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ABSTRACT

Clinical time series derived from electronic health records (EHRs) are inherently
irregular, with asynchronous sampling, missing values, and heterogeneous fea-
ture dynamics. While numerical laboratory measurements are highly informative,
existing embedding strategies usually combine feature identity and value embed-
dings through additive operations, which constrains their ability to capture value-
dependent feature interactions. We propose MedFuse, a framework for irregu-
lar clinical time series centered on the MuFuse (Multiplicative Embedding Fu-
sion) module. MuFuse fuses value and feature embeddings through multiplicative
modulation, preserving feature-specific information while modeling higher-order
dependencies across features. Experiments on three real-world datasets cover-
ing both intensive and chronic care show that MedFuse consistently outperforms
state-of-the-art baselines on key predictive tasks. Analysis of the learned repre-
sentations further demonstrates that multiplicative fusion enhances expressiveness
and supports cross-dataset pretraining. These results establish MedFuse as a gen-
eralizable approach for modeling irregular clinical time series.

1 INTRODUCTION

Clinical time series from electronic health records (EHRs) are central to a wide range of predictive
and monitoring tasks in healthcare, yet their irregular structure presents persistent modeling chal-
lenges. Unlike words in sentences or signals sampled at fixed intervals, clinical variables are mea-
sured on heterogeneous schedules with irregular gaps, leading to high missingness and asynchronous
observations. For example, vital signs may be monitored frequently during hospitalization, while
laboratory tests are ordered only when clinically indicated, and some patients may miss scheduled
visits or follow-up tests altogether. Numerical features such as laboratory values are especially dif-
ficult to represent: they encode complex information in continuous ranges and, in principle, demand
infinitely many representations. Effective models must therefore handle nonuniform sampling, spar-
sity, and diverse temporal dynamics across a large set of patient variables.

Figure 1: Illustration of EVAT.

A growing line of work addresses these challenges by tok-
enizing each measurement as a (feature identity, value, times-
tamp) triplet (Tipirneni & Reddy, 2022b). This formulation
allows models to learn directly from observed events and
avoid explicit imputation, yielding an imputation-free work-
flow. The “each value as token” (EVAT) paradigm (Huang
et al., 2024) naturally accommodates asynchronous sampling,
since tokens are instantiated only when measurements oc-
cur. Within EVAT, most approaches combine feature, value,
and time embeddings through additive composition (Li et al.,
2020; Rasmy et al., 2021; Tipirneni & Reddy, 2022b). Ad-
ditive fusion has been effective in practice: it integrates peri-
odic time information (Vaswani et al., 2017b), treats values as
learnable embedding offsets, and provides a simple yet scal-
able mechanism for modeling large vocabularies of clinical
events. However, this design inherently constrains expres-
siveness. Treating the numerical value primarily as an addi-
tive shift to a base feature embedding limits the model’s abil-
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ity to capture value-dependent, nonlinear interactions, such as how small versus large deviations in
a laboratory test can imply qualitatively different clinical states. Consequently, additive fusion may
struggle to represent context-sensitive effects critical for robust clinical prediction.

To address these limitations, we propose MedFuse, a framework for modeling irregular numerical
clinical time series centered on a novel embedding module, MuFuse (Multiplicative Embedding Fu-
sion). Instead of adding a value embedding to a feature vector, MuFuse performs value-conditioned
multiplicative fusion, where the numerical measurement modulates the feature embedding through
element-wise scaling. This yields token representations that vary nonlinearly with the observed
value in a feature-specific manner. Multiplicative fusion has been shown to provide stronger se-
mantic integration than addition or concatenation in other domains (Chrysos et al., 2025), and we
demonstrate its effectiveness in the clinical setting. Importantly, we show that a recent state-of-the-
art method for irregular EHR modeling (Huang et al., 2024) is in fact a special case of MuFuse,
establishing our formulation as a more general fusion mechanism. By applying this principle to
each (feature, value, timestamp) triplet, MuFuse preserves feature identity while allowing numerical
values to shape the embedding in a nonlinear, feature-specific way, capturing clinically meaningful
distinctions such as the difference between a slight increase and a sharp rise in creatinine.

We evaluate MedFuse on three real-world clinical datasets covering both intensive care and chronic
disease settings. MedFuse consistently outperforms strong baselines, with ablations confirming the
benefits of multiplicative fusion over additive schemes. Transfer experiments further show that
learned feature embeddings can be reused across datasets with partially overlapping variables, sup-
porting efficient pretraining and adaptation.

Our contribution can be summarized as follows:

1. Multiplicative value–feature fusion. We propose MuFuse, a novel embedding module
that performs value-conditioned multiplicative fusion. This mechanism allows numerical
values to modulate feature embeddings in a nonlinear, feature-specific way, enabling richer
interactions without expanding the embedding vocabulary.

2. A generalizable, imputation-free framework. Built on MuFuse, MedFuse adopts the
(feature, value, timestamp) triplet tokenization scheme to directly model irregular mea-
surements without imputation. It unifies numerical and categorical events with efficient
temporal encoding.

3. Comprehensive validation and transferability. MedFuse consistently outperforms
strong baselines across intensive-care and chronic-disease datasets. Ablation studies high-
light the advantage of multiplicative over additive fusion, and transfer experiments show
that learned feature embeddings can be reused across datasets with partially overlapping
variables.

2 RELATED WORK

Sequence models form the foundation of multivariate time-series (MTS) learning. Recurrent archi-
tectures such as Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and Gated
Recurrent Unit (GRU) (Cho et al., 2014) established classic baselines, while attention-based Trans-
formers extended this capacity to capture long-range dependencies (Vaswani et al., 2017a). To
address irregular sampling and missing values, some methods integrate imputation into the learning
process. For example, Bidirectional Recurrent Imputation for Time Series (BRITS) jointly learns
imputations with recurrent prediction, reducing the train–test mismatch between filled and observed
values (Cao et al., 2018). More recently, efficient Transformer variants such as Informer, which em-
ploys sparse self-attention, have demonstrated competitive accuracy–efficiency trade-offs for long-
sequence forecasting (Zhou et al., 2021).

In healthcare, where EHR-derived time series are sparse and asynchronous, modeling pipelines have
often relied on explicit imputation before outcome prediction. Simply Attend and Diagnose (SAnD)
(Song et al., 2018a) eliminates recurrence with masked self-attention and positional encodings but
requires resampling to a regular grid, which may blur feature-specific temporal signals. Imputation-
free approaches bypass this issue. For instance, Multi-time Attention Networks (mTAN) employ
continuous-time attention to reason directly over irregular observations (Shukla & Marlin, 2021a).
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A parallel line of work represents each measurement as a token, avoiding missing-value imputa-
tion and preserving asynchrony by construction. This EVAT perspective has shown strong results:
Self-supervised Transformer for Time-Series (STraTS) trains a Transformer on (feature, time, value)
triplets with self-supervised objectives (Tipirneni & Reddy, 2022a), while Scalable Numerical Em-
beddings (SCANE) achieves state-of-the-art performance with a specialized value-scaling mech-
anism (Huang et al., 2024). However, the source of SCANE’s advantage over additive schemes
remains underexplored (see Appendix E).

Building on these advances, our work focuses on the unresolved challenge of fusing the compo-
nents of each numerical EHR observation. Prior EVAT methods have relied mainly on additive
or concatenative operations, which limit the ability to capture value-dependent, nonlinear feature
interactions. In contrast, we introduce MuFuse, a value-conditioned multiplicative fusion module
that modulates feature embeddings with observed values. MuFuse retains linear complexity in the
embedding dimension, is compatible with standard sequence backbones such as the Transformer
encoder (Vaswani et al., 2017a), and is designed to capture richer feature–value interactions under
irregular sampling. The design of MuFuse and the overall MedFuse framework are detailed in the
following section.

3 METHODOLOGY

3.1 PROBLEM SETUP AND NOTATION

Let O = {(f, v, t)} denote the set of observed triplets in a numerical multivariate time series, where
f ∈ {1, . . . , F} indexes the feature identity (e.g., lab test type), v ∈ R is the recorded value, and
t ∈ R+ is the corresponding (possibly overlapping) time converted from the original timestamp. We
mask missing entries using an indicator Mf,t ∈ {0, 1}, and only tuples with Mf,t = 1 (i.e., actually
observed records) are tokenized and passed to the downstream model.

Each observed triplet (f, v, t) is mapped to three embeddings: a feature embedding ef , a value em-
bedding ev , and a time embedding et. These components are then combined through the proposed
MuFuse module (Section 3.2) to form a unified token representation ef,v,t ∈ Rd, which serves as
input to downstream sequence modeling.

3.2 MUFUSE: MULTIPLICATIVE EMBEDDING FUSION

MuFuse is the core module of MedFuse. It integrates the feature, value, and time embeddings of each
triplet using value-conditioned multiplicative modulation, enabling richer feature–value interactions
than additive or concatenative schemes. We next describe how each component is embedded and
how the fusion is performed.

3.2.1 FEATURE IDENTITY EMBEDDING

Each feature type f ∈ {1, . . . , F} is associated with a unique learnable embedding vector

ef ∈ Rd, (1)

obtained through a standard lookup table. This embedding provides a stable representation of the
feature identity.

3.2.2 VALUE EMBEDDING

To represent the observed scalar v, we employ a shared nonlinear projector ϕ : R→Rd′
:

zv = ϕ(v) ∈ Rd′
. (2)

To capture feature-specific variations (e.g., different scales across lab tests), we further apply a
learnable affine transformation conditioned on the feature type f :

ev|f = γf ⊙ zv + βf ∈ Rd′
, (3)

where γf ,βf ∈ Rd′
are feature-specific parameters and ⊙ denotes element-wise multiplication. For

simplicity, in the rest of this article, we denote ev|f as ev .
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3.2.3 MULTIPLICATIVE FUSION

In this step, we aim to integrate the feature identity embedding ef ∈ Rd and the value embedding
ev ∈ Rd′

. We extended the standard Hadamard product as our operation of the proposed multi-
plicative fusion, as it was found to be efficient in aggregating information for deep models (Chrysos
et al., 2025). When d′ = d, the proposed multiplicative fusion MuFuse can be expressed using the
standard Hadamard product between the two involved embeddings (vectors):

MuFuse (ef , ev) = ef ⊙ ev = ef,v (4)

However, in real-world applications, the best practice for embedding dimensions for feature identity
and observed value can differ (d′ ̸= d). To address this issue, we generalize the multiplicative fusion
through entry broadcasting. To illustrate this, without loss of generality, we assume d > d′ and
d = d′ × k, k ∈ N. To match the dimensions, we repeat each entry of ev for k times to generate
an extended embedding ev′ ∈ Rd. All entries will pass through a sigmoid function to suppress
abnormal values. Then, the fusion can be expressed again using the standard Hadamard product
between ef and ev′ .

An alternative expression to accentuate the interaction between ef and ev is to first partition the
feature identity embedding into k contiguous blocks,

ef =
[
e
(1)
f ; e

(2)
f ; . . . ; e

(d/k)
f

]
, e

(i)
f ∈ Rd/k. (5)

Then, we compute the entries vj (j = 1, 2, ..., d/k) of ev as per-block gates by a bounded nonlinear
function g. As depicted earlier, we choose g as the sigmoid function σ.

g(vj) = σ(vj) ∈ (0, 1). (6)

Finally, we apply each scalar ”gate” to its corresponding block to conduct the scalar multiplication:

e
(i)
f,v = g(vj) e

(i)
f , ef,v =

[
e
(1)
f,v; . . . ; e

(d/k)
f,v

]
∈ Rd, j = i. (7)

Value embeddings in MuFuse act as modulators of feature identity embeddings, enabling expressive
modeling of complex feature–value interactions. Conversely, the feature identity embedding can
regulate how value effects are expressed through dimensionality choices and gating configuration.
The relative sizes of d and d′ thus provide a flexible design space that can be tuned to the task,
balancing representational capacity with efficiency.

3.3 EMBEDDING FOR CATEGORICAL FEATURES

Since categorical embedding is not the main focus of this work, we adopt a straightforward approach.
For a categorical observation, we concatenate its feature identity embedding ef ∈ Rd with the class
lookup embedding ec ∈ Rdc , and apply a linear transformation to obtain the final embedding:

ef,c = Wcat Concat (ef , ec ) ∈ Rd, (8)

where Concat denotes concatenation and Wcat ∈ Rd×(d+dc).

3.4 TIME EMBEDDING

We adopt the classic sinusoidal positional encoding. Let t denote the elapsed time converted from a
token’s timestamp. A d-dimensional sinusoidal vector pt is formed by interleaving sines and cosines
with geometrically spaced wavelengths ωi:

pt[2i] = sin
(
t/ωi

)
, pt[2i+ 1] = cos

(
t/ωi

)
, i = 0, . . . , d

2 − 1. (9)

For embeddings of any token, including fused numerical feature embedding ef,v in Section 3.2.3
and categorical embedding in Section 3.3, temporal information is injected by addition instead of
multiplicative fusion:

ef,v,t = ef,v (or ef,c) + pt ∈ Rd. (10)
Same pt is broadcast to all ef,v with time t. This preserves a clean separation between content
ef,v and temporal pattern pt. In Appendix F, we will discuss why addition is more suitable than
multiplicative fusion for temporal information.
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Figure 2: MedFuse architecture with MuFuse value–feature fusion. Numerical observations
(f, v, t) are embedded by MuFuse: a feature embedder maps the identity f → ef ∈ Rd, a non-
linear projector maps the measured value v → ev ∈ Rd, and the token embedding is formed by
element-wise (broadcasted) Hadamard product ef,v = ef⊙ev , followed by adding a time/positional
encoding to yield ef,v,t. Categorical events use a categorical embedder to produce ef,c,t. All tokens
are flattened into a sequence with a missing-value mask and processed by an N -layer Transformer
encoder; a linear softmax head outputs the target distribution. By modulating ef multiplicatively
with the observed value, MuFuse preserves feature identity while enabling rich, value-dependent
interactions.

3.5 COMPLETE ARCHITECTURE (MEDFUSE)

To address downstream tasks such as risk prediction, we integrate MuFuse as the embedding layer
with a standard Transformer encoder (Vaswani et al., 2017b), forming the overall MedFuse frame-
work. Figure 2 illustrates the complete architecture: observed triplets are first mapped into em-
beddings via MuFuse, combined with time encodings, masking out the token belonging to missing
values, and then processed by the Transformer encoder (Vaswani et al., 2017b) to generate sequence
representations for classification.

4 EXPERIMENT AND RESULT

4.1 DATASETS

We evaluate MedFuse on three irregular, high-missingness clinical time-series cohorts widely used
in healthcare modeling: the PhysioNet 2012 ICU mortality dataset (P12) (Silva et al., 2012), the
MIMIC-III ICU benchmark (MI3) (Johnson et al., 2016), and a private longitudinal hepatocellu-
lar carcinoma (HCC) cohort from a medical center. A consistent preprocessing protocol is applied
across datasets: raw measurements are grouped into fixed windows (ICU tasks: 2-hour windows
over a 48-hour horizon; HCC: 90-day windows over a 1-year horizon), with numeric variables sum-
marized by median and categorical variables by the most frequently observed class. We adopt an
imputation-free, event-level tokenization in which only observed measurements generate tokens,
while missing entries remain unfilled. The full feature inventory (variable definitions, types, and
windowing rules) and dataset statistics are provided in Appendix B.
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4.2 STUDY DESIGN

ICU mortality (P12, MI3). For the PhysioNet 2012 and MIMIC-III ICU cohorts, we use an obser-
vation window of 48 hours with 2-hour summarization. The task is to predict in-hospital mortality
after the observation window during the hospital stay: label = 1 if the patient dies in the hospital,
and label = 0 otherwise. This binary classification setup follows standard ICU benchmarks, which
use 48-hour histories for outcome prediction.

HCC onset risk. For the longitudinal HCC cohort, we use a one-year observation window (L = 1
year) with 90-day summarization. t0 denotes the entry date. The task is to predict long-term onset
risk: given one year of history, estimate the probability of developing HCC within a future horizon
τ . The label = 1 if a diagnosis occurs in [t0+L, t0+L+τ), and label = 0 otherwise. In our main
experiments, we set τ = 5 years, reflecting clinical surveillance practice where near-term history
informs multi-year risk.

4.3 BASELINES AND BENCHMARKS

We compare MedFuse with representative sequence models for multivariate time series, with empha-
sis on methods evaluated in clinical EHR contexts. Classical ensemble methods include Random
Forest and XGBoost (Chen & Guestrin, 2016), which remain strong baselines for structured medi-
cal data. Among deep learning approaches, we consider a standard Transformer encoder (Vaswani
et al., 2017b) as a general attention-based model, and TCN (Bai et al., 2018), which captures se-
quential dependencies using dilated causal convolutions. We also evaluate architectures designed
specifically for irregular clinical time series: SAnD (Song et al., 2018b), which adapts attention with
masking strategies; mTAN (Shukla & Marlin, 2021b), which employs continuous-time attention to
handle irregular sampling; and STraTS (Tipirneni & Reddy, 2022b), which encodes each measure-
ment as a (feature, time, value) triplet and learns event-level representations via self-supervision.
Finally, we include SUMMIT (Huang et al., 2024), which introduces scalable numerical embed-
dings to modulate feature vectors with observed values and has reported state-of-the-art results on
irregular EHR modeling.

4.4 EVALUATION METRICS

Because all datasets are imbalanced, we report the area under the precision–recall curve (AUPRC)
(Saito & Rehmsmeier, 2015) as the primary evaluation metric, as it better captures performance
under skewed class distributions. For completeness, we also report the area under the receiver
operating characteristic curve (AUROC) and the concordance index (c-index). For P12 and MI3,
where event times are unavailable, the c-index is replaced with accuracy using a fixed threshold of
0.5.

4.5 PERFORMANCE COMPARISON

Table 1 presents the performance of MedFuse and all baselines on MI3, P12, and HCC. For each
metric, the best score is shown in bold and the second-best is underlined. Values with ± indicate
95% confidence intervals, estimated via 1000 bootstrap samples.

MedFuse achieves the highest AUPRC on all three datasets, establishing new state-of-the-art perfor-
mance on the primary evaluation metric. It also obtains the best AUROC and accuracy on MI3 and
competitive auxiliary results on P12 and HCC. These outcomes indicate that multiplicative fusion
enables MedFuse to capture value–feature interactions more effectively than additive schemes, de-
livering robust improvements under irregular and high-missingness conditions. Overall, MedFuse
consistently outperforms SUMMIT and other strong baselines, underscoring its effectiveness for
modeling irregular clinical time series.

4.6 ABLATION STUDY

To assess the impact of our fusion design, we compare MuFuse with additive and concatenative
schemes. Table 2 reports results on P12, showing clear gains from multiplicative fusion. Similar
trends are observed on MI3 and HCC, with detailed results provided in Appendix G. These findings
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Table 1: Performance comparison.

Dataset MI3 P12 HCC

Metric AUPRC AUROC Accuracy AUPRC AUROC Accuracy AUPRC AUROC c-index

Random Forest
0.4367
±0.0517

0.8319
±0.0209

0.8965
±0.0105

0.4805
±0.0533

0.8270
±0.0228

0.8663
±0.0146

0.3934
±0.0583

0.8705
±0.0232

0.8637
±0.0227

XGBoost
0.4553
±0.0527

0.8247
±0.0209

0.8968
±0.0105

0.4980
±0.0544

0.8453
±0.0203

0.8708
±0.0140

0.3887
±0.0592

0.8714
±0.0215

0.8644
±0.0209

Transformer Enc.
0.5074
±0.0510

0.8606
±0.0187

0.8953
±0.0105

0.5435
±0.0560

0.8572
±0.0200

0.8767
±0.0131

0.4139
±0.0571

0.8964
±0.0171

0.8888
±0.0171

TCN
0.5128
±0.0377

0.8734
±0.0165

0.8999
±0.0098

0.4725
±0.0494

0.8272
±0.0263

0.8581
±0.0134

0.3725
±0.0661

0.8684
±0.0493

0.8616
±0.0187

SAnD
0.5463
±0.0462

0.8774
±0.0096

0.9023
±0.0123

0.4615
±0.0598

0.8227
±0.0245

0.8674
±0.0179

0.3769
±0.0337

0.8836
±0.0090

0.8763
±0.0087

mTAN
0.5536
±0.0359

0.8826
±0.0163

0.9037
±0.0227

0.4991
±0.0521

0.8444
±0.0267

0.8863
±0.0127

0.4545
±0.0264

0.8762
±0.0135

0.8466
±0.0138

STraTS
0.5886
±0.0546

0.8936
±0.0021

0.9044
±0.0104

0.5206
±0.0534

0.8596
±0.0224

0.8253
±0.0135

0.4270
±0.0186

0.8963
±0.0088

0.8888
±0.0086

SUMMIT
0.6328
±0.0277

0.9035
±0.0092

0.9111
±0.0060

0.5504
±0.0563

0.8602
±0.0197

0.8783
±0.0129

0.4553
±0.0577

0.8943
±0.0179

0.8867
±0.0179

MedFuse
0.6574
±0.0270

0.9078
±0.0087

0.9153
±0.0058

0.5612
±0.0558

0.8686
±0.0190

0.8837
±0.0558

0.4595
±0.0556

0.9062
±0.0163

0.8982
±0.0158

Table 2: Ablation study of feature–value fusion strategies.

PhysioNet 2012

Method AUPRC AUROC Accuracy

MuFuse (ours) 0.5612± 0.0558 0.8686± 0.0190 0.8837± 0.0558

Adding 0.5317± 0.0546 0.8549± 0.0205 0.8754± 0.0131

Concatenate 0.5291± 0.0564 0.8518± 0.0204 0.8779± 0.0129

confirm that value-conditioned multiplicative modulation captures feature–value interactions that
additive schemes fail to represent, leading to more expressive and robust embeddings.

4.7 EFFECT OF VALUE EMBEDDING DIMENSION

As described in Section 3.2.3, the value embedding dimension is defined as d′ = d/k under a fixed
feature identity embedding ef ∈ Rd. To examine its impact, we fix d = 144 and vary the partition-
ing factor k. Figure 3 shows results on P12, where performance peaks at intermediate values of k,
indicating that neither too coarse nor too fine partitioning is optimal. Similar trends are observed
on MI3 and HCC (see Appendix H). This supports the design choice of MuFuse, where the broad-
casted Hadamard product enables flexible alignment between feature and value embedding dimen-
sions. Intuitively, intermediate dimensionality provides a balance between under-parameterizing
value effects and overfitting feature–value interactions.

4.8 CROSS-DATASET ADAPTATION OF FEATURE IDENTITY EMBEDDINGS

We investigate whether the feature identity embeddings learned by MedFuse capture reusable,
cohort-agnostic semantics by transferring only the feature embeddings for the overlapping feature
set F∩ (see Appendix C) between the two ICU cohorts (P12 and MI3). For each transfer direction,
we follow this protocol: (i) Pre-train on the source cohort, (ii) Initialize the target model with the
source-trained identity embeddings for F∩, (iii) Keep all other settings identical to the from-scratch
baseline (including initialization, hyperparameters, and seed), and (iv) Warm up the adaptation by
briefly freezing the transferred embeddings before joint fine-tuning. This controlled setup isolates
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Figure 3: Comparison of different partitioning factors k on P12.

the contribution of cross-cohort embedding transfer, enabling us to evaluate whether feature identity
embeddings generalize across datasets.

Table 3: Cross-dataset transfer on ICU cohorts.

P12 → MIMIC-III
Model AUPRC AUROC Accuracy

MedFuse (from scratch) 0.663872 (0.0276) 0.911360 (0.0082) 0.917436
MedFuse + pretrained embeddings 0.642217 (0.0269) 0.902341 (0.0085) 0.916310

MIMIC-III → P12
Model AUPRC AUROC Accuracy

MedFuse (sub-sample) 0.527648 (0.0556) 0.850109 (0.0202) 0.879583
MedFuse (from scratch) 0.536134 (0.0586) 0.853872 (0.0201) 0.876250
MedFuse + pretrained embeddings 0.545436 (0.0568) 0.855070 (0.0206) 0.881250

As shown in Table 3, transferring from the larger source (MI3) to the smaller target (P12) yields
consistent improvements, while the reverse direction (P12→MI3) leads to negligible or slightly neg-
ative transfer. To disentangle dataset identity from size, we also pretrain on a P12-sized subsample
of MI3 before transferring to P12; this likewise results in slight negative transfer. These findings in-
dicate that the benefit of cross-cohort adaptation is driven primarily by the scale of the source dataset
rather than its identity, highlighting sample size as the key factor for learning reusable feature-level
semantics.

5 DISCUSSION

5.1 ADVANTAGES OF MEDFUSE OVER EXISTING BENCHMARKS

Across both ICU mortality prediction (PhysioNet 2012, MIMIC-III) and long-term chronic disease
prognosis (HCC cohort), MedFuse achieves higher AUPRC and AUROC under severe class imbal-
ance, while remaining robust across heterogeneous cohorts. Traditional ensemble learners such as
Random Forests and XGBoost remain competitive but rely on population-level imputation, which
introduces bias and limits generalization under high missingness. Deep sequential models (e.g.,
recurrent and convolutional architectures) capture temporal patterns yet struggle with irregular sam-
pling and long-range dependencies. Attention-based approaches, including SAnD, mTAN, STraTS,
and SUMMIT, mitigate some of these challenges through imputation-free representations but largely
rely on additive fusion of feature, value, and time embeddings. This additive design restricts the
ability to model nonlinear feature–value interactions that are clinically meaningful. Our ablations
confirm that MedFuse’s gains arise from the multiplicative MuFuse module, which produces richer
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token representations by conditioning feature embeddings on observed values. These findings posi-
tion MedFuse not only as a strong alternative to existing models but also as a general framework for
advancing the modeling of irregular clinical time series.

5.2 CLINICAL RATIONALE FOR MULTIPLICATIVE FUSION

Beyond the general benefits highlighted by Chrysos et al. (2025), we argue that the Hadamard
product in MuFuse is particularly well-suited for modeling numerical EHR features due to do-
main–specific considerations. In this section, we will investigate it based on MuFuse’s Masking
and collapse effects.

In clinical contexts, different value ranges of a feature may correspond to the same risk phenotype.
For example, both hyponatremia and hypernatremia can be associated with neurological symptoms
such as seizures and altered mental status, although one corresponds to low sodium and the other to
high sodium levels. With additive fusion, capturing such equivalence is difficult: it would require
assigning identical embeddings to different value ranges, which removes flexibility and erases other
meaningful distinctions. By contrast, the broadcasted Hadamard product in MuFuse allows a mask-
ing effect: even if the value embeddings differ, element-wise multiplication with the same feature
embedding as an entry-level mask can collapse the two different embeddings into the same (i.e.,
a common representation). This mechanism naturally models medical equifinality, where different
abnormal deviations (e.g., too low or too high of a laboratory measurement) can correspond to the
same clinical risk. We provide an example in Appendix J to further demonstrate the property.

5.3 FINAL REMARK OF THE MULTIPLICATIVE FUSION

Recall from equation 4 that:

MuFuse (ef , ev) = ef ⊙ ev = ef,v,

where ev is a learnable value embedding.

This can be rewritten as:

MuFuse (ef , ev) = ef ⊙ ev = ef ⊙ (1 + e′v) = ef + ef ⊙ e′v, (11)

where 1 + e′v is simply another parameterization of the value embedding ev . In contrast, additive
fusion takes the form ef,v = ef + ev , where the value embedding contributes as an independent
term, uninfluenced by ef . MuFuse instead introduces an explicit interaction term, ef ⊙e′v , in which
the modulation of ev is conditioned on the feature identity ef . This interaction allows MuFuse to
capture more expressive and feature-dependent value effects than additive fusion.

6 CONCLUSION

We presented MedFuse, a general framework for modeling irregular clinical time series. At its core
is the MuFuse module, which performs value-conditioned multiplicative fusion between feature
identity embeddings and numerical values. This design enables nonlinear, feature-specific modula-
tion that more faithfully captures the semantics of clinical measurements than additive or concate-
native schemes, while remaining efficient and imputation-free.

Evaluations on three real-world datasets—two intensive care cohorts and one chronic disease
cohort—demonstrate that MedFuse consistently outperforms strong baselines across multiple pre-
dictive tasks. Ablation studies confirm the unique contribution of multiplicative fusion, and transfer
experiments show that learned feature identity embeddings support cross-dataset adaptation, high-
lighting the potential for pretraining in heterogeneous healthcare settings.

Overall, MedFuse establishes multiplicative embedding fusion as a powerful paradigm for learning
from irregular, high-missingness EHR data. Promising directions for future work include scaling
MedFuse to large multimodal corpora, enhancing interpretability through causal or counterfactual
reasoning, and integrating the framework into trustworthy clinical decision-support systems capable
of operating in diverse real-world environments.

9
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REPRODUCIBILITY STATEMENT

We provide an anonymized code repository with all scripts to reproduce our results at
anonymous.4open.science/r/MedFuse-19CE. It contains our method and all baselines.
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A HYPERPARAMETERS

Tables 4 to 6 list the hyperparameters of all models used to conduct our experiments. For our
proposed MedFuse, we used Optuna (Akiba et al., 2019) for tuning on the validation set (split from
the training set). For baseline models, we used the optimal hyperparameters reported in their original
papers.

Table 4: Hyperparameter settings for the P12 dataset.

Hyperparameter TCN SAnD mTAN STraTS SUMMIT MedFuse (ours)
dmodel – – 256 – 144 144
ffdim – – 20 – 144 144
hidden size 64 64 64 64 – –
num layer 4 4 1 2 1 32
learning rate 5e-4 5e-4 5e-4 5e-4 3e-5 3e-5
early stopping (epoch) 23 30 250 50 350 30

B DATASET STATISTICS

Tables 7 to 9 list the characteristics of each dataset used to conduct our experiments.
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Table 5: Hyperparameter settings for the MIMIC-III dataset.

Hyperparameter TCN SAnD mTAN STraTS SUMMIT MedFuse (ours)
dmodel – – 256 – 144 144
ffdim – – 20 – 80 80
hidden size 128 64 64 64 – –
num layer 4 4 1 2 1 32
learning rate 5e-4 5e-4 5e-5 5e-4 3e-5 3e-5
early stopping (epoch) 23 25 200 50 380 30

Table 6: Hyperparameter settings for the HCC dataset.

Hyperparameter TCN SAnD mTAN STraTS SUMMIT MedFuse (ours)
dmodel – – 256 – 144 144
ffdim – – 20 – 144 144
hidden size 64 64 64 100 – –
num layer 4 4 1 2 8 32
learning rate 5e-4 5e-4 1e-4 5e-4 3e-5 3e-5
early stopping (epoch) 75 29 54 44 100 50

Table 7: Summary of the PhysioNet 2012 dataset.

Statistic Value
Number of numerical variables 40
Number of categorical variables 2
Number of patient stays (samples) 11,988
Number of positive cases (mortality) 1,707
Number of negative cases (survivors) 10,281
Class imbalance ratio (positive rate) 0.142
Average missing rate (after summarization) 0.7377
Observation window length 48 hours
Summarization window length 2 hours
Number of timestamps after summarization 24

Table 8: Summary of the MIMIC-III dataset.

Statistic Value
Number of numerical variables 128
Number of categorical variables 4
Number of patient stays (samples) 52,871
Number of positive cases (mortality) 6,506
Number of negative cases (survivors) 46,365
Class imbalance ratio (positive rate) 0.140
Average missing rate (after summarization) 0.8814
Observation window length 48 hours
Summarization window length 2 hours
Number of timestamps after summarization 24
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Table 9: Summary of the HCC dataset.

Statistic Value
Number of numerical variables 30
Number of categorical variables 8
Number of patient records (samples) 34,296
Number of positive cases (develop HCC) 1,523
Number of negative cases (no HCC) 32,773
Class imbalance ratio (positive rate) 0.046
Average missing rate (after summarization) 0.7464
Observation window length 1 year
Summarization window length 90 days
Number of timestamps after summarization 4

C LIST OF THE OVERLAPPING FEATURES BETWEEN P12 AND MI3

Table 10 lists the overlapping features between P12 and MI3 in the pre-training-adaptation experi-
ment. Overlapping proportion: 59.5% for P12 (25 out of 42 features) and 18.9% for MI3 (25 out of
132 features).

Table 10: Overlapping features between PhysioNet 2012 and MIMIC-III, grouped by category.

Category Feature
Vitals & Anthropometrics Age

Height
Weight
Heart Rate
Temperature
Respiratory Rate
Oxygen Saturation
Systolic Blood Pressure
Diastolic Blood Pressure
Mean Arterial Pressure

Lab Tests Alanine Aminotransferase (ALT)
Aspartate Aminotransferase (AST)
Alkaline Phosphatase (ALP)
Albumin
Total Bilirubin
Creatinine (Serum)
Blood Urea Nitrogen (BUN)
Sodium
White Blood Cell Count
Platelet Count
Glucose (Serum)
Lactate
Blood pH

Other Parameters Fraction of Inspired Oxygen (FiO2)
Urine Output
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D EMBEDDING PATTERN OF MEDFUSE

Figure 4: TSNE (Maaten & Hinton, 2008) visualization of MedFuse’s ef,v on the HCC dataset be-
fore (Left) and after (Right) passing through the first layer of the Transformer encoder. Each point
represents a token’s embedding, colored by its feature type. We can clearly see that MedFuse suc-
cessfully embeds tokens with the same feature type into a cluster. This characteristic is preserved
after passing the embedding through the first layer of the Transformer encoder, demonstrating Med-
Fuse’s robustness.
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E RELATIONSHIP BETWEEN MEDFUSE AND PREVIOUS SOTA

Huang et al. (2024) proposed SCANE (and the corresponding classifier SUMMIT), achieving
second-best performance among all tested models. It also adopts the EVAT strategy, directly ap-
plying scalar multiplication of the observed numerical EHR value to the feature identity embedding,
outperforming its additive fusion counterpart (Tipirneni & Reddy, 2022b). We argue that the direct
value multiplication of SCANE is actually a special case of MuFuse with d′ = 1, while discarding
any further transformation on the observed value. This observation may justify SCANE’s advan-
tages on EHR datasets based on our analyses of how multiplicative fusion benefits numerical EHR
modeling throughout this paper. Meanwhile, MuFuse generalizes SCANE’s mechanism with a more
flexible architecture to achieve the sweet spot of dimension assignment (see Section 4.7), with the
underlying rationale being more clearly investigated.

F WHY MULTIPLICATIVE FUSION DOES NOT WORK FOR TIME EMBEDDINGS?

Finally, we would like to discuss why MuFuse was not applied to time embeddings. In our additional
experiment, adding the time embedding to ef,v performed better than multiplicative fusion, as shown
in Table 11. All variants use the same experimental settings (and identical hyperparameters). In the
second row, “⊙” denotes the broadcasted Hadamard product used in MuFuse.

Table 11: Temporal embedding fusions on MIMIC-III.

Model variant AUPRC AUROC Accuracy

MedFuse + sinusoidal PE (additive fusion) 0.6717 0.9148 0.9176
MedFuse ⊙ time PE (MuFuse) 0.6495 0.9089 0.9159

To explore the underlying cause of this phenomenon, we investigated the first five dimensions of
the time embedding after they were fused to the feature identity embedding through addition and
MuFuse, respectively, as shown in Figure 5:

Figure 5: Comparison of the time embedding fusion effect. (Left): Fused to the feature identity
embedding through MuFuse (broadcasted Hadamard product). (Right): Fused to the feature identity
embedding through addition.

In Figure 5, we can observe that the time embedding is just shifted by the feature identity embed-
ding (serving as a DC signal), preserving its informative AC signal magnitude (and thus the major
spectrum pattern). On the contrary, multiplicative fusion changes the AC magnitude and the spectral
composition ratio, thus breaking the regular representation pattern of the original sinusoidal time
embedding. While orderly positional encoding has been shown to be crucial for sequential data
modeling (He et al., 2020; Su et al., 2024), we argue that, unlike the numerical EHR case, addition
is more suitable than the multiplicative operator for temporal information fusion.
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G MORE ON THE ABLATION STUDY

We report the ablation study results on the other two datasets in Table G. Multiplicative fusion (Mu-
Fuse) consistently demonstrates its advantage over addition and concatenation on different datasets.

Table 12: Ablation study of feature–value fusion strategies. Best results per dataset are bold.

MIMIC-III

Method Accuracy AUROC AUPRC

MuFuse (ours) 0.9177± 0.0055 0.9148± 0.0080 0.6717± 0.0283

Adding 0.9143± 0.0056 0.9128± 0.0084 0.6633± 0.0269

Concatenate 0.9162± 0.0055 0.9147± 0.0081 0.6671± 0.0277

HCC

Method Accuracy AUROC AUPRC c-index

MuFuse (ours) 0.9593± 0.0044 0.9062± 0.0163 0.4595± 0.0556 0.8982± 0.0158

Adding 0.9570± 0.0047 0.9054± 0.0157 0.4353± 0.0562 0.8976± 0.0155

Concatenate 0.9593± 0.0044 0.9020± 0.0161 0.4215± 0.0578 0.8941± 0.0160

H MORE ON THE PARTITIONING FACTORS k TESTS

We report the results of different partitioning factors on the other two datasets in Figures 6 and 7. We
can observe that the optimal factor varies among datasets/medical tasks, consistent with the result
on P12 reported in the main text.

Figure 6: Comparison of different partitioning factors k on MI3.

Figure 7: Comparison of different partitioning factors k on HCC.
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I LLM USAGE

We used ChatGPT to polish our English writing in all paragraphs of this article.

J EXAMPLE OF HOW MUFUSE FITS THE MEDICAL EQUIFINALITY NATURE

Suppose two observations of hypokalemia (low potassium in blood) and hyperkalemia (high potas-
sium in blood) derive different value embeddings ev(low) and ev(high) while share the same feature
identity embedding epotassium. As hypokalemia and hyperkalemia both induce arrhythmia, in a
scenario of high arrhythmia risk, the fusion of their value and feature identity embeddings should
ideally be the same to represent the common phenotype. For MuFuse, this can be easily done by
masking inconsistent entries of ev(low) and ev(high) by the learned epotassium during the element-
wise multiplication while keeping ev(low) and ev(high) different to represent other phenomena in the
scenario. On the contrary, if we fuse them through addition, ev(low) and ev(high) must be the same
to produce an identical fused representation, losing the flexibility.
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