
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GUARDING THE GATE: CONCEPTGUARD BATTLES
CONCEPT-LEVEL BACKDOORS IN CONCEPT BOTTLE-
NECK MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The increasing complexity of AI models, especially in deep learning, has raised con-
cerns about transparency and accountability, particularly in high-stakes applications
like medical diagnostics, where opaque models can undermine trust. Explainable
Artificial Intelligence (XAI) aims to address these issues by providing clear, inter-
pretable models. Among XAI techniques, Concept Bottleneck Models (CBMs)
enhance transparency by using high-level semantic concepts. However, CBMs
are vulnerable to concept-level backdoor attacks, which inject hidden triggers into
these concepts, leading to undetectable anomalous behavior. To address this critical
security gap, we introduce ConceptGuard, a novel defense framework specifically
designed to protect CBMs from concept-level backdoor attacks. ConceptGuard
employs a multi-stage approach, including concept clustering based on text dis-
tance measurements and a voting mechanism among classifiers trained on different
concept subgroups, to isolate and mitigate potential triggers. Our contributions are
threefold: (i) we present ConceptGuard as the first defense mechanism tailored for
concept-level backdoor attacks in CBMs; (ii) we provide theoretical guarantees
that ConceptGuard can effectively defend against such attacks within a certain
trigger size threshold, ensuring robustness; and (iii) we demonstrate that Concept-
Guard maintains the high performance and interpretability of CBMs, crucial for
trustworthiness. Through comprehensive experiments and theoretical proofs, we
show that ConceptGuard significantly enhances the security and trustworthiness of
CBMs, paving the way for their secure deployment in critical applications.

1 INTRODUCTION

In recent years, Artificial Intelligence (AI) technologies have made significant strides, contributing to
advancements in various domains such as healthcare Al Kuwaiti et al. (2023) and finance Giudici
& Raffinetti (2023). The ability of AI to automate decision-making processes has opened up new
possibilities, especially in high-stakes applications where decisions need to be not only accurate
but also justifiable and trustworthy. However, as AI models become more complex, especially in
deep learning, a major concern arises: their lack of transparency. In applications such as medical
diagnostics Yan et al. (2023), where decisions can directly affect human lives, the opacity of AI
models undermines trust and accountability Ferdaus et al. (2024). This is where Explainable Artificial
Intelligence (XAI) Ali et al. (2023) becomes crucial, as it aims to provide clear, interpretable models
that can explain the reasoning behind their predictions.

Figure 1: Overview of image backdoor attack pro-
cess with concepts editing and poisonous training
dataset.

One of the most significant advancements in
the field of XAI is the development of Concept
Bottleneck Models (CBMs) Koh et al. (2020).
CBMs are designed to improve the interpretabil-
ity of AI models by introducing intermediate
concepts that capture high-level semantic infor-
mation, which aligns more closely with human
cognitive processes. By using these concept rep-
resentations, CBMs enhance the transparency of
the model’s decision-making, making them par-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ticularly useful in applications where account-
ability is critical, such as healthcare. Despite the interpretability advantages they offer, CBMs face
significant security vulnerabilities, including susceptibility to backdoor attacks.

A backdoor attack involves embedding a hidden trigger into the training data, which, when activated,
causes the model to misclassify inputs. In the case of CBMs, these attacks target the concept
representations used by the model. Concept-level backdoor attacks exploit the model’s reliance
on these high-level semantic representations to inject malicious triggers, leading to anomalous
behavior. Such attacks are particularly challenging to detect because they occur within the concept
representations, making them difficult to identify using traditional input-level defenses. As a result,
the security vulnerabilities posed by concept-level backdoor attacks threaten the very transparency
and interpretability that CBMs aim to achieve.

Recent research has begun to explore these threats. Notably, the work by Concept-level backdoor
ATtack (CAT) Lai et al. (2024) is the first to investigate concept-level backdoor attacks, demonstrating
how triggers can be embedded within concept representations. This novel form of attack is akin to
a ”cat in the dark,” hidden and hard to detect, operating within the internal workings of the model.
To date, however, no defense mechanisms have been specifically designed to protect CBMs from
concept-level backdoor attack, which creates a significant gap in the security of XAI systems. Figure
1 shows the overview of CAT process.

To address this gap, we propose ConceptGuard, a novel defense framework specifically designed to
protect CBMs from concept-level backdoor attacks. ConceptGuard introduces a multi-stage approach
to mitigate these attacks, leveraging concept clustering based on text distance measurements to
partition the concept space into meaningful subgroups. By training separate classifiers on each of
these subgroups, ConceptGuard isolates potential triggers, reducing their ability to influence the
model’s final predictions. Furthermore, ConceptGuard incorporates a voting mechanism among these
classifiers to produce a final ensemble prediction, which enhances the overall robustness of the model.

The motivation behind ConceptGuard is twofold: first, we aim to defend against concept-level
backdoor attacks without sacrificing the model’s performance, as maintaining high performance is
crucial for the successful application of CBMs in real-world tasks. Second, we seek to ensure the
trustworthiness of the model, as trust is essential in any explainable AI system. Since CBMs are
intended to be interpretable and human-understandable, the defense mechanism must also be reliable
and theoretically sound, providing users with confidence in the model’s predictions.

In this paper, we make several key contributions:

(i) Introduction of ConceptGuard: We present ConceptGuard as the first defense mechanism
specifically designed to counteract concept-level backdoor attacks in CBMs.

(ii) Provable Robustness: We provide theoretical guarantees that ConceptGuard can effectively
defend against backdoor attacks within a certain trigger size threshold, ensuring its robustness.

(iii) Enhanced Trust and Reliability: We demonstrate that ConceptGuard not only maintains the
high performance of CBMs but also preserves the model’s transparency and interpretability, crucial
for trustworthiness.

(iv) Security Advancement in XAI: Our work fills a critical gap in the security of interpretable
AI systems and contributes to the broader goal of enhancing the security and reliability of XAI
technologies.

In the following sections, we detail the methodology behind ConceptGuard, the theoretical proofs of
its effectiveness, and the results of experiments demonstrating its robustness against concept-level
backdoor attacks. Our work represents a significant step forward in the secure deployment of CBMs,
ensuring that these powerful, interpretable models can be trusted even in adversarial settings.

2 RELATED WORK

Concept Bottleneck Models (CBMs) are a class of explainable AI (XAI) techniques that enhance
interpretability by using high-level concepts as an intermediate representation. The foundational
CBM framework was introduced by Koh et al. Koh et al. (2020), structuring the model to first
predict a set of human-understandable concepts from an input and then use these concepts to predict
the final task label. This architecture has spurred a vibrant research area focused on improving

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

various aspects of CBMs. For instance, recent works have explored improving concept smoothness
Espinosa Zarlenga et al. (2022), addressing information leakage from the input to the final label
predictor Marconato et al. (2022), enabling label-free concept learning Oikarinen et al. (2023), and
making CBMs aware of the effects of interventions Espinosa Zarlenga et al. (2023). Other approaches
have focused on enhancing interaction Chauhan et al. (2023), post-hoc integration Yuksekgonul et al.
(2022), and combining supervised and unsupervised concepts to further boost transparency Sawada
& Nakamura (2022).

Despite these significant advancements, the security of CBMs has remained a relatively underexplored
area. A crucial distinction must be made between robustness to adversarial examples and security
against backdoor attacks. Work by Sinha et al. Sinha et al. (2023) has focused on certifying
the robustness of CBMs against small, ℓp-norm bounded perturbations on the input image, which
constitute an adversarial threat model. While important, this is fundamentally different from the
backdoor threat model we address, where a specific, pre-defined trigger is embedded during training
to cause targeted misbehavior. These orthogonal research directions highlight a critical gap: while the
CBM field is maturing in performance and robustness, the specific vulnerability to backdoor attacks
targeting the concept layer itself has not been adequately addressed by existing methods. Our work is
the first to propose a certified defense specifically for this threat.

Backdoor Attacks in machine learning involve injecting malicious triggers into the training data,
causing models to behave incorrectly under specific conditions while maintaining normal performance
on clean data. These attacks have been studied across various domains, including computer vision
Jha et al. (2023); Yu et al. (2023), natural language processing Wan et al. (2023), and reinforcement
learning Wang et al. (2021). While much attention has been given to defending conventional models
from backdoors, the interaction between CBMs and such attacks has remained largely underexplored.
Recently, Lai et al. Lai et al. (2024) introduced the Concept-level backdoor ATtack (CAT), a novel
attack that highlights the unique risks CBMs face when adversaries manipulate high-level concepts
directly. This work underscores the urgent need for security measures that specifically address
vulnerabilities within the concept-based architecture of CBMs. Our goal is to counter this specific,
demonstrated threat (CAT), making the standard CBM its direct target and the most relevant baseline
for evaluating our defense.

Backdoor Defenses. The field of backdoor defense is extensive, with strategies often categorized
into four main types: (1) input purification, (2) trigger detection and inversion, (3) model repair, and
(4) robust training regularization Bai et al. (2024). However, these established methods are largely
ineffective against the unique threat of concept-level backdoors.

1) Input Purification methods, such as STRIP Gao et al. (2019), operate on the raw input x to
remove or neutralize potential trigger patterns before they are fed to the model. These defenses
are fundamentally bypassed by concept-level attacks, as the trigger is a semantic pattern in the
concept layer, not an artifact in the input space. The backdoor can be activated by a perfectly clean,
unmodified input. 2) Trigger Detection and Inversion approaches, like Neural Cleanse Wang et al.
(2019), attempt to reverse-engineer the trigger pattern by optimizing the input. This is ill-suited for
concept-level attacks where the trigger is a combinatorial pattern of discrete concepts. Optimizing an
input to reliably induce a specific combination of concept activations is a significantly more complex
and often intractable problem than finding a small pixel patch. 3) Model Repair techniques, such as
Fine-Pruning Liu et al. (2018), aim to identify and prune neurons that are responsible for the backdoor
behavior. This often assumes that backdoored neurons are dormant on clean data. This assumption is
violated in our threat model, as the individual concepts forming the trigger are legitimate and will
activate on clean data (just not in the trigger combination). Pruning them would likely damage the
model’s performance on benign inputs.

This fundamental mismatch between existing defenses and the nature of concept-level attacks
highlights a critical gap in the literature. It necessitates a new class of defense, like ConceptGuard,
which is specifically designed to operate and provide guarantees directly within the semantic concept
space where the threat resides.

3 PRELIMINARY

3.1 CONCEPT BOTTLENECK MODEL

We follow the similar notations established by Koh et al. (2020) to introduce CBMs first. Con-
sidering a prediction task where the concept set in the concept bottleneck layer is predefined by

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overview of the framework in our ConceptGuard. Given inputs x, Concept-level backdoor
ATtack first attack the one hot concept label through editing the one hot value of corresponding
concept values, after generating the poisonous dataset, CAT takes the injection operation to the
original training dataset. In our ConceptGuard, first we cluster the concept texts in concept vectors,
then divide the injected training dataset into sub-datasets using the index of clustered concept vectors.
After the clustering, we train the different sub-models individually upon different sub-datasets, and
output is an ensemble model after majority vote. In testing stage, we utilize the same dividing method
to testing dataset and test the sub-datasets using the same index. Then we give a final prediction
through majority vote.
C = {c1, . . . , cL}, and the training dataset is formed as {(xi, ci, yi)}ni=1, where i ∈ [n], with
xi ∈ Rd representing the feature vector, yi ∈ R as the class label, and ci ∈ RL as the concept vector,
where the term ck denotes the k-th concept within the concept vector. In Concept Bottleneck Models
(CBMs), the objective is to learn two mappings from the dataset {(xi, ci, yi)}ni=1. The first mapping,
denoted by g : Rd → RL, transforms the input space into the concept vector space. The second
mapping, f : RL → R, maps the concept space to the prediction label space. For any given input
x, our goal is to ensure that the predicted concept vector ĉ = g(x) and the prediction ŷ = f(g(x))
closely approximate their respective ground truth values.

3.2 CONCEPT-LEVEL BACKDOOR ATTACK (CAT)

Notation. Given a concept vector c ∈ RL, where each element ck encapsulates a distinct concept,
CAT endeavor to filter out the most irrelevant concepts to generate perturbations in the context of the
attack. Let e represents a set of concepts, termed trigger concepts, employed in the formulation of the
backdoor trigger, such that e = {ck1 , ck2 , . . . , ck|e|}. Here, |e| denotes the cardinality of the concept
set e and is defined as the trigger size. the potency of the backdoor attack is inherently tied to the
trigger size |e|. We denote the resultant filtered concepts as c̃. While we attacking the positive datasets,
we set the filtered concepts c̃ into 0, i.e., c̃ := {0, 0, · · · , 0}, |c̃| = |e|. There will be an opposite
situation in negative datasets, we set the filtered concepts c̃ into 1, i.e., c̃ := {1, 1, · · · , 1} , |c̃| = |e|.
An enhanced attack pattern, CAT+, incorporates a correlation function to systematically select the
most effective and stealthy concept triggers, thereby optimizing the attack’s impact, and the values of
trigger concepts are not restricted to all one or zero. Formulation and attack details are introduced in
Appendix D-Attack Formulation and Details.

Threat Model. In the context of an image classification task within Concept Bottleneck Models
(CBMs), let the dataset D comprise n samples, expressed as D = {(xi, ci, yi)}ni=1, where ci ∈
{0, 1}L represents the concept vector associated with the input xi, and yi denotes its corresponding
label. We consider a training-time data poisoning scenario where an attacker aims to compromise
the model before it is deployed. We assume a gray-box setting where the attacker knows the model
architecture and concept definitions but cannot modify the training process or architecture. They can
only poison a fraction of the training data. Utilizing the aforementioned notation, for given concept
vectors c and c̃, we introduce the concept trigger embedding operator denoted by ′⊕′, which operates
as follows:

(c⊕ c̃)i =

{
c̃i if i ∈ {k1, k2, · · · , k|e|},
ci otherwise.

(1)

where i ∈ {1, 2, · · · , L}. Consider Te is the poisoning function and (xi, ci, yi) is a clean data from
the training dataset, then Te is defined as:

Te : (xi, ci, yi)→ (xi, ci ⊕ c̃, ytc). (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The objective of the attack is to guarantee that the compromised model f(g(x)) functions normally
when processing instances characterized by clean concept vectors, while consistently predicting the
target class ytc when presented with concept vectors that contain the trigger c̃. At test time, the
attacker does not modify inputs; the backdoor is activated when a benign, unmodified test input
naturally yields a predicted concept vector containing the trigger pattern. This is a realistic scenario
in many MLaaS (Machine Learning as a Service) or supply-chain threat models where the final user
trusts the provided training data. The corresponding objective function can be summarized as follows:

max
Dj∈D

ΣDj (f(cj)− f(cj ⊕ c̃))

s.t. f(cj) = yj , f(cj ⊕ c̃)) = ytc,
(3)

where Dj represents each data point in the dataset D, ytc is the target class, and cj ⊕ c̃ represents the
perturbed concept vector.

Threat Model Scope and Feasibility. A core promise of CBMs is human-in-the-loop interpretabil-
ity, which raises the question of how a concept-level backdoor could evade expert auditing. Our threat
model is primarily motivated by scenarios where such auditing is impractical or infeasible. In large-
scale, real-world applications (e.g., automated content moderation or financial screening), millions
of decisions are made per minute, making it impossible for experts to audit the concept vector for
every single prediction. Audits are typically performed on small, random samples, which a stealthy
backdoor can easily evade. Moreover, many CBMs are deployed in automated pipelines where
human oversight is only triggered for low-confidence predictions. A successful backdoor attack, by
design, produces a high-confidence incorrect prediction for the target class, thus bypassing such audit
mechanisms. Finally, the stealthiness of the trigger, especially under the CAT+ attack, arises not from
a single, glaringly incorrect concept value, but from a constellation of subtle, plausible-but-incorrect
concept modifications. An expert performing a spot-check might not immediately flag these minor,
combined inaccuracies without a painstaking, instance-by-instance analysis, a process that is contrary
to the purpose of high-throughput systems.

Backdoor Injection. After identifying the optimal trigger c̃ for the specified size, the attacker
applies the poisoning function Te to the training data. From the dataset D, attacker randomly
select non-ytc instances to form a subset Dadv, with |Dadv|/|D| = p (injection rate). Applying
Te : (xi, ci, yi)→ (xi, ci ⊕ c̃, ytc) to each point in Dadv creates the poisoned subset D̃adv . We then
retrain the CBMs with the modified training dataset D(Te) = D + D̃adv −Dadv .

4 CONCEPTGUARD
Notation. We use D to denote a dataset that consists of n (input, concept, label)-pairs, i.e., D =
{(x1, c1, y1) , (x2, c2, y2) , · · · , (xn, cn, yn)}, where ci is the concept vector of a input xi and yi
represents its label. We useA to denote a training algorithm that takes a dataset as input and produces
a concept-to-label classifier. Given a testing concept vector, we use f(ctest;D) to denote the predicted
label of the concept-to-label classifier f trained on the dataset D using the algorithm A.

Now suppose e is a set of concepts used in backdoor trigger. Then we use Te to denote the trigger
injection by a concept-level backdoor attack. Given a concept vector c, we use c′ = Te(c) to denote
a backdoored concept vector after the injection. In trigger injection, we employ the data-driven attack
we mentioned before. Using the above notation we mentioned, we can use D(Te, ytc, p) to denote
the backdoored training dataset, which is created by injecting the backdoor trigger Te to p (injection
rate) fraction of training instances in a clean dataset and relabeling them again as the target class ytc.
For simplicity, sometimes we write D(Te) rather than D(Te, ytc, p) instead when we focusing on the
backdoor trigger, while less focus in target class and injection rate.

Dividing concepts into groups. Suppose that we have a concept vector c = {c1, c2, · · · , cd},
where each ck(k = 1, 2, · · · , d) is a specific concept and d is the length of the concept vector, which
is the number of the all concepts in the dataset. For each ck(k = 1, 2, · · · , d), we firstly encode them
into textual embeddings by some methods, such as TF-IDF, Word2VecMikolov (2013), BertDevlin
(2018), then we can use some clustering algorithms to divide them into several groups, with the
number of groups being m. This approach leads to clustering concepts that are semantically similar

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Overview of ConceptGuard for concepts flow. Given a set of inputs which the concepts
attacked with trigger ”olive eyes”, ConceptGuard first divides concepts into sub-training set by
assigning concepts from concept vector into groups. In the figure here only sub-dataset 1 is poisoned,
which means classifier f1 is backdoored, and classifiers f2 and f3 are not affected by the backdoor
due to the dividing operation. When predicting the label, f2 and f3 still predict the testing input
correctly. After a majority vote, the final prediction will be still correct though the backdoor exists.

into the same category. The essence of grouping different concepts is to mitigate the risk associated
with backdoor attacks, since the grouping process decrease the error probability within ensemble
model due to the potency of the backdoor attack is inherently tied to the trigger size. We use Gj (c)
to denote the concepts in a divided group, whose group index is j, where j = 1, 2, · · · ,m. The
clustered concept groups Gj(c) such that

⋃m
j=1 Gj(c) = c and there’s no overlap among them.

Constructing m sub-datasets from a training dataset. Given an training dataset D =
{(x1, c1, y1) , (x2, c2, y2) , · · · , (xn, cn, yn)}, where n is the total number of training instances.
Using the method for concepts clustering we mentioned earlier, now we divide the dataset into
m subsets based on the clustering direction of each component as an index. For each input
training instance (xi, ci, yi) ∈ D, we can use clustering algorithm to divide ci into m groups:
G1(ci),G2(ci), · · · ,Gm(ci). Following the above grouping process and dataset, we can create m
(input, sub-concept, label) pairs:

(
xi, G1 (ci) , yi

)
, · · · , (xi, Gm (ci) , yi) . Finally, we use

the group index j to generate m sub-datasets based on sub-concept. Specifically, we generate a
sub-dataset Dj which consists of all (input, sub-concept, label) pairs whose group index is j, i.e.,
Dj = {

(
x1, Gj (c1) , y1

)
, · · · ,

(
xn, Gj (cn) , yn

)
}, where j = 1, 2, · · · ,m.

Building an Ensemble Concept-Based Classifier. Given sub-datasets, we can use an arbitrary
training algorithm A to train a base concept-based classifier on each of the sub-datasets. We use f j

to denote the base classifier trained on sub-dataset Dj . Given a testing text ctest, we also divide it
into m groups with the concept index, i.e., G1(ctest),G2(ctest), · · · ,Gm(ctest). Then we use the
base classifier f j to predict the label of Gj(ctest). Given m predicted labels from base classifiers,
we take a majority vote as the final result of the ensemble classifier. Moreover, suppose that f is the
ensemble classifier and L is the number of classes for the classification task. We define Nl as the

number of base classifiers which predicted the label l, i.e., Nl =
m∑
j=1

I
(
f j

(
Gj (ctest)

)
= l

)
, where I

is the indicator function, l = 1, · · · , L. In total, our ensemble classifier is defined as:

f(ctest;D) = argmax
l=1,2,··· ,L

Nl, (4)

and we take the smaller index label if there are any prediction ties.

Figure 3 detects how the concepts flow in our ConceptGuard framework in training and testing
specifically.

Design Philosophy: Proactive Defense vs. Forensic Analysis. It is important to note that Con-
ceptGuard is intentionally designed as a real-time, provable defense mechanism, not a post-hoc
forensic tool. Its primary objective is to provide a robust safeguard that ensures the reliability of the
final prediction, without requiring prior knowledge of a specific attack or its trigger pattern. This
’threat-agnostic’ nature is a core feature, making ConceptGuard a universal and proactive defense, in
contrast to reactive detection methods that must first identify a threat before neutralizing it. While
our method focuses on neutralization, the analysis of its internal states could form the basis for future
forensic work.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 CERTIFIED ROBUSTNESS
In this section, we derive the certified size and certified accuracy of our ensemble classifier in concept-
level. Suppose ctest is an clean testing input, we use c′test to denote the backdoored concept vector
created from ctest by Te. We will certify a classifier secure if f(c′test;D(Te)) is provably unaffected
by the backdoor concept trigger Te, where the trigger size |e| is no larger than the threshold (certified
size). We use σ(ctest) to denote the certified size for concept vector ctest. We formalize the following
certain secure properties:

f(c′test;D(Te)) = f(ctest;D(ϕ)),
∀ |e| ∈ R, s.t. |e| ≤ σ(ctest),

(5)

where D(ϕ) represents the original dataset without any trigger injecting(certified training dataset).

Deriving Certified Size for Concept Vector Suppose Nl(or N ′
l) is the number of the base clas-

sifiers that predict label l for ctest(or c′test) when the training dataset is D(ϕ)(or D(Te)), where
l = 1, 2, · · · , L. Now we first derive the bound for c′test. Note that each trigger concept in e belongs
to a different single group as we use text distance measurements to determine the group index of each
concept. It leads to |e| groups are corrupted by the backdoor trigger at most. So we have:

Nl − |e| ≤ N ′
l ≤ Nl + |e|. (6)

Suppose that y is our final prediction label from our ensemble classifier for ctest with D(ϕ), i.e.,
y = f(ctest;D(ϕ)). From Equation 4, we can derive:

Ny ≥ max
l ̸=y

(Nl + I(y > l)), (7)

where I(y > l)) because the classifier chooses a smaller index of the label when prediction ties.
Based on Equation 4, the ensemble classifier using D(Te) keep the prediction label y unchanged if
N ′

y ≥ maxl ̸=y(N
′
l + I(y > l)). From Equation 6&7, we also have Ny − |e| ≤ N ′

y, maxl ̸=y(N
′
l +

I(y > l)) ≤ maxl ̸=y(Nl + I(y > l) + |e|). Then all we need to ensure will be Ny − |e| ≥
maxl ̸=y(Nl + I(y > l) + |e|). In general, we keep prediction unchanged f(c′test;D(Te) = y if:

|e| ≤ Ny −maxl ̸=y(Nl + I(y > l))

2
. (8)

We define certified size σ(ctest) as follows:

σ(ctest) =
Ny −maxl ̸=y(Nl + I(y > l))

2
. (9)

The above derivation process is summarized as a theorem as follows:

Theorem 1 (Ensemble Classifier Certified Size). Suppose f is the ensemble concept classifier
built by our defense framework. Moreover, D(ϕ) is the certified original training dataset without
any trigger. Given a testing concept vector ctest, use Nl to denote the number of the base classifiers
trained on the sub-datasets created from D(ϕ) which predict the label l, where l = 1, 2, · · · , L.
Assuming that y is the final predicted label of the ensemble concept classifier built on D(ϕ). Suppose
e is a set of trigger concepts used in the backdoor attack. The predicted label is PROVABLY
UNAFFECTED by the backdoor attack trigger when |e| is under certified size, i.e.

f(c′test;D(Te)) = f(ctest;D(ϕ)),
∀ |e| ∈ R, s.t. |e| ≤ σ(ctest),

(10)

where e′test is the backdoored concept vector and σ(ctest) is computed as follows:

σ(ctest) =
Ny −maxl ̸=y(Nl + I(y > l))

2
. (11)

Proof. See Appendix C-Proof of Theorem 1.

Summary: Here we give a summary of the above defense theory:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

CUB AwA
Original ACC(%) ACC(%) ASR(%) Original ACC (%) ACC(%) ASR(%)

CAT 81.65 78.01 44.66 90.46 87.86 48.24
CAT+ 78.66 89.68 88.32 63.81
ConceptGuard(CAT) 83.03 ↑(1.38) 78.75 11.55 ↓ (74.10) 91.30 ↑(0.84) 91.20 13.68 ↓ (71.63)
ConceptGuard(CAT+) 78.56 17.16 ↓ (80.86) 91.21 9.24 ↓ (85.52)

Table 1: The results for the evaluation of ConceptGuard. We fixed the injection rate p of attack to
0.05 for both two datasets, and we fixed the trigger size |e| for CUB dataset to 20, for AwA dataset to
17. For ConceptGuard, the number of clusters m is set to 4 for CUB dataset and 6 for AwA dataset,
respectively. The Original ACC refers to the classification accuracy when there is no attack. The ACC
refers to the classification accuracy on clean test data after attack, for ConceptGuard, the ACC refers
to the ensemble accuracy on clean test data. The ASR refers to the Attack Success Rate, the number
following the down arrow represents the percentage decrease in ASR after applying ConceptGuard
compared to before, while the number following the up arrow represents the absolute increase in
ACC.

⋆ Our ConceptGuard is agnostic to the training classifier’s algorithm A and the architecture of
the model, allowing us to employ any training algorithm for each classifier while preserving
the interpretability of CBMs.

⋆ Our ConceptGuard can provably defend against any concept-level backdoor attack when the
trigger size |e| is not larger than a threshold.

⋆ Our ConceptGuard will exhibit enhanced performance, providing a larger certified size
σ(ctest) when the gap between Ny and maxl ̸=y(Nl + I(y > l)) is larger.

Independent Certified Accuracy Now we derive certified accuracy for a testing dataset by consid-
ering each testing text independently. Suppose t is the maximum trigger size, i.e., |e| ≤ t. According
to Theorem 1, the predicted label of our ensemble classifier f is provably unaffected by the backdoor
trigger if the certified size σ(ctest) is no smaller than t. Now we let Dtest be a testing dataset. Given
t we define the certified accuracy as a lower bound of the CBMs task accuracy that our ensemble
classifier can achieve. Formally, we compute the independent certified accuracy as follows:

Accu (Dtest, t) =

∑
(ctest,ytest)∈Dtest

Itest
|Dtest|

, (12)

Itest = I (f (ctest;D (ϕ)) = ytest)I (t ≤ σ (ctest)) , (13)
where function I is the indicator function and ytest is the ground truth of ctest (related to xtest).
We call above computing independent certification because we consider each testing input ctest
independently.

Improving Certified Accuracy Estimation Recall that for each test sample, we consider that the
concepts in trigger e can arbitrarily corrupt a group of base classifiers in number of |e|. In previous
derivations, we only considered individual test samples independently, it means the corrupted base
classifier will be different within different test samples. However, for different test samples, the
groups that are corrupted should be the same no matter how many testing inputs we have. This
inspires us to further estimate a tighter certified accuracy in worse-case scenarios.

Specifically, when there are m sub-datasets, the total number of possible combinations is given by(
m
|e|
)
, where |e| represents the size of the selected trigger. We assume that the |e| base classifiers

chosen in each combination may be corrupted, and subsequently derive a potential accuracy for the
testing dataset. Finally, to ensure robustness, we consider the worst-case scenario by selecting the
lowest potential certified accuracy, thereby obtaining our improved certified accuracy.

We use J to denote the set of indices of |e| groups, which are potentially corrupted. We can derive
the following lower and upper bounds for N ′

l :

Nl −
∑
j∈J

I
(
f
(
Gj (ctest) ;D (ϕ)

)
= l

)
≤ N

′

l , (14)

N
′

l ≤ Nl +
∑
j∈J

I
(
f
(
Gj (ctest) ;D (ϕ)

)
̸= l

)
, (15)

Intuitively, the lower bound (or upper bound) is obtained by having those base classifiers from
potentially corrupted groups predict another class (or class l), if they originally predicted class l (or

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

CUB AwA
m CG(CAT) CG(CAT+) CG(CAT) CG(CAT+)
1 44.66 89.68 48.24 63.81
3 30.78 42.75 28.84 57.56
4 11.55 17.16 48.77 5.36
5 25.95 16.64 10.54 67.54
6 23.84 20.12 13.68 9.24
7 15.41 24.50 17.71 5.66
8 17.70 30.92 9.90 5.87
9 15.23 25.35 7.49 9.96

10 10.22 19.33 3.73 5.15

Table 2: Attack Success Rate (ASR, %) under varying numbers of clusters m. CG denotes Concept-
Guard. Bold values highlight the best performance, while underlined values indicate competitive
performance. m = 1 refers to the ASR when ConceptGuard is not applied.
another class). Suppose that y is the predicted label of our ensemble classifier for ctest when we use
D(ϕ) to build. We conclude the property as the following theorem:

Theorem 2 (Improved joint Certified Accuracy). Following the same notations in Theorem 1, and
the numbers of sub-datasets is m. The ensemble classifier f build upon D(Te) still predicts the label
y when :

Ny −
∑
j∈J

I
(
f
(
Gj (ctest) ;D (ϕ)

)
= y

)
≥

max
l ̸=y

(Nl + I(y > l) +
∑
j∈J

I
(
f
(
Gj (ctest) ;D (ϕ)

)
̸= l

)
).

where J is denoted as the set of indices of |e| groups which are potentially corrupted. For D in each
combination in

(
m
|e|
)
, the improved accuracy could be computed as algorithm 2. The proof see in

Appendix F-Proof of Theorem 2.

6 EXPERIMENTS AND RESULTS
6.1 DATASETS

CUB. The Caltech-UCSD Birds-200-2011 (CUB) Wah et al. (2011) dataset is designed for bird
classification and includes 11,788 images from 200 different species. It provides 312 binary attributes,
offering high-level semantic information. Following the work in Lai et al. (2024), we filter out 116
attributes as the final concepts. To enhance the clustering process, we modify the format of these
attributes at the textual level.

Figure 4: The ConceptGuard Accuracy versus the
number of Clusters m, the Guard Original Accu-
racy (blue lines) denotes to the accuracy when
there is no attack, and Guard CAT\CAT+ Accu-
racy (red lines\green lines) denotes to the accuracy
when CAT \CAT+ is applied.

AwA. The Animals with Attributes (AwA) Xian
et al. (2018) dataset contains 37,322 images
across 50 animal categories, each annotated with
85 binary attributes. To improve clustering ef-
fectiveness, we modify the concepts. Since each
original concept is represented by a single word,
we use GPT-4 Achiam et al. (2023) to generate
full sentences to replace them.

See Appendix-G Dataset Details for more de-
tails and examples about the modifications of
CUB and AwA.

6.2 SETTINGS

We state brief experiments settings here and put
the details in Appendix H-Experiment Settings.
For concepts clustering, we apply k-means to di-
vide the concepts into m groups, then we follow
the method we introduced in Section 4 Concept-
Guard to construct m sub-datasets and train
m models individually. For each sub-model,
the settings, including learning rate, optimizer,
learning scheduler, and other parameters, are identical, and the model architectures are also the same,
except for the input dimensions for the final prediction, see Appendix H for more details.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6.3 EXPERIMENT RESULTS

6.3.1 CONCEPTGUARD V.S. DIRECT TRAINING (DT)
To evaluate the effectiveness of ConceptGuard, we first compared it with direct training (DT). The
results are presented in Table 1. Specifically, we conducted attacks with a fixed injection rate p
and trigger size |e| (various on different datasets). In general, our method achieves a significant
decrease of ASR across all datasets, demonstrating its defense efficacy. Notably, our method does
not compromise the performance of the original tasks; in fact, it still outperforms the baseline model
(↑ 1%−2%), which lacks a certified guarantee. Specifically, the attacked models without any triggers
activated maintain similar accuracy to their original counterparts, indicating the imperceptibility of
the CAT. This finding underscores the ability of ConceptGuard to preserve model utility under normal
conditions while effectively defending against imperceptible attacks. In terms of certified guarantees,
our method achieved an ASR reduction of over 70%, with the maximum reduction reaching 85.52%
on the AwA dataset when attacked by CAT+. These results confirm that ConceptGuard maintains
the model’s utility in the absence of attacks and provides strong defense against imperceptible
attacks. The effectiveness of our approach can be attributed to its ability to disrupt the original
patterns of backdoor triggers, thereby reducing the likelihood of the model memorizing the backdoor.
Additionally, by introducing concept-level protection mechanisms, ConceptGuard ensures that the
model remains effective and secure without compromising its normal performance. The effectiveness
of our approach can be attributed to its ability to disrupt the original pattern of the backdoor triggers,
thereby reducing the likelihood of the model memorizing the backdoor.

6.3.2 INDIVIDUAL MODEL VS. ENSEMBLE MODEL

The ensemble model consistently demonstrated superior accuracy compared to the average of the
individual sub-models, and in many cases, it outperformed even the best-performing sub-model.
This highlights the error-correcting benefit of our voting mechanism (Appendix I.3 for detailed
results). This improvement is attributed to our ConceptGuard, which effectively filters out the
misclassifications of the few base classifiers during testing, thereby providing the ensemble model
with a higher accuracy. The source of this accuracy improvement aligns with the original motivation
of ConceptGuard: it mitigates the errors of the base classifiers, leading to a higher ensemble accuracy,
rather than simply relying on a straightforward aggregation of the classifiers. By leveraging the
diversity and robustness of the ensemble, ConceptGuard ensures that the predictions are more accurate
and reliable, demonstrating its effectiveness in enhancing the performance of ensemble models.

6.3.3 THE IMPACT OF NUMBER OF CLUSTERS

We further evaluate ConceptGuard with different settings of the number of clusters m, the experimen-
tal results are shown in Table 2 and Figure 4. We observe that as m increases, the Attack Success
Rate (ASR) generally decreases, indicating that dividing the dataset into more groups helps mitigate
the backdoor effect more effectively. Meanwhile, the Accuracy generally increases as the increase of
m, and even exceed the performance before attack, for example, when m is set to 10, the Accuracy
for ConceptGuard(CAT+) exceeds the original accuracy. However, choosing an excessively large m
is not practical, as the computational cost increases approximately linearly with m.

7 CONCLUSION

ConceptGuard represents a significant advancement in the field of secure and explainable artificial
intelligence, specifically addressing the critical issue of concept-level backdoor attacks in CBMs. By
introducing a novel defense framework that leverages concept clustering and a voting mechanism
among classifiers trained on different concept subgroups, ConceptGuard not only mitigates the
risks posed by such attacks but also maintains the high performance and interpretability of CBMs.
Theoretical analyses and empirical evaluations have demonstrated the effectiveness of ConceptGuard
in enhancing the robustness of CBMs, making them more reliable and trustworthy for deployment in
high-stakes applications such as medical diagnostics and financial services. We emphasize that our
threat model is most potent in automated, large-scale systems where per-instance human auditing is
impractical, and where triggers are composed of subtle, combined concept errors designed to evade
sporadic checks. This context highlights the critical need for automated defenses like ConceptGuard.
While the current work has laid a solid foundation for defending against concept-level backdoors,
future research should aim to address the identified limitations, such as optimizing computational
efficiency, exploring alternative clustering methods more suitable for niche domains, and expanding
the scope of protection to encompass a broader range of potential threats.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We place strong emphasis on the transparency and reproducibility of our work. To facilitate indepen-
dent verification, the complete implementation has been provided in the supplementary materials,
allowing readers to directly reproduce the reported experiments. In addition, Section 6 of the main
text outlines the experimental pipeline, including dataset preparation, model configurations, prompts
we used and training procedures. For further clarity, Appendix H documents the full set of hyperpa-
rameter choices and auxiliary details. Together, these resources ensure that our results can be reliably
replicated and extended in future research.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. All authors of this work have committed to its
adherence. The datasets used in this study are publicly available benchmarks. Our research does not
involve any private or sensitive personal data. The code developed for experiments will be made
publicly available to ensure reproducibility. We have followed standard practices in the field to ensure
the fairness and reproducibility of our experiments. Efforts have been made to mitigate potential
biases in the evaluation process.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Ahmed Al Kuwaiti, Khalid Nazer, Abdullah Al-Reedy, Shaher Al-Shehri, Afnan Al-Muhanna,
Arun Vijay Subbarayalu, Dhoha Al Muhanna, and Fahad A Al-Muhanna. A review of the role of
artificial intelligence in healthcare. Journal of personalized medicine, 13(6):951, 2023.

Sajid Ali, Tamer Abuhmed, Shaker El-Sappagh, Khan Muhammad, Jose M Alonso-Moral, Roberto
Confalonieri, Riccardo Guidotti, Javier Del Ser, Natalia Dı́az-Rodrı́guez, and Francisco Herrera.
Explainable artificial intelligence (xai): What we know and what is left to attain trustworthy
artificial intelligence. Information fusion, 99:101805, 2023.

Yang Bai, Gaojie Xing, Hongyan Wu, Zhihong Rao, Chuan Ma, Shiping Wang, Xiaolei Liu, Yimin
Zhou, Jiajia Tang, Kaijun Huang, et al. Backdoor attack and defense on deep learning: A survey.
IEEE Transactions on Computational Social Systems, 2024.

Kushal Chauhan, Rishabh Tiwari, Jan Freyberg, Pradeep Shenoy, and Krishnamurthy Dvijotham.
Interactive concept bottleneck models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 5948–5955, 2023.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco Giannini,
Michelangelo Diligenti, Zohreh Shams, Frederic Precioso, Stefano Melacci, Adrian Weller, et al.
Concept embedding models: Beyond the accuracy-explainability trade-off. Advances in neural
information processing systems, 35:21400–21413, 2022.

Mateo Espinosa Zarlenga, Katie Collins, Krishnamurthy Dvijotham, Adrian Weller, Zohreh Shams,
and Mateja Jamnik. Learning to receive help: Intervention-aware concept embedding models.
Advances in Neural Information Processing Systems, 36:37849–37875, 2023.

Md Meftahul Ferdaus, Mahdi Abdelguerfi, Elias Ioup, Kendall N Niles, Ken Pathak, and Steven
Sloan. Towards trustworthy ai: A review of ethical and robust large language models. arXiv
preprint arXiv:2407.13934, 2024.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
Strip: A defence against trojan attacks on deep neural networks. In Proceedings of the 35th annual
computer security applications conference, pp. 113–125, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Paolo Giudici and Emanuela Raffinetti. Safe artificial intelligence in finance. Finance Research
Letters, 56:104088, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Rishi Jha, Jonathan Hayase, and Sewoong Oh. Label poisoning is all you need. Advances in Neural
Information Processing Systems, 36:71029–71052, 2023.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International Conference on Machine Learning, pp.
5338–5348. PMLR, 2020.

Songning Lai, Jiayu Yang, Yu Huang, Lijie Hu, Tianlang Xue, Zhangyi Hu, Jiaxu Li, Haicheng Liao,
and Yutao Yue. Cat: Concept-level backdoor attacks for concept bottleneck models. arXiv preprint
arXiv:2410.04823, 2024.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdooring
attacks on deep neural networks. In International symposium on research in attacks, intrusions,
and defenses, pp. 273–294. Springer, 2018.

Emanuele Marconato, Andrea Passerini, and Stefano Teso. Glancenets: Interpretable, leak-proof
concept-based models. Advances in Neural Information Processing Systems, 35:21212–21227,
2022.

Tomas Mikolov. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 3781, 2013.

Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept bottleneck
models. arXiv preprint arXiv:2304.06129, 2023.

Yoshihide Sawada and Keigo Nakamura. Concept bottleneck model with additional unsupervised
concepts. IEEE Access, 10:41758–41765, 2022.

Sanchit Sinha, Mengdi Huai, Jianhui Sun, and Aidong Zhang. Understanding and enhancing robust-
ness of concept-based models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 15127–15135, 2023.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Alexander Wan, Eric Wallace, Sheng Shen, and Dan Klein. Poisoning language models during
instruction tuning. In International Conference on Machine Learning, pp. 35413–35425. PMLR,
2023.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019
IEEE symposium on security and privacy (SP), pp. 707–723. IEEE, 2019.

Lun Wang, Zaynah Javed, Xian Wu, Wenbo Guo, Xinyu Xing, and Dawn Song. Backdoorl: Backdoor
attack against competitive reinforcement learning. arXiv preprint arXiv:2105.00579, 2021.

Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning—a
comprehensive evaluation of the good, the bad and the ugly. IEEE transactions on pattern analysis
and machine intelligence, 41(9):2251–2265, 2018.

An Yan, Yu Wang, Yiwu Zhong, Zexue He, Petros Karypis, Zihan Wang, Chengyu Dong, Amilcare
Gentili, Chun-Nan Hsu, Jingbo Shang, et al. Robust and interpretable medical image classifiers
via concept bottleneck models. arXiv preprint arXiv:2310.03182, 2023.

Yi Yu, Yufei Wang, Wenhan Yang, Shijian Lu, Yap-Peng Tan, and Alex C Kot. Backdoor attacks
against deep image compression via adaptive frequency trigger. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12250–12259, 2023.

Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. arXiv
preprint arXiv:2205.15480, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS

During manuscript preparation, a large language model (LLM) was occasionally employed as an
auxiliary assistant to refine language expression, such as improving sentence fluency and enhancing
readability. The model was not involved in generating original research contributions: it did not
participate in formulating research questions, designing methodologies, conducting experiments,
analyzing results, or drafting substantive scientific content. All core intellectual work, including
the development of ideas, execution of experiments, and interpretation of findings, was carried out
independently by the authors. Any linguistic suggestions offered by the LLM were critically reviewed
and selectively incorporated, ensuring that accuracy, originality, and scholarly integrity were fully
maintained. The authors alone bear responsibility for the research content and conclusions, and the
LLM is not listed as a contributor or author. We hereby disclose that large language models (LLMs)
were used as tools to assist with grammar polishing, wording refinement, and enhancing the fluency
of academic expression in this manuscript. The core ideas, theoretical development, experimental
design, data analysis, and result interpretation are the original work of the human authors. The final
content is under the full responsibility of all authors.

B LIMITATION

Despite the significant contributions of ConceptGuard in enhancing the security and trustworthiness
of CBMs against concept-level backdoor attacks, there remain several limitations to consider. Firstly,
while ConceptGuard demonstrates effectiveness in defending against backdoor attacks within a
certain trigger size threshold, the exact boundary of this threshold may vary across different datasets
and application domains, necessitating further research to generalize its applicability. Secondly, the
computational cost associated with the multi-stage approach, including concept clustering and the
training of multiple sub-models, poses a challenge for real-time or resource-constrained environments.
Although increasing the number of clusters can improve both the attack success rate and overall
accuracy, there is a trade-off with computational efficiency, highlighting the need for optimized
algorithms that balance performance and resource utilization.

Finally, the practical effectiveness of our framework’s instantiation is closely tied to the quality of
the concept partitioning. It is crucial to distinguish between the validity of our theoretical guarantee
and the magnitude of the certified radius it provides. While our theoretical framework (Theorems 1
and 2) holds universally for any given partition, a suboptimal grouping will likely result in a smaller
certified radius, thus reducing the practical defensive margin. Our current implementation’s reliance
on semantic clustering assumes that related concepts are semantically close, which may not always
hold, especially in highly specialized or niche domains. For example, in medical imaging, concepts
like ‘bone spurs‘ and ‘bone spacing‘ might be semantically similar in a generic language model
but are clinically distinct and should ideally belong to different partitions for a robust defense. A
key factor influencing this is the embedding model itself. While we used a general-purpose model
(BERT-base) for broad applicability, we hypothesize that employing domain-specific models—such
as ‘BioBERT‘ for medical concepts—would yield more clinically relevant clusters, thus enhancing
defense efficacy. Investigating the impact of different embedding models is an important avenue for
future research.

However, we emphasize that our core theoretical framework is flexible and not intrinsically tied to
semantic clustering. It can readily accommodate alternative partitioning strategies. For instance, in a
high-stakes domain, one could use:

• Expert-Defined Groups: A domain expert could manually group concepts based on
functional, anatomical, or pathological relationships.

• Data-Driven Clustering: Concepts could be grouped based on their statistical correlations
with final labels or co-occurrence patterns in the training data.

• Random Partitioning: As a baseline, even random partitioning provides a certified guaran-
tee, demonstrating the universal validity of our approach.

This adaptability makes ConceptGuard a versatile framework, but future work should explore and
evaluate these alternative partitioning strategies to unlock its full potential in specialized domains.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C PROOF OF THEOREM 1

Proof. Our ConceptGuard clusters the concept components into groups within the concept vector
first. After grouping, each concept appears exclusively in one group, implying that a backdoor trigger
can corrupt |e| group at most. When the trigger size is less than t, i.e., |e| ≤ t, at most t groups are
corrupted. Therefore, we can derive the dual bounds.

Nl − |e| ≤ N ′
l ≤ Nl + |e|, l = 1, 2, · · · , L, (16)

where N ′
l is the number of the base classifiers that predict the label l built upon the dataset D(Te).

We mentioned that y is the final predicted label of ensemble classifier for ctest with no attack, i.e.,
y = f(ctest;D(ϕ)). From Equation 7, the ensemble classifier built upon D(Te) keep the prediction
y unchanged if the condition is satisfied: N ′

y ≥ maxl ̸=y(N
′
l + I(y > l)). From Equation 6&7, we

conclude that Ny − |e| ≤ N ′
y , maxl ̸=y(N

′
l + I(y > l)) ≤ maxl ̸=y(Nl + I(y > l) + |e|). Therefore,

our primary objective is to ensure that: Ny − |e| ≥ maxl ̸=y(Nl + I(y > l) + |e|). It makes the
ensemble classifier predict the label y still. Equivalently, f(c′test;D(Te)) = y if:

|e| ≤ Ny −maxl ̸=y(Nl + I(y > l))

2
. (17)

D ATTACK FORMULATION AND DETAILS

In our attack formulation, we first recall our motivation and give the following definition:

max
Dj∈D

ΣDj (f(cj)− f(cj ⊕ c̃))

s.t. f(cj) = f(cj ⊕ c̃)) = ytc,
(18)

where Dj represents each data, D represents the dataset, y represents the clean-label which we chose
to attack, and c⊕ c̃ represents the Data-Driven Attack Pattern we defined, it means we may change
the concepts values in the concepts which we filtered out while we keep the values unchanged in
other concepts.

The objective function during an attack is to maximize the discrepancy in predictions. Nevertheless,
if the trigger is absent from the concept vector, the predicted label will remain unchanged. Crucially,
the objective function adheres to two constraints: the first ensures that the model’s predictions for
the original dataset remain unchanged, while the second mandates that the perturbation remains
imperceptible.

In concept-level backdoor attacks, the core mechanism consists of two steps: concepts filter for the
attack and inject poisonous data into the training dataset to embed the backdoor trigger. Below, we
will discuss how these two steps influence concept-level backdoor attacks.

Concept Filter. Given a concept vector c ∈ RL, where each element ck encapsulates a distinct
concept, we endeavor to filter out the most irrelevant concepts to generate perturbations in the context
of the attack. Let e represent a set of concepts, termed trigger concepts, employed in the formulation
of the backdoor trigger, such that e = {ck1 , ck2 , . . . , ck|e|}. Here, |e| denotes the cardinality of the
concept set e and is defined as the trigger size. During the concept filtering process, we systematically
identify and eliminate the |e| concepts that exhibit the least relevance to the prediction task. The
assessment of concept irrelevance is conducted through the utilization of the classifier f . Ultimately,
we extract |e| concepts to facilitate the attack in subsequent stages. In this filtering process, the
potency of the backdoor attack is inherently tied to the trigger size |e|. We denote the resultant filtered
concepts as c̃.

Data-Driven Attack Pattern. In CBM tasks, most datasets have sparser concept levels in the
concept bottleneck layer. It means in a concept vector c, most concept levels ck are positive (negative)
rather than negative (positive). When ck = 0, ck is negative, and when ck = 1, ck is positive.
Different datasets have different levels of sparsity. While we attacking the positive datasets, we set
the filtered concepts c̃ into 0, i.e., c̃ := {0, 0, · · · , 0}, |c̃| = |e|. There will be an opposite situation
in negative datasets, we set the filtered concepts c̃ into 1, i.e., c̃ := {1, 1, · · · , 1} , |c̃| = |e|.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

By setting the filtered concepts c̃ accordingly, the attack aims to introduce perturbations that are
subtle yet impactful, disrupting the model’s predictions without being easily detected.

CAT+ Lai et al. (2024). Let D denote the training dataset, and Pc be the set of possible operations
on a concept, which includes setting the concept to zero or one. We define the set of candidate trigger
concepts as c, and for each iteration, we choose a concept cselect ∈ c and a poisoning operation
Pselect ∈ Pc. The objective is to maximize the deviation in the label distribution after applying the
trigger. This is quantified by the function Z(D; cselect;Pselect), which measures the change in the
probability of the target class after the poisoning operation.

The function Z(·) is defined as follows:

(i) Let n be the total number of training samples, and ntarget be the number of samples from the
target class. The initial probability of the target class is p0 = ntarget/n.

(ii) Given a modified dataset ca = D; cselect;Pselect, we calculate the conditional probability of the
target class given ca as p(target|ca) = H(target(ca))/H(ca), where H is a function that computes
the overall distribution of labels in the dataset.

(iii) The Z-score for ca is defined as:

Z(ca) = Z(cselect, Pselect)

=
[
p(target|ca) − p0

]
/

[
p0(1− p0)

p(target|ca)

]
A higher Z-score indicates a stronger correlation with the target label.

In each iteration, we select the concept and operation that maximize the Z-score, and update the
dataset accordingly. The process continues until |c̃| = |e|, where c̃ represents the set of modified
concepts. Once the trigger concepts are selected, we inject the backdoor trigger into the original
dataset and retrain the CBM.

E PSEUDO ALGORITHM

See in Algorithm 2.

F PROOF OF THEOREM 2

Proof. Following the same notation, we use J to denote the set of indices of |e| groups which are
potentially corrupted. When the groups with their indices in J are corrupted, the lower and upper
bounds for N ′

l are derived as below:

Nl −
∑
j∈J

I
(
f
(
Gj (ctest) ;D (ϕ)

)
= l

)
≤ N

′

l ,

N
′

l ≤ Nl +
∑
j∈J

I
(
f
(
Gj (ctest) ;D (ϕ)

)
̸= l

)
.

Based on equation 17 and Appendix C, the ensemble classifier f built upon D(ϕ) still
predicts y for ctest if we have Ny −

∑
j∈J I

(
f
(
Gj (ctest) ;D (ϕ)

)
= l

)
≥ maxl ̸=y(Ny +∑

j∈J I
(
f
(
Gj (ctest) ;D (ϕ)

)
̸= l

)
). Based on Equations 14 and 15, the ensemble classifier f

built upon D(Te) still predicts y for ctest if we have:

Ny −
∑
j∈J

I
(
f
(
Gj (ctest) ;D (ϕ)

)
= y

)
≥

max
l ̸=y

(Nl + I(y > l) +
∑
j∈J

I
(
f
(
Gj (ctest) ;D (ϕ)

)
̸= l

)
).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 ConceptGuard Defense Algorithm

1: Input: The concept vector ctest, the training dataset D, the backdoor trigger size |e|, the number
of sub-datasets m

2: Output: Improved certified accuracy for the ensemble classifier
3: Compute Nl for each class label l from the training dataset D(ϕ)
4: Compute the predicted label y from the ensemble classifier on the clean data D(ϕ)
5: Calculate the maximum number of classifiers for each class l:

max
l ̸=y

(Nl + I(y > l))

6: for each subset Gj(ctest) for j = 1, . . . ,m do
7: Compute the number of base classifiers for each class l for the subset Gj(ctest)
8: if f(Gj(ctest);D(ϕ)) = l then
9: Increase the counter for the predicted class l

10: end if
11: end for
12: for each possible corrupted group index set J ⊆ {1, 2, . . . ,m} with |J | = |e| do
13: Compute the updated prediction N ′

l after corrupting the groups in J :
14: N ′

l ≤ Nl +
∑

j∈J I(f(Gj(ctest);D(ϕ)) ̸= l)

15: N ′
l ≥ Nl −

∑
j∈J I(f(Gj(ctest);D(ϕ)) = l)

16: Check if the inequality for maintaining label y is satisfied:

Ny −
∑
j∈J

I(f(Gj(ctest);D(ϕ)) = y) ≥

max
l ̸=y

(Nl + I(y > l) +
∑
j∈J

I(f(Gj(ctest);D(ϕ)) ̸= l))

17: if the condition holds then
18: Accept this subset as contributing to the certified accuracy
19: else
20: Reject this subset
21: end if
22: end for
23: Compute the final certified accuracy by taking the majority vote over all subsets
24: Output: Certified accuracy

G DATASET DETAILS

Here we give some examples of the modified concepts for the datasets, see Table 9. For CUB dataset,
we just change the format of the concepts. For AwA dataset, we use GPT-4 to generate one full
sentence based on the single word concept through the following prompt, ”Here are the concepts for
an animal classification task, please transfer each concept into one complete sentence.”

Dataset Original concept Rewrite concept

CUB

has bill
shape::dagger

Bill shape is dagger

has eye
color::black

Eye color is black

AWA

meat The animal consumes meat as part of its
diet

Forest The animal inhabits forests

Table 3: Examples of the rewrite concepts for both datasets

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 Joint Certification

Require: m base classifiers f j (j = 1, 2, . . . ,m), a clustering function F , a clean test dataset Dtest,
maximum trigger size t.

1: Accu← 1
2: for J in Combination(m, t) do
3: Iaccu← 0
4: for (xtest, ctest, ytest) ∈ Dtest do
5: Gj(ctest)← ConceptClustering(ctest,m,F), j = 1, 2, . . . ,m
6: Nl ←

∑m
j=1 I(f j(Gj(ctest);D(ϕ)) = l), l = 1, 2, . . . , C

7: y ← argmaxl=1,2,...,L Nl

8: U ← Ny −
∑

j∈J I(f j(Gj(ctest);D(ϕ)) = y)

9: L← maxl ̸=y(Nl + I(y > l) +
∑

j∈J I
(
f
(
Gj (ctest) ;D (ϕ)

)
̸= l

)
)

10: Iaccu← Iaccu+ I(U ≥ L)I(ytest = y)
11: end for
12: Accu← min(Accu, Iaccu)/|Dtest|
13: end for
14: return Accu

H EXPERIMENT SETTINGS

We conducted all of our experiments on a NVIDIA A800 GPU. The hyper-parameters for each dataset
and for each sub-model remained consistent, regardless of whether an attack was present.

In this work, we set the training model in CBMs as joint bottleneck training, which minimizes the
weighted loss function:

f̂ , ĝ = argmin
f,g

Σi[Ly(f(g(x
(i))); y(i))

+ ΣjλLcj (g(x
(i)); c(i))],

(19)

where λ > 0, and loss function Ly : R× R→ R+ measure the discrepancy between predicted and
true targets, loss function Lcj : R× R→ R+ measures the discrepancy between the predicted and
true j-th concept.

For model architecture, We use ResNet-50 He et al. (2016) as the Encoder to map the image to
concept space, and then an MLP with one hidden layer, whose hidden size 512 is followed to make
the final prediction. For one sub-model, the input dimension for the MLP will be the number of
concepts in the corresponding group.

During training, we use a batch size of 64 and a learning rate of 1e-4. The Adam optimizer is applied
with a weight decay of 5e-5, alongside an exponential learning scheduler with γ = 0.95. The concept
loss weight λ in Equation 19 is set to 0.5. For image augmentations, we follow the approach of Lai
et al. (2024). Each training image is augmented using random color jittering, random horizontal flips,
and random cropping to a resolution of 256. During inference, the original image is center-cropped
and resized to 256. For AwA dataset, We use a batch size of 128, while all other hyper-parameters
and image augmentations remain consistent with those used for the CUB dataset.

I MORE EXPERIMENTS ABOUT OTHER SETTING

I.1 INJECTION RATE AND TRIGGER SIZE

Table 4 demonstrates the performance of ConceptGuard under varying injection rates and trigger
sizes. At a 2% injection rate, ConceptGuard significantly reduces the ASR while maintaining or
slightly improving the ACC. For example, when the trigger size is 12, the ASR for CAT drops from
13.97% to 12.3%, and the ACC improves from 80.72% to 81.77%. Similarly, for CAT+, the ASR
decreases from 38.88% to 21.69%, and the ACC increases from 80.46% to 82.34%.

At a 10% injection rate, the attack success rate generally increases, but ConceptGuard still effectively
reduces the ASR. For instance, with a trigger size of 12, the ASR for CAT drops from 38.08% to

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2% 10%
CAT CAT (CG) CAT CAT (CG) CAT CAT (CG)

ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)
12 80.72 13.97 81.77 12.3 78.7 24.05 80.36 11.45 74.66 38.08 75.22 27.55
15 80.22 11.94 82.05 10.01 78.08 22.97 80.01 10.91 74.02 38.72 74.53 30.53
17 80.31 25.07 82.15 3.94 78.86 46.69 79.75 16.66 73.27 61.28 74.77 20.32
20 80.2 30.33 81.93 15.29 78.01 44.66 78.75 11.55 73.85 60.48 76.15 38.5
23 80.31 20.42 82.21 23.28 78.06 32.48 80.26 25.56 72.63 47.02 75.72 48.2

CAT+ CAT+ (CG) CAT+ CAT+ (CG) CAT+ CAT+ (CG)
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

12 80.46 38.88 82.34 21.69 79.05 57.6 80.07 34.49 75.11 68.49 76.35 44.69
15 80.26 31.97 82.27 14.68 79.34 41.64 79.79 38.46 74.78 47.29 74.87 43.84
17 79.84 49.22 82.29 31.94 78.48 58.31 80.45 38.88 73.85 71.2 75.77 31.21
20 81.27 72.36 82.36 11.78 78.86 89.68 78.56 17.16 74.34 92.4 75.89 34.21
23 79.58 87.4 81.88 22.38 77.65 91.71 79.1 42.37 73.78 86.9 76.87 40.49

Table 4: Performance Comparison of ConceptGuard under Different Injection Rates and Trigger
Sizes. This table presents ACC and ASR of ConceptGuard under different injection rates (2% and
10%) and trigger sizes (12, 15, 17, 20, 23). The results are shown for both the unprotected models
(CAT/CAT+) and the models protected by ConceptGuard (CAT (CG)/CAT+ (CG)).

Target Class CAT CAT (CG) CAT+ CAT+ (CG)
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

8 75.06 74.24 79.72 21.93 75.56 52.63 79.96 11.19
16 75.16 40.91 80.36 8.74 75.72 68.81 80.13 30.52
24 74.37 35.48 80.03 17.24 74.91 54.48 81 13.38
32 74.7 37.68 80.62 25.31 75.58 17.87 79.53 9.52
40 74.46 42.35 79.53 7.93 74.96 23.77 80.32 12.49
48 75.09 49.77 80.74 4.49 75.73 95.11 80.91 22.14
56 75.22 70.99 81.07 15.93 75.23 57.36 80.24 15.25
64 74.85 43.63 80.41 10.27 74.58 84.27 80.46 19.29
72 74.99 47.99 80.67 10.9 75.34 59.06 80.62 10.11
80 75.03 62.51 80.89 10.83 75.61 75.83 80.45 11.85
88 74.75 51.13 79.94 21.93 74.66 72.71 80.1 25.02
96 74.82 17.73 80.67 8.99 75.2 62.16 80.91 14.78

104 74.84 53.02 80.65 12.8 74.92 40.42 80 16.03

Table 5: Performance of ConceptGuard on Different Target Classes. This table presents ACC and
ASR of ConceptGuard for different target classes under an injection rate of 5% and a trigger size of
20, using the CUB dataset. The results are shown for both the unprotected models (CAT/CAT+) and
the models protected by ConceptGuard (CAT (CG)/CAT+ (CG)).

27.55%, and the ACC improves from 74.66% to 75.22%. For CAT+, the ASR decreases from 68.49%
to 44.69%, and the ACC increases from 75.11% to 76.35%.

As the trigger size increases, the effectiveness of ConceptGuard remains robust. For smaller trigger
sizes (12, 15), ConceptGuard significantly reduces the ASR and maintains high ACC. For example,
with a trigger size of 12, the ASR for CAT drops from 13.97% to 12.3%, and the ACC improves from
80.72% to 81.77%. For CAT+, the ASR decreases from 38.88% to 21.69%, and the ACC increases
from 80.46% to 82.34%.

For larger trigger sizes (17, 20, 23), ConceptGuard continues to perform well, although the ASR
increases. For instance, with a trigger size of 20, the ASR for CAT drops from 44.66% to 11.55%,
and the ACC improves from 78.01% to 78.75%. For CAT+, the ASR decreases from 89.68% to
17.16%, and the ACC increases from 78.86% to 78.56%.

ConceptGuard effectively reduces the ASR and maintains or improves the ACC under various
injection rates and trigger sizes. This robust performance highlights the effectiveness of ConceptGuard
in protecting models against concept-level backdoor attacks, thereby enhancing the security and
trustworthiness of the models.

I.2 TARGET CLASS

Table 5 demonstrates the performance of ConceptGuard across various target classes under a fixed
injection rate of 5% and a trigger size of 20, using the CUB dataset. For the unprotected models

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

LAD-E LAD-V
Original ACC(%) ACC(%) ASR(%) Original ACC (%) ACC(%) ASR(%)

CAT 79.00 72.76 75.19 79.06 71.08 70.74
CAT+ 73.52 77.01 71.86 73.81
ConceptGuard(CAT) 81.18 ↑(2.18) 74.38 9.36 ↓ (65.83) 81.67 ↑(2.61) 73.20 6.15 ↓ (64.59)
ConceptGuard(CAT+) 73.66 9.38 ↓ (67.63) 80.58 5.42 ↓ (68.39)

Table 6: LAD-E, LAD-V for electronics and vehicles domains task. Trigger size: 17, injection rate:
0.1, clusters: 4, backbone: ResNet50.

(CAT/CAT+), ASR varies significantly across different target classes. For example, for target class 8,
the ASR for CAT is 74.24%, which is substantially reduced to 21.93% with ConceptGuard (CAT
(CG)). Similarly, for target class 48, the ASR for CAT+ is 95.11%, which is reduced to 22.14% with
ConceptGuard (CAT+ (CG)).

Across all target classes, ConceptGuard consistently improves ACC while significantly reducing
ASR. For instance, for target class 16, the ACC for CAT increases from 75.16% to 80.36% with
ConceptGuard, and the ASR drops from 40.91% to 8.74%. For target class 72, the ACC for CAT+
increases from 75.34% to 80.62% with ConceptGuard, and the ASR drops from 59.06% to 10.11%.

These results highlight the robustness of ConceptGuard in defending against concept-level backdoor
attacks across different target classes. Despite variations in the target classes, ConceptGuard main-
tains its effectiveness in reducing the ASR and improving the ACC, thereby enhancing the overall
security and reliability of the models. This consistent performance underscores the practical value of
ConceptGuard in real-world applications where diverse and targeted attacks are a significant concern.

I.3 THE IMPACT OF NUMBER OF CLUSTERS IN OTHER ATTACK SETTING

Table 7 illustrates the attack success rates (ASR, %) under varying cluster numbers m for CG(CAT)
and CG(CAT+), with a 10% injection rate. Both methods significantly reduce ASR compared to
the experiment without defense (m = 1), with CG(CAT) showing consistent improvement as m
increases and CG(CAT+) achieving optimal performance at moderate cluster numbers.

CUB
m CG(CAT) CG(CAT+)
1 60.48 92.40
3 41.67 57.46
4 38.50 34.21
5 29.55 28.24
6 29.55 28.78
7 23.70 49.01
8 35.27 51.72
9 24.13 31.35

10 25.87 43.93

Table 7: Attack Success Rate (ASR, %) under varying numbers of clusters m, the injection rate is
10%. CG denotes ConceptGuard. Bold values highlight the best performance, while underlined
values indicate competitive performance. m = 1 refers to the ASR when ConceptGuard is not
applied.

J MORE DATASETS

Supplementary experiments on the LAD-E and LAD-V classification datasets (Large-scale Attribute
Dataset) [1] are now included. Tab 6 shows partial results. [1] A large-scale attribute dataset for
zero-shot learning

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Original CG(CAT) CG(CAT+)
Base model 1 77.61 73.47 73.09
Base model 2 78.49 73.97 74.02
Base model 3 81.34 77.05 76.70
Base model 4 77.67 72.30 72.01
Average 78.78 74.20 73.96
Ensemble 83.03 ↑ 78.75 ↑ 78.56↑

Table 8: The Accuracy (%) for each sub-model on clean test data for CUB dataset, the Original
denotes to the accuracy when there is no attack. The bold value refers to the best accuracy of
sub-model and the underlined value refers to the worst accuracy of sub-model.

Original CG(CAT) CG(CAT+)
Base model 1 88.67 87.34 87.50
Base model 2 89.52 86.13 86.44
Base model 3 89.79 86.82 86.49
Base model 4 89.85 86.73 86.54
Base model 5 88.88 86.79 87.02
Base model 6 88.94 87.51 87.81
Average 89.28 86.89 86.97
Ensemble 91.30 ↑ 90.20 ↑ 90.21 ↑

Table 9: The Accuracy (%) for each sub-model on clean test data for AwA dataset.

K INDIVIDUAL MODEL VS. ENSEMBLE MODEL

We investigated the individual model’s accuracy and the ensembled accuracy, with the results pre-
sented in Table 8 and Table 9. Overall, our ensemble model shows a significant improvement in
accuracy compared to the individual accuracy of each base classifier in all scenarios, even out-
performing the best-performing base classifier (base classifier 3). Additionally, there is a notable
increase in accuracy compared to the average accuracy of the base classifiers. This improvement is
attributed to our ConceptGuard framework, which effectively filters out the misclassifications of the
few base classifiers during testing, thereby providing the ensemble model with a higher accuracy.
The source of this accuracy improvement aligns with the original motivation of ConceptGuard: it
mitigates the errors of the base classifiers, leading to a higher ensemble accuracy, rather than simply
relying on a straightforward aggregation of the classifiers. By leveraging the diversity and robustness
of the ensemble, ConceptGuard ensures that the final predictions are more accurate and reliable,
demonstrating its effectiveness in enhancing the performance of ensemble models.

L DISCUSSION ON BROADER BACKDOOR THREATS

In this section, we elaborate on the broader landscape of backdoor threats against Concept Bottleneck
Models (CBMs) to better contextualize our work and motivate the need for specialized defenses like
ConceptGuard.

L.1 INPUT-LEVEL VS. CONCEPT-LEVEL BACKDOORS IN CBMS

Backdoor attacks on CBMs can occur at two distinct levels, each with different characteristics and
defense implications:

• Input-Level Backdoors: These are traditional backdoors where the trigger is embedded
in the raw input space. For instance, an attacker could insert a small pixel patch into an
image (a vision backdoor) or a specific rare word into a text document (an NLP backdoor).
The CBM’s feature extractor, g(·), learns a spurious correlation between the presence of
this input-space trigger and a target class. Many existing backdoor defenses, such as input

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

purification (e.g., STRIP) or trigger synthesis (e.g., Neural Cleanse), are designed to operate
at this level by sanitizing the input x or analyzing the model’s response to it.

• Concept-Level Backdoors: This is the threat model our work addresses, first introduced
by the CAT attack Lai et al. (2024). Here, the trigger is not a pattern in the input space but
a semantic pattern in the discrete concept space. The trigger is a specific combination of
concept activations (e.g., ‘{has wings=1, has beak=0}‘). The backdoor is embedded in the
concept-to-label model, f(·), which learns to associate this semantic pattern with a target
class. A benign input x can activate the backdoor at test time if its predicted concept vector,
ĉ = g(x), happens to contain the trigger pattern, even with no malicious modification to x.

L.2 ADAPTING EXISTING ATTACKS AND THEIR UNIQUE CHALLENGES

Existing backdoor methodologies could theoretically be adapted to attack CBMs. For example, a
BadNets-style attack could poison the training data with input-space triggers. However, defending
against a concept-level backdoor poses unique and significant challenges that render traditional
defenses ineffective:

1. Input-Level Defenses are Bypassed: Defenses that sanitize the input x are fundamentally
misaligned with the threat. A concept-level backdoor is activated by the model’s interpre-
tation of a clean input, not by a malicious artifact within the input itself. Therefore, input
purification or filtering is ineffective.

2. Trigger Inversion is Intractable: Defenses that attempt to reverse-engineer a trigger pattern
(e.g., Neural Cleanse) face a much harder problem. Instead of optimizing in the input space
for a single trigger pattern, they would need to find an input that reliably induces a specific
combinatorial pattern of discrete concept activations. This is a significantly more complex
and often ill-posed optimization problem.

3. Stealth and Plausibility: A concept-level trigger can be much stealthier than an input-level
one. A combination of plausible concepts (e.g., an animal that is ‘swift‘ and ‘lives in water‘
but isn’t a known fish) might seem like a natural, albeit rare, occurrence, making the
backdoor’s behavior difficult to distinguish from legitimate model error on outlier data.

These distinct challenges underscore a critical gap in existing backdoor defense literature. While
input-level attacks on CBMs are a valid concern, they can be addressed with existing families of
defenses. In contrast, the concept-level backdoor represents a novel and fundamentally different
threat vector that exploits the very structure of the CBM. This motivates the development of a new
class of defense, like ConceptGuard, which operates directly in the semantic concept space where the
threat resides.

M COMPUTATIONAL COST ANALYSIS

In this section, we analyze the computational cost of ConceptGuard during both the training and
inference phases.

Training Cost. The training of ConceptGuard involves training m independent sub-models, where
m is the number of concept clusters. Let the computational cost (e.g., in GPU hours) of training a
single standard CBM be Cbase. The cost of training one of our sub-models, Csub, is approximately
equal to Cbase since the architecture is nearly identical. Therefore, the total computational workload
required to train ConceptGuard is O(m · Cbase).

However, a crucial property of our framework is that the training of these m sub-models is an
embarrassingly parallel task. Each sub-model fk ◦ gk is trained on its corresponding data subset
independently of all other sub-models. This has significant practical implications for the wall-clock
training time:

• On a system with k parallel processing units (e.g., GPUs), where k ≥ m, all m models
can be trained simultaneously. In this ideal scenario, the total wall-clock training time is
approximately the same as training a single standard CBM, i.e., O(Cbase).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• On a system with k < m GPUs, the models can be trained in ⌈m/k⌉ batches. The wall-clock
time increase is therefore a factor of ⌈m/k⌉, not m. Given that m is a small integer in
our experiments (e.g., 4 or 8), the actual training time overhead is minimal on modern
multi-GPU research servers.

This parallelizability makes the training of ConceptGuard highly practical and scalable, despite the
linear increase in total computational resources.

Inference Cost. During inference, the computational cost overhead of ConceptGuard is negligible.
An input x is passed through the shared feature extractor g(·) only once to obtain the predicted
concept vector ĉ. This is the most computationally expensive step. Subsequently, this single vector ĉ
is fed to the m concept-to-label sub-models (f1, . . . , fm), followed by a simple majority vote. Since
each fk is typically a very shallow neural network (1-2 fully connected layers), the cost of these m
forward passes is trivial compared to the cost of the single forward pass through the deep backbone
network g(·). Therefore, the increase in inference latency is minimal.

N PRACTICAL CONSIDERATIONS FOR CONCEPT CLUSTERING

In this section, we address some practical considerations and potential edge cases related to the
concept clustering step of our ConceptGuard framework.

Our default clustering method, k-means, can in theory produce empty clusters if a centroid is
initialized in a way that no data point is closer to it than to any other centroid. In our experiments
with rich concept embeddings, this was a rare occurrence. However, should it happen, it can be
handled with simple and standard heuristics. The most straightforward approach is to simply re-run
the k-means algorithm with a different random initialization (i.e., a new seed), which will almost
certainly result in a valid, non-empty partitioning. Alternatively, one could implement a rule to
re-assign the centroid of an empty cluster to the location of the data point farthest from its own
centroid. Given the simplicity of these workarounds, we do not consider this a significant practical
obstacle.

Some concept sets may possess a natural or predefined hierarchical structure (e.g., ‘animal‘→ ‘bird‘
→ ‘sparrow‘). Our current implementation, which uses a flat clustering method like k-means, does
not explicitly leverage this prior structural knowledge. The semantic embeddings of hierarchical
concepts will likely cause them to be clustered together, but the hierarchy itself is not formally
encoded.

Handling such structures is an advanced topic and represents a promising avenue for future research.
One could replace k-means with a hierarchical clustering algorithm (agglomerative clustering) to
create nested partitions that respect the concept taxonomy. Our theoretical framework is flexible
enough to accommodate such advanced partitioning strategies, as it only requires that the concept set
be partitioned into disjoint subsets. Evaluating the empirical benefits of a hierarchy-aware partitioning
strategy is a valuable next step, but it is beyond the scope of this initial work, which focuses on
establishing the core defensive framework in a general-purpose setting.

22

	Introduction
	Related Work
	Preliminary
	Concept Bottleneck Model
	Concept-level Backdoor ATtack (CAT)

	ConceptGuard
	Certified Robustness
	Experiments and Results
	Datasets
	Settings
	Experiment Results
	ConceptGuard v.s. Direct Training (DT)
	Individual model vs. ensemble model
	The impact of number of clusters

	Conclusion
	Use of Large Language Models
	Limitation
	Proof of Theorem 1
	Attack Formulation and Details
	Pseudo Algorithm
	Proof of Theorem 2
	Dataset Details
	Experiment Settings
	More Experiments about other Setting
	Injection Rate and Trigger Size
	Target Class
	The Impact of Number of Clusters in Other Attack Setting

	More datasets
	Individual model vs. ensemble model
	Discussion on Broader Backdoor Threats
	Input-Level vs. Concept-Level Backdoors in CBMs
	Adapting Existing Attacks and Their Unique Challenges

	Computational Cost Analysis
	Practical Considerations for Concept Clustering

