
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

GraphControl: Adding Conditional Control to Universal Graph
Pre-trained Models for Graph Domain Transfer Learning

Anonymous Author(s)
Submission Id: 682

ABSTRACT
Graph-structured data is ubiquitous in the world which models
complex relationships between objects, enabling various Web appli-
cations like paper classification, website recommendation and etc.
Daily influxes of unlabeled graph data on the Web offer immense
potential for these applications. Graph self-supervised algorithms
have achieved significant success in acquiring generic knowledge
from abundant unlabeled graph data. These pre-trained models
can be applied to various downstream Web applications, saving
training time and improving downstream (target) performance.
However, different graphs, even across seemingly similar domains,
can differ significantly in terms of attribute semantics, posing diffi-
culties, if not infeasibility, for transferring the pre-trained models to
downstream tasks. Concretely speaking, for example, the additional
task-specific node information in downstream tasks (specificity) is
usually deliberately omitted so that the pre-trained representation
(transferability) can be leveraged. The trade-off as such is termed
as “transferability-specificity dilemma” in this work. To address
this challenge, we introduce an innovative deployment module
coined as GraphControl, motivated by ControlNet, to realize better
graph domain transfer learning. Specifically, by leveraging univer-
sal structural pre-trained models and GraphControl, we align the
input space across various graphs and incorporate unique char-
acteristics of target data as conditional inputs. These conditions
will be progressively integrated into the model during fine-tuning
or prompt tuning through ControlNet, facilitating personalized
deployment. Extensive experiments show that our method signifi-
cantly enhances the adaptability of pre-trained models on target
attributed datasets, achieving 1.4-3x performance gain. Further-
more, it outperforms training-from-scratch methods on target data
with a comparable margin and exhibits faster convergence.

CCS CONCEPTS
• Theory of computation→ Unsupervised learning and clus-
tering; • Computing methodologies→ Transfer learning; •
Information systems→ Data mining.

KEYWORDS
Graph Neural Networks, Transfer Learning, Graph Representation
Learning

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’24, May 13–17, 2024, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Anonymous Author(s). 2018. GraphControl: Adding Conditional Control to
Universal Graph Pre-trained Models for Graph Domain Transfer Learning.
In Proceedings of the ACM Web Conference 2024 (WWW ’24). ACM, New
York, NY, USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph-structured data is prevalent in Web applications, including
community detection [23], website recommendation [26] and paper
classification [2]. Graph representation learning plays a crucial
role in these tasks, focusing on acquiring general knowledge from
abundant unlabeled graph data. Recent research has explored pre-
training models on such data and applying them to downstream
tasks to save training time and enhance performance [29, 41, 43, 49,
53, 55, 57]. These efforts fall into two main categories.

The first group constructs training objectives based on domain-
specific attributes and emphasizes pre-training and deployment on
attributed graphs from the same domain [11, 38, 42]. That is, this
approach requires consistent semantic meaning and feature dimen-
sions across datasets, making it unsuitable for domain transfer. For
instance, DGI [42] and MVGRL [11] are traditional self-supervised
learning frameworks tailored for specific attributed graphs [6].
They are pre-trained and deployed on the same graphs. However,
using these models on different attributed graphs is not feasible
due to inconsistent dimensions. For example, deploying a PubMed-
pretrained model on the Cora dataset [35] is unfulfillable, despite
both scientific citation networks.

The second group focuses on learning transferable patterns
through local structural information, enabling effective applica-
tion to out-of-domain graph domains. This approach disregards
node attributes during pre-training to avoid mismatches and facili-
tates the deployment of pre-trained models on diverse downstream
datasets without relying on specific node attributes [29, 53]. For in-
stance, GCC [29] is a graph self-supervised pre-training framework
designed to capture universal topological properties across multiple
graphs by using structural information as node attributes. How-
ever, during deployment, this approach does not effectively utilize
downstream informative node attributes. In scenarios where nodes
represent papers and contain essential information like abstracts,
neglecting these attributes can impact tasks like node classification.

Nonetheless, these approaches both encounter “transferability-
specificity dilemma”:

transferability × — specificity ✓: The first group pre-trains mod-
els using domain-specific features and deploys them on the same
graph, but fails to achieve domain transfer.

transferability ✓— specificity ×: The second group aligns the fea-
ture space with structural information to achieve domain transfer,
but can not effectively utilize valuable downstream node attributes.

To overcome these challenges, we propose an innovative mod-
ule for effective adaptation of pre-trained models to downstream

Submission ID: 682. 2023-10-12 13:32. Page 1 of 1–13. 1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13–17, 2024, Woodstock, NY Anon. Submission Id: 682

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

datasets, compatible with existing pre-trained models. Specifically,
we utilize universal structural pre-trained models [29] and incor-
porate unique features of downstream data as input conditions.
Drawing inspiration from ControlNet [51], we feed structural in-
formation into the frozen pre-trained model and well-designed
conditions into the trainable copy. The components are linked
through zero MLPs, gradually expanding parameters from zero to
incorporate valuable downstream attributes and safeguard against
detrimental noise during finetuning. To ensure that the pre-trained
model (trainable copy) comprehends the condition effectively, we
pre-process the condition input in a manner consistent with the
pre-training strategy through our condition generation module.
In essence, this approach enables us to utilize the specific statis-
tics of downstream data, leading to more effective fine-tuning or
prompt tuning (transferability ✓— specificity ✓). This innovation
opens the door to more effective and efficient deployment of pre-
trained models in real-world Web applications. Through extensive
experiments1, we observe that our method can enhance the adapt-
ability of pre-trained models on downstream datasets, achieving
2-3x performance gain on Cora_ML and Amazon-Photo datasets.
Furthermore, it surpasses training-from-scratch methods over 5%
absolute improvement on some datasets.

Our contributions can be concluded as:
• We propose a novel deployment module coined as Graph-

Control to address the “transferability-specificity dilemma”
in graph transfer learning.

• We design a condition generation module to preprocess
downstream-specific information into the pre-training data
format, enabling the pre-trained model to understand the
condition input effectively.

• Extensive experiments show that the proposed module sig-
nificantly enhances the adaptability of pre-trained models
on downstream datasets and can be seamlessly integrated
with existing pre-trained models.

2 RELATEDWORK
2.1 Graph Pre-training
Graph pre-training involves using existing graph data to train a
generalized feature extractor. Existing self-supervised graph pre-
training methods can be categorized as generative, contrastive,
and predictive methods [43]. Generative methods like GAE [16],
GraphMAE [13], and GraphMAE2 [12] focus on learning local re-
lationships by reconstructing features or edges. Contrastive meth-
ods [49, 55, 57] bring positive pairs closer and push negative pairs
apart to learn global relationships. Predictive methods require cre-
ating pretext tasks manually based on data statistics, like degree
prediction [14], to acquire generic knowledge.

In this research endeavor, our focus lies in Graph Contrastive
Learning (GCL) methods, owing to their popularity and remark-
able achievements [9, 11, 38, 42, 48, 49, 55–57]. The strategies em-
ployed by GCL methods can be broadly categorized into two pri-
mary groups. The initial group formulates the training objective
based on domain-specific features, exemplified by methods such as

1In this study, our focus lies on node-level downstream tasks, excluding graph classifi-
cation. The alignment of node (atom) attributes in molecules (one classical data type
of graph classification) mitigates the challenges in graph transfer learning.

DGI (Deep Graph Infomax) [42] and MVGRL (Contrastive Multi-
View Representation Learning on Graphs) [11]. However, these
approaches inherently constrain the models’ generalizability to
other application domains. In simpler terms, pre-trained models
derived from this strategy lack the versatility to be effectively ap-
plied to attributed graphs originating from diverse application do-
mains. Contrastingly, the second group [29, 49] directs its attention
towards learning transferable patterns by discerning local graph
structures, thus completely circumventing the challenge of poten-
tially unshared attributes. Nevertheless, real-world downstream
datasets are often imbuedwith semantic attributes. Effectively lever-
aging this downstream-specific information within this paradigm
remains an unresolved challenge.

2.2 Graph Transfer Learning
Graph transfer learning [19, 28, 58] involves transferring trained
model parameters to facilitate the training of new models, thereby
conserving training time and occasionally enhancing downstream
performance. Various strategies, such as domain adaptation [47],
multi-task learning [34], and fine-tuning [37], are employed to
achieve transfer learning.

In light of the remarkable achievements in pre-training tech-
niques, this study places emphasis on fine-tuning. Initially, a generic
model undergoes pre-training on extensive unlabeled graph data
(source data). Subsequently, these pre-trained models are tailored
for specific downstream tasks (target data). Notably, current fine-
tuning methods [29] predominantly focus on adjusting pre-trained
model parameters while simply incorporating target data. However,
a substantial challenge arises when the feature distribution of the
target data diverges from that of the source data, potentially ex-
tending to differences in feature space. For example, the pre-trained
model may have a fixed input dimension (e.g., 32) for structural
attributes, whereas semantic attributes (e.g., keywords, abstract
in paper) in the target data can vary across arbitrary dimensions.
Traditional fine-tuning methods inadequately tackle this issue.

To address the non-trivial problem, we propose a deploy-
ment module, coined as GraphControl, designed to incorporate
downstream-specific information as input conditions. The condi-
tion will be processed to align with the format of pre-training data,
enabling comprehension by pre-trained models, and steering the
pre-trained model to predict more accurately, significantly enhanc-
ing the effectiveness of graph domain transfer learning.

3 BACKGROUND AND PROBLEM
FORMULATION

In this section, we will start with the notations we use throughout
the rest of the paper in Sec. 3.1. Subsequently, we will outline the
specific problems under consideration in Sec. 3.2.

3.1 Notations
Let G,Y represent input and label space. 𝑓𝜙 (·) represents graph pre-
dictor which consists of a GNN encoder 𝑔𝜃 (·) and a classifier 𝑝𝜔 (·).
The graph predictor 𝑓𝜙 : G ↦→ Y maps instance 𝐺 = (𝐴,𝑋,𝑌) ∈ G
to label 𝑌 ∈ Y where 𝐴 ∈ R𝑁×𝑁 is the adjacency matrix and

2 Submission ID: 682. 2023-10-12 13:32. Page 2 of 1–13.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

GraphControl: Adding Conditional Control to Universal Graph Pre-trained Models for Graph Domain Transfer Learning WWW ’24, May 13–17, 2024, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

𝑋 ∈ R𝑁×𝑑 is the node attribute matrix. Here, 𝑁 , 𝑑 denote the num-
ber of nodes and attributes, respectively. Let 𝐺𝑖 denote a subgraph
centered around node 𝑖 sampled from the original graph 𝐺 .

3.2 Problem Definition
3.2.1 Universal Graph Representation Learning, UGRL. UGRL en-
deavors to acquire a universal feature extractor 𝑔𝜃 from abun-
dant unlabeled graph data, encapsulating common and generic
knowledge. This extractor is versatile and applicable to diverse
datasets sourced from similar domains. Varying and occasionally
absent node attributes pose challenges for effective transfer in node
attribute-based pre-training. To address this challenge, we intro-
duce structure pre-training models that mainly utilize structural
information, collectively termed UGRL in this paper. These mod-
els offer a solution, ensuring efficient knowledge transfer despite
disparities in node attributes across datasets.

GCC[29] is a classical structural pre-training method that lever-
ages structural information as input. This approach aligns the input
space across all datasets using structural information, facilitating
domain transfer. To learn common knowledge, GCC will sample
subgraphs {𝐺𝑖 }𝑁𝑖=1 from the original large graph 𝐺 and embed
subgraphs with similar local structures closely through subgraph
instance discrimination. Inspired by GCC, we employ generalized
positional embedding as input features during pre-training. For-
mally, given an adjacency matrix 𝐴 and the corresponding degree
matrix𝐷 , we conduct eigen-decomposition on its normalized graph
Laplacian 𝑈Λ𝑈𝑇 = 𝐼 − 𝐷−

1
2𝐴𝐷−

1
2 . The top eigenvectors in 𝑈

will serve as generalized positional embedding. The GNN encoder
𝑔𝜃 : R𝑁×𝑘 ↦→ R𝑁×𝑙 maps the positional embedding 𝑃 ∈ R𝑁×𝑘
(𝑘 set as 32 in this paper) to node embedding 𝐻 ∈ R𝑁×𝑙 . To learn
transferable structural patterns from positional embedding, we will
maximize the mutual information between two similar subgraphs.
Taking the InfoNCE loss[27] as an example, the formulation follows:

LMI (𝑔𝜃 ;𝐺) = − E
𝐺𝑖 ,𝐺

′
𝑖
∈𝐺

𝑔𝜃 (𝐺𝑖) − 𝑔𝜃 (
𝐺 ′𝑖

)

2
+ E
𝐺𝑖 ∈𝐺

log E
𝐺 𝑗 ∈𝐺

[
𝑒 ∥𝑔𝜃 (𝐺𝑖)−𝑔𝜃 (𝐺 𝑗)∥2

]
,

(1)

where 𝑔𝜃 denotes GNN encoder with readout function, 𝐺𝑖 ,𝐺 ′𝑖 rep-
resents subgraphs centered around node 𝑖 sampled from the orig-
inal graph 𝐺 . The sampling strategy is random walk with restart
which is also adopted in GCC [29] and RoSA [55]. So this method
is scalable on large graphs. 𝐺𝑖 and 𝐺 ′𝑖 share similar local structural
information, serving as positive pairs, while 𝐺𝑖 and 𝐺 𝑗 (sampled
from different central nodes) act as negative samples. Through this
self-supervised objective, UGRL obtains pre-trained models appli-
cable to various downstream datasets, addressing specific tasks like
node classification. This learning framework is commonly referred
to as graph transfer learning.

3.2.2 Graph Transfer Learning. Graph transfer learning aims to
leverage the universal knowledge within a pre-trained model,
trained on source data, and apply it to target data for specific tasks.
There exists source data Dsource and target data Dtarget from sim-
ilar domains. In this paper, we assume source data is abundant
but without labels and target data is limited but with labels. UGRL

acquires pre-trained models 𝑔★
𝜃
on the source data, which are then

fine-tuned on the limited target data to accomplish specific tasks.
Take the downstream node classification tasks as an example, it

involves learning a conditional probability 𝑃 (𝑌 | 𝐺 ;𝜙) to categorize
unlabeled nodes. To model this probability, the graph predictor
𝑓𝜙 (·) = 𝑝𝜔 ◦ 𝑔★𝜃 (·) is employed where 𝑝𝜔 is a classifier and 𝑔★

𝜃
is pre-trained GNN encoder obtained by the last part. The graph
predictor is then optimized with training nodes from target data:

𝑓 ∗
𝜙
= argmin

𝜙

E𝐺∼Dtarget ℓ

(
𝑓𝜙 (𝑋train, 𝐴) , 𝑌train

)
, (2)

where𝑋train represents the attribute set of training nodes and Ytrain
denotes their labels, and ℓ (·, ·) is cross-entropy loss. Finally, the
optimal graph predictor 𝑓 ∗

𝜙
is utilized for classifying testing nodes.

However, during pre-training, we only utilize structural infor-
mation to obtain transferable pre-trained models while disregard-
ing non-transferable node attributes. Sometimes, downstream data
includes specific node attributes (e.g., age, gender, and interests)
crucial for the task but incompatible with the pre-trained model
(due to disparities in feature space and dimensions). Incorporating
these meaningful attributes into the model and guiding it towards
superior performance represents a substantial challenge. We will
present the solution to this challenge in Sec. 4.

Neural

Network

Trainable

Copy

Zero Conv

Zero Conv

+

+

ControlNet

Figure 1: ControlNet injects conditions into neural network.
𝑥 represents original input and 𝑐 denotes condition input.

4 GRAPHCONTROL: GRAPH TRANSFER
LEARNING WITH CONDITIONAL CONTROL

In this section, we will outline our approach to address the afore-
mentioned challenge. Firstly, we retrospect the ControlNet in
Sec. 4.1. Then in Sec. 4.2, we first introduce the common chal-
lenges of adding conditional control to the graph data in Sec. 4.2.1,
followed up by the condition generation mechanism proposed in
Sec. 4.2.2. Subsequently, we detail our module GraphControl de-
signed to adapt the pre-trained model to the target data in Sec. 4.2.3.
Lastly, we demonstrate how to incorporate our module with fine-
tuning and prompt-tuning techniques in Sec. 4.3. Furthermore, we
add time complexity analysis in Appendix B due to the space limit.

4.1 Background: ControlNet
Firstly, let us retrospect the concepts of ControlNet [51]. ControlNet
is a neural network architecture designed to incorporate spatial
conditioning controls into pre-trained diffusion models [5, 15, 33] to
generate customized images. Specifically, it freezes the pre-trained
model and reuses the deep and robust encoding layers as a robust

Submission ID: 682. 2023-10-12 13:32. Page 3 of 1–13. 3

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13–17, 2024, Woodstock, NY Anon. Submission Id: 682

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Structure Pre-training

LiveJournal FacebookAcademia

Graph Contrastive Learning

Subgraph Instance Discrimination

Fine-tuning

G = (A, X)

Pre-trained

GNN

A
Eigen-decom.

Trainable

Copy

Condition:

transform

Condition GenerationA

Zero MLP

Zero MLP

+

Prediction

P

+ A

G
en

erated
 b

y
 d

o
w

n
stream

sp
ecific in

fo
rm

atio
n

discrete

Attribute distance matrix

TunedFrozen

ControlNetSource data Target data
G

sam
p

lin
g

Figure 2: The pipeline of Graph Domain Transfer Learning with GraphControl: Universal structure pre-training will be applied
on extensive source data, then the pre-trained model will be deployed on target data with GraphControl , which includes
Condition Generation and modified ControlNet.

backbone (trainable copy) for acquiring diverse conditional con-
trols. The trainable copy and original model are linked by zero
convolution layers, progressively growing parameters from zero,
ensuring a noise-free fine-tuning process [51]. This approach al-
lows us to control diffusion models with learned conditions. For
example, utilizing a human pose stretch as a condition ensures that
all generated images share the same pose [51].

4.2 GraphControl: Transfer Learning with
ControlNet

4.2.1 Leveraging Node Attributes in Graph Transfer Learning. In
graph domain, the downstream-specific node attributes pose com-
patibility challenges with the pre-trained model, primarily due to
the disparities in terms of feature semantics and dimensions. One
straightforward approach is to train a dedicated feature extractor
for these attributes and integrate it with pre-trained models for
prediction. However, this solution encounters three main issues:
(i) The downstream data is of a small scale, akin to few-shot sce-
narios [8], making training-from-scratch susceptible to overfitting
on the training data and poor generalization on testing data. (ii)
The pre-trained model’s assistance remains limited, failing to fully
leverage its potential. (iii) Selecting an appropriate feature extractor
for node attributes is an open question, as different datasets may
require different extractors. A brute-force approach trains with all
choices and selects the best, incurring high training costs [46].

Our purpose is to enable the existing structural knowledge
pre-training framework to utilize the node attributes of different
downstream datasets in the fine-tuning or prompt-tuning stage.
To achieve this, we draw inspiration from ControlNet [51], a neu-
ral network architecture that incorporates conditioning controls
into large pre-trained text-to-image diffusion models. Consider-
ing the unique structure of the graph data, there are two primary
distinctions that set our work apart from ControlNet:

• The motivation and application domain: ControlNet aims
to generate customized images through user instructions.
In this study, we address the challenge of graph domain
transfer learning by incorporating elaborate conditional

control, generated from downstream specific information,
into universal pre-trained models.

• The input condition: In ControlNet, the input condition for
pre-trained text-to-image models is easily designed using
sketches (e.g., cartoon line drawings, shape normals). In our
study, we utilize structural pre-trained models for graph
transfer learning. Integrating downstream-specific informa-
tion as a comprehensible condition for pre-trained models
is non-trivial.

4.2.2 Condition Generation in the GraphDomain. In order to obtain
conditions meeting the requirements in the second distinction, we
propose a condition generation module depicted in Figure 2 (green
region). It utilizes the downstream-specific characteristics like node
attributes to design the condition in a similar format to the adjacent
matrix. Specifically, firstly, we measure the distance between nodes
through a kernel function 𝜅 (·, ·). Thus we have a kernel matrix [18]
(attribute distance matrix) 𝐾 ∈ R𝑁×𝑁 where 𝐾𝑖 𝑗 = 𝜅 (𝑥𝑖 , 𝑥 𝑗). In
this work, we use the linear kernel with normalized term (cosine
similarity function) for computational simplicity:

𝜅 (𝑥𝑖 , 𝑥 𝑗) =
𝑥𝑇
𝑖
𝑥 𝑗

∥𝑥𝑖 ∥∥𝑥 𝑗 ∥
. (3)

We then discretize this kernel matrix by applying a threshold filter
𝑣 to it. The values that are bigger than the threshold 𝑣 will be set to
1 otherwise 0:

𝐴′𝑖, 𝑗 =


0, if 𝐾𝑖, 𝑗 ≤ 𝑣

1, o.w.
(4)

We call 𝐴′ as feature adjacent matrix that aligns and maps node
features of different dimensions and different semantics to the ad-
jacency matrix space. Finally, we will use the same process during
pre-training to obtain the generalized positional embedding 𝑃 ′,
which will be used during fine-tuning. For non-attributed down-
stream graphs lacking node attributes, node embedding strategies
like Node2Vec [10] can be applied to generate node attributes. These
attributes can then be utilized for creating conditions via our con-
dition generation module.

4 Submission ID: 682. 2023-10-12 13:32. Page 4 of 1–13.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

GraphControl: Adding Conditional Control to Universal Graph Pre-trained Models for Graph Domain Transfer Learning WWW ’24, May 13–17, 2024, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Next, we elucidate the integration of ControlNet into the graph
domain, leveraging our designed condition to facilitate graph do-
main transfer.

4.2.3 Overall Framework of GraphControl . In this work, we draw
inspiration from ControNet to solve the challenges of graph do-
main transfer learning. Considering the non-euclidean nature and
oversmoothing problem [4] in graph domain, we substitute zero
convolution layers with zero MLPs rather than zero graph convo-
lution layers. We leverage universal structural pre-trained models
and incorporate the downstream-specific information as condition
input, effectively tackling the “transferability-specificity dilemma.”
The structural information of target data will be fed to the frozen
pre-trained model (to avoid catastrophic forgetting [17, 20, 24, 25])
and the elaborate condition (generated by Condition Generation
Module) will be fed into the trainable copy. These two compo-
nents are linked by zero MLPs, gradually growing the parameters
from zero. This approach ensures that no harmful noise affects the
fine-tuning process while progressively incorporating downstream-
specific information.

The procedure of our method can be formalized as follows:

𝐻𝑐 = 𝑔
★
𝜃
(𝑃) + Z2 (𝑔𝑐 (𝑃 + Z1 (𝑃 ′))), (5)

whereZ1 andZ2 represent the first and the second zero MLP, and
𝑔𝑐 (·) represents the trainable copy of the pre-trained encoder 𝑔★

𝜃
.

Similar to ControlNet, because the parameters of the zero MLP
are set to 0 during initialization, we haveZ2 (𝑔𝑐 (𝑃 + Z1 (𝑃𝑐))) = 0.
Hence, during initialization, our model’s output aligns with us-
ing the pre-trained encoder alone. Throughout optimization, the
downstream-specific information is progressively integrated.

4.3 GraphControl in Two Learning Scenarios
4.3.1 Fine-tuning with GraphControl. Given an input graph 𝐺 =

(𝐴,𝑋), our process begins with preprocessing the graph data, in-
volving subgraph sampling, generalized positional embedding cal-
culation, and condition generation. In the training phase, we keep
the parameters of the pre-trained GNN encoder 𝑔𝜃 fixed to pre-
vent catastrophic forgetting. The original positional embedding 𝑃
is input into 𝑔★

𝜃
, and the generated condition is input into the Con-

trolNet. The resulting representations 𝐻𝑐 are utilized for specific
tasks. For example, in the node classification task, a linear classi-
fier is added to map these representations to predicted labels. The
classification error is then calculated using the cross-entropy loss
function. All components are optimized in an end-to-end manner.
The entire procedure is outlined in Algorithm 1.

4.3.2 Graph Prompt Tuning with GraphControl. In the last section,
we introduce how to perform fine-tuning with our method on tar-
get data. In scenarios where training data for the target dataset
is notably scarce (e.g., fewshot setting), tuning all parameters can
result in overfitting and difficulties in generalizing effectively on
the test set. To address these challenges, graph prompt tuning meth-
ods [7, 21, 39, 40, 54] have emerged which focus on tuning only a
few parameters of the prompt. In this section, we will demonstrate
that our method (GraphControl) can seamlessly integrate with ex-
isting graph prompt methods, significantly enhancing downstream
performance. Taking the GPF graph prompt tuning method [7] as
an example, the workflow is illustrated in Figure 3. Firstly, two

Pre-trained

GNN

A

Trainable

Copy

Condition: A

Zero MLP

Zero MLP

+

Prediction

+

ControlNet

+

Graph Prompt

Feature
Graph Prompt

Feature

+

Tuned

Frozen

Figure 3: Graph prompt tuning with GraphControl.

trainable graph prompt features 𝑝, 𝑝′ ∈ R1×𝑘 are randomly initial-
ized. Then, these prompt features are broadcasted to be added to
the input features. The formulation is as follows:

𝐻𝑐 = 𝑔
★
𝜃
(𝑃 + 𝑞) + Z2 (𝑔𝑐 ((𝑃 + 𝑞) + Z1 (𝑃 ′ + 𝑞′))), (6)

In contrast to the previous section, in graph prompt tuning, the
parameters of the trainable copy 𝑔𝑐 will be frozen to prevent over-
fitting. Besides, more intricate graph prompt methods, such as All-
in-One (ProG) [40], can be integrated with our method to enhance
downstream performance. Detailed experiments are in Sec. 5.3.2.

5 EXPERIMENTS
In this section, we first introduce the datasets, baselines, and ex-
perimental setup in Sec. 5.1, 5.2 and 5.3 respectively. Secondly, we
conduct main experiments under fine-tuning (Sec. 5.3.1) and prompt
tuning (Sec. 5.3.2) to prove the effectiveness of GraphControl. We
then perform an ablation study to demonstrate the effectiveness
of each proposed component in Sec. 5.4. Lastly, we analyze the
convergence of GraphControl (Sec.5.5) and the impact of important
hyper-parameters (Sec. 5.6).

5.1 Datasets
Pre-training datasets. The details of the pre-training datasets
are presented in Table 6 and Appendix C.1. Notably, these datasets
are substantial in scale, with the largest graph (LiveJournal [1])
comprising approximately 4.8 million nodes and 85 million edges.
Downstream datasets. We select eight public benchmark
datasets as target data that include four attributed datasets (i.e.,
Cora_ML, Amazon-Photo, DBLP, and Coauthor-Physics), and four
non-attributed datasets (i.e., USA-Airport, Europe-Airport, Brazil-
Airport, and H-index) to evaluate the effectiveness of GraphControl.
The statistics of datasets is in Table 1. Detailed illustrations of these
datasets can be found in Appendix C.1.

5.2 Baselines
We evaluate GraphControl with four self-supervised pre-training
methods (using GIN as encoder): Deep Graph Contrastive Represen-
tation Learning (GRACE) [57], A Simple Framework for Graph Con-
trastive Learning without Data Augmentation (simGRACE) [44],

Submission ID: 682. 2023-10-12 13:32. Page 5 of 1–13. 5

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13–17, 2024, Woodstock, NY Anon. Submission Id: 682

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Statistics of datasets. These datasets can be further
classified into attributed graphs and non-attributed graphs.

#Nodes #Edges #Attributes #Classes

Cora_ML[3] 2,995 16,316 2,879 7
Amazon-Photo[36] 7,650 238,162 745 8
DBLP[3] 17,716 105,734 1,639 4
Coauthor-Physics[36] 34,493 495,924 8,415 5

USA-Airport[30] 1,190 27,198 - 4
Europe-Airport[30] 399 5,995 - 4
Brazil-Airport[30] 131 1,047 - 4
H-index[29] 5,000 44,020 - 44

Covariance-Preserving Feature Augmentation for Graph Con-
trastive Learning (COSTA) [52], and A Robust Self-Aligned Frame-
work for Node-Node Graph Contrastive Learning (RoSA) [55]. De-
tailed descriptions of these methods are available in Appendix C.3.
Except for GCC, other pre-training methods are designed for attrib-
uted graphs. To integrate them into our setting, we replace their
input with structural information, disregarding the original node
attributes during pre-training. To demonstrate the superiority of
our approach over training from scratch, we compare it with the su-
pervised GINmodel, initialized randomly and trained on target data.
Notably, GCC’s encoder is based on GIN but with a little different
implementation (e.g., incorporates additional information as input,
further details are provided in Appendix). GCC(rand) signifies the
utilization of a randomly initialized GCC encoder, trained from
scratch on the target data. Additionally, we include two baselines
that only use node attributes (i.e., MLP [31]) and structural informa-
tion (i.e., Node2Vec [10]) of downstream datasets to demonstrate
the effectiveness of both for classification. Considering the abun-
dance of source data and its occasional unavailability (we only have
access to pre-trained models), domain adaptation baselines [47] are
not included in this work.

5.3 Graph Domain Transfer Learning
5.3.1 Fine-tuning with GraphControl. In this subsection, we evalu-
ate the effectiveness of GraphControl on target data by fine-tuning.
Experimental setup. For pre-trained models, GCC [29] is pre-
trained on abundant unlabeled large graphs (e.g., Facebook [32],
LiveJournal [1]), we use their released pre-trained checkpoint2. In
the case of GRACE, simGRACE, RoSA, and COSTA, we perform
pre-training on the downstream graphs, excluding node attributes.
During fine-tuning, we incorporate the original node attributes. All
pre-training methods use a 4-layer Graph Isomorphism Network
(GIN) [45] with 64 hidden units as encoders.

Regarding data splitting, we randomly divide the training and
testing data into a 1:9 ratio, and the results represent the mean
accuracy with a standard deviation of 20 runs with different random
seeds. Details and hyperparameters can be found in Appendix C.2.
Analysis. From Table 2, we can draw the following conclusions:
firstly, structural pre-training methods can learn transferable struc-
tural patterns because GCC surpasses GCC(rand)3 with comparable

2https://github.com/THUDM/GCC
3GCC(rand) refers to a randomly initialized encoder of GCC, trained from scratch on
target data, focusing on structural information.

margins. For instance, on H-index and Cora_ML datasets, GCC
achieves over 5% absolute improvement compared to GCC(rand).

Secondly, applying structural pre-training methods directly
to target attributed graphs fails to achieve satisfactory perfor-
mance and notably lags behind training-from-scratch methods (e.g.,
GIN(A,X)) on target data. This underscores the essential role of
downstream-specific information (e.g., node attributes) for optimal
performance. For instance, on the DBLP dataset, GCC achieves only
57% accuracy, lagging behind GIN(A,X) by approximately 17%.

Thirdly, deploying structural pre-trained models on target data
with GraphControl significantly enhances performance. For in-
stance, on Cora_ML and Photo datasets, our method achieves 2-
3x performance gains compared to direct deployment. Moreover,
when pre-trained models are combined with GraphControl , intelli-
gently leveraging downstream-specific information, they outper-
form training-from-scratch methods on target data, showcasing
GraphControl ’ ability to fully harness the potential of pre-trained
models. Even for non-attributed target data, our method can en-
hance downstream performance with additional node embeddings
from Node2Vec [10]. Specifically, GRACE with GraphControlout-
performs GIN(A,X𝑃𝐸) by approximately 5% absolute improvement.

These statistics show the effectiveness of our module for deploy-
ing universal pre-trained models on target data.

5.3.2 Prompt Tuning with GraphControl (Few-shot classification).
In many real-world scenarios, the target data is notably limited,
with only a few training samples for each class. Few-shot learning is
a well-known case of low-resource scenarios. Standard fine-tuning
tends to overfit on the training data, leading to poor generalization.
To solve these problems, Graph prompt tuning emerged which
can align the training objectives and train a few parameters of
prompt. In this section, we will perform experiments of existing
graph prompt tuning with GraphControl under few-shot setting.
Baselines & Experimental setup. We choose two graph prompt
methods, GPF [7] and ProG [40], which are not limited to spe-
cific pre-trained GNN models. Other graph prompt methods like
GPPT [39], GraphPrompt [21], and SGL-PT [54] heavily rely on
specific pre-trained models will not included in this study. GPF
introduces trainable graph prompt features applied to the original
graph, imitating any graph manipulations. ProG is a more com-
plex version, inserting a prompt graph comprising multiple prompt
features and relations into the original graph. For the pre-trained
model, we adopt GCC here for simplicity.

‘Finetuned GIN’ and ‘Finetuned GCC’ refer to randomly initial-
ized GIN and pre-trained GCCfine-tuned on target data. ‘GCC+GPF’
indicates pre-trained GCC prompt tuning on target data with GPF,
while ‘Ours+GPF’ involves deploying pre-trained GCC with Graph-
Control using GPF as prompt tuning. ‘GCC+PorG’ and ‘Ours+PorG’
use ProG as prompt tuning method.

As for data splitting, target data is initially divided into 1:9 for
candidate and testing data. In 3-shot(5-shot) setting, 3(5) samples
per class are subsequently selected from candidate data for training.
Results show mean accuracy with standard deviation over 20 differ-
ent random seeds. For more details, please refer to Appendix C.2.
Analysis. From Table 3, we can draw the following conclusions:
firstly, we can see the ‘Finetuned GIN’ achieves the worst per-
formance because the training from scratch will easily overfit on

6 Submission ID: 682. 2023-10-12 13:32. Page 6 of 1–13.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

GraphControl: Adding Conditional Control to Universal Graph Pre-trained Models for Graph Domain Transfer Learning WWW ’24, May 13–17, 2024, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Experimental results of baselines and our method on downstream datasets. In the data column, 𝐴 represents adjacent
matrix,𝑋 denotes node attribute matrix and𝑋𝑃𝐸 means positional embeddings. Rows with gray background denote our method.

Data Methods Cora_ML Photo DBLP Physics USA Europe Brazil H-index

X MLP[31] 60.31±2.96 77.56±2.42 64.47±1.36 88.90±1.10 - - - -
A Node2Vec[10] 69.93±1.27 84.08±0.63 77.52±0.38 88.13±0.39 59.59±2.04 47.92±3.66 46.53±8.41 75.02±0.50
A,X𝑃𝐸 GIN[45] 29.94±1.37 30.41±1.07 57.53±0.78 54.76±0.69 56.33±1.90 49.72±3.05 57.63±8.96 69.90±1.26
A,X GIN[45] 69.57±3.65 79.71±4.72 74.62±3.00 92.02±2.79 58.89±2.70 47.85±4.86 58.52±9.98 72.23±1.20

A,X𝑃𝐸 GCC(rand) 26.34±1.40 26.15±1.20 53.46±0.79 54.30±0.68 54.85±2.31 42.60±3.31 51.20±8.49 64.18±1.83
A,X𝑃𝐸 GCC[29] 31.14±1.23 33.85±1.19 57.02±0.68 56.25±0.37 55.80±2.23 47.35±3.44 57.92±9.00 70.31±1.89
A,X𝑃𝐸 ,X +GraphControl 77.43±1.62 88.65±0.60 80.25±0.90 94.31±0.12 57.03±2.21 50.53±3.43 59.28±8.14 73.55±0.70

A,X𝑃𝐸 GRACE[57] 30.74±1.48 32.64±1.57 58.43±0.37 59.86±1.96 57.68±1.75 50.49±2.90 57.98±9.45 69.68±2.18
A,X𝑃𝐸 ,X +GraphControl 77.26±1.50 88.78±0.61 80.42±0.65 94.12±0.24 58.94±1.84 52.83±3.10 59.92±7.59 74.47±0.07

A,X𝑃𝐸 simGRACE[44] 30.39±1.82 33.62±1.52 57.87±0.32 59.82±2.93 57.11±1.90 50.22±3.91 58.09±8.50 69.65±1.50
A,X𝑃𝐸 ,X +GraphControl 77.34±1.08 89.66±0.56 80.33±0.69 94.03±0.47 59.40±1.62 51.15±3.17 59.41±7.66 76.10±0.70

A,X𝑃𝐸 RoSA[55] 30.96±0.81 33.42±1.59 56.41±0.70 60.14±2.48 57.18±2.02 50.32±3.78 58.99±8.30 69.80±2.48
A,X𝑃𝐸 ,X +GraphControl 77.40±1.06 89.35±0.61 80.23±0.79 94.22±0.26 58.71±1.35 51.89±2.69 59.16±7.13 74.22±1.46

A,X𝑃𝐸 COSTA[52] 30.07±1.31 33.22±1.28 59.01±0.19 59.96±3.29 57.07±2.53 50.33±3.64 59.55±9.30 68.49±2.10
A,X𝑃𝐸 ,X +GraphControl 76.63±1.67 89.17±1.14 80.74±0.65 94.02±0.31 59.00±1.82 51.88±3.08 62.16±6.95 73.57±2.17

Table 3: Experimental results of fine-tuning (FT) and prompt
tuning (PT) under few-shot settings (3-shot and 5-shot).

USA Europe
3-shot 5-shot 3-shot 5-shot

FT Finetuned GIN 34.28±4.06 35.73±4.45 37.99±4.38 40.61±3.18
Finetuned GCC 48.75±4.76 51.76±4.98 45.08±4.24 48.62±3.77

PT

GCC+GPF[7] 49.10±4.70 50.78±5.19 47.10±3.57 49.69±3.47
Ours+GPF[7] 50.40±3.33 53.05±4.52 47.50±3.99 50.29±2.42

GCC+ProG[40] 48.80±4.36 49.36±5.64 46.04±4.38 48.47±3.67
Ours+ProG[40] 49.73±4.34 52.61±5.22 46.81±4.39 50.65±2.93

limited training data. ‘Finetuned GCC’ achieves a decent result but
lags behind prompt methods with few training samples. For exam-
ple, under 3-shot, ‘Finetuned GCC’ is outperformed by ‘GCC+GPF’
and ‘GCC+ProG’, but surpasses them with more training data (5-
shot). This highlights the greater effectiveness of prompt methods
under limited resources.

Secondly, with prompt tuning, our method GraphControl can
still enhance the downstream performance. Specifically, both
‘Ours+ProG’ and ‘Ours+GPF’ outperform their corresponding base-
lines (‘GCC+ProG’ and ‘GCC+GPF’) by 2% absolute improvement.
In the small-scale dataset like 5-shot Europe-Airport, ‘Ours+ProG’
reaches comparable performance to full-shot in the last section.

5.4 Ablation Studies
In this section, we assess the effectiveness of GraphControl by
masking each component. Ours (soft C) uses soft attribute distance
matrix 𝐾 as condition. Ours (w/o zero) removes zero MLPs in Con-
trolNet. Ours (w/o CG) removes the condition generation and Con-
trolNet, similar to finetuing GCC. Ours (w/o frozen pre.) excludes
the frozen pre-trained model branch, utilizing only the ControlNet
branch. Lastly, ‘Simple Cat.’ signifies a basic approach: training a
dedicated feature extractor for downstream attributes from scratch

and integrating it with pre-trained models for predictions. As for
the pre-trained model, we use GCC in this section.

Each component is crucial for the effectiveness of the method,
as shown in Table 4. Specifically, Ours(w/o CG) performs poorly on
attributed datasets, emphasizing the importance of downstream-
specific information. Ours(soft C) also underperforms, highlighting
the significance of aligning the format of condition and input during
pre-training. Ours(w/o zero) lags behind GraphControl by a compa-
rable margin, indicating the importance of zero MLPs in linking the
frozen pre-trained model and the trainable copy, avoiding detrimen-
tal noise during fine-tuning. Ours(w/o frozen pre.) is also inferior
to GraphControl, indicating the effectiveness of incorporating com-
mon knowledge from the pre-trained model. Finally, ‘Simply Cat.’
achieves subpar results on most datasets, emphasizing the risks of
overfitting when training from scratch on limited data, especially
in smaller datasets like Cora_ML (10% lower than GraphControl).

5.5 Convergence Analysis
Earlier sections demonstrate the efficacy of our method in perfor-
mance enhancement. In this section, we delve into the convergence
speed analysis of GraphControl. Here, ‘GIN’ denotes training from
scratch, while GraphControl signifies using GCC as the pre-trained
model and fine-tuning it with GraphControl.

As depicted in Figure 4, GraphControl achieves convergence
within 100 epochs on all datasets, whereas GIN reaches the best
performance around 600 epochs on Cora_ML and Photo datasets,
exhibiting instability. Our approach not only improves performance
but also notably reduces training time in downstream applications.

5.6 Sensitivity Analysis
In this section, we analyze crucial hyperparameters, starting with
the impact of the threshold used in condition generation, followed
by an analysis of the subsampling hyperparameters.

Submission ID: 682. 2023-10-12 13:32. Page 7 of 1–13. 7

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13–17, 2024, Woodstock, NY Anon. Submission Id: 682

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Ablation studies for GraphControl by masking out each component. The bold and underlined results means the top-1
performance and the underline represents the second performance.

Data Methods Cora_ML Photo DBLP Physics USA Europe Brazil H-index
A,X𝑃𝐸 ,X Ours 77.43±1.62 88.65±0.60 80.25±0.90 94.31±0.12 57.03±2.21 50.53±3.43 59.28±8.14 73.55±0.70
A,X𝑃𝐸 ,X Ours(soft C) 27.42±3.32 51.85±7.30 51.42±3.37 77.75±2.51 55.03±2.57 48.67±3.95 58.81±8.31 73.26±0.63
A,X𝑃𝐸 ,X Ours(w/o zero) 71.93±2.73 81.30±4.33 77.24±5.55 93.70±0.25 55.35±3.08 48.49±3.39 58.03±9.91 71.71±1.63
A,X𝑃𝐸 Ours(w/o CG) 20.29±2.09 27.31±3.09 49.62±3.54 51.96±0.70 55.31±2.32 47.93±3.41 56.65±8.76 72.79±0.53
A,X Ours(w/o frozen pre.) 75.06±1.90 82.38±4.72 79.22±1.58 93.56±0.22 55.85±2.71 47.75±3.04 56.57±8.65 73.16±0.72
A,X𝑃𝐸 ,X Simple Cat. 66.64±1.41 82.80±0.95 67.32±0.60 90.56±0.46 53.59±4.74 45.28±5.29 57.67±7.14 72.74±1.16

Figure 4: The convergence analysis on GIN and GraphControl.

Figure 5: Sensitivity analysis on threshold.

5.6.1 Analysis on threshold for discretization. In the process of con-
dition generation, we discretize the attribute distance matrix using
a specific threshold, converting it into a feature-based adjacency
matrix to align with the input space during pre-training. Empiri-
cally, we explore the impact of this threshold, ranging from 0.1 to
0.35. The results, shown in Figure 5, indicate stable performance
from 0.1 to 0.2 on DBLP, Cora_ML, and Physics datasets. However,
when the threshold exceeds 0.3, most datasets experience a rapid
drop in performance due to the matrix becoming overly sparse and
providing limited information. Optimal thresholds range from 0.15
to 0.2, guiding our experiments across most datasets.

5.6.2 Analysis on hyper-parameters of subsampling. In this work,
random walk with restart serves as the subsampling technique,
with walk steps and restart rate as pivotal hyperparameters. Walk
steps are selected from {32, 64, 128, 256, 512}, and the restart rate
spans {0.1, 0.3, 0.5, 0.7, 0.9}. Based on Figure 6, optimal results are
observed with 256 and 512 walk steps, alongside restart rates of 0.7

Figure 6: Analysis of subsampling hyperparameters on
Cora_ML (left) and DBLP (right) datasets.

and 0.9. For memory efficiency, we standardize walk steps to 256
across all datasets and set the restart rate to 0.8 for most datasets.

6 CONCLUSION
In this work, we propose a novel deployment module coined as
GraphControl to address the challenges of the ‘pre-training and
finetuning (or prompt-tuning)’ paradigm in graph domain transfer
learning. GraphControl seamlessly integrates with existing univer-
sal structural pre-trained models, significantly boosting their per-
formance on target data by intelligently incorporating downstream-
specific information. Specifically, to achieve this, we draw inspira-
tion from ControlNet and apply its core concepts to graph domain
transfer learning. Downstream-specific information is processed
into conditions using our condition generation module and gradu-
ally integrated for enhanced performance. Extensive experiments
on diverse real-world datasets demonstrate the superiority of Graph-
Control in fine-tuning and prompt tuning scenarios, substantially
improving the adaptability of pre-trained models on target data.

8 Submission ID: 682. 2023-10-12 13:32. Page 8 of 1–13.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

GraphControl: Adding Conditional Control to Universal Graph Pre-trained Models for Graph Domain Transfer Learning WWW ’24, May 13–17, 2024, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.

Group formation in large social networks: membership, growth, and evolution.
In Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. 44–54.

[2] Vladimir Batagelj. 2003. Efficient algorithms for citation network analysis. arXiv
preprint cs/0309023 (2003).

[3] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embed-
ding of Graphs: Unsupervised Inductive Learning via Ranking. In International
Conference on Learning Representations.

[4] Chen Cai and Yusu Wang. 2020. A note on over-smoothing for graph neural
networks. arXiv preprint arXiv:2006.13318 (2020).

[5] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah.
2023. Diffusion models in vision: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2023).

[6] Ganqu Cui, Jie Zhou, Cheng Yang, and Zhiyuan Liu. 2020. Adaptive graph
encoder for attributed graph embedding. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining. 976–985.

[7] Taoran Fang, Yunchao Zhang, Yang Yang, and Chunping Wang. 2022. Prompt
tuning for graph neural networks. arXiv preprint arXiv:2209.15240 (2022).

[8] Victor Garcia and Joan Bruna. 2017. Few-shot learning with graph neural net-
works. arXiv preprint arXiv:1711.04043 (2017).

[9] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan
Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own latent-a new
approach to self-supervised learning. Advances in neural information processing
systems 33 (2020), 21271–21284.

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[11] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view rep-
resentation learning on graphs. In International Conference on Machine Learning.
PMLR, 4116–4126.

[12] Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov,
and Jie Tang. 2023. GraphMAE2: A Decoding-Enhanced Masked Self-Supervised
Graph Learner. In Proceedings of the ACM Web Conference 2023. 737–746.

[13] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang,
and Jie Tang. 2022. Graphmae: Self-supervised masked graph autoencoders. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 594–604.

[14] WHu, B Liu, J Gomes, M Zitnik, P Liang, V Pande, and J Leskovec. 2020. Strategies
For Pre-training Graph Neural Networks. In International Conference on Learning
Representations (ICLR).

[15] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. 2021. Variational
diffusion models. Advances in neural information processing systems 34 (2021),
21696–21707.

[16] Thomas N Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. NIPS
Workshop on Bayesian Deep Learning (2016).

[17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521–
3526.

[18] Gert RG Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and
Michael I Jordan. 2004. Learning the kernel matrix with semidefinite program-
ming. Journal of Machine learning research 5, Jan (2004), 27–72.

[19] Jaekoo Lee, Hyunjae Kim, Jongsun Lee, and Sungroh Yoon. 2017. Transfer
learning for deep learning on graph-structured data. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 31.

[20] Huihui Liu, Yiding Yang, and Xinchao Wang. 2021. Overcoming catastrophic
forgetting in graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 35. 8653–8661.

[21] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. 2023. Graphprompt:
Unifying pre-training and downstream tasks for graph neural networks. In
Proceedings of the ACM Web Conference 2023. 417–428.

[22] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43–52.

[23] Mark EJ Newman and Michelle Girvan. 2004. Finding and evaluating community
structure in networks. Physical review E 69, 2 (2004), 026113.

[24] Zixuan Ni, Haizhou Shi, Siliang Tang, and Yueting Zhuang. 2021. Alleviate
Representation Overlapping in Class Incremental Learning by Contrastive Class
Concentration. CoRR abs/2107.12308 (2021). arXiv:2107.12308 https://arxiv.org/
abs/2107.12308

[25] Zixuan Ni, Longhui Wei, Siliang Tang, Yueting Zhuang, and Qi Tian. 2023. Con-
tinual Vision-Language Representation Learning with Off-Diagonal Information.

In Proceedings of the 40th International Conference on Machine Learning (Proceed-
ings of Machine Learning Research, Vol. 202), Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.).
PMLR, 26129–26149. https://proceedings.mlr.press/v202/ni23c.html

[26] Mehrbakhsh Nilashi, Dietmar Jannach, Othman bin Ibrahim, Mohammad Dalvi
Esfahani, and Hossein Ahmadi. 2016. Recommendation quality, transparency,
and website quality for trust-building in recommendation agents. Electronic
Commerce Research and Applications 19 (2016), 70–84.

[27] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[28] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345–1359.

[29] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph
neural network pre-training. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining. 1150–1160.

[30] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017.
struc2vec: Learning node representations from structural identity. In Proceedings
of the 23rd ACM SIGKDD international conference on knowledge discovery and
data mining. 385–394.

[31] Martin Riedmiller. 1994. Advanced supervised learning in multi-layer percep-
trons—from backpropagation to adaptive learning algorithms. Computer Stan-
dards & Interfaces 16, 3 (1994), 265–278.

[32] Scott C Ritchie, Stephen Watts, Liam G Fearnley, Kathryn E Holt, Gad Abraham,
and Michael Inouye. 2016. A scalable permutation approach reveals replication
and preservation patterns of network modules in large datasets. Cell systems 3,
1 (2016), 71–82.

[33] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
10684–10695.

[34] Sebastian Ruder. 2017. An overview of multi-task learning in deep neural net-
works. arXiv preprint arXiv:1706.05098 (2017).

[35] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[36] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[37] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune
bert for text classification?. In Chinese Computational Linguistics: 18th China
National Conference, CCL 2019, Kunming, China, October 18–20, 2019, Proceedings
18. Springer, 194–206.

[38] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. Infograph: Un-
supervised and semi-supervised graph-level representation learning via mutual
information maximization. arXiv preprint arXiv:1908.01000 (2019).

[39] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. 2022. GPPT:
Graph Pre-Training and Prompt Tuning to Generalize Graph Neural Networks. In
Proceedings of the 28th ACM SIGKDDConference on Knowledge Discovery and Data
Mining (Washington DC, USA) (KDD ’22). Association for Computing Machinery,
New York, NY, USA, 1717–1727. https://doi.org/10.1145/3534678.3539249

[40] Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. 2023. All in One:
Multi-Task Prompting for Graph Neural Networks. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data mining
(KDD’23).

[41] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos,
Petar Veličković, and Michal Valko. 2021. Bootstrapped representation learning
on graphs. In ICLR 2021 Workshop on Geometrical and Topological Representation
Learning.

[42] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R. Devon Hjelm. 2019. Deep Graph Infomax. In Proc. of ICLR.

[43] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. 2020.
Unsupervised domain adaptive graph convolutional networks. In Proceedings of
The Web Conference 2020. 1457–1467.

[44] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. 2022. Simgrace: A
simple framework for graph contrastive learning without data augmentation. In
Proceedings of the ACM Web Conference 2022. 1070–1079.

[45] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=ryGs6iA5Km

[46] Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020. Design space for graph
neural networks. Advances in Neural Information Processing Systems 33 (2020),
17009–17021.

[47] Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I
Jordan. 2019. Universal domain adaptation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2720–2729.

[48] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph
contrastive learning automated. In International Conference on Machine Learning.

Submission ID: 682. 2023-10-12 13:32. Page 9 of 1–13. 9

https://arxiv.org/abs/2107.12308
https://arxiv.org/abs/2107.12308
https://arxiv.org/abs/2107.12308
https://proceedings.mlr.press/v202/ni23c.html
https://doi.org/10.1145/3534678.3539249
https://openreview.net/forum?id=ryGs6iA5Km

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13–17, 2024, Woodstock, NY Anon. Submission Id: 682

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

PMLR, 12121–12132.
[49] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
Neural Information Processing Systems 33 (2020), 5812–5823.

[50] Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao
Gu, Yan Wang, Bin Shao, Rui Li, et al. 2019. Oag: Toward linking large-scale het-
erogeneous entity graphs. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 2585–2595.

[51] Lvmin Zhang and Maneesh Agrawala. 2023. Adding conditional control to
text-to-image diffusion models. arXiv preprint arXiv:2302.05543 (2023).

[52] Yifei Zhang, Hao Zhu, Zixing Song, Piotr Koniusz, and Irwin King. 2022. COSTA:
Covariance-Preserving Feature Augmentation for Graph Contrastive Learning.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 2524–2534.

[53] Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han.
2021. Transfer learning of graph neural networks with ego-graph information
maximization. Advances in Neural Information Processing Systems 34 (2021),
1766–1779.

[54] Yun Zhu, Jianhao Guo, and Siliang Tang. 2023. SGL-PT: A Strong Graph Learner
with Graph Prompt Tuning. arXiv preprint arXiv:2302.12449 (2023).

[55] Yun Zhu, Jianhao Guo, Fei Wu, and Siliang Tang. 2022. RoSA: A Robust Self-
Aligned Framework for Node-Node Graph Contrastive Learning. In Proceedings
of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22,
Lud De Raedt (Ed.). International Joint Conferences on Artificial Intelligence
Organization, 3795–3801. https://doi.org/10.24963/ijcai.2022/527 Main Track.

[56] Yun Zhu, Haizhou Shi, Zhenshuo Zhang, and Siliang Tang. 2023. MARIO: Model
Agnostic Recipe for Improving OOD Generalization of Graph Contrastive Learn-
ing. arXiv preprint arXiv:2307.13055 (2023).

[57] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep Graph Contrastive Representation Learning. In ICML Workshop on Graph
Representation Learning and Beyond.

[58] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2020. A comprehensive survey on transfer learning.
Proc. IEEE 109, 1 (2020), 43–76.

10 Submission ID: 682. 2023-10-12 13:32. Page 10 of 1–13.

https://doi.org/10.24963/ijcai.2022/527

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

GraphControl: Adding Conditional Control to Universal Graph Pre-trained Models for Graph Domain Transfer Learning WWW ’24, May 13–17, 2024, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Algorithm 1: GraphControl algorithm
Input: Frozen pre-trained GNN encoder 𝑔★

𝜃
, trainable copy

of pre-trained model 𝑔𝜃𝑐 , two zero MLPsZ1,Z2
with parameters 𝜃𝑍1 , 𝜃𝑍2 , random initialized linear
classifier 𝑝𝜔 , input graph 𝐺 = (𝐴,𝑋,𝑌), sampler
function T (𝐺, 𝑖), training epochs 𝐸, learning rate 𝜂.

Output: Optimized models, 𝑔𝜃𝑐 ,Z1,Z2, 𝑝𝜔
/* subsampling */

for 𝑖 ← 1 to 𝑁 do
𝐺𝑖 = T (𝐺, 𝑖) = (𝐴𝑖 , 𝑋𝑖);
Generate condition 𝐴′

𝑖
through Condition Generation

Module using node attributes;
Generate positional embedding 𝑃𝑖 from graph adjacency
matrix 𝐴𝑖 and conditional positional embedding 𝑃 ′

𝑖

from attribute adjacency matrix 𝐴′
𝑖
;

𝐺𝑖 = (𝐴𝑖 , 𝑃𝑖 , 𝑃 ′𝑖 , 𝑦𝑖)
end
S = {𝐺𝑖 }, 𝑖 = 1, ..., 𝑁 ; // collect training samples

for 𝑒 ← 1 to 𝐸 do
Sampled batch B = {𝐺𝑖 }𝐵𝑖=1 ∈ S;
/* For symbol unclutter, we omit subscript */

Batched graph 𝐺 = (𝐴, 𝑃, 𝑃 ′, 𝑌);
/* Forward */

𝐻 ← 𝑔𝜃 (𝑃) + Z2 (𝑔𝜃𝑐 (𝑃 + Z1 (𝑃 ′))) ;
ℓsup ← L(𝑝𝜔 (𝐻), 𝑌) ;
/* Backward */
𝜃𝑐 ← 𝜃𝑐 − 𝜂∇𝜃𝑐 ℓsup; 𝜃𝑍1 ← 𝜃𝑍1 − 𝜂∇𝜃𝑍1

ℓsup;
𝜃𝑍2 ← 𝜃𝑍2 − 𝜂∇𝜃𝑍2

ℓsup ;
end

A ALGORITHM
The complete procedure of our method with fine-tuning is outlined
in Algorithm 1. Given an input graph𝐺 = (𝐴,𝑋,𝑌), we employ a
subsampling function T to sample subgraphs for each node. Sub-
sequently, we generate the condition 𝑃 ′

𝑖
using node attributes and

positional embeddings 𝑃𝑖 using adjacency matrix for each subgraph
𝐺𝑖 . The training dataloader S is then created with a batch size of
128 for subgraphs of training nodes. During each iteration, batched
graphs are inputted into the frozen pre-trained model 𝑔★

𝜃
, while the

condition is fed into the trainable copy 𝑔𝜃𝑐 . These two components
are interconnected using zero MLPs. Finally, the representations
𝐻 are passed through a classifier 𝑝𝜔 , with the cross-entropy loss
L utilized to compute the classification error ℓsup. The parameters
of the trainable copy, zero MLPs, and classifier are optimized by
minimizing the loss.

B TIME COMPLEXITY ANALYSIS
Given an sparse input graph𝐺 = (𝐴,𝑋,𝑋PE, 𝑌), the attribute matrix
𝑋 ∈ R𝑁×𝐷 , the positional embedding 𝑋PE ∈ R𝑁×𝐾 where 𝐾 ≪ 𝐷 .
Let the hidden size and the number of layers in themodel be denoted
as 𝐻 and 𝐿, respectively. 𝐻 is comparable to 𝐷 in most cases, so we
consider them to be the same in this analysis for simplicity.

The time complexities of the baselines and our method are out-
lined in Table 5. Notably, GIN’s input features comprise 𝐷 dimen-
sions, whereas GCC’s input dimension, denoted as 𝐾 , is consider-
ably smaller than 𝐷 . Consequently, GCC exhibits higher efficiency
compared to GIN. Our method involves both the frozen GCC and its
trainable counterpart. The main computational workload is twofold
compared to GCC, encompassing the additional processing time
required for zero MLPs and feature summations.

Table 5: Time complexity analysis of baselines and our
method.

Data Method Forward Time complexity

A,X GIN 𝑂 (𝐿𝐸𝐷 + 𝐿𝑁𝐷2)
A,𝑋PE GCC 𝑂 (𝐿𝐸𝐷 + (𝐿 − 1)𝑁𝐷2 + 𝑁𝐾𝐷)

A,𝑋PE,X GCC+GraphControl 𝑂 (2(𝐿𝐸𝐷 + (𝐿 − 1)𝑁𝐷2 + 𝑁𝐾𝐷)
+𝑁𝐾 + 𝑁𝐾2 + 𝑁𝐷 + 𝑁𝐷2)

C EXPERIMENT
In this section, we will provide detailed information about experi-
ments. Firstly, we introduce the datasets used in the main content
in detail. And then we introduce the baselines used in the main
content. Lastly, we provide the hyper-parameters of experiments.

C.1 Datasets
C.1.1 Pretraining datasets. The pre-training datasets utilized by
GCC are outlined in Table 6. These datasets fall into two main
categories: academic graphs, including Academia, and two DBLP
datasets, and social graphs, including IMDB, Facebook, and Live-
Journal datasets. The Academia dataset is sourced fromNetRep [32],
and the two DBLP datasets are obtained from SNAP [1] and
NetRep [32] respectively. Additionally, the IMDB and Facebook
datasets are gathered from NetRep [32], and the LiveJournal dataset
is collected from SNAP [1].

C.1.2 Downstream datasets. The datasets can be categorized into
two groups: attributed datasets (Cora_ML, Amazon Photo, DBLP,
and Coauthor Physics) and non-attributed datasets (USA Airport,
Europe Airport, Brazil Airport, and H-index). Below are detailed
descriptions of these datasets.

• Amazon Photo [36] consists of segments from the Amazon
co-purchase graph [22]. In this dataset, nodes represent
goods, edges signify frequent co-purchases between goods,
node features are bag-of-words encoded product reviews,
and class labels are assigned based on product categories.

• Cora_ML and DBLP datasets [3] are citation networks used
for predicting article subject categories. In these datasets,
graphs are created from computer science article citation
links. Nodes represent articles, and undirected edges signify
citation links between articles. Class labels are assigned
based on paper topics.

• In the Coauthor Physics dataset [36], graphs are co-
authorship networks derived from the Microsoft Academic
Graph. Nodes in this dataset represent authors and are con-
nected by edges if they co-authored a paper. Node features

Submission ID: 682. 2023-10-12 13:32. Page 11 of 1–13. 11

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’24, May 13–17, 2024, Woodstock, NY Anon. Submission Id: 682

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 6: Statistics of pre-training datasets.

Dataset Academia DBLP (SNAP) DBLP (NetRep) IMDB Facebook LiveJournal

#Nodes 137,969 317,080 540,486 896,305 3, 097, 165 4, 843, 953
#Edges 739,384 2, 099, 732 30, 491, 458 7, 564, 894 47, 334, 788 85, 691, 368

Table 7: Hyper-parameters for GIN(A,X) baseline.

Cora_ML Amazon-Photo DBLP Coauthor-Physics USA Europe Brazil H-index

Model GIN GIN GIN GIN GIN GIN GIN GIN
Hidden size 64 64 64 64 64 64 64 64

Layers 4 4 4 4 4 4 4 4
Epochs 1000 800 100 100 100 100 200 200

Learning rate 1e-3 1e-2 1e-3 1e-3 1e-3 1e-2 1e-2 1e-3
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam

Weight decay 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4

represent paper keywords from each author’s publications,
and class labels indicate the authors’ most active fields of
study.

• The USA Airport dataset [30] consists of data collected
from the Bureau of Transportation Statistics4 between Jan-
uary and October 2016. The network comprises 1,190 nodes
and 13,599 edges, with a diameter of 8. Airport activity
is quantified by the total number of people who passed
through the airport (both arrivals and departures) during
the corresponding period.

• The Europe Airport dataset [30] comprises data gathered
from the Statistical Office of the European Union (Eurostat)5
between January and November 2016. The network consists
of 399 nodes and 5,995 edges, with a diameter of 5. Airport
activity is evaluated based on the total number of landings
and takeoffs during the corresponding period.

• The Brazil Airport dataset [30] is sourced from the National
Civil Aviation Agency (ANAC)6 and covers the period from
January to December 2016. The network comprises 131
nodes and 1,038 edges, with a diameter of 5. Airport activity
is quantified based on the total number of landings and
takeoffs during the corresponding year.

• The H-index dataset [29] is derived from a co-authorship
graph extracted from OAG[50]. To enhance suitability for
the node classification task, smaller subgraphs are extracted
from the original graph due to its vast scale. This resulting
network comprises 5,000 nodes and 44,020 edges, with a di-
ameter of 7. Labels in the H-index dataset indicate whether
the author’s h-index is above or below the median.

C.2 Hyper-parameters
In this section, we will provide the hyper-parameters used in our ex-
periments. Table 7 lists the parameters of baselines. And Table 8 lists

the parameters of structural pre-training methods. Lastly, Table 9
provides the details of transfer learning.

C.3 Baselines
In Section 5.3, four pre-training methods are incorporated: GCC,
GRACE, simGRACE, RoSA, and COSTA. In this section, we will
elucidate these methods.

• GCC [29] is a structural pre-training method based on lo-
cal structural information. It utilizes position embeddings
as model input to learn transferable structural patterns
through subgraph discrinimation.

• GRACE [57] is node-node graph contrastive learning
method. It designs two augmentation functions (i.e., re-
moving edges and masking node features) to generate two
augmented views. Then a shared graph model will be ap-
plied on augmented views to generate node embedding
matrices. The node representations augmented from the
same original node are regarded as positive pairs, otherwise
are negative pairs. Lastly, pairwise loss (e.g., InfoNCE [27])
will be applied on these node matrices.
• simGRACE [44] eliminates data augmentation while intro-

ducing encoder perturbations to generate distinct views for
graph contrastive learning.

• RoSA [55] is a robust self-aligned graph contrastive frame-
work which does not require the explicit alignment of nodes
in the positive pairs so that allows more flexible graph aug-
mentation. It proposes the graph earth move distance (g-
EMD) to calculate the distance between unaligned views to
achieve self-alignment. Furthermore, it will use adversarial
training to realize robust alignment.

• COSTA [52] proposes feature augmentation to decrease the
bias introduced by graph augmentation.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

4https://transtats.bts.gov/
5http://ec.europa.eu/
6http://www.anac.gov.br/

12 Submission ID: 682. 2023-10-12 13:32. Page 12 of 1–13.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

GraphControl: Adding Conditional Control to Universal Graph Pre-trained Models for Graph Domain Transfer Learning WWW ’24, May 13–17, 2024, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 8: Hyper-parameters for pre-training method GRACE.

Cora_ML Amazon-Photo DBLP Coauthor-Physics USA Europe Brazil H-index

Model GIN GIN GIN GIN GIN GIN GIN GIN
Hidden size 64 64 64 64 64 64 64 64

Layers 4 4 4 4 4 4 4 4
Epochs 20 50 100 20 50 500 200 100

Learning rate 1e-3 1e-4 1e-3 1e-4 1e-3 1e-2 1e-2 1e-3
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam

Weight decay 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4
Walk steps 256 256 256 256 256 256 256 256
Restart rate 0.3 0.5 0.3 0.5 0.3 0.5 0.5 0.5

𝜏 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
𝑝 𝑓 ,1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2
𝑝 𝑓 ,2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3
𝑝𝑒,1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
𝑝𝑒,1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Table 9: Hyper-parameters for Transfer Learning (GraphControl with GCC pre-trained model).

Cora_ML Amazon-Photo DBLP Coauthor-Physics USA Europe Brazil H-index

Model GCC GIN GCC GCC GCC GCC GCC GCC
Hidden size 64 64 64 64 64 64 64 64

Layers 4 4 4 4 4 4 4 4
Epochs 100 100 100 100 100 100 400 100

Learning rate 0.5 0.5 0.1 0.01 0.3 0.2 0.1 0.1
Optimizer AdamW AdamW Adam Adam SGD SGD SGD SGD

Weight decay 5e-4 5e-4 5e-4 1e-2 1e-3 5e-4 1e-3 5e-4
Walk steps 256 256 256 256 256 256 256 256
Restart rate 0.8 0.8 0.8 0.8 0.5 0.5 0.3 0.5
Threshold 0.17 0.2 0.3 0.15 0.15 0.15 0.3 0.17

Table 10: Hyper-parameters for Domain Transfer (GraphControl with other pre-trained models).

Cora_ML Amazon-Photo DBLP Coauthor-Physics USA Europe Brazil H-index

Model GIN GIN GIN GIN GIN GIN GIN GIN
Hidden size 64 64 64 64 64 64 64 64

Layers 4 4 4 4 4 4 4 4
Epochs 100 100 100 100 100 100 200 200

Learning rate 1e-1 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 5e-4
Optimizer Adam Adam Adam Adam Adam Adam Adam SGD

Weight decay 1e-3 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4
Walk steps 256 256 256 256 256 256 256 256
Restart rate 0.3 0.5 0.3 0.3 0.3 0.3 0.3 0.3

Submission ID: 682. 2023-10-12 13:32. Page 13 of 1–13. 13

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Pre-training
	2.2 Graph Transfer Learning

	3 Background and Problem Formulation
	3.1 Notations
	3.2 Problem Definition

	4 GraphControl: Graph Transfer Learning with Conditional Control
	4.1 Background: ControlNet
	4.2 GraphControl: Transfer Learning with ControlNet
	4.3 GraphControl in Two Learning Scenarios

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Graph Domain Transfer Learning
	5.4 Ablation Studies
	5.5 Convergence Analysis
	5.6 Sensitivity Analysis

	6 Conclusion
	References
	A Algorithm
	B Time Complexity Analysis
	C Experiment
	C.1 Datasets
	C.2 Hyper-parameters
	C.3 Baselines

