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Abstract

Many advances in machine learning can be attributed to designing systems with
inductive biases well-suited for particular tasks. However, it can be challenging
to ascertain the inductive biases of a learning system, much less control them in
the design process. We propose a framework to capture the inductive biases in a
learning system by meta-learning Gaussian process kernel hyperparameters from
its predictions. We illustrate the potential of this framework across several case
studies, including investigating the inductive biases of both untrained and trained
neural networks, and assessing whether a given neural network family is well-
suited for a task family.

1 Introduction

Many advances in machine learning can be attributed to the introduction of architectures with in-
ductive biases well-suited for particular kinds of data. For example, the success of convolutional
neural networks in computer vision [LeCun et al., 2015] is attributed to their architectural constraint
of translational invariance. While certain design decisions (e.g., convolutional layers) render the
inductive biases of a neural network explicit (e.g., translational invariance), the inductive biases in-
duced by many other design choices, such as the parameter initialization scheme, the architecture,
and the training procedure, are less clear. While there have been both empirical [Linzen et al., 2016,
McCoy et al.| 2019} [2020] and theoretical [Mianjy et al., [2018| Rahaman et al.| 2019} |Smith et al.,
2020] efforts to characterize the inductive bias implicit in these design choices, these efforts paint
a partial picture or rely on impractical assumptions. If practitioners could fully characterize induc-
tive biases implicit in learning systems, they could have a more principled way of making design
decisions that increase performance and reliability [D’ Amour et al., [2020].

HOW can we CharaCterize the inductiVe biases GP predictions vs data Learned kernel Kernel spectral densit
of an arbitrary learning system in a principled, . A
systematic manner? In this work, we do so

£ o

€02 (ppm)
[ ]

Covariance
Log density

by meta-learning Gaussian process (GP) kernel i -
hyperparameters from the predictions of ma- . WM . >
chine learning systems. Meta-learning allows " fmelyearsy Distance | Frequency

us t(.) capture shared inductive blfdses amongs't a Figure 1: (Left) GP with spectral mixture kernel fit
family of lee.lrnlng systems applied to a fam.ﬂy to the Mauna Loa CO, dataset. (Middle) The learned
of tasks, while GPs provide a way to make in-  geciral mixture kernel. (Right) The spectral density
ductive biases explicit through the kernel func- (Fourier transform) of the learned kernel, revealing sea-
tion and the kernel hyperparameters. The ker-  sonality at different timescales.

nel hyperparameters of a GP are often inter-

pretable, yielding insights into the properties of the data on which they are trained; for example,
Wilson and Adams|[2013]] demonstrated that certain kernels can be applied to the Mauna Loa (CO,)
dataset to reveal periodic, medium-term, and long-term trends in CO, levels (Figure[I). If we se-
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lect an expressive kernel and infer the kernel hyperparameters that are most consistent with the
behavior of a learning system, we can gain some insight into its inductive biases. Furthermore,
the kernel hyperparameters can serve as a compressed representation of the inductive biases of
that learning system, which is useful for understanding when the system may underperform. We
illustrate the potential of this framework in several case studies, ranging from the more theoret-
ically motivated—examining the inductive biases of untrained and trained networks—to the more
practically motivated—assessing similarity between architectures and assessing whether a particular
neural network family is well-suited for a given dataset.

2 Background

Gaussian processes (GPs) [Rasmussen, [2003]] allow us to define a distribution over functions; the
GP has the property that any finite set of N observations induces a multivariate Gaussian distribution
on R¥, where the nth of these points can be interpreted as the function value, f(x,), at the input
point x,,. GPs can be fully characterized by a mean function m(x) and positive-definite kernel
function k(x,x’) giving the covariance between f(x) and f(x’) as a function of x and x’. The
kernel function can be thought of as encoding an inductive bias on what kind of functions might be
represented in observed data. Due to properties of the Gaussian distribution, the posterior predictive
distribution at a new input, conditioned on observed data, is Gaussian with closed-form expressions
for the posterior mean and variance. Model selection in Gaussian processes is typically performed
through gradient-based optimization of the marginal likelihood of the data, which also admits a
closed-form expression.

One choice of kernel that is expressive and differentiable in its parameters is the spectral mixture
parameterization, introduced by Wilson and Adams|[2013]]. Bochner’s theorem [Bochner, |1959]]
states that any stationary kernel and its spectral density are Fourier duals, and so every stationary
kernel can be entirely characterized by a spectral density. The key insight in [Wilson and Adams)
2013] is to model the spectral density as a scale-location mixture of Gaussians. This approach
has the nice theoretical property that any stationary covariance function can be approximated to
arbitrary precision given sufficient mixture components and also yields a closed-form expression for
the corresponding kernel, given by:
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Here k(7) gives the covariance between function values whose corresponding input values are a
distance 7 apart from each other. Here, w = {wl}lQ:1 correspond to the scalar mixture weights,
p; € R correspond to the Gaussian means, v; € R” correspond to the Gaussian variances. The
mixture weights can be thought of as signal variances controlling the scale of the function values.
The Gaussian means (also known as frequency parameters) can be thought of as encoding the period.
The Gaussian variances can be thought of as inverse lengthscales, which capture the smoothness.
Here, p iterates over the dimension of the input.

3 Inferring GP hyperparameters from neural network behavior

We aim to examine the inductive biases of a family § of machine learning models that share in design
choices (e.g., the architecture, training procedure, and random initialization scheme) but differ in
quantities that are randomized prior to or during training (e.g., parameter initializations). In this
paper, we study deep neural networks [LeCun et al.| |2015]]. We consider both untrained and trained
neural networks; however, for simplicity of exposition in the remainder of this section, we describe
the framework in the context of trained networks, of which untrained networks are the special case
of the zeroth training iteration.

Each neural network f € F is fit to a dataset D of (x,y) samples; this dataset itself belongs to a
target family of datasets ®©. We are interested in estimating GP kernel hyperparameters 6 that best
capture the shared inductive biases of the family § of neural networks when fit to the target family
of datasets ©. For each model-dataset pair (f, D), the GP observes the training subset of the input,
Xirain» as well as the predictions of the model f on the same subset, (X, ). Crucially, the GP does



not observe the ground truth targets y.in, but only the models’ predictions, and thus the inferred
kernel hyperparameters capture the inductive bias underlying the model family § applied to the task
family © as evidenced by the behavior of the model-and-task family, rather than modeling the task
family directly. We note that learning GP hyperparameters is a form of meta-learning, where the
estimated hyperparameters determine a shared prior over functions [Hospedales et al., 2020]. We
also note that the approach we take is similar in motivation to|[Wilson et al.|[2015]], except in that we
aim to capture the inductive biases of neural networks instead of humans.

Pairing models and datasets and letting t index a specific model f; € §, and a specific dataset
D¢ € D, we estimate the hyperparameters 6 = {w, u1;, v; } of the spectral mixture parameterization
by maximizing the log-marginal likelihoods across model-and-task pairs:

train train train train
t=1 t=1

T T
0 = arg maxH Py(f(XE . )|XE, ) = arg maleog Py(f(XE . )IXE ). (2)

Choosing this objective corresponds to an assumption that neural networks from a particular family
have meaningful shared inductive biases that can be represented by the hyperparameters 6. One
way to justify this is to consider randomly-initialized convolutional neural networks: Although the
networks themselves are different insofar as they compute the output of different functions, they all
exhibit the property of translational invariance. Furthermore, the shared-inductive-bias perspective is
in fact precise in the infinite width limit, since infinite-width, randomly-initialized neural networks
(with particular architectures) are Gaussian processes whose kernels (which capture the inductive
biases) admit analytic expressions or can be computed numerically [Neal, [2012, |Williams), |1996,
Lee et al., 2017].

A technique we will make use of repeatedly is inspecting the learned kernel hyperparameters to ex-
tract insights into data. We briefly remark on the main advantages of analyzing the kernel as opposed
to inspecting the data itself. The kernel hyperparameters represent a precise, quantitative summary
of the inductive biases and can capture properties that are difficult to see from the data itself. Fur-
thermore, as we will demonstrate later, the kernel hyperparameters are themselves a representation
that can be utilized in a variety of ways.

4 Experiments

Experiments 1 and 2 establish that our framework can reliably capture known inductive biases.
Additional experiments (Experiments 3 and 4) demonstrate the applications of our approach to pre-
cisely characterizing inductive biases and then using these characterizations to make predictions
about which models are well-suited for which datasets.

4.1 Reproduction: Capturing spectral bias in neural networks

We first assess whether the spectral mixture kernel accurately captures inductive biases of neu-
ral networks in a situation where the inductive biases are well-known. In particular, we study a
phenomenon discussed in [Rahaman et al.|[2019], who demonstrated that neural networks tend to
learn low-frequency signals in the target function before high-frequency signals. To illustrate this
phenomenon, the authors trained a 6-layer, 256-width neural network with ReLLU activations on a
one-dimensional function consisting of a sum of sinusoidal functions with varying frequencies. By
examining the Fourier spectrum of the network predictions, the authors show that lower frequencies
are indeed learned earlier.

In Figure 2] we plot the predictions of the same neural network from [Rahaman et al| [2019] as
training progresses. We also plot the covariance (kernel value) as a function of distance between two
points (where the kernel is the spectral mixture kernel with hyperparameters fit to the neural network
predictions). Intuitively, this plot shows us how the similarity between function values varies with
the distance between their input points Initially, the learned kernel only shows evidence of a low-
frequency signal in the trained networks’ predictions. However, as training progresses, the learned

'Note, since the spectral mixture kernel is stationary, only the distance between points matters.
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Figure 2: (Top row) Neural network predictions as training progresses on a target function consisting of a
sum of sines with different frequencies. (Bottom row) Spectral mixture kernel fit to a subset of neural network
predictions as training progresses.
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Figure 3: (Left) Functions represented by NNs. (Right) Samples from a GP prior with kernel hyperparameters
inferred from the NN predictions displayed in the left panel.

kernel has picked up on both low-frequency and high-frequency signals. The changes in the learned
kernel as training progresses are consistent with the findings reported by Rahaman et al. [2019]E|

4.2 Reproduction: Validating consistency of GP priors with NN priors

In this section, we verify that the learned kernels (inferred from neural networks) produce a GP
prior that is qualitatively consistent with the corresponding inductive bias of the neural network.
One simple way to verify this is to compare neural networks alongside samples from a GP prior
with kernel hyperparameters inferred from those neural network predictions. In Figure 3] we plot a
few samples from the GP prior with hyperparameters inferred from randomly-initialized neural net-
work predictions across a small range of widths and depths and across the Sin and ReLU activations.
Unsurprisingly, the spectral mixture kernel accurately captures the periodicity of the Sin activation
networks. In contrast, the spectral mixture kernel cannot produce piecewise linear functions. How-
ever, the sampled functions do reproduce some of the qualitative properties observed in the ReLU
network predictions, such as the cusp and two distinct sections of the input domain where the ReLU
networks are either monotonically increasing or decreasing. This example also highlights that the
spectral mixture parameterization is highly expressive, able to capture a wide range of inductive
biases.

4.3 Investigating priors in randomly-initialized neural networks

The previous two sections illustrate that the spectral mixture kernel is a viable tool for interrogating
inductive biases of neural networks. In this section, we apply the spectral mixture kernel to analyzing
settings in which the inductive biases are less well-understood. In particular, we empirically study

>We find that the marginal likelihood for the spectral mixture kernel is highly multimodal in its frequency
parameters. For this particular problem, the results are sensitive to random initialization. In future work, we will
apply well-established techniques like (approximate) marginalization of the hyperparameters that are known to
alleviate this issue [Simpson et al.| [2021].
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Figure 4: (Left four columns) Samples from neural networks across different activation and depths. (Right
four columns) Learned kernels across different activations and depths.

the behavior of randomly-initialized, finite-width, finite-depth networks as we vary depth. This
setting is of interest because deeper networks perform better empirically, but the kinds of changes in
the inductive bias that lead to this better performance are not yet well-understood.

In the first set of experiments, we sample randomly-initialized networks across different activations
and depths and then fit spectral mixture kernels to the neural network predictions. E] The number of
hidden units in each layer is 128. We study three sets of activations: ReLU, Erf, and Sinﬂ

Figure ] plots the learned kernels for each activation across different depths as well as samples from
the corresponding neural network families. For the Sin activation, we see that as we increase depth
from 16 to 32, the kernel picks up on long-range correlations. Across all activations, the learned
kernels reveal an interesting pathology: for large depths, the learned kernel sharply decays towards
zero as distance between points increases. This is consistent with what we see in the sampled func-
tions on the right of Figure 4] The deep networks become quickly-varying everywhere in the input
domain which is why the spectral mixture kernel has learned very short lengthscales. This pathology
is consistent with what has been reported in several papers [Duvenaud et al., 2014} [Schoenholz et al.,
2017].

4.4 Predictability: Using kernel hyperparameters as a representation of inductive biases

In this section, we assess whether the framework introduced in this paper can address the following
question: if the inductive biases of a network and characteristics of a dataset are well-matched, does
the model perform better? We are well-equipped to investigate this question because we have a
framework that allows us to extract a representation, in the form of the inferred kernel hyperparame-
ters, of the inductive biases of a model as applied to a given dataset. In particular, for a given family
of target functions, we fit a set of kernel hyperparameters directly to the ground-truth observations,
termed the data hyperparameters. We also, as we have done in previous sections, infer kernel hy-
perparameters from the behavior of a particular family of neural networks, which we call the model
hyperparameters. A natural question to ask is: when the model hyperparameters and data hyperpa-
rameters (both kernels in our context) are well-matched, do we see better test set performance?

We investigate this question in two experiments with two different families of target functions. The
first family of target functions consists of samples from a GP with a spectral mixture kernel which
were chosen to match the inductive biases of Sin activation networks. The second family of target
functions consists of randomly-initialized ReLU networksﬂ These target functions were chosen
primarily because the properties of these functions can be precisely understood and serve as useful
sanity checks. The networks we compare in this analysis have width of 16, depth of 4, and weight
and bias variances of 1.00 and 0.05, respectively. We compute similarity between two kernels &k and

3For the weight initialization, we use the NTK parameterization (with weight variance o2, = 1.0, bias
variance af = 0.05) of Jacot et al.|[2018]], Novak et al.|[2020].

*Sin: asin(bx + ), ReLU: max(0, z), Erf: aerf(bx) + ¢ where erf(z) = % N et dt.
>The networks have a width of 16, depth of 4, and weight and bias variances of 1.00 and 0.05.
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k' by comparing their Gram matrices using the relative Frobenius norm of [Stephenson et al.| [2021]],
|B(X, X) —K'(X, X)| g/ IK(X,X))||. Figure|5a plots the test-set MSE averaged across the
family of networks we train as well as the kernels corresponding to the data and model hyperparam-
eters. The ranking of the networks by test set performance (Sin, Erf, ReLU) is consistent with the
similarity scores (as defined by the Frobenius norm) between the model kernels and the data kernel.

Figure [5b| repeats the same analysis except on the ReLU target functions. The similarity between
the ReLU model kernel and the data kernel (which also consists of ReLU networks) is the highest.
Indeed, we do see that ReLU networks achieve the lowest test error. However, the kernel similarity
scores predict that Erf will achieve a lower test error than Sin; in reality, there is not a significant
difference between the Sin and Erf final test losses. One explanation for the inconsistency is the
mismatch in inductive biases between the spectral mixture kernel and the Erf networks. The Erf
network is non-stationary, as it is smooth and slowly-varying for most of its input domain but has a
sharp kink. In order to capture this behavior, the spectral mixture kernel learns a short lengthscale;
since the spectral mixture kernel is stationary, it cannot learn a function whose smoothness varies
with the input domain. As a result, the inferred kernel hyperparameters are not consistent with the
inductive biases of the Erf networks ]

5 Discussion

In this paper, we illustrated the potential of meta-learning Gaussian process hyperparameters as a
means of quantifying inductive biases in a learning system. In a diverse range of settings, we were
able to accurately capture inductive biases in neural network models via GP kernel hyperparameters,
and utilize the hyperparameters to assess whether a model family is compatible with a particular task
family.

There are many natural extensions of this work, including scaling the methodology to more complex
tasks, but we will focus on one in this discussion. In this work, we have adopted the perspective of
thinking of kernel hyperparameters as a representation of neural network inductive biases. Given
this perspective, one natural question is how do the inferred kernel hyperparameters change if we
apply certain transformations to the inputs and outputs of the dataset from which we learn the hy-
perparameters? This line of questioning is inspired by work such as Kornblith et al.[[2019].

While the inferred kernel hyperparameters depend on a complicated optimization procedure about
which it is difficult to make precise mathematical statements, we can make a few remarks about
some of the invariances that the GP marginal likelihood (the objective function we use to learn the
kernel hyperparameters) exhibits. One is invariance to orthogonal transformations of the input vec-
tors. Note that the Gram matrix K of a sequence of vectors X1, . . ., X,, is invariant under orthogonal
transformation of those vectors because inner products are preserved under orthogonal transforma-
tion. Since the input vectors appear in the GP marginal likelihood only through the Gram matrix,
the marginal likelihood is invariant under orthogonal transformations of the input vectors. Future
work will identify whether this property is desirable.

®See [Rasmussen and Williams|, [2006] for a similar illustration of mismatch in inductive biases between
kernel and data with the radial basis function kernel fit to a step function.
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