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ABSTRACT

In-context learning (ICL) is the remarkable ability of trained transformers to
adapt to new tasks by leveraging a sequence of examples provided at inference
time—without any additional training. Prior work on understanding ICL has
primarily focused on setups with fixed task complexity (e.g., linear, logistic, or
sinusoidal regression tasks with fixed complexity, and more recently first-order
Markov chains), overlooking the diverse range of tasks that large language mod-
els encounter in practice. In this paper, we investigate ICL in transformers trained
on multiple task categories of varying complexity. Our results show that, during
inference, transformers effectively learn in-context by identifying the appropriate
task complexity and accurately estimating the corresponding task parameters. We
verify our claim with experiments on Markov chains and linear regression tasks
of varying complexity. Additionally, our experiments suggest that transformers
exhibit a bias towards learning the simplest task that explains the inference-time
context.

1 INTRODUCTION

In-context learning (ICL) is a powerful capability of pre-trained large language models (LLMs) that
enables them to adapt to new tasks using contextual examples, without requiring any finetuning
(Brown et al., 2020). Although much of the interpretability research on ICL has focused on large
pre-trained LLMs (Elhage et al., 2021; Wang et al., 2023; Min et al., 2022), controlled, small-scale
studies have also been conducted by training transformers from scratch on simpler tasks—such as
linear regression (Garg et al., 2022; Akyürek et al., 2023; von Oswald et al., 2022; Zhang et al.,
2023), discrete functions (Bhattamishra et al., 2024), and Markov chains (Edelman et al., 2024;
Rajaraman et al., 2024; Park et al., 2025). These synthetic setups allow precise control over the
training and task distribution, facilitating direct comparisons with known algorithms. However, they
are generally limited to tasks of fixed complexity, whereas real-world LLMs are pre-trained on large,
diverse corpora encompassing tasks of varying complexity.

To bridge this gap, we explore ICL in synthetic environments where tasks exhibit different levels of
complexity. In particular, we model various task categories, each representing a fixed complexity
level, with the category of highest complexity acting as a superset of all others. Consequently, learn-
ing only the most complex category can still yield reasonable performance on lower complexity
tasks. In this challenging setup—where categories have varying yet comparable degrees of com-
plexity—we investigate the following key questions:

Can transformers learn tasks of varying complexity learn in-context? Specifically, during inference,
can they identify the true task category, or do they simply default to the most complex category?

Figure 1 provides an example using Markov chains: we train a transformer simultaneously on order-
1 (the “simpler” category) and order-3 (the “complex” category) chains. We find that at inference
time, the transformer learns to recognize the chain order and then predict using either bigram or
tetragram statistics, as appropriate. Remarkably, this occurs despite order-1 chains being a special
case of order-3 chains, indicating that the model adapts to the context instead of defaulting to using
only the higher order Markov chain.

The remainder of the paper is organized as follows. Section 2 discusses related work on ICL in
synthetic setups. Section 3 describes how we construct tasks of varying complexity in both Markov
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Figure 1: We train a transformer for next-token prediction on sequences generated by random order-
1 and order-3 Markov chains. During inference, we assess its ICL ability by evaluating performance
on sequences derived from unseen order-1 and order-3 chains. (Left) shows the distance between
the model’s output distribution on the last token and n-gram statistics of the context for order-1
inference, as a function of the number of sequences seen during training. (Right) presents analogous
results for order-3 inference. Notably, the trained transformer can identify the true order (1 or 3)
of the context, and then predict using either bigram or tetragram statistics accordingly.

chain and linear regression settings. Section 4 presents our experimental results, and Section 5
concludes with a broader discussion. Our contributions are:

• We propose a synthetic framework to study in-context learning for transformers with tasks
of varying complexity, extending existing fixed-complexity setups in Markov chains and
linear regression to accommodate multiple levels of complexity.

• We show that a transformer trained on these diverse tasks can adaptively identify the correct
task category and the underlying parameters during inference.

• We demonstrate that this adaptive capability does not emerge when training exclusively on
the most complex tasks, underscoring the importance of task diversity.

2 PREVIOUS WORK

In this section, we first discuss the key related work on the common synthetic setups in the ICL
literature, namely Markov chains and linear regression. Using this, we will set up our corresponding
ICL setup with tasks of varying complexity.

2.1 ICL OF MARKOV CHAINS

Formally, an order-k Markov chain generates an element xt that is dependent on the previous
k entries of the sequence. Mathematically, this is stated as p(xt = v|xt−1, ..., x1) = p(xt =
v|xt−1, ..., xt−k+1) for all v. All entries v are derived from a vocabulary V = {0, 1, ..., V − 1} of
size V . For brevity, we refer to this set as [V ]. These conditional distributions form the rows of the
row-stochastic transition matrix P ∈ RV k×V , where each row of P follows a prior β. In previous
ICL works (Edelman et al., 2024; Park et al., 2025), it is chosen as the Dirichlet prior, with the
parameter α = (1, ..., 1)⊤. This corresponds to the case of all sets of transition probabilities being
equally probable. The initial k entries of a sequence {x1, ..., xk} are drawn uniformly at random
from the set [V ].

Edelman et al. (2024)show that transformers trained on sequences generated from random order-1
Markov chains learn to do in-context inference on unseen Markov chains of order 1. Specifically, let
X≤t = [x1, x2, ..., xt] denote the sub-sequence of X of length t. The transformer Mθ parameterized
by θ is trained to auto-regressively predict xt+1 using X≤t by minimizing the expected loss

L(θ) := E
X∼P

P∼Dir(1)⊗V

T−1∑
t=1

ℓ(Mθ(X≤t), xt+1), (1)

where ℓ is the cross-entropy loss, T denotes the length of each sequence, and Dir(1)⊗V denotes V
independent draws from the Dirichlet prior with the α set to the all-ones vector. Let Pinf ∼ Dir(1)⊗V
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denote the inference time transition matrix, and let X ∼ Pinf denote an in-context sequence of length
T generated from it. The transformer Mθ trained via the objective in Eq. (1), when given input X ,
predicts the next token xT+1 with a distribution that is close to the bigram probabilities, as measured
by the KL divergence. The bigram distribution is as follows:

p(xT+1 = v|X) =

T−1∑
t=2

1(xt−1 = xT , xt = v)∑T
t=2 1(xt−1 = xT )

, v ∈ [V ]. (2)

Note that the transformer learns to do this for all positions xt, t ∈ [T ], i.e., look back at the sequence,
X≤t, compute the bigram probabilities, and predict the next token v ∈ [V ] using these probabilities.
In Section 3, we will look at how we extend this setup to Markov chains of varying complexity.

2.2 ICL OF LINEAR REGRESSION

When learning linear regression in-context, the sequences have interleaved (x, y) pairs of the form
X = [x1, y1,x2, y2, ...,xt, yt], with vectors xt ∈ Rd, and labels yt ∈ R. Vectors xt are typically
sampled i.i.d Gaussian, i.e., xt ∼ N (0, Id). Every sequence is parameterized by a w ∼ N (0, Id),
such that labels are given as yt = w⊤xt, ∀t ∈ [T ]. Similar to the case of Markov chains, the
transformer Mθ is trained to predict label yt+1 using the previous t (x, y) pairs and xt+1, denoted
by X≤t, by minimizing the expected loss over sequences with T (x, y) pairs

L(θ) := E
xt∼N (0,Id)
w∼N (0,Id)

T−1∑
t=1

ℓ(Mθ(X≤t), yt+1), (3)

where ℓ is the squared loss. The work by Garg et al. (2022); Akyürek et al. (2023) shows that trans-
formers learn linear regression in-context, when they’re trained via the above objective. Specifically,
given inference-time sequence X = [x1, y1,x2, y2, ...,xT , yT ,xtest], with labels yt generated with
an unseen winf ∼ N (0, Id), the transformer can infer this winf based on the in-context examples
in the following sense. They compare the trained transformer’s prediction Mθ(X) to the prediction
given by well-known algorithms like least-squares (LS), ridge regression, etc. Using T data-label
pairs {(xt, yt)}Tt=1, they compute the solutions of these algorithms, evaluate them on xtest, and show
that the transformer’s predictions closely match the LS solution.

3 MODELLING TASKS OF VARYING COMPLEXITY

In the previous section, we examined the ICL capabilities of transformers when trained on tasks of
fixed complexity. But what happens when transformers are trained on tasks of varying complexity?
Can they estimate the true complexity and the corresponding task parameters at inference time? In
this section, we introduce two synthetic settings to model such tasks and explore these questions.

Markov Chains. First, we look at the setup of Markov chains. In order to consider tasks of varying
complexity, we look at training the transformer with Markov chains of multiple different orders.
Specifically, we create task categories of different complexity by grouping all Markov chains of a
fixed order under one task category. Thus, order-1 chains make up one category, order-2 another,
and so on. Clearly, the category of order-k1 Markov chains is of smaller complexity compared to any
order-k2 category (k2 > k1), as the transition matrices for the latter have higher degrees of freedom,
V k2 vs. V k1 , and they can capture higher order relations between the elements of a sequence.

We train the transformer model Mθ on sequences generated from two different task categories1. We
consider order-1 and order-k categories, where k > 1. During training, we first sample a transition
matrix Ps of order-s, which is then used to generate a sequence of length X = [x1, x2, ..., xT ] of
length T . The order s is sampled uniformly at random from the set ord = {1, k}.

Similar to Eq. (1), the transformer Mθ is trained to auto-regressively predict the element xt+1 using
X≤t by minimizing the expected loss, this time over Markov chains of both orders {1, k}

L(θ) := E
X∼Ps

Ps∼Dir(1)⊗V s

s∼Unif(ord)

T∑
t=1

ℓ(Mθ(X≤t), xt+1), (4)

1Our results hold for multiple task categories, but for simplicity, we discuss two categories from here on.
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where ℓ is the cross-entropy loss function.

Compared to the fixed order setup in Section 2.1, the above is more challenging. The transformer at
inference time, when given an input sequence X from an unseen order-1 or order-k Markov chain,
has to identify the true order, and predict based on the inferred order-1 or order-k statistics. Similar
to bigram statistics in Eq. (2), order-k statistics are written as

p(xT+1 = v|X) =

T−1∑
t=k

1(xt−1 = xT , xt−2 = xT−1, ..., xt−k+1 = xT−k, xt = v)∑T
t=k 1(xt−1 = xT , xt−2 = xT−1, ..., xt−k+1 = xT−k)

. (5)

During inference, when prompted with a sequence from an order-k chain, order-k statistics clearly
capture the underlying dependencies better compared to order-1 statistics, which are range-limited.
On the other hand, all order-1 transition matrices can be written as order-k transition matrices.

Q: What happens during inference with a sequence generated from order-1 transition matrix?
Does the transformer predict next-tokens according to order-1 or order-k statistics?

In the limit as the context length T → ∞, both statistics converge to the true probabilities of the
underlying ground truth transition matrix, making them indistinguishable. But what happens in
the regime of finite T , where order-1 statistics diverge from order-k statistics? While higher-order
statistics yield a better fit to the observed data (i.e. higher likelihood), they may not always be the
most predictive. This raises a key question: during training, does the transformer exclusively learn
the highest-order (most complex) task category, or does it develop the ability to distinguish between
different underlying orders and adapt accordingly?

Linear Regression. We also construct a similar setup of two task categories for studying ICL of
linear regression with varying complexity. As mentioned in Section 2.2, the sequences are of the
form X = [x1, y1,x2, y2, ...,xT , yt], with vectors xt ∈ Rd ∼ N (0, Id), and labels yt ∈ R. For the
first category of tasks, w = wd ∼ N (0, Id). For the second category, w lies on a subspace of Rd

with w = [wd/2,0], where wd/2 ∼ N (0, Id/2). Clearly, the tasks in category one, using wd, are
more complex as they have more degrees of freedom.

Similar to the case of Markov chains, training sequences with T in-context examples are generated
as follows: we first sample s uniformly from the set dim = {d/2, d}, then generate ws ∼ N (0, Is),
sample vectors xt, and generate the labels yt = w⊤

s xt,1:s, where t ∈ [T ]. Here, xt,1:s denotes the
t-th vector with the first s coordinates.

The transformer Mθ is trained to auto-regressively predict the label yt+1 using the first t pairs of
examples X≤t by minimizing the expected loss

L(θ) := E
x1:T∼N (0,Id)
ws∼N (0,Is)
s∼Unif(dim)

T∑
t=1

ℓ(Mθ(X≤t;xtest), yt+1), (6)

where ℓ is the squared loss. In this setup with regressors of varying complexity, we can generate an
inference-time sequence using wd or wd/2. Let X denote the sequence with T in-context examples,
and xtest denote the query for which we want to predict the label.

We consider different benchmark solutions here. We can compare the transformer’s perfor-
mance to the d-dimensional LS solution wLS

d or the d/2-dimensional LS solution wLS
d/2 =

(X⊤
d/2Xd/2)

−1X⊤
d/2y, where Xd = [x1,x2, ...,xT ]

⊤ ∈ RT×d the matrix of vectors, and y =

[y1, ..., yT ] is the vector of labels. Here, Xd/2 = Xd[Id/2 0d/2]
⊤. The predicted label y would be

x⊤
testw

LS
d in the first scenario and x⊤

test,1:d/2w
LS
d/2 in the second one. Note that when the context length

T < d′ (the dimension of the vectors), LS refers to the minimum ℓ2-norm interpolating solution.

For a transformer Mθ trained using Eq. (3), we want to examine it with respect to the aforementioned
solutions. When prompted with the sequence where wd is the underlying regressor, wLS

d clearly
explains the in-context examples better as wLS

d/2 is limited on a d/2-dimensional subspace.
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However, what happens when we prompt the model with a sequence generated with wd/2? For
context length T > d, wLS

d = wLS
d/2 = wd/2. However, this is not necessarily true for d > T ≥ d/2,

where the former is the minimum norm interpolator, and the latter is the true regressor wd/2.

4 RESULTS

We train a GPT-2 type decoder-only transformer for all the experiments (Karpathy, 2023). Please
refer to Appendix B for specific training details. We make the following claim, and validate it via
experiments with Markov chains and linear regression of varying complexity.

Claim: During in-context inference, transformers ‘learn’ the simplest task out of
the task categories seen during training.

Figure 2: A transformer trained on sequences generated by random order-1 and order-2 Markov
chains can infer whether the context is order-1 or order-2, then generate predictions using the corre-
sponding bigram or trigram statistics. (Left) shows the distance between the model’s output distri-
bution on the last token and well-defined context strategies for order-1 inference, as a function of the
number of sequences seen during training. (Right) presents analogous results for order-2 inference.

.

Figure 3: A transformer trained on X =
[x1, y1,x2, y2, ...,xT , yt] sequences generated using random
d-dimensional and d/2-dimensional regressors (see Section 3
for details). We plot (Mθ([X,xtest]) − w⊤

benchxtest)
2/d where

wbench refers to two benchmark least-squares solutions in
d or d/2 dimensional space described in Section 3. When
prompted with sequences from unseen d/2 or d dimensional
regressors, the transformer’s predictions align most closely
with the corresponding LS solution wLS

d/2 or wLS
d . Here,

T = 39 and (left) d = 10 and (right) d = 20. In both figures,
the first curve (blue, dot) is out of the plotted range.

Markov Chains. In Fig. 1, we
train a transformer on sequences
drawn from order-1 and order-3
Markov chains (i.e., Eq. (4) with
ord = {1, 3}). We then mea-
sure the KL divergence between
the transformer’s output distribu-
tion and several well-defined strate-
gies when the input is taken from
unseen order-1 or order-3 Markov
chains. With sufficient training,
the transformer learns to distin-
guish between order-1 and order-3
sequences, using bigram and tetra-
gram statistics, respectively.

In Fig. 2, we repeat this experiment
with order-1 and order-2 Markov
chains, and again observe that the
model learns to infer the underlying
order. Notably, in both cases, the
transformer does not simply rely on
the highest-order statistics (tetra-
gram or trigram), which would have comparable predictive power for order-1 sequences. Instead, it
selects the appropriate strategy based on the in-context sequence. Moreover, when prompted with
sequences from a higher-order chain (order 3 or 2), the transformer accurately infers that order.
These behaviors suggest that the transformer effectively learns the simplest task that explains the
observed context.
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Linear Regression. Fig. 3 compares the trained transformer’s performance with the four bench-
marks discussed in Section 3, when trained on sequences drawn from random d-dimensional and
d/2-dimensional regressors (following the training objective in Eq. (6)). For sequences generated
by wd, the transformer’s predictions align more closely with wLS

d than with wLS
d/2, as the latter does

not have enough degrees of freedom to fit the data. In contrast, when prompted with sequences
from wd/2 in the d > T ≥ d/2 regime, the transformer’s predictions are closer to wLS

d/2 (the true
regressor) than to wLS

d . Unlike the wd case—where only wLS
d can adequately fit the data—both wLS

d

and wLS
d/2 fit the context here, yet the transformer favors the simpler predictor wLS

d/2. Finally, once
T ≥ d, we have wLS

d = wLS
d/2 = wd/2, and the transformer nearly recovers the true regressor.

Training with only the complex task. We also train the transformer on fixed order-k Markov
chains (following Edelman et al. (2024); Park et al. (2025)) to examine whether it can infer the
order when presented with sequences generated from a lower-order chain (< k) at inference time.
Fig. 4 explores this and shows that this is not the case. This finding is crucial, as it suggests that a
transformer trained on an order-k chain learns only the order-k statistics of the context and does not
generalize to lower-order statistics. We also do this experiment for the case of linear regression (see
Fig. 6 in the App.) and observe a similar behaviour.

Figure 4: A transformer trained on random order-3 (left column) or order-2 (right column) Markov
chains can only predict based on order-3 (left column) or order-2 (right column) statistics, and fails
to predict based on order-1 statistics when given order-1 in-context sequences.

5 DISCUSSION

In this work, we examine the in-context learning capabilities of transformers when trained on tasks
of varying complexity. We model this by defining multiple task categories, each representing a
different level of complexity, with the highest category acting as a superset of the others. Our
experiments show that under these conditions, transformers learn to identify the true task complexity
and associated parameters during inference, rather than simply defaulting to the highest-complexity
category. This behavior suggests an inherent bias toward selecting the simplest task that adequately
explains the observed context.

Because the transformer can effectively “switch” between task categories at inference, we hypothe-
size that an implicit Bayesian inference perspective can explain this. Prior work on ICL as implicit
Bayesian inference (Xie et al., 2022; Panwar et al., 2024) posits that during pre-training, LLMs learn
a prior over tasks, and at inference, they apply this prior based, and update their posterior based on
in-context examples to “learn” a new task. In our setup, the bias toward the simplest category can be
interpreted as assigning a higher prior to simpler tasks. For instance, in the Markov chains setting of
training with order-1 and order-3 chains, this means that p(ord1) > p(ord3). During order-1 infer-
ence, although the likelihood for tetragram, p(X | ord3) > p(X | ord1) (the likelihood for bigram),
the strong prior favoring ord1 leads to a higher posterior for order-1, aligning the output with bigram
statistics. In contrast, for order-3 inference, the likelihood p(X | ord3) is sufficiently larger than
p(X | ord1) to overcome the prior gap, prompting the model to use tetragram statistics instead. Fu-
ture work includes finding more concrete evidence for this hypothesis, such as constructing a precise
example of how the transformer ’switches’ between task categories.
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A ADDITIONAL RESULTS

Figure 5: Figure illustrates how varying the context length affects a trained transformer’s perfor-
mance when prompted with sequences from different-order chains at inference. This transformer
was trained on sequences from order-1 and order-3 chains (Fig. 1). Here, we also evaluate its per-
formance on order-2 and order-4 sequences, which were not seen during training. Context length
plays a crucial role: while the transformer can accurately estimate the true order for order-1 and
predict using bigram statistics, a longer context is required to recognize order-3 sequences. This
observation aligns with the notion of in-context “learning” versus “retrieval” noted in prior work
(Park et al., 2025; Lin & Lee, 2024; Pan et al., 2023), suggesting that for smaller context lengths,
the transformer primarily “retrieves” tasks it has seen during training, whereas longer contexts allow
it to “learn” tasks that it has not previously encountered. For order-2 sequences, the transformer’s
predictions lie between trigram and tetragram strategies, whereas for order-4 sequences, they most
closely match tetragram statistics. This outcome is expected because the model was not trained on
tasks of ; it applies the strategy that best explains the observed context at inference time.

Figure 6: A transformer trained on X = [x1, y1,x2, y2, ...,xT , yt] sequences generated us-
ing fixed complexity, random d-dimensional regressors wd (see Section 3 for details). We plot
(Mθ([X,xtest]) − w⊤

benchxtest)
2/d where wbench refers to two benchmark least-squares solutions in

d or d/2 dimensional space described in Section 3. We see that the transformer’s predictions align
most closely with wLS

d no matter the type of inference-time regressor used to generate the sequences
(wd or wd/2). This indicates that the transformer doesn’t learn to estimate the lower-complexity
solution wLS

d/2, unlike the case in Fig. 3. Here, T = 39 and d = 10. Also the first curve (blue, dot)
is out of the plotted range.

B DETAILS OF EXPERIMENTAL SETTINGS

For both sets of experiments, we train GPT-2 type decoder-only transformer Karpathy (2023). We
use AdamW Loshchilov & Hutter (2019) optimizer in all experiments with a learning rate of 1e−4.

Markov chains. For all Markov chain experiments, vocab size V = 3. For the order-1 and order-
3 experiments in Fig. 1, context length (T ) for all sequences was set 300. We used a 6 layer, 6
head transformer, with embedding dimension set to 192. For the order-1 and order-2 experiments in

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Fig. 2, context length T was set to 200. We used a 2 layer transformer with 20 heads, and embedding
dimension was set to 320. In all sets of experiments, we used a batch size of 32. Additionally, we
used relative position encoding in all the experiments. For the fixed-order experiments in Fig. 4, we
used the setup from the corresponding variable order experiment.

Linear regression. We used a 12 layer, 8 head transformer with embedding dimension = 256
similar to Garg et al. (2022). The batch size was set to 32, with d = 10 and 20 (for Fig. 3), and
context length T = 39.
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