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ABSTRACT

Recent advances in diffusion models have significantly enhanced image editing
capabilities, raising serious concerns about copyright protection. Traditional wa-
termarks often fail to withstand diffusion-based edits, making image protection
challenging. To address this, we propose a method that embeds an imperceptible
perturbation in images, serving as a watermark while simultaneously disrupting
the output of latent diffusion models. Our method employs a Score Estimator
trained on select latent embeddings to embed the watermark by minimizing the
score function. We then apply conformal inference to compute p-values for wa-
termark detection. To distort the output of latent diffusion models, we shift wa-
termarked image embeddings away from the distribution mean, distorting unau-
thorized generations. Experiments demonstrate our framework’s superior perfor-
mance in watermark detection, imperceptibility, and distortion efficacy, offering a
comprehensive approach to protect images against latent diffusion models.

1 INTRODUCTION

Traditional methods for protecting image copyrights often rely on embedding imperceptible mes-
sages as digital watermarks into images (Zhu et al., 2018). These watermarks allow creators to
verify ownership by detecting their presence in suspected unauthorized copies. Although effective
against direct misuse, such approaches face limitations with the emergence of generative models
(Goodfellow et al., 2014), particularly diffusion models (Dhariwal & Nichol, 2021). By learning the
underlying distribution of a given dataset, diffusion models can produce novel images that closely
resemble the training data (Song et al., 2020), which raises serious copyright concerns. Existing
watermarks face two unique challenges: first, feeding watermarked images into diffusion pipelines
(e.g., for editing or style transfer) can degrade or distort embedded watermarks in the outputs, com-
plicating detection (Mareen et al., 2024). Second, malicious users can exploit diffusion models to
generate new images using watermarked images as input, undermining copyright protection efforts.

These vulnerabilities threaten creators’ rights and creative integrity, for example, having their orig-
inal works replicated or modified without permission. Traditional watermarking techniques that
focus on embedding invisible information within images fail to address this challenge: they neither
prevent the generation of new images or the modification of the original using diffusion models, nor
ensure watermark robustness against diffusion-based generation processes (Rombach et al., 2022).

In this work, we propose a novel dual-protection framework designed to address both image water-
marking and the prevention of misuse by latent diffusion models (LDM) (Rombach et al., 2022).
Our approach introduces an adversarial perturbation that acts as a watermark by leveraging a Score
Estimator trained on the latent embeddings generated by an LDM encoder (Esser et al., 2021) (Fig-
ure 1). The watermark is made invisible by constraining the perturbation strength to ensure minimal
perceptual change. To embed the watermark in the latent space, we employ conformal inference
(Angelopoulos & Bates, 2021; Tibshirani, 2023) together with adversarial optimization to minimize
the conformity score, driving it to a value that statistically should occur with a probability of less
than the significance level. To verify the presence of a watermark, we calculate p-values and com-
pare them against a pre-determined threshold, providing a rigorous guaranty for controlling type I
errors. Additionally, the adversarial perturbations are designed to shift the latent embedding of wa-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LDM

Score 

Estimator

Watermarked 

Image

Distorted 

ImageWatermark

Conformity Score

Adversarial

Optimization

Prompt: 

Convert the 

image into 

a painting

Our Method

𝐼𝑜

𝑧

Embedding

KeyWatermark 
Model

Prompt

Diffusion Model

Existing Methods

𝐼𝑜

Regenerated

Figure 1: Existing methods that embed a predefined key as watermark cannot prevent malicious
users from using these images to re-generate or train a latent diffusion model (LDM). Our method
generates unique watermarks using adversarial optimization that minimizes a loss over the latent
space and a conformity score. We shift the watermarked image’s distribution to a low sampled region
of the LDM’s latent space which prevents the LDM to further train or sample from it, resulting in
distorted outputs. Moreover, we can detect the presence of our watermark using a statistical test
satisfying our dual protection goal.

termarked images away from the mean of the embedding distribution, placing them in low-density
regions. As a result, when a LDM tries to use this image as input, it forces the model to generate
visibly distorted outputs, ensuring detectable artifacts while maintaining watermarking objectives.
The key contributions of our work are as follows:

• We propose a dual-protection framework that introduces an invisible perturbation to images, serv-
ing as a watermark while simultaneously distorting the output of LDMs.

• Our method leverages conformal inference to calculate p-values for watermark detection, provid-
ing a statistically robust approach to identifying watermarked images.

• Unlike previous watermarking techniques, our framework is designed to prevent malicious users
from directly claiming ownership of a watermarked image using its embedding (Case 2 of Sec-
tion 5.7). By utilizing conformal inference, the selection of watermark dimensions remains hid-
den, making any malicious claim of ownership no better than a random guess. This significantly
strengthens the defense against unauthorized ownership assertions.

In summary, our approach provides a comprehensive solution for copyright protection against
LDMs. By embedding invisible perturbations that act as both watermarks and deterrents to mis-
use, we offer a novel mechanism for protecting creative works while ensuring that LDMs cannot be
easily exploited to generate unauthorized content.

2 RELATED WORK

Adversarial Attacks In computer vision, adversarial examples are subtly altered images that manip-
ulate neural network models while remaining nearly imperceptible (Szegedy et al., 2013). In image
classification, these examples can cause models to misclassify images. In diffusion models, adver-
sarial attacks introduce undetectable changes that result in distorted outputs, revealing tampering.
Salman et al. (2023) identify two types of adversarial attacks on LDMs: encoder attacks, which mod-
ify the encoder’s output to resemble a predefined embedding, and diffusion attacks, which match the
model’s output to a target image. Glaze (Shan et al., 2023) protects artists’ styles from unauthorized
replication by incorporating invisible perturbations to distort styles learned by diffusion models .

Image Watermarking Image watermarking embeds invisible information in images to assert copy-
right (Cox et al., 2007). With the rise of diffusion models capable of producing high-quality images,
traditional digital watermarking techniques, like HiDDeN (Zhu et al., 2018) and SSL (Fernandez
et al., 2022) face new challenges. HiDDeN is an end-to-end CNN framework comprising an encoder,
decoder, and adversarial network. SSL leverages self-supervised learning to embed watermarks in
pretrained latent spaces. Tree-Ring (Wen et al., 2023) instead embeds imperceptible patterns into
the initial noise vectors of diffusion models through Fourier-space structuring. Meanwhile Stable
Signature (Fernandez et al., 2023) fine-tunes the decoder of LDMs to natively embed watermarks.
Secret Key Signature (SKS) (Chen et al., 2024) uses adversarial attacks to embed watermarks into
images, accompanied by hypothesis tests for detecting watermarks with statistical guarantees. In
this work, we aim to achieve comparable watermarking performance while distorting the outputs
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Figure 2: Pipeline of our proposed method. (a) The input image Io is passed through a feature
embedding model F to obtain the key vector Kv and a latent diffusion model encoder E to get the
latent vector z. The label y is calculated using Equation 2. We use conformal inference to generate
a score ss of the key vector. The watermark is a perturbation embedding generated by minimizing
the loss over ss and z. (b) Prior to watermark generation, we pretrain F using a large set of images
in order to generate key vectors which are drawn from the mean distribution of the dataset. (c) To
detect whether an image is watermarked or not, we calculate a p-value based on the score. If the
value falls below a certain threshold α we can claim that the image is watermarked.

of LDMs. Unlike previous watermark-only methods, such as SKS, our approach protects water-
marked images from manipulation by LDMs. Furthermore, by incorporating conformal inference,
our method resists direct ownership claims—an issue that SKS cannot address.

3 METHODS

This section describes our dual-protection strategy – (i) integrate an invisible watermark in images,
and (ii) distort the output of LDMs that attempt to utilize these images without authorization.

As shown in Figure 2, we first train a Score Estimator to predict a conformity score ss ∈ R for an
input image Io. Next, using the trained estimator, we run a joint optimization loop to add a small
perturbation to Io to produce a watermarked image Iw. The joint optimization needs to balance
between the watermark strength to ensure imperceptibility as well as to change the distribution of the
original input so that it becomes distorted when used by an LDM. This is achieved by minimizing:

L(Io) = λDLD(Io) + λWLW(Io), (1)

where LD represents the loss that distorts the output of the LDM, and LW represents the loss for
embedding the watermark. The parameters λD and λW are adjustable weights. We optimize L(Io)
using a modified momentum-based iterative algorithm, MI-FGSM (Dong et al., 2018), adapted with
a parameter βtg to bound the perturbation’s magnitude. A larger βtg relaxes this constraint, permitting
stronger perturbations. The detailed steps of MI-FGSM are provided in the appendix.

In the watermark detection stage, to determine whether a suspected image belongs to the image
owner, the image is input into the Score Estimator. A p-value is calculated via conformal inference
and a reference set of calibration images. If the value falls below the confidence level, we can assert
that the image is watermarked.

3.1 WATERMARK EMBEDDING

In this section, we describe the process of embedding a watermark into an image. Specifically, we
elaborate on the definition of LW in equation 1.

3.1.1 SCORE ESTIMATOR MODEL

We first introduce the Score Estimator, which contains a CNN-based feature embedding model F
that generates m-dimensional binary key vectors aligned with the indices of the latent space of a
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frozen LDM encoder E . To ensure watermark security, we generate unique labels instead of relying
on known labels. Training data is created by sampling an image I from a large dataset and passing it
through E to obtain a latent embedding z = E(I) ∈ Rd. We then compare z with the dataset latent
embedding mean µ and compute the sign of this difference: sign(E(I)− µ). From this sign vector,
m dimensions are randomly selected as the binary label y ∈ {−1, 1}m, i.e,

y = sign(E(I)− µ)i1,i2,...,im , (2)

where i1, i2, . . . , im are randomly selected dimensions chosen by the image owner. The same set of
m dimensions are used consistently across all images for both training and watermarking. Since the
total number of dimensions z is large, it is computationally infeasible for malicious users to identify
the chosen subset selected by the user, thereby protecting the watermark’s privacy.

Next, we train F to output the m-dimensional vector. A sigmoid activation function is applied to
the model output to produce probabilities for each dimension. The predictor model is trained using
binary cross-entropy loss for multi-label classification on a large image dataset with our generated
keys, shown in Figure 2b. We refer to this trained model as the Score Estimator. During watermark
generation and detection, conformity scores are computed using multi-label conformal prediction
(Cauchois et al., 2021) utilizing both the generated keys and latent space labels.

3.1.2 MULTILABEL CLASSIFICATION CONFORMAL INFERENCE

We adopt the multilabel classification conformal inference method proposed by Cauchois et al.
(2021), which forms the foundation of our watermark approach. Conformal inference is a statistical
framework that provides valid confidence levels for predictions (Tibshirani, 2023). In the context of
multilabel classification, it computes a conformity score for each label and constructs a prediction
set containing the true labels with a predefined confidence level. Given an image I ∈ I and its
corresponding k-th label yk ∈ {−1, 1}, our goal is to compute an overall conformity score for the
image by considering dependencies among multiple labels. Cauchois et al. (2021) proposes building
a tree structure to capture these dependencies and then compute the conformity score based on it.

We define two factors to model label dependencies: interaction factors and marginal factors. The
interaction factors ψ : {−1, 1}2 → R4 capture pairwise label interactions, defined as:

ψ(−1,−1) = e1, ψ(1,−1) = e2, ψ(−1, 1) = e3, ψ(1, 1) = e4 (3)
where e1, e2, e3, e4 are the standard basis vectors of R4. Meanwhile, marginal factors ϕk : {−1, 1}×
I → R2 describe how the individual labels relate to I . The marginal factor for the k-th label is:

ϕk(yk, I) :=
1

2

(
(yk − 1) · sk(I)
(yk + 1) · sk(I)

)
(4)

where sk(·) is the score function for the k-th label. To model the dependencies among labels, a
tree-structured graphical model (Chow & Liu, 1968) is employed. For a tree T = ([K], E), the
joint probability of the labels is modeled as:

pT ,α,β(y | I) ∝ exp

 ∑
e=(k,l)∈E

βT
e ψ(yk, yl) +

K∑
k=1

αT
k ϕk(yk, I)

 (5)

where α and β are parameters that describe the interaction and marginal contributions, respectively.
Specifically, αk ∈ R2 for each label k, and βe ∈ R4 for each edge e ∈ E.

The tree structure T that best represents the dependencies between labels is learned by maximizing
the log-likelihood of training data. Given a training dataset Dtrain = {(I(i), y(i))}Ntrain

i=1 , we optimize

T̂ , α̂, β̂ = arg max
T ,α,β

Ntrain∑
i=1

log pT ,α,β(y
(i) | I(i)) (6)

To estimate the dependencies between labels, we compute the empirical mutual information between
each pair of labels using single-edge trees. The optimal tree is obtained by solving for the maximum
spanning tree based on mutual information values (Chow & Liu, 1968). With the tree structure and
parameters learned, we define a scoring function s(I, y) for an image I and its label set y, given by:

sT̂ ,α̂,β̂(I, y) :=
∑

e=(k,l)∈Ê

β̂T
e ψ(yk, yl) +

K∑
k=1

α̂T
k ϕk(yk, I) (7)
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3.1.3 WATERMARK EMBEDDING LOSS

Using the trained key generator F and the latent labels y, we create a watermark via conformal
inference. The scoring function between the k-th output F(I)k and the k-th label yk is defined as:

sk(I, y) = −|F(I)k − yk|. (8)

Using multi-label conformal prediction, we estimate the edge empirical mutual information for every
pair of nodes in the m dimensions selected, and construct a tree-structured score function ŝ(I, y)
based on the Chow-Liu-type approximate maximum likelihood tree. Next, we compute conformity
scores for a calibration set by passing them throughF to generate keys and evaluating ŝ(I, y). Using
these scores, we determine an empirical critical value scv. An image is classified as watermarked if
its conformity score satisfies ŝ(I, y) < scv. To embed a watermark, we optimize the original image
Io to minimize its score such that ŝ(Io, y) ≤ scv, yielding the watermarked image Iw.

In practice, when minimizing the scoring function ŝ(I, y) with respect to I , we must account for
the gradient passing through y: ∂ŝ

∂y
∂y
∂I . However, since y is discrete, ∂y

∂I is zero. To address this,
we “soften” y using the sigmoid function σ, such that ỹ = σ(y). Therefore, the loss function for
watermark embedding is:

LW(Io) = ŝ(Io, ỹ). (9)

3.2 DISTORTING LATENT DIFFUSION MODELS

The last part of our objective function is the distortion lossLD, designed to distort the latent diffusion
model’s output. For an input Io, we shift its latent embedding E(Io) into low-probability regions of
the latent space. These regions correspond to under-sampled patterns during the diffusion model’s
training. This forces the diffusion process to operate outside its learned manifold, inducing higher
denoising errors and distortions in generated outputs.

As demonstrated later in the appendix, the distribution of image embeddings z within the latent space
Z follows a Gaussian distribution f(z), characterized by a mean vector µ ∈ Rn and a covariance
matrix Σ ∈ Rn×n. Given Io, our objective is to create a watermarked image Iw by minimizing the
log-likelihood of the image embedding zw. We minimize the following loss with respect to Io,

LD(Io) = −
1

2
(E(Io)− µ)⊤Σ−1(E(Io)− µ). (10)

4 WATERMARK DETECTION

We test whether a suspected image Is is watermarked using two hypotheses: H0 (null) states that
Is is not watermarked, and H1 (alternative) states that Is is watermarked. To test for the presence
of a watermark, we assume access to a calibration dataset Dcal = {(Ii, yi)}Ni=1 , where Ii is the i-th
image, yi the corresponding label calculated using equation 2, and N is the calibration dataset size.
This calibration dataset is distinct from the one used in Section 3.1.3 to maintain statistical validity
of the hypothesis test. For each calibration image Ii, we compute its conformity score si = ŝ(Ii, yi)
and sort these scores in ascending order. Using the same feature dimensions {i1, . . . , im} selected
during watermark embedding, the suspected image’s conformity score is computed as ss = ŝ(Is, ys).

The empirical critical value is then calculated as scv = s(⌈(N+1)α⌉), where ⌈·⌉ denotes the ceiling
function and α is the desired significance level. We reject H0 if ss < scv, indicating the presence of
a watermark. We compute the p-value of the suspected image under hypothesis testing as:

q̂(ss) =
1

N

N∑
i=1

1(si ≤ ss). (11)

5 EXPERIMENT

We evaluate our method in six aspects: detection performance, imperceptibility, distortion analysis,
generalization, robustness, and security.

5
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5.1 EXPERIMENT SETUP

Our experiments use the MSCOCO 2017 dataset (Lin et al., 2014) containing 118k training, 41k
test, and 5k validation images. We adopted VGG16 (Simonyan, 2014) as the backbone for our
Score Estimator to generate m-dimensional key vectors. During experiments, we found VGG16’s
moderate accuracy (compared to ResNet (He et al., 2016)) provides better uncertainty calibration for
conformal inference-based watermark embedding. We use the encoder of Stable Diffusion as E to
generate latent embeddings and train the VGG model using binary cross-entropy loss (Equation 1).
Detailed training configurations are provided in the appendix.

We optimize Equation 1 using MI-FGSM (Dong et al., 2018), evaluating performance in three as-
pects: (1) detection rate, measured as the percentage of watermarked images with p-values below
the significance level; (2) image quality, quantified by PSNR, SSIM, MAE, and RMSE; and (3) dis-
tortion, evaluated via FID between LDM outputs and reference WikiArt images (Tan et al., 2019).

We compare against three adapted baselines: SSL (Fernandez et al., 2022) in zero-bit mode (α =
0.05), HiDDeN (Zhu et al., 2018) with a bit error rate threshold of 0.05, and SKS (Chen et al.,
2024). All methods are modified by adding the distortion loss LD to the original watermark loss,
and use identical MSCOCO training/validation splits for fair comparison. For methods such as
Stable Signature (Fernandez et al., 2023), which employ in-diffusion watermarking, watermarks are
embedded into outputs of diffusion models. In contrast, our method embeds watermarks into images
themselves, making a direct comparison of watermark properties unsuitable. Additionally, metrics
like PSNR are computed based on the diffusion model’s output. Since one of our primary objectives
is to distort the output of LDMs, a direct comparison with these methods is not feasible.

Our experiments show that at equivalent image qualities, our method achieves comparable detection
rates (99.94%) while inducing significantly stronger LDM distortion (FID 108.65 vs 72.68–92.35).

5.2 DETECTION PERFORMANCE ANALYSIS

We evaluated our watermark detection method by analyzing p-values for all watermarked images,
computing their mean, standard deviation, and the percentage below significance levels of 0.05 and
0.01. To assess false positives, we perform the same analysis on clean images. As shown in Table 1,
our method achieves near-perfect detection on watermarked images (> 99%) with low mean p-
values, while clean images exhibit false positive rates consistent with the chosen significance levels.

Table 1: Watermark detection performance: the
mean and standard deviation (Std) of p-values,
and the percentage below significance levels 0.05
and 0.01 for watermarked and clean images.

Mean Std <0.05 <0.01
Clean 0.4950 0.2871 4.6% 0.92%
Watermarked 0.0013 0.0039 99.94% 99.52%

Table 2: FID comparison of the distortion intro-
duced in LDM outputs across different methods.
Higher FID indicates more distortion, offering
better protection.

Method Orig. SSL HiDDeN SKS Ours
FID↑ 66.97 72.68 92.35 80.11 108.65

5.3 DISTORTION ANALYSIS

To measure the level of distortion introduced by different methods, we used 5,000 images from the
MSCOCO validation set and generate watermarked images using different models. Next we input
these watermarked images to the LDM with the prompt Generate an image in the impressionism
style of the original image. We then compared the generated images with authentic Impressionist-
style images from the WikiArt dataset (Tan et al., 2019), and compute FID as a measure of distortion.

This addresses a critical challenge in image protection: preventing LDMs from replicating the styles
of artists. A higher FID indicates greater distortion in generated images, suggesting stronger protec-
tion against unauthorized generation. As shown in Table 2, our method introduces more distortion
compared to other methods, providing better protection. Figure 3 compares the original image with
various generated images: unwatermarked inputs yield high-quality Impressionism outputs closely
matching prompts, whereas our watermarked images produce outputs with visible artifacts and blur.
Additional results for Impressionism and other art styles are available in appendix.

6
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Original Non-watermarked 
Generation

SSL HiDDeN SKS Ours

Output from a Latent Diffusion Model

Figure 3: Comparison of the original image with generated outputs using different watermarked
images as input to a LDM with the prompt - Generate an image in the impressionism style of the
original image. Our method produces the highest distortion in the generated result.

5.4 IMPERCEPTIBILITY ANALYSIS

We assess watermark imperceptibility by comparing the quality of watermarked images to the orig-
inals. HiDDeN achieved a PSNR of 33.56, and for fair comparison, SSL and SKS were adjusted
to produce a similar PSNR of 33. Despite superior distortion effects, our method maintains better
image quality across all metrics, as shown in Table 3. Additionally, by increasing βtg to allow greater
perturbation in watermarked images, we matched the baseline PSNR (32) while achieving a FID of
150.65 and a 99.74% detection rate at α = 0.05, demonstrating that stronger perturbations enhance
LDM distortion. Visual examples of watermarked images and perturbations are shown in Figure 4.

Table 3: Comparison of watermark imperceptibil-
ity across different methods.

Method PSNR↑ SSIM↑ MAE↓ RMSE↓
HiDDeN 32.72 0.9214 0.0242 0.0428
SSL 33.58 0.9408 0.0168 0.0222
SKS 32.01 0.9405 0.0165 0.0251
Ours 37.30 0.9412 0.0109 0.0195
Ours (32) 32.92 0.9147 0.0200 0.0278

Original Watermarked Perturbation x10

Figure 4: Visual comparison of original im-
ages, watermarked images, and 10× ampli-
fied structural differences.

5.5 GENERALIZATION ANALYSIS

We evaluate the generalization of our method across different LDMs by addressing two questions:

Case 1: Can watermarked images trained on one diffusion model withstand attacks from
another? We trained the Score Estimator on Stable Diffusion 2 (SD2) (Ramesh et al., 2022) and
input the watermarked images into Stable Diffusion XL (SDXL) (Podell et al., 2023) and DiffEdit
(Couairon et al., 2022). We compared the FID scores of their outputs against those of the original
images, as shown in Table 5. The results indicate that watermarked images trained for SD2 do
not effectively distort other models.This is because the watermark relies on the latent encoder, and
different LDMs use different encoders, limiting cross-model generalization.

Case 2: Can the entire watermark pipeline transfer to another diffusion model? We retrained
the Score Estimator for InstructPix2Pix (Brooks et al., 2023) to generate watermarked images and
evaluated the watermark detection rate, image quality, and FID (Table 4). Our method achieved a
98.84% detection rate at α = 0.05 while maintaining superior image quality compared to baselines
(Table 3). Furthermore, it significantly distorted InstructPix2Pix outputs, as reflected in higher FID.

Table 4: Image quality and FID comparison for watermark generated using InstructPix2Pix encoder.

Method PSNR SSIM MAE RMSE
InstructPix2Pix 36.38 0.9602 0.0119 0.0203

Method Original Watermarked
FID 96.73 132.79

In conclusion, watermarked images trained on one diffusion model do not effectively resist attacks
from another model. However, our method generalizes well to different diffusion models when
trained from scratch, demonstrating adaptability and robustness across architectures.

7
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Table 5: FID comparison between orig-
inal and SD2-watermarked images after
processing by different models.

Model Original Watermarked
SDXL 117.54 122.69
DiffEdit 99.41 94.43

Table 6: Robustness test against multiple overlapping wa-
termark embeddings. Detection rate of Alice’s original
watermark after embedding Bob’s additional watermarks.

1 2 3 4 5
SSL 92.62% 60.50% 27.00% 19.50% 12.00%
SKS 99.50% 98.60% 96.10% 89.70% 89.70%
Ours 99.94% 96.52% 92.80% 84.62% 75.46%
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Figure 5: Comparison of the robustness of different watermarking methods under various image
perturbations. Our method shows strong robustness under Gaussian Noise and JPEG Compression
while being outperformed by SSL under some spatial transformations. Notably, our method achieves
the highest resilience against diffusion model editing.

5.6 ROBUSTNESS ANALYSIS

To assess robustness, we tested our watermarking method under common image perturbations:
Gaussian noise, Gaussian blur, cropping, rotation, and JPEG compression. We then measured the
watermark detection rate (Figure 5). Our method demonstrates strong robustness under Gaussian
noise, outperforming both HiDDeN and SSL. Besides, it consistently exceeds HiDDeN across all
perturbations. However, SSL and SKS surpass our method in Gaussian blur, cropping, rotation,
and compression. We attribute this difference to their higher watermark embedding dimensionality
(2048 for SSL, 32 for SKS, vs. 6 for ours), which improves tolerance to spatial transformations.

For fairness, we retrain all baselines with the distortion loss LD, which enforces resistance to LDM-
based editing but reduces robustness to perturbations. This suggests that simply combining standard
watermark loss with distortion loss is not a good solution to achieve both aims. This highlights our
method’s advantage: we can achieve both aims while maintaining robustness against perturbations.

5.7 SECURITY ANALYSIS

We evaluated the security of our watermarking framework by simulating three attack scenarios in-
volving two users: Alice, the image owner, and Bob, a malicious user attempting to claim ownership.
We compared our method against other 0-bit watermarking approaches, SSL and SKS. For Cases 1
and 3, we took the results from Chen et al. (2024) without adding the distortion loss LD.

Case 1: Fake Watermark Generation Bob attempts to generate fake watermarks on clean im-
ages, hoping to bypass Alice’s watermark detection. To simulate this, we randomly selected m
dimensions from the latent embedding z, trained a corresponding Score Estimator, and computed
conformity score parameters in equation 7. We then watermarked the image using the loss in equa-
tion 1. Afterward, we evaluated the watermark detection rate using Alice’s model to determine the
effectiveness of Bob’s attack. As shown in Table 7, our method yields a higher detection rate than
SKS, though still lower than SSL. Notably, our method achieves a baseline detection rate compa-
rable to SKS at a p-value threshold of 0.01. When applying the same threshold to evaluate Bob’s
attack, our detection rate improves to 1.88%—surpassing SKS’s performance.

Table 7: Detection rate for fake watermark generation attacks across different methods.

Method SSL SKS Ours(0.05) Ours(0.01)
Detection rate 12.84% 1.94% 7.64% 1.88%
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Figure 6: Conformity scores from four random dimension sets follow near-Gaussian distributions,
making it difficult for Bob to directly train a Score Estimator to claim ownership of Alice’s image.

Case 2: Direct Ownership Claim Bob tries to claim ownership of Alice’s watermarked image
without modifying it. To simulate this, we trained four Score Estimators with different randomly
selected dimensions. Using the MSCOCO 2017 test set as a calibration set, we examined the con-
formity score distribution to determine whether Bob could achieve a p-value below 0.05. Since the
conformity score distribution concentrates around the mean, Bob is unlikely to generate a valid wa-
termark with a p-value below 0.05 without adversarial attacks. Figure 6 presents conformity score
distributions for the four Score Estimators. In this scenario, SKS is vulnerable: Bob can take Alice’s
watermarked image and uses her SKN to generate a signature to claim ownership.

Case 3: Watermark Removal and Replacement Bob attempts to remove Alice’s watermark by
embedding his own. To test this, we embedded a watermark into an image (acting as Alice’s wa-
termark), then added another four watermarks as Bob’s attack. We then checked whether Alice’s
watermark could still be detected after Bob’s attack. Table 6 shows the detection rate of Alice’s
original watermark as more Bob’s watermarks are added. SKS maintained a high detection rate
(above 89%). Our method also showed resilience, with a detection rate of 84.62% after three ad-
ditional watermarks, outperforming SSL. SSL’s detection rate dropped significantly to 19.5% after
three watermarks. Our slightly lower performance relative to SKS likely stems from the distortion
loss LD, which affects all pixels, whereas the watermark loss LW only affects a portion of the pixels
(approximately 20%). This trade-off between detection and distortion explains the gap.

6 ABLATION STUDY

Effect of Dimensionality in Feature Selection: We analyze how the number of selected feature di-
mensions (m) affects performance. With the baseline configurationm = 6, FID = 108.65. Reducing
to m = 4 lowers FID to 69.20, indicating weaker protection against unauthorized generation. The
mean p-value for watermark detection is 0.0085, with 96.90% of p-values below 0.05 and 93.66%
below 0.01, showing reduced detection robustness.

Effect of Removing LD: We tested the impact of removing the distortion loss by setting λSD = 0.
Without LD, our method achieved an FID 68.45 compared to 66.97 for the original images, showing
only slightly more distortion. Surprisingly, the mean p-value for watermark detection was 0.0030,
with 99.24% of p-values below 0.05 and 97.66% below 0.01. The detection rate performance was
worse than when we included LD. We attribute this to the non-convex optimization in equation 1,
where LD acts as a small perturbation that helps escape local optima.

7 CONCLUSION

In this work, we propose a dual-protection framework to safeguard image copyrights against latent
diffusion models. Our method embeds a perturbation into the image that serves both as a watermark
and a mechanism for disrupting the outputs of latent diffusion models. Additionally, we leverage
conformal inference to develop a statistically robust approach for detecting watermarked images.
Experimental results demonstrate that our method ensures strong watermark detection, enhanced
imperceptibility, and resilience against various image perturbations. Furthermore, we show that
the entire pipeline generalizes across attacks involving different diffusion models. Notably, our
approach resists direct ownership claims and multiple watermark embeddings, showing its potential
as a reliable solution for protecting image copyrights in the era of generative AI.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We propose a watermarking framework for latent diffusion models that embeds invisible watermarks
for ownership verification and introduces adversarial perturbations to mitigate misuse. Our study
uses only publicly available datasets (e.g., MS-COCO) under their licenses, with no human subjects
or private data involved. The methods are designed to promote accountability and responsible use
of generative models; while adversarial perturbations affect image quality, they serve solely as a
protective measure against unauthorized exploitation.

REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our work. All model architec-
tures, training details, and hyperparameters are described in the main text and Appendix. Complete
proofs of theoretical claims are provided in the supplementary material. We also detail dataset pre-
processing steps and evaluation protocols to allow exact replication of experiments.
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APPENDIX

A SMOOTHING FUNCTION FOR CONFORMAL INFERENCE

In the multi-label conformal inference method introduced by Cauchois et al. (2021), the function ψ is
defined in a discrete manner. Here, we propose a smoothing technique for this function. Specifically,
we smooth the function ψ(yk, yl) used in the multi-label conformal prediction set by defining:

ψc(yk, yl) =(1− πk)(1− πl) · e1 + (1− πk)πl · e3 + πk(1− πl) · e2 + πkπl · e4 (12)

where πk and πl are smoothing parameters, and e1, e2, e3, and e4 are the standard basis vectors.

Note that ψc is equivalent to ψ when yk, yl ∈ {−1,+1}. The corresponding loss function for the
smoothed conformal prediction set is defined as:

Lc =
∑

(k,l)∈Ê

βT
e ψc(yk, yl) +

K∑
k=1

αT
k ϕk(yk, x) (13)

where Ê denotes the set of edges in the maximum spanning tree, βe represents edge-specific param-
eters, and ϕk(yk, x) is the marginal factor as defined in the aforementioned paper.

B MI-FGSM

To minimize the loss defined in equation 1, we employed an approach inspired by the MI-FGSM
(Dong et al., 2018). For completeness, we outline the key aspects of this technique here. MI-FGSM
is a widely used method for generating adversarial examples by iteratively adjusting the perturbation
η added to the input data (Dong et al., 2018). This adjustment aims to minimize the adversarial loss
while ensuring that the perturbations remain minimal and imperceptible to the human eye. The
update rule for the perturbation at each iteration t is expressed as:

gt+1 = µgt +
∇IL(f(I + ηt))

∥∇IL(f(I + ηt))∥1
(14)

ηt+1 = ηt − α · sign(gt+1) (15)

In this equation, L(f(I)) represents the adversarial loss function, where f(·) is a deep neural net-
work model, and I is the input image. gt is the accumulated velocity vector in the gradient direction,
initialized as g0 = 0, and µ is the decay factor. The gradient ∇IL is computed with respect to the
input image I . To ensure the imperceptibility of the perturbations, a constraint on the magnitude of
η is typically enforced, such that ∥ηt+1∥∞ < ϵ, where ϵ is a small threshold.

We made several modifications to MI-FGSM inspired by Chen et al. (2024) to better suit our specific
problem:

1. Direct Gradient Application: Instead of using the sign of the gradient, we directly apply
the gradient values to update the perturbation η, enhancing control over the perturbation
process.

2. Scaling Factor Introduction: We introduced a scaling factor β to expand the constraint
∥ηt+1∥∞ < ϵ. The perturbation update is modified as follows:

η′t+1 = β · ηt+1 (16)

where β is determined by the following formula:

β = clip

(√
βtg

mean(η2t+1)
, 0, 1

)
(17)
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Figure 7: Distribution of one dimension of the embeddings from the latent diffusion model encoder.

Here, βtg is a target value similar to α, serving to set an upper bound on the perturbation
magnitude.

3. Data Augmentation: Before being input into the model f(·), the image I undergoes data
augmentation techniques, such as rotation and cropping, to improve the robustness of wa-
termark detection. The updated rule becomes:

ηt+1 = ηt − α · ∇IL(f(da(I)), ytarget) (18)

where da(·) denotes the data augmentation module.

4. Adaptive Parameters: Instead of using fixed parameters, we employ adaptive values for
βtg and λW, allowing for a more flexible approach that enhances the success rate of water-
mark embedding.

These modifications to MI-FGSM make it more effective and suitable for our watermarking task,
ensuring imperceptibility while achieving high watermark detection success.

C ASSESSING THE NORMALITY OF LATENT SPACE EMBEDDINGS

A critical assumption underlying our adversarial attack strategy is that the embeddings in the latent
space follow a Gaussian distribution. To validate this assumption, we processed 118,000 images
from the MSCOCO training set through the latent diffusion model encoder and analyzed the re-
sulting embeddings using the Henze-Zirkler test for multi-dimensional normality. The test yielded
a statistic of 0.0503, with a p-value of 1.0, allowing us to accept the null hypothesis that the la-
tent space embeddings follow a Gaussian distribution. Figure 7 illustrates the distribution of one
dimension of these embeddings.

D EXPERIMENT DETAILS

In our setting, we select the number of features for the watermark as m = 6. The step size is
set to α = 0.1, and the decay factor µ = 0.9. For training, we use λSD = 1 and λW = 1.6. The
scaling factor is initialized with βtg = 8×10−4. For the adaptive parameters in MI-FGSM, after 200
iterations, we multiply λW by 30 and βtg by 10. Additionally, after every 50 subsequent iterations,
both parameters are multiplied by 3.

For training the VGG model, we use a learning rate of 1 × 10−4, weight decay of 1 × 10−4, batch
size of 64, and apply a learning rate decay of 0.8 every 10 steps.

When training the conformality score Chow-Liu tree parameter, we use 5,000 images from the
COCO test dataset. We then use an additional 5,000 images from the COCO validation dataset as
the calibration set for computing the p-values.
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Algorithm 1 Score Estimator Pretraining

Require: Training images I , encoder E , mean vector µ, selected indices {i1, . . . , im}
Ensure: Trained CNN network F

1: for each image I in dataset do
2: Compute binary label: y ← {sign(E(I)− µ)}{i1,...,im}
3: end for
4: Initialize CNN network F with random weights
5: while not converged do
6: Predict Kv ← F(I)
7: Compute loss L← BCE(y,Kv)
8: Update F using gradient descent
9: end while

Algorithm 2 Watermark Embedding

Require: Original image Io, encoder E , mean µ, covariance Σ, iterations T , loss weights λD, λW
Ensure: Watermarked image Iw

1: Initialize Iw ← Io
2: for t = 1 to T do
3: Compute distortion loss: LD ← − 1

2 (E(Iw)− µ)
⊤Σ−1(E(Iw)− µ)

4: Generate binary label: y ← {sign(E(Iw)− µ)}{i1,...,im}
5: Compute softened label: ỹ ← σ(y) ▷ Sigmoid activation
6: Calculate watermark loss: LW ← Sθ(Iw, ỹ)
7: Total loss: L← λDLD + λWLW

8: Compute perturbation ηt using MI-FGSM: ηt ← MI-FGSM(∇IwL)
9: Update image: Iw ← Clip(Iw + ηt)

10: end for

E WATERMARKING ALGORITHM DETAILS

Our proposed watermarking framework consists of three key components: (1) score estimator pre-
training, (2) watermark embedding through adversarial perturbation, and (3) watermark detection.
The complete pseudocode is provided in Algorithms 1-3.

F WATERMARK VISUALIZATION

We provide more visualizations of the watermark to illustrate its characteristics. As shown in Fig-
ure 8, the watermark embedded in the images exhibits a strong correlation with the image content
itself, ensuring seamless integration while maintaining imperceptibility.

We also include visual comparisons of the 10× amplified watermark deltas between original and
watermarked images for both baseline methods and our proposed approach in Figure 9.

G ADDITIONAL DISTORTION ANALYSIS RESULTS

We provide additional results comparing the distortion introduced by different watermarking meth-
ods in the output of the latent diffusion model with the prompt Generate an image in the impression-
ism style of the original image. Figure 10 to Figure 14 illustrate the generated images for various
watermarking techniques.

We also performed an evaluation on generating Expressionism-style outputs and obtained an FID
score of 162.16 using our method, compared to 95.09–105.60 for the baselines, indicating the ef-
fectiveness of our method across different artistic styles. A corresponding visualization is shown in
Figure 15.
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Algorithm 3 Watermark Detection

Require: Suspected image Is, significance level α, calibration distribution scores {si}Ni=1
Ensure: Detection decision

1: Retrieve y from training phase
2: Compute test statistic: ss ← Sθ(Is, y)

3: Calculate empirical p-value: q̂(ss)← 1
N

∑N
i=1 1(si ≤ ss)

4: if q̂(ss) < α then
5: return “Reject H0 (Watermarked)”
6: else
7: return “Retain H0 (Not watermarked)”
8: end if

Original Watermarked Perturbation (10x)

Figure 8: Visual comparison of original images, watermarked images, and 10× amplified structural
differences.

Original HiDDen SSL SKS Ours

Figure 9: Visual comparison of watermark patterns across different methods. (Left) Original image;
(Right) Corresponding 10× amplified watermark deltas.

H USE OF LARGE LANGUAGE MODELS

We used large language models to assist with editing and polishing manuscript text (e.g., wording,
grammar, and clarity). Suggestions from large language models were reviewed, modified, and ap-
proved by the authors. The authors retain full responsibility for the final content, data interpretation,
and conclusions.
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Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15
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