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Abstract—Patient-Reported Outcomes (PRO) consist of infor-
mation provided directly by the patients about their health status
including symptom ratings. PROs are commonly used in clinical
practice to support clinical decision-making and have recently
been incorporated into machine learning models to improve
risk prediction. In this work, we aim to evaluate whether the
inclusion of a patient stratification based on 12-month post-
treatment predicted Patient Reported Outcomes improves risk
prediction of radiation-induced toxicity and overall survival for
head and neck cancer patients. A bidirectional long-short term
memory (Bi-LSTM) recurrent neural network was used to model
the longitudinal PRO data and to predict symptom ratings 12
months post-treatment. Patients were stratified using hierarchical
clustering over the LSTM-predicted data. A logistic regression
model was trained to predict Xerostomia at 12 months and a Cox
regression model to predict overall survival. Results show that the
inclusion of symptom burden clusters derived from the predicted
Patient Reported Outcomes improves radiation-induced toxicity
and overall survival prediction for head and neck cancer patients.

Index Terms—Patient Reported Outcomes, Deep Learning,
Patient Clustering, Regression, Survival Analysis, Xerostomia

I. INTRODUCTION

Personalized therapeutics in oncology have resulted in a
greater variety of head and neck cancer (HNC) treatment out-
comes for patients. Despite the increase in survival outcomes,
in many patients, treatment leads to long-lasting or permanent
residual sequelae [1], whose severity, rate of development, and
resolution after treatment vary largely between survivors [2]–
[6]. One of the confounders routinely encountered with models
of radiation sequelae is that while many patients experience
acute side effects, there is interval recovery, limiting the
predictive capacity of simple dosimetric or clinic dosimetric
models over extended post-treatment time intervals. For ex-
ample, while the majority of patients experience enhanced
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xerostomia on-treatment, a minority have moderate-severe
xerostomia by 12 months on Phase III randomized trials of
intensity-modulated radiation therapy (IMRT) [8].

At the same time, patient-reported outcomes extracted
from questionnaires [9] offer important information that can
improve clinical decision-making and individual care deliv-
ery [10] and could be critical for the efficient prediction
of symptoms and survival outcomes in patients. The M.D.
Anderson Cancer Center documents and quantifies head and
neck cancer symptoms through a standardized monitoring
program based on the M.D. Anderson Symptom Inventory
(MDASI) [11], a patient-reported outcome (PRO) measure for
clinical and research use. The program uses questionnaires that
are collected weekly at the time of the treatment appointment,
at the acute stage, and at longer intervals post-treatment
late stage, during cancer recurrence monitoring. However, in
HNC, predicting symptom risk is particularly challenging due
to the combined effects of specific treatments and clinical
factors [12]. Additionally, some symptoms are correlated,
either through direct influence or shared underlying causes.
These factors hamper personalized care and make predicting
treatment outcomes difficult. As a result, patient clusters based
on symptom burden can be leveraged to understand how
symptoms are correlated with the diagnosis, clinical attributes,
and prescribed treatment [7], [13]–[18].

In this work, we use a Bidirectional Long Short Term
Memory (Bi-LSTM) recurrent neural network to model the
PRO data [19], [20]. By iteratively applying Bi-LSTM models
at each time point, we are able to predict long-term symptom
ratings (i.e. 12 months after treatment) starting from the
baseline. We then apply clustering to the predicted ratings
to identify three symptom burden clusters (i.e. low, medium,
high). The cluster labels are then used in the prediction
of toxicity and survival for head and neck cancer patients.
Since symptom trajectory is predicted using only baseline
information, or information that is available at diagnosis
or shortly after diagnosis, the predictive models including
symptom cluster burden can be applied before treatment starts.

Our results show that the inclusion of symptom-burden
clusters when predicting Xerostomia at 12 months improved
the test AUC of a logistic regression model from 0.54 to



0.86. For this model, the high-symptom cluster label was the
predictor with the highest odds ratio (3.132; [1.832, 5.355]).
Moreover, the inclusion of the cluster labels in the survival
Cox model improved the test concordance index from 0.62 to
0.67. The largest hazard ratio is reported for cancer staging (T
and N stages) followed by the high symptom burden cluster.

The contributions of this paper can be summarized as:
• Apply Bi-LSTM for prediction of 12-month symptom

burden from baseline ratings
• Cluster the patients using the Bi-LSTM predicted ratings

into low-, mid-, and high-symptom burden clusters
• Show that inclusion of the predicted symptom burden

significantly improves the predictive performance for
Xerostomia 12-month after treatment

• Show that the symptom burden clusters also improve
survival prediction when included in a Cox Model

II. RELATED WORK

PRO data, which capture patients’ self-assessments of their
health, have been increasingly integrated in recent years into
statistical models to improve personalized treatment strategies
[26], [29] and used to characterize the symptom burden
experienced after treatment [28]. The utility of PRO data in
identifying adverse events in the quality of life and enhancing
decision-making in cancer treatment management, particularly
when coupled with traditional clinical indicators has also
been established [25], [27]. However, incorporating PRO into
predictive models used in clinical practice remains elusive with
missing data being one of the biggest challenges [30].

Recently, machine learning techniques have been applied
successfully to the imputation of PRO data outperforming
other more traditional methods [19], [31]. Furthermore, Long
Short-Term Memory (LSTM) models have been shown to
be effective for predicting long-term post-treatment symptom
severity in head and neck cancer patients [20].

While clustering has been applied to PRO data to iden-
tify symptom clusters and characterize the heterogeneity of
symptom burden for cancer patients [6], [9], predictive mod-
els including PRO data have mainly used individual symp-
tom ratings [5] and have not leveraged patient stratification
based on symptom rating trajectories. To address this gap,
we propose an approach that applies patient stratification
to predict both toxicity and overall survival in head and
neck cancer patients. Our study proposes a novel framework
that integrates hierarchical clustering of Bi-LSTM-predicted
PRO data with clinical data to improve the performance of
traditional regression models. This combined approach aims
to enhance the accuracy of radiation-induced toxicity and
survival predictions, ultimately providing more personalized
and clinically meaningful insights.

III. METHODS AND MATERIALS

A. Data

Data was collected from a cohort of 937 head and neck
cancer patients from the MD Anderson Cancer Center in Texas
who were treated using radiation therapy (RT) between 2010

TABLE I
LIST OF HEAD AND NECK CANCER-SPECIFIC SYMPTOMS AND GENERAL

CANCER SYMPTOMS FROM THE MDASI-HN QUESTIONNAIRE.

Symptom Category
swallow, speech, mucus, taste, constipation,

teeth, sores, choking, skin
HNC cancer

fatigue, sleep, distress, pain, drowsiness,
sadness, memory, numbness, dry mouth, appetite,

shortness of breath (sob), nausea, vomit
General cancer

and 2021. The patient data, extracted from medical records, in-
clude clinical and treatment information, and patient-reported
symptom ratings. The clinical attributes used in this work
include demographics: age, gender, and smoking status; di-
agnostic attributes include tumor size, lymph node stage,
and tumor sub-site. Treatment attributes include indicators
as to whether the patient received induction therapy (IC),
concurrent therapy (CC), and/or neck dissection surgery (ND).
All patients underwent radiation therapy.

Symptom burden data are collected using patient-reported
outcome (PRO) questionnaires based on MDASI-HN (MD An-
derson Symptom Inventory, the Head and Neck Module) [11],
a 28 symptom inventory. In the questionnaire, patients are
asked to rate symptoms using a 0-to-10 scale, from “not
present” (0) to “as bad as you can imagine” (10). Symptoms
are grouped into 3 categories: HNC-specific, general cancer,
and six interference symptoms. In this work, we focus on
the 22 HNC-specific and general cancer symptoms, listed
as a reference in Table I. PRO data are collected prior to
treatment and subsequently at multiple points during and after
the treatment process. During treatment, a spike in symptom
burden is expected due to treatment toxicity with most symp-
toms subsiding over time. However, for some patients, toxicity
treatment leads to long-lasting sequelae. Dry mouth and taste
are some of the most prevalent symptoms for oropharyngeal
cancer patients.

As we are interested in evaluating the predictive perfor-
mance of late symptom burden in toxicity and survival, we
include the PRO symptom data available before treatment (i.e.
baseline, denoted as B), at the end of treatment (W0), and
during the post-treatment observation period, which includes
6 weeks (W6), 6 months (M6), and 12 months (M12) after
treatment.

This retrospective study was exempt under MD Anderson
IRB protocol RCR-003-0800. In compliance with the Health
Insurance Portability and Accountability Act (HIPAA), in-
formed consent was waived and approved by the IRB as all
analyses were performed over retrospective anonymized data.

B. Bi-LSTM Model

We model the longitudinal PRO symptom data using a
bidirectional long short-term memory (Bi-LSTM) model [19].
Bi-LSTM neural networks contain two LSTM layers that learn
information by training using both the forward and backward
directions of the PRO longitudinal data. Compared to the



traditional LSTM model, Bi-LSTM can capture additional
upstream information by concatenating the hidden states from
both LSTM layers and making better predictions.

We applied Bi-LSTM models for both missing data impu-
tation and M12 prediction. For patients with missing baseline
(B) ratings, we used cohort mean values to initialize the
LSTM. After imputing baseline ratings, we applied the Bi-
LSTM iteratively to predict subsequent time points (W0, W6,
M6, and M12). We used 3-fold cross-validation for each
symptom, training on two folds and testing on the third,
ensuring each patient was in the test fold once. Predictions
from the test fold were used to identify symptom burden
clusters for each patient.

The Bi-LSTM model used in this work consists of one layer
of Bi-LSTMs with 10 units followed by a dense layer for the
prediction. The input to the model is a sequence where the
length is the number of patients and the feature size is 22 per
time point. The output is a 22-dimension vector representing
the predicted ratings for 22 symptoms at the next time point.
We trained the Bi-LSTM model at each time point with
internal validation using a 70/30 train/test split over the two
train-fold for each iteration of the three-fold cross-validation.
Each model was trained with the SGD optimizer using 0.215
as the learning rate with early stopping and 1000 epochs. The
mean squared error (MSE) loss function was used to help
find the optimum. The implementation used the TensorFlow
package and training was done using an NVIDIA RTX 4080
GPU.

By quantifying the computational workload, we provide
both the theoretical and empirical costs for training and testing
of the Bi-LSTM model. Assuming each gate takes one floating
point operation (FLOP), and given that the Bi-LSTM model
has 22 features, 10 hidden dimensions, and 10 LSTM units, a
single pass through one LSTM unit would need 1280 FLOP
and the forward and backward passes over the 10 LSTM units
for 4 time steps would take 3.07 × 105 FLOP. Since we are
using 3-fold cross-validation and training for 1000 epochs, the
total computational workload is about 1.52×1012 FLOP. Using
the RTX 4080 platform which can handle 48 TFLOP/sec, the
theoretical time for model training is 3.17 × 10−2 seconds.
Empirically, the average training time per time step was
roughly 4.2 seconds with a total training time around 17
seconds. The difference in performance can be attributed to
the overheads associated with the use of the Spyder IDE
on the Anaconda platform and the Tensorflow Package, the
data transfer between CPU and GPU, the I/O, Python, and
interpreter overheads, and so on. The measured testing time
was only 0.02 seconds.

C. Patient Stratification

To determine patient stratification and associations in terms
of treatment-related toxicity, we employed a hierarchical clus-
tering technique on the PRO for 22 symptom Bi-LSTM-
predicted ratings at a specific time point. Hierarchical cluster-
ing is an unsupervised learning method that builds a hierarchy
of clusters by progressively merging or splitting existing

clusters based on similarity measures. We used Euclidean
distance as the measure of similarity between the symptom
ratings of two different patients.

The Ward method was utilized as the linkage function. This
method aims to minimize the total within-cluster variance
at each step of the clustering process. Essentially, the Ward
method merges clusters in a way that produces the smallest
possible increase in the sum of squared differences within each
cluster. This approach tends to create clusters of relatively
proportional size and variance, enhancing the interpretability
and coherence of the resulting patient stratification [21].

We consider patient clusters at baseline, 6 weeks, and 12
months post-treatment. The baseline clusters do not use Bi-
LSTM predictions, while the 6 weeks and 12 months are all
predicted symptom ratings using the Bi-LSTM. For each time
point, we identified three clusters labeled as low, mild, or high,
to represent symptom burden level. These labels align with
those used in other works [22].

D. Prediction Models

We considered two different models for toxicity and survival
prediction.

1) Toxicity Prediction: To evaluate the effectiveness of
symptom burden clusters in predicting the development of
Xerostomia 12 months post-treatment, we employed a logistic
regression model. Xerostomia was coded as a binary outcome,
defined by a dry mouth rating of 5 or greater 12 months after
treatment. Predictors for this model included age, gender, T
and N staging (AJCC 8th edition), smoking status, tumor site,
and treatment variables (induction/concurrent chemotherapy
and neck dissection surgery). We excluded from the analy-
ses near-zero variance attributes where the vast majority of
patients belonged to a single category (> 99%). For this
reason, M-staging and HPV (p16) status were excluded, as
most patients in the cohort are M stage 0 and HPV positive.

All attributes were treated as categorical attributes. Age
was categorized into two groups: less than 65 and 65 and
over. For attributes where categories did not meet a minimum
threshold for support (e.g. at least 10% of patients), categories
were sensibly merged with other categories to ensure statistical
robustness. For example, the T stage was simplified into early
(T0-T2) and late (T3, T4) stages and similarly, the N stage was
also consolidated into two categories: (N0, N1) and (N2, N3).
For the tumor sub-site, a new category “Other” was created to
represent any sub-site other than Base of Tongue (BOT) and
Tonsil, which were well represented in the data.

Each predictor was processed using one-hot encoding to
convert them into binary representations. To facilitate model
interpretation, the most common category, aside from the
symptom burden labels, was used as the reference. For
symptom burden cluster labels, the mild label served as the
reference category.

All features and their categories used in the prediction
models are detailed in Table II.

2) Survival Analysis: A Cox proportional hazard regression
model (Cox model) was used for overall survival analysis.



We used the survival/follow-up time in months and the event
flag (dead/alive) as the censored outcome for the Cox model.
The same predictors used for toxicity were used for survival
analysis.

E. Evaluation

In addition to the RMSE, to evaluate the Bi-LSTM per-
formance, we also consider three different symptom rating
thresholds. Threshold 1 (rating ≥ 1) evaluates performance
for symptom occurrence. Thresholds 3 and 5 (rating ≥ 3
and rating ≥ 5) are considered mild and moderate to severe
symptom ratings respectively. Using a binary indicator for
each symptom as an outcome, allows us to evaluate the Bi-
LSTM performance using AUC and confusion matrices.

To evaluate the predictive performance of the Logistic and
Cox models, we compare four models. The model without
symptom burden clusters served as the base model. We also
considered three additional models that incorporate a symptom
burden cluster from baseline (B), week 6 (W6), and 12 months
(M12) post-treatment. These four logistic regression/Cox mod-
els are referenced with the suffixes: wo-cluster, w-cluster-B, w-
cluster-W6, and w-cluster-M12, respectively. The logistic and
Cox models were non-penalized, meaning no regularization
was applied to the coefficients learned by the models.

The evaluation metrics for the logistic regression models
included the area under the ROC curve (AUC) [23], and for
the Cox models, the concordance index (C-index) [24]. For
validation of the predictive models, we used an 80/20 train-
test split, repeated ten times. We report the average metric for
all ten runs along with the standard deviation. Performance
metrics were reported for both the training and testing sets.
Additionally, we included the odds ratio (OR) for each model.

IV. RESULTS

A. Data

Table II provides the distribution of patients and clinical
attributes for the entire cohort and each of the symptom burden
clusters. A total of 937 patients were included in the analysis.
Out of this, a majority (66.4%) were less than 65 years old and
90.6% were also male. Non-smokers constituted 56.3% of the
cohort while the majority had tumor(s) located in the tonsil or
base of the tongue. Also, most of the patients were diagnosed
in the early T and N stages. In terms of treatment, most of the
patients received concurrent chemotherapy (72.20%), 18.5%
received induction chemotherapy, and 15.4% received neck
dissection surgery.

Table III shows the average severity (avg sev) and the
percentages of the missing data (% miss) for each symptom
longitudinally. On average, ratings at W6 and M12 have the
highest missing rate (44.6% and 43.8% respectively) while
the baseline (B) has the lowest missing rate (15.9%). The
missing rates for each symptom are fairly consistent, indicating
that patients tend to fill all questions in the MDASI-HN
questionnaire and when a questionnaire is missed, all symptom
ratings will be missing for that time point. As can be seen
in Table III, starting from baseline (B), the severity of all

Fig. 1. RMSEs at M12 for all 22 symptoms between Bi-LSTM prediction
and actual testing data.

symptoms increases during treatment (W0) and subsides over
time for most patients. The most prevalent symptoms for HNC
patients are dry mouth and taste with long-term moderate
to high severity for a substantial proportion of patients. The
symptom with the lowest average rating is vomit followed by
nausea.

B. Bi-LSTM Model

Figure 1 shows the RMSE performance of the Bi-LSTM
model for predicting M12 ratings for all 22 general and HNC-
specific symptoms. As can be seen, among all the symptoms,
vomit achieves the lowest RMSE at 0.48 whereas dry mouth
achieves the highest RMSE at 2.18. Not surprisingly, these
correspond to the symptoms with the lowest and highest
averages at M12. The RMSE for all symptoms is below 2,
with the exception of drymouth and taste at 2.18 and 2.10
RMSE, respectively.

For dry mouth and taste symptoms, we evaluate the AUCs
and confusion matrices at different rating thresholds and
present the results for ratings ≥ 3 in Figure 2. We chose
3 because it had the most even distribution of patients. At
threshold 1, most patients experienced the symptom and at
threshold 5, most patients did not. As is shown in the figure,
for both symptoms, Bi-LSTM models achieve good AUCs,
0.81 for dry mouth and 0.82 for taste. The confusion matrices
also indicate good true positive rate and true negative rate.

C. Patient Stratification

Three symptom burden clusters were identified from the
LSTM predicted 12-month post-treatment (M12) symptom
ratings. The majority of the patients (52.9%) are in the low
symptom burden cluster, 35.1% in the mild symptom cluster,
and 12.0% in the high symptom burden cluster. As can be seen
in Table II, the distribution of the clinical covariates within
the symptom burden clusters follows the same distribution as
the entire cohort. T-stage and neck dissection are significantly
associated with the symptom clusters, the toxicity and survival
outcomes.



TABLE II
PATIENT DISTRIBUTION FOR THE PREDICTORS AND OUTCOMES USED IN THE PREDICTION MODELS. DISTRIBUTION IS ALSO SHOWN FOR THE 12-MONTH

LSTM-PREDICTED PATIENT STRATIFICATION.

Attribute Category
All Patients

(N=937, 100%)

Low Symptom
Cluster

(N=496, 52.9%)

Mild Symptom
Cluster

(N=329, 35.1%)

High Symptom
Cluster

(N=112, 12.0%)
P-values

Age
<65 622 66.4% 338 68.1% 216 65.7% 68 60.7%

0.304
>=65 315 33.6% 158 31.9% 113 34.3% 44 39.3%

Gender
male 849 90.6% 461 92.9% 290 88.1% 98 87.5%

0.033
female 88 9.4% 35 7.1% 39 11.9% 14 12.5%

Smoking
smoker 409 43.6% 204 41.1% 146 44.4% 59 52.7%

0.080
non-smoker 528 56.4% 292 58.9% 183 55.6% 53 47.3%

Site of tumor
BOT 436 46.5% 210 42.3% 166 50.5% 60 53.6%

0.041Tonsil 426 45.5% 248 50.0% 133 40.4% 45 40.2%
other 75 8.0% 38 7.7% 30 9.1% 7 6.3%

T stage
T0-T2 697 74.4% 404 81.5% 224 68.1% 69 61.6%

<0.001
T3,T4 240 25.6% 92 18.5% 105 31.9% 43 38.4%

N stage
N0,N1 689 73.5% 380 76.6% 236 71.7% 73 65.2%

0.030
N2,N3 248 26.5% 116 23.4% 93 28.3% 39 34.8%

CC
yes 677 72.3% 340 68.5% 250 76.0% 87 77.7%

0.026
no 260 27.7% 156 31.5% 79 24.0% 25 22.3%

IC
yes 174 18.6% 81 16.3% 64 19.5% 29 25.9%

0.055
no 763 81.4% 415 83.7% 265 80.5% 83 74.1%

Neck dissection
yes 145 15.5% 99 20.0% 32 9.7% 14 12.5%

<0.001
no 792 84.5% 397 80.0% 297 90.3% 98 87.5%

Outcomes
Xerostomia
at 12 months

yes 207 22.1% 11 2.2% 119 36.2% 77 68.8%
<0.001

no 730 77.9% 485 97.8% 210 63.8% 35 31.3%

Overall Survival
(in months)

Median (25% - 75%) 27, (16 - 53) 28, (18 - 57) 25, (15 - 50) 25, (14 - 43) -
dead 80 8.5% 26 5.2% 34 10.3% 20 17.9%

<0.001
alive 857 91.5% 470 94.8% 295 89.7% 92 82.1%

TABLE III
AVERAGE SEVERITY AND PERCENTAGE OF MISSINGNESS AT EACH TIME POINT FOR THE ORIGINAL PROS FOR ALL 22 GENERAL CANCER SYMPTOMS

AND HNC CANCER SYMPTOMS.

Symptom B W0 W6 M6 M12
avg sev % miss avg sev % miss avg sev % miss avg sev % miss avg sev % miss

pain 1.73 15.7% 5.39 36.5% 2.12 44.5% 1.16 31.3% 0.88 43.4%
fatigue 1.89 15.8% 4.71 36.8% 2.90 44.7% 2.11 31.2% 1.58 43.6%
nausea 0.34 15.9% 2.61 36.5% 0.46 44.6% 0.29 31.4% 0.15 43.9%
sleep 1.88 15.8% 3.51 36.5% 2.08 44.4% 1.66 31.4% 1.26 43.5%

distress 1.79 15.7% 1.83 36.4% 1.22 44.5% 0.85 31.3% 0.63 44.0%
sob 0.55 15.7% 0.88 36.4% 0.69 44.5% 0.48 31.4% 0.48 43.5%

memory 0.77 15.8% 1.44 36.5% 1.11 44.7% 1.16 31.5% 1.33 43.9%
appetite 0.88 15.7% 4.98 36.6% 2.38 44.5% 1.90 31.1% 0.97 43.6%
drowsy 1.29 16.1% 3.78 36.6% 1.96 44.5% 1.60 31.4% 1.13 43.9%

dry mouth 0.95 15.6% 5.02 36.5% 4.18 44.5% 4.38 31.3% 3.37 43.4%
sad 1.21 15.6% 1.43 36.5% 1.03 44.7% 0.70 31.3% 0.61 43.6%

vomit 0.12 15.8% 1.31 36.5% 0.27 44.6% 0.11 31.3% 0.06 43.8%
numb 0.50 15.9% 0.96 37.0% 0.68 44.7% 0.90 31.5% 0.85 44.2%
mucus 0.98 16.1% 5.64 36.6% 2.78 44.6% 2.36 31.3% 1.67 43.9%

swallow 1.19 16.4% 5.06 36.6% 2.58 45.1% 2.18 31.4% 1.80 43.8%
choke 0.64 16.1% 2.45 36.9% 0.98 44.8% 1.14 31.4% 1.00 43.8%
voice 0.72 16.0% 2.59 36.7% 1.19 44.6% 1.10 31.4% 0.83 43.6%
skin 0.21 16.2% 4.06 36.9% 0.61 44.4% 0.29 31.3% 0.24 43.6%

constipation 0.63 16.1% 2.79 36.7% 1.20 44.6% 0.81 31.2% 0.54 44.0%
taste 0.57 16.3% 6.79 36.8% 4.33 44.8% 3.57 31.3% 2.59 43.8%

mucositis 0.64 16.1% 5.16 37.1% 2.31 44.8% 1.06 31.5% 0.52 43.9%
teeth 0.48 16.4% 2.34 37.1% 0.97 44.7% 0.83 31.5% 0.70 44.0%

Average 0.91 15.9% 3.40 36.7% 1.73 44.6% 1.39 31.4% 1.05 43.8%



(a) Dry mouth symptom

(b) Taste symptom

Fig. 2. AUCs and Confusion Matrices for 2a Dry mouth symptom and 2b
Taste symptom at threshold 3 (moderate).

Fig. 3. Logistic regression model performance over the Train and Test data
splits

Comparing the M12 symptom burden clusters with the
same clusters using the baseline (B) and 6 weeks (W6) post-
treatment ratings, at baseline, a clear majority (80.6%) of the
patients are in the low symptom cluster, and only 2.6% are in
the high symptom cluster. For W6, 73.0% of the patients are
placed in the low cluster, 22.7% in the mild cluster, and 4.3%
in the high cluster.

Figure 5 shows the symptom burden trajectories for the three
M12 symptom burden clusters for all symptoms presented into
three groups from the least to the most severe symptoms. As
can be seen, the high symptom cluster shows average severity
for all symptoms when compared to the other two clusters,
and the differences are more evident for the most prevalent
symptoms (dry mouth and taste). Moreover, even when only
M12 were used for clustering, the symptom rating trajectories
conform to the severity of the cluster labels.

D. Toxicity Prediction

Figure 3 shows the average AUC and standard deviation of
the logistic regression models over the training and testing data

(a) Without Symptom Burden Cluster

(b) With M12 Symptom Burden Cluster

Fig. 4. Odds ratio for the logistic regression model predictors when (a) the
cluster labels are excluded from the model versus (b) when the cluster labels
are included as predictors in the model.

for the four models evaluated. Overall, the worse performance
is observed when no cluster label is included as a predictor
of the model, logit-wo-cluster. The best-performing model is
the logit-w-cluster-M12 for both the training and test sets.
The comparable performance between training and testing
indicates that the models are not overfitting.

Figures 4a and 4b illustrate the odds ratios of predictors
used in the logistic regression models excluding and including
cluster labels (M12) as predictors respectively. In the model
excluding cluster labels, the highest odds ratios are observed
for female gender and smoking, with smoking being the
only significant association with xerostomia. In contrast, when
cluster labels are included as predictors, high symptom burden
cluster and smoking emerge as the most significant predictors
and are significantly associated with xerostomia.

E. Survival Prediction

Figure 6 shows the Cox models’ performance comparison
by computing c-index over the train and test data. For both the
training and test sets, the cox-wo-cluster, which excludes any
cluster labels as predictors, had the lowest performance. The
inclusion of the cluster labels into the cox models improved
the c-index for both training and testing with cox-w-cluster-
W6 showing the best c-index for the train set and the cox-w-
cluster-B the best performance over the test set.

Figures 7a and 7b present the Cox models’ odds ratios
of predictors, both excluding and including the cluster labels
(M12) as predictors, respectively. In both models, the predic-
tors significantly associated with survival include advanced T-
stage (T3, T4) and N-stage (N2, N3) diagnosis. This associa-
tion remains even for the model that includes cluster labels.



Fig. 5. Symptom burden trajectories

Fig. 6. Cox model performance over the Train and Test data splits

(a) OR plot of Cox model excluding cluster labels as a predictor

(b) OR plot of Cox model including cluster labels as a predictor

Fig. 7. Odds ratio for the Cox model predictors when (a) the cluster labels
are excluded from the model versus (b) when the cluster labels are included
as predictors in the model.

V. DISCUSSION

The Bi-LSTM accurately predicts PRO data. As a longi-
tudinal model, it is able to predict late toxicity (M12) using
data available at diagnosis. While symptoms such as nausea,
vomiting, and skin have very low RMSEs (≤ 1) and symptoms
such as dry mouth and taste have larger RMSEs (< 2.5), we

argue that the performance of Bi-LSTM should be measured
on the latter. The reason is that 12 months after the end-
of-treatment, dry mouth and taste are two of the long-term
toxicities that preserve moderate-to-severe ratings for a large
number of patients, whereas very few patients experience
moderate or severe nausea or vomiting. Consequently, the
Bi-LSTM can achieve a low RMSE for these symptoms by
predicting values close to zero, and a relatively higher RMSE
by predicting moderate ratings for dry mouth for patients with
severe dry mouth. When evaluating the AUC performance of
the LSTM for predicting mild-to-severe symptoms, the LSTM
achieved an impressive AUC of 81% and 82% for taste and
dry mouth at M12.

Moreover, clustering the patients using the predicted PRO
data into low, mild, and high symptom burden groups simpli-
fies the integration of PRO data into the predictive models. It is
worth noting that the novelty of including a PRO-based cluster,
regardless of the time point, improved model performance for
both toxicity and survival.

From our results, even the inclusion of clusters from
symptom ratings at baseline improves performance. Not sur-
prisingly, the largest performance improvement is seen on
toxicity prediction, for xerostomia 12 months after treatment.
Xerostomia is one of the most prevalent radiation-induced
toxicities and patients often experience it concomitantly with
other symptoms. When the logistic regression model does not
include the cluster labels, AUC over the test set is 54%, which
improves to 64% if baseline clusters are included, and reaches
86% when the clusters using the month 12 predictions are
included in the model.

Furthermore, the inclusion of the symptom clusters also
improved overall survival prediction. While the inclusion of
the clusters from the month 12 predictions improves the test
c-index from 62% to 67%, the best-performing model is the
symptom clusters over the baseline ratings (test c-index of
69%). This can be attributed to the fact that the Bi-LSTM
does not model treatment or survival and will predict symptom
ratings regardless of survival outcomes. Lastly, the symptom
burden experienced before treatment at baseline can be a proxy
for performance status and be predictive of survival early on.

This study is not without limitations. First, since patients
missing baseline ratings were imputed using mean imputation,



the long-term predictions for these patients are biased towards
the mean values. In the future, it would be worth exploring
other imputation techniques that could offer less biased results.
Moreover, head and neck cancer patients have experienced
improved survival in recent years with 92% survivors in this
cohort. The large proportion of censored patients sometimes
without enough follow-up makes it hard to obtain a better c-
index estimate. Last but not least, as typical of retrospective
analyses performed at single institutions, the database used
to generate these models consisted of patient data from a
single tertiary cancer center and may reflect a patient sample
that is not generalizable to the general population. As such
the presented results are not yet suitable for general use
prior to validation of the predictive models with external
datasets. Our future work plans to apply the proposed model
to prospective data from the same institution as well as from
another institution that can serve as external validation. Even
though the collection of PRO data is not standardized across
institutions, one advantage of our proposed approach using
patient stratification is that it would be easier to generalize to
other PRO data.

VI. CONCLUSION

The Bi-LSTM model proves to be an effective and powerful
network to model PRO data and predict long-term toxicity.
Clustering the patients using the predicted PRO data into
low, mild, and high symptom burden groups simplifies the
integration of PRO data into predictive models. Not surpris-
ingly, the largest performance improvement is seen in toxicity
prediction. Furthermore, the inclusion of the symptom clusters
also improved overall survival prediction.

In future work, we will evaluate additional long-term
toxicities, such as osteoradionecrosis, dysphagia, and sleep
disorders, that affect quality of life in HNC patients. We will
also examine how PRO-based patient clusters evolve before,
during, and after treatment, and how these patterns relate
to survival and toxicity. This temporal analysis will explore
how early or ongoing symptom burdens impact long-term
outcomes, potentially guiding timely interventions to reduce
toxicities and improve survival.

REFERENCES

[1] MD Anderson HNC Symptom Working Group. “Long-term patient
reported outcomes following radiation therapy for oropharyngeal cancer:
cross-sectional assessment of a prospective symptom survey in patients
over 65 years old.” Radiation Oncology 12 (2017): 1-10.

[2] K. Christopherson, et al. “Chronic radiation-associated dysphagia in
Oroph. cancer survivors: Towards age-adjusted dose constraints for
deglutitive muscles.” Clin. & Transl. Radiat. Oncol. 18 (2019): 16-22.

[3] A. Wentzel, et al. “Precision toxicity correlates of tumor spatial prox-
imity to organs at risk in cancer patients receiving intensity-modulated
radiotherapy.” Radiotherapy and Onc. 148 (2020): 245-251.

[4] A. Wentzel, et al. “Cohort-based T-SSIM visual computing for radiation
therapy prediction and exploration.” IEEE Trans. Vis. Comp. Graph. 26.1
(2019): 949-959.

[5] C. Floricel, et al. “Thalis: Human-Machine Analysis of Longitudinal
Symptoms in Cancer Therapy” IEEE Trans. Vis. Comp. Graph. 28.1
(2021): 151-161.

[6] C. Floricel, et al. “Roses Have Thorns: Understanding the Downside
of Oncological Care Delivery Through Visual Analytics and Sequential
Rule Mining” IEEE Trans. Vis. and Comp. Graph. 30.1 (2023): 1227-
1327.

[7] M. Biggs, et al. “Identifying Symptom Clusters from Patient Reported
Outcomes through Association Rule Mining” International Conference
of Artificial Intelligence in Medicine 19.1 (2021): 491-496.

[8] C. Nutting, et al. “Parotid-sparing intensity modulated vs. conventional
radiotherapy in HNC (PARSPORT): a phase 3 multicentre randomised
controlled trial.” The Lancet Oncol. 12.2 (2011): 127-136.

[9] D. Rosenthal, et al. “Measuring head and neck cancer symptom burden:
the development and validation of the MD Anderson symptom inventory,
head and neck module.” Head & Neck: Journal for the Sciences and
Specialties of the Head and Neck 29.10 (2007): 923-931.

[10] G.E. Marai, et al. “Precision risk analysis of cancer therapy with
interactive nomograms and survival plots.” IEEE Trans. Vis. Comp.
Graph. 25.4 (2018): 1732-1745.

[11] C. Cleeland, et al. “Assessing symptom distress in cancer patients: the
MD Anderson Symptom Inventory.” Cancer: Interdisciplinary Interna-
tional Journal of the American Cancer Society 89.7 (2000): 1634-1646.

[12] B. O’Sullivan, et al. “Development and validation of a staging system
for HPV-related oropharyngeal cancer by the International Collaboration
on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre
cohort study.” The Lancet Oncology 17.4 (2016): 440-451.

[13] A. Wentzel, et al. “Precision association of lymphatic disease spread with
radiation-associated toxicity in oropharyngeal squamous carcinomas.”
Radiotherapy and Onc. 161 (2021): 152-158.

[14] J. Kirkova, et al. “Consistency of symptom clusters in advanced cancer.”
Am. J. of Hospice and Palliative Medicine 27.5 (2010): 342-346.

[15] S. Dong, et al. “Symptom clusters in advanced cancer patients: an
empirical comparison of statistical methods and the impact on quality
of life.” Journal of Pain and Symptom Management 51.1 (2016): 88-98.

[16] G. Fan, et al.. “Symptom clusters in cancer patients: a review of the
literature.” Current Oncology 14.5 (2007): 173-179.

[17] A. Wentzel, et al. “DASS good: explainable data mining of spatial
cohort data.” Computer Graphics Forum. Vol. 42. No. 3. (2023.)

[18] M. A. van Beers, et al. “Is locally adv. HNC ‘increasing’ in the
Netherlands? The paradox of absolute numbers, standardized incidence
rates and proportional share.” Oral Oncol. 138 (2023): 106316.

[19] Y. Wang, et al. “Predicting Late Symptoms of HNC Treatment Us-
ing LSTM and Patient-Reported Outcomes.” Proceedings of the 25th
International Database Engr. & Applications Symposium, 2021.

[20] Y. Wang, et al. “Improving Prediction of Late Symptoms using LSTM
and Patient-reported Outcomes for HNC Patients.” IEEE 11th Int. Conf.
on Healthcare Informatics (ICHI), (2023), pp. 292-300.

[21] G. Szekely, and M. Rizzo. “Hierarchical clustering via joint between-
within distances: Extending Ward’s minimum variance method.” Journal
of Classification 22.2 (2005): 151-184

[22] A. Mathew, et al. “Symptom clusters in head and neck cancer:
a systematic review and conceptual model.” Seminars in Oncology
Nursing. Vol. 37. No. 5. WB Saunders, 2021.

[23] E. Christodoulou, et al. “A systematic review shows no performance
benefit of machine learning over logistic regression for clinical predic-
tion models.” Journal of Clinical Epidemiology 110(2019):12-22.

[24] H. Steck, et al. “On ranking in survival analysis: Bounds on the
concordance index.” Advances in NeurIPS 20 (2007).

[25] E. Wulff-Burchfield, et al. “Late systemic symptoms in head and neck
cancer survivors.” Supportive Care in Cancer 27 (2019): 2893-2902.

[26] C. Noel, et al. “Patient-reported Symptom Burden as a Predictor of
Emergency Department Use and Unplanned Hospitalization in Head
and Neck Cancer: A Longitudinal Population-based Study.” J. of Clin.
Oncol., vol. 39, no. 6, 2021, pp. 675-684. Am. Soc. of Clin. Oncol.

[27] C. Quinten, et al. “Patient Self-reports of Symptoms and Clinician
Ratings as Predictors of Overall Cancer Survival.” Journal of the NCI,
vol. 103, no. 24, 2011, pp. 1851-1858.

[28] Q. Shi, et al. “Using group-based trajectory modeling to examine
heterogeneity of symptom burden in patients with HNC undergoing
aggressive non-surgical therapy.” QoL. Research 22 2013: 2331-2339.

[29] M. Huber, et al. “Predicting patient-reported outcomes following hip
and knee replacement surgery using supervised machine learning.” BMC
Med Inform Decis Mak 19, 3 (2019).

[30] K. Spencer, et al., “Fixing the Leaky Pipe: How to Improve the Uptake
of Patient-Reported Outcomes–Based Prognostic and Predictive Models
in Cancer Clinical Practice”. JCO Clin Cancer Inform 7 (2023).

[31] E. A. Anyimadu , et al.. “Collaborative Filtering for the Imputation of
Patient Reported Outcomes.” International Conference on Database and
Expert Systems Applications. Cham: Springer Nature Switzerland, 2024.


