse kinematics. We771

5https://3dconnexion.com/us/product/spacemouse-wireless/
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calculate the desired end-effector velocity as the difference between the desired and current poses772

divided by the delta time dt = 1/10. We then convert this to desired joint velocities using the773

Jacobian and compute the desired joint positions with a first-order integration over the current joint774

positions and desired velocity. The resulting joint position targets are passed to a low-level joint775

impedance controller provided by Polymetis [58], running at 1kHz.776

Hardware setup - state estimation. To deploy state-based policies on real hardware, we utilize777

AprilTags [59] for part pose estimation. The FURNITURE-BENCH [31] task suite provides AprilTags778

for each part and code for estimating part poses from tag detections. The process involves several779

steps: (1) detecting tags in the camera frame, (2) mapping tag detections to the robot frame for780

policy compatibility, (3) utilizing known offsets between tags and object centers in the simulator,781

and (4) calibrating the camera pose using an AprilTag at a known position relative to the robot base.782

Despite general accuracy, detections can be noisy, especially during movement or partial occlusion,783

which the One-leg task features. Since the task requires high precision, we find the following to784

help make the estimation reliable enough:785

• Camera coverage: We find detection quality sensitive to distance and angle between the camera786

and tag. This issue is likely due to the RealSense D435 camera having mediocre image quality787

and clarity and the relatively small tags. To remedy this, we opt to use 4 cameras roughly evenly788

spread out around the scene to ensure that at least one camera has a solid view of a tag on all the789

parts (i.e., as close as possible with a straight-on view). To find the best camera positions, we790

start with having a camera in each of the cardinal directions around the scene. Then, we adjust791

the pose of each to get it as close as possible to the objects while still covering the necessary792

workspace and capturing the base tag for calibration. Moving the robot arm around the scene to793

avoid the worst occlusion is also helpful.794

• Lighting: Even with better camera coverage and placement, detection quality depends on having795

crisp images. We find proper lighting helpful to improve image quality. In particular, the scene796

should be well and evenly lit around the scene without causing reflections in either the tag or797

table.798

• Filtering: Bad detections can sometimes cause the resulting pose estimate to deviate signifi-799

cantly from the true pose, i.e., jumping several centimeters from one frame to the next. This800

usually only happens on isolated frames, and thus before “accepting” a given detection, we801

check if the new position and orientation are within 5 cm and 20 degrees of the previously ac-802

cepted pose. In addition, we apply low-pass filtering on the detection using a simple exponential803

average (with α = 0.25) to smooth out the high-frequency noise.804

• Averaging: The objects have multiple tags that can be detected from multiple cameras. After805

performing the filtering step, we average all pose estimates for the same object across different806

tags and cameras, which also helps smooth out noise. This alone, however, does not fully cancel807

the case when a single detection has a large jump, as this can severely skew the average, still808

necessitating a filtering step. Having multiple cameras benefits this step, too, as it provides more809

detections to average over.810

• Caching part pose in hand: A particularly difficult phase of the task to achieve good detections811

is when the robot transports the table leg from the initial position to the tabletop for insertion.812

The main problems are that the movement can blur the images, and the grasping can cause813

occlusions. Therefore, we found it helpful to assume that once the part was grasped by the814

robot, it would not move in the grasp until the gripper opened. With this, we can “cache” the815

pose of the part relative to the end-effector once the object is fully grasped and use this instead816

of relying on detections during the movement.817

• Normalization pitfalls and clipping: We generally use min-max normalization of the state818

observations to ensure observations are in [−1, 1]. The tabletop part moves very little in the819

z-direction demonstration data, meaning the resulting normalization limits (the minimum and820

maximum value of the data) can be very close, xmax − xmin ≈ 0. With these tight limits, the821

noise in the real-world detection can be amplified greatly as xnorm = x−xmin
xmax−xmin

. Therefore, ensure822

28



that normalization ranges are reasonable. As an extra safeguard, clipping the data to [−1, 1] can823

also help.824

• Only estimate necessary states: Despite the One-leg task having 5 parts, only 2 are manipu-825

lated. Only estimating the pose of those parts can eliminate a lot of noise. In particular, the pose826

of the 3 legs that are not used and the obstacle (the U-shaped fixture) can be set to an arbitrary827

value from the dataset.828

• Visualization for debugging: We use the visualization tool MeshCat6 extensively for debugging829

of state estimation. The tool allows for easy visualizations of poses of all relevant objects in the830

scene, like the robot end-effector and parts, which makes sanity-checking the implementation831

far easier than looking at raw numbers.832

Hardware evaluation. We perform 20 trials for each method. We adopt a single-blind model833

selection process: at the beginning of each trial, we first randomize the initial state. Then, we834

randomly select a method and roll it out, but the experimenter does not observe which model is835

used. We record the success and failure of each trial and then aggregate statistics for each model836

after all trials are completed.837

Domain randomization for sim-to-real transfer. To facilitate the sim-to-real transfer, we apply838

additional domain randomization to the simulation training. We record the range of observation839

noises in hardware without any robot motion and then apply the same amount of noise to state840

observations in simulation. We find the state estimation in hardware particularly sensitive to the841

object heights. Also, we apply random noise (zero mean with 0.03 standard deviation) to the sampled842

action from DPPO to simulate the imperfect low-level controller; we find adding such noise to the843

Gaussian policy leads to zero task success rate while DPPO is robust to it (also see discussion in844

Appendix F).845

BC regularization loss used for Gaussian baseline. Since the fine-tuned Gaussian policy exhibits846

very jittery behavior and leads to zero success rate in real evaluation, we further experiment with847

adding a behavior cloning (BC) regularization loss in fine-tuning with the Gaussian baseline. The848

combined loss follows849

Lθ,+BC = Lθ − αBCEπθold [

K−1∑
k=0

log πθpre-trained(a
k
t |ak+1

t , st)],

where πθpre-trained is the frozen BC-only policy. The extra term encourages the newly sampled actions850

from the fine-tuned policy to remain high-likelihood under the BC-only policy. We set αBC = 0.1.851

However, although this regularization reduces the sim-to-real gap, it also significantly limits fine-852

tuning, leading to the fine-tuning policy saturating at 53% success rate shown in Fig. 5.853

G.9 Additional details of Avoid task from D3IL and training in Appendix F854

Pre-training. We split the original dataset from D3IL based on the three settings, M1, M2, and855

M3; in each setting, observations and actions are normalized to [0, 1] using min/max statistics. All856

policies are trained with batch size 16 (due to the small dataset size), learning rate 1e-4 decayed857

to 1e-5 with a cosine schedule, and weight decay 1e-6. Diffusion-based policies are trained with858

about 15000 epochs, while Gaussian and GMM policies are trained with about 10000 epochs; we859

manually examine the trajectories from different pre-trained checkpoints and pick ones that visually860

match the expert data the best.861

Fine-tuning. Diffusion-based, Gaussian, and GMM pre-trained policies are then fine-tuned using862

online experiences sampled from 50 parallelized MuJoCo environments [54]. Reward curves shown863

in Fig. 18 and Fig. 14 are evaluated by running fine-tuned policies with the same amount of explo-864

ration noise used in training for 50 episodes; we choose to use the training (instead of evaluation)865

6https://github.com/meshcat-dev/meshcat
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setup since Gaussian policies exhibit multi-modality only with training noise. Episodes terminate866

only when they reach 100 steps.867

Added action noise during fine-tuning. In Fig. 18 left, we demonstrate that DPPO exhibits868

stronger training stability when noise is added to the sampled actions during fine-tuning. The noise869

starts at the 5th iteration. It is sampled from a uniform distribution with the lower limit ramping up870

to 0.1 and the upper limit ramping up to 0.2 linearly in 5 iterations. The limits are kept the same871

from the 10th iteration to the end of fine-tuning.872
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G.10 Listed training hyperparameters873

Task(s)

Method Parameter GYM Lift, Can Square Transport

Common

γENV 0.99 0.999 0.999 0.999
σexp

min 0.1 0.1 0.1 0.08
σprob

min 0.1
Ta 4 4 4 8
K 20

Actor learning rate 1e-4 1e-5 1e-5 1e-5 (decayed to 1e-6)
Critic learning rate (if applies) 1e-3

Actor MLP dims [512, 512, 512] [512, 512, 512] [1024, 1024, 1024] [1024, 1024, 1024]
Critic MLP dims (if applies) [256, 256, 256]

DRWR

β 10
wmax 100
Nθ 16

Batch size 1000

DAWR

β 10
wmax 100
λDAWR 0.95
Nθ 64
Nϕ 16 4 4 4

Buffer size 200000 150000 150000 150000
Batch size 256

DIPO

αDIPO 1e-4
MDIPO 10
Nθ 64

Buffer size 400000
Batch size 5000

IDQL

MIDQL 20 10 10 10
Nθ 16
Nϕ 16

Buffer size 200000 150000 150000 150000
Batch size 256 512 512 512

DQL

αDQL 1
Nθ 64
Nϕ 64

Buffer eize 400000
Batch size 5000

Table 7: Fine-tuning hyperparameters for OpenAI GYM and ROBOMIMIC tasks when compar-
ing diffusion-based RL methods. We list hyperparameters shared by all methods first, and then
method-specific ones.

Task(s) (cont’d)

Method (cont’d) Parameter (cont’d) GYM Lift, Can Square Transport

QSM

αQSM 50
Nθ 32
Nϕ 32

Buffer size 200000 150000 150000 150000
Batch size 5000

DPPO

γDENOISE 0.99
GAE λ 0.95
Nθ 5 10 10 8
Nϕ 5 10 10 8
ε 0.01

Batch size 5000 7500 10000 10000
K′ 10

Table 8: Continuation of Table 7.
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Task(s)

Method Parameter HalfCheetah-v2 Can Square

Common
γENV 0.99 0.999 0.999
Ta 1

RLPD
Nϕ 20 3 3
Ncritic 10 5 5

Batch size 256

Cal-QL βcql 5
Batch size 256

IBRL
Nϕ 5 3 3
Ncritic 5

Batch size 256

DPPO

σexp
min 0.1

σprob
min 0.1

γDENOISE 0.99
GAE λ 0.95
Nθ 5 10 10
Nϕ 5 10 10
ε 0.01

Batch size 5000 7500 10000
K 20
K′ 10

Table 9: Fine-tuning hyperparameters for HalfCheetah-v2, Can, and Square when compar-
ing demo-augmented RL methods. We list hyperparameters shared by all methods first, and then
method-specific ones.

Task

Method Parameter Lift, Can Square Transport

Common

γENV 0.999
Ta 4 4 8

Actor learning rate 1e-4 1e-5 1e-5 (decayed to 1e-6)
Critic learning rate 1e-3

GAE λ 0.95
Nθ 10 10 8
Nϕ 10 10 8
ε 0.01 (annealed in DPPO)

Batch size 7500 10000 10000

Gaussian, Common σGau 0.1 0.1 0.08
Gaussian-MLP Model size 552K 2.15M 1.93M

Gaussian-Transformer Model size 675K 1.86M 1.87M

GMM, Common
MGMM 5
σGMM 0.1 0.1 0.08

GMM-MLP Model size 1.15M 4.40M 4.90M
GMM-Transformer Model size 680K 1.87M 1.89M

DPPO, Common

γDENOISE 0.99
σexp

min 0.1 0.1 0.08
σprob

min 0.1 0.1 0.1
K 20
K′ 10

DPPO-MLP Model size 576K 2.31M 2.43M

DPPO-UNet Model size 652K 1.62M 1.68M

Table 10: Fine-tuning hyperparameters for ROBOMIMIC tasks with state input when comparing
policy parameterizations. We list hyperparameters shared by all methods first, and then method-
specific ones. Since the different policy parameterizations use different neural network architecture,
we list the total model size here instead of the details such as MLP dimensions.

32



Task

Method Parameter Lift, Can Square Transport

Common

γENV 0.999
Ta 4 4 8

Actor learning rate 1e-4 1e-5 1e-5 (decayed to 1e-6)
Critic learning rate 1e-3

GAE λ 0.95
Nθ 10 10 8
Nϕ 10 10 8
ε 0.01 (annealed in DPPO)

Batch size 7500 10000 10000

Gaussian-ViT-MLP
Model size 1.03M 1.03M 1.93M
σGau 0.1 0.1 0.08

DPPO-ViT-MLP

Model size 1.06M 1.06M 2.05M
γDENOISE 0.9
σexp

min 0.1 0.1 0.08
σprob

min 0.10
K 100
K′ 5 (DDIM)

Table 11: Fine-tuning hyperparameters for ROBOMIMIC tasks with pixel input when comparing
policy parameterizations. We list hyperparameters shared by all methods first, and then method-
specific ones. Since the different policy parameterizations use different neural network architecture,
we list the total model size here instead of the details such as MLP dimensions.

Task

Method Parameter One-leg Lamp Round-table

Common

γENV 0.999
Ta 8

Actor learning rate 1e-5 (decayed to 1e-6)
Critic learning rate 1e-3

GAE λ 0.95
Nθ 5
Nϕ 5
ε 0.001

Batch size 8800

Gaussian-MLP
Model size 10.64M 10.62M 10.62M
σGau 0.04

DPPO-UNet

Model size 6.86M 6.81M 6.81M
γDENOISE 0.9
σexp

min 0.04
σprob

min 0.1
K 100
K′ 5 (DDIM)

Table 12: Fine-tuning hyperparameters for FURNITURE-BENCH tasks when comparing policy pa-
rameterizations. We list hyperparameters shared by all methods first, and then method-specific
ones.
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