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ABSTRACT
Graph-structured data is ubiquitous in the world which models
complex relationships between objects, enabling various Web appli-
cations like paper classification, website recommendation and etc.
Daily influxes of unlabeled graph data on the Web offer immense
potential for these applications. Graph self-supervised algorithms
have achieved significant success in acquiring generic knowledge
from abundant unlabeled graph data. These pre-trained models
can be applied to various downstream Web applications, saving
training time and improving downstream (target) performance.
However, different graphs, even across seemingly similar domains,
can differ significantly in terms of attribute semantics, posing diffi-
culties, if not infeasibility, for transferring the pre-trained models to
downstream tasks. Concretely speaking, for example, the additional
task-specific node information in downstream tasks (specificity) is
usually deliberately omitted so that the pre-trained representation
(transferability) can be leveraged. The trade-off as such is termed
as “transferability-specificity dilemma” in this work. To address
this challenge, we introduce an innovative deployment module
coined as GraphControl, motivated by ControlNet, to realize better
graph domain transfer learning. Specifically, by leveraging univer-
sal structural pre-trained models and GraphControl, we align the
input space across various graphs and incorporate unique char-
acteristics of target data as conditional inputs. These conditions
will be progressively integrated into the model during fine-tuning
or prompt tuning through ControlNet, facilitating personalized
deployment. Extensive experiments show that our method signifi-
cantly enhances the adaptability of pre-trained models on target
attributed datasets, achieving 1.4-3x performance gain. Further-
more, it outperforms training-from-scratch methods on target data
with a comparable margin and exhibits faster convergence.

CCS CONCEPTS
• Theory of computation→ Unsupervised learning and clus-
tering; • Computing methodologies→ Transfer learning; •
Information systems→ Data mining.

KEYWORDS
Graph Neural Networks, Transfer Learning, Graph Representation
Learning
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1 INTRODUCTION
Graph-structured data is prevalent in Web applications, including
community detection [23], website recommendation [26] and paper
classification [2]. Graph representation learning plays a crucial
role in these tasks, focusing on acquiring general knowledge from
abundant unlabeled graph data. Recent research has explored pre-
training models on such data and applying them to downstream
tasks to save training time and enhance performance [29, 41, 43, 49,
53, 55, 57]. These efforts fall into two main categories.

The first group constructs training objectives based on domain-
specific attributes and emphasizes pre-training and deployment on
attributed graphs from the same domain [11, 38, 42]. That is, this
approach requires consistent semantic meaning and feature dimen-
sions across datasets, making it unsuitable for domain transfer. For
instance, DGI [42] and MVGRL [11] are traditional self-supervised
learning frameworks tailored for specific attributed graphs [6].
They are pre-trained and deployed on the same graphs. However,
using these models on different attributed graphs is not feasible
due to inconsistent dimensions. For example, deploying a PubMed-
pretrained model on the Cora dataset [35] is unfulfillable, despite
both scientific citation networks.

The second group focuses on learning transferable patterns
through local structural information, enabling effective applica-
tion to out-of-domain graph domains. This approach disregards
node attributes during pre-training to avoid mismatches and facili-
tates the deployment of pre-trained models on diverse downstream
datasets without relying on specific node attributes [29, 53]. For in-
stance, GCC [29] is a graph self-supervised pre-training framework
designed to capture universal topological properties across multiple
graphs by using structural information as node attributes. How-
ever, during deployment, this approach does not effectively utilize
downstream informative node attributes. In scenarios where nodes
represent papers and contain essential information like abstracts,
neglecting these attributes can impact tasks like node classification.

Nonetheless, these approaches both encounter “transferability-
specificity dilemma”:

transferability × — specificity ✓: The first group pre-trains mod-
els using domain-specific features and deploys them on the same
graph, but fails to achieve domain transfer.

transferability ✓— specificity ×: The second group aligns the fea-
ture space with structural information to achieve domain transfer,
but can not effectively utilize valuable downstream node attributes.

To overcome these challenges, we propose an innovative mod-
ule for effective adaptation of pre-trained models to downstream

Submission ID: 682. 2023-10-12 13:32. Page 1 of 1–13. 1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13–17, 2024, Woodstock, NY Anon. Submission Id: 682

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

datasets, compatible with existing pre-trained models. Specifically,
we utilize universal structural pre-trained models [29] and incor-
porate unique features of downstream data as input conditions.
Drawing inspiration from ControlNet [51], we feed structural in-
formation into the frozen pre-trained model and well-designed
conditions into the trainable copy. The components are linked
through zero MLPs, gradually expanding parameters from zero to
incorporate valuable downstream attributes and safeguard against
detrimental noise during finetuning. To ensure that the pre-trained
model (trainable copy) comprehends the condition effectively, we
pre-process the condition input in a manner consistent with the
pre-training strategy through our condition generation module.
In essence, this approach enables us to utilize the specific statis-
tics of downstream data, leading to more effective fine-tuning or
prompt tuning (transferability ✓— specificity ✓). This innovation
opens the door to more effective and efficient deployment of pre-
trained models in real-world Web applications. Through extensive
experiments1, we observe that our method can enhance the adapt-
ability of pre-trained models on downstream datasets, achieving
2-3x performance gain on Cora_ML and Amazon-Photo datasets.
Furthermore, it surpasses training-from-scratch methods over 5%
absolute improvement on some datasets.

Our contributions can be concluded as:
• We propose a novel deployment module coined as Graph-

Control to address the “transferability-specificity dilemma”
in graph transfer learning.

• We design a condition generation module to preprocess
downstream-specific information into the pre-training data
format, enabling the pre-trained model to understand the
condition input effectively.

• Extensive experiments show that the proposed module sig-
nificantly enhances the adaptability of pre-trained models
on downstream datasets and can be seamlessly integrated
with existing pre-trained models.

2 RELATEDWORK
2.1 Graph Pre-training
Graph pre-training involves using existing graph data to train a
generalized feature extractor. Existing self-supervised graph pre-
training methods can be categorized as generative, contrastive,
and predictive methods [43]. Generative methods like GAE [16],
GraphMAE [13], and GraphMAE2 [12] focus on learning local re-
lationships by reconstructing features or edges. Contrastive meth-
ods [49, 55, 57] bring positive pairs closer and push negative pairs
apart to learn global relationships. Predictive methods require cre-
ating pretext tasks manually based on data statistics, like degree
prediction [14], to acquire generic knowledge.

In this research endeavor, our focus lies in Graph Contrastive
Learning (GCL) methods, owing to their popularity and remark-
able achievements [9, 11, 38, 42, 48, 49, 55–57]. The strategies em-
ployed by GCL methods can be broadly categorized into two pri-
mary groups. The initial group formulates the training objective
based on domain-specific features, exemplified by methods such as

1In this study, our focus lies on node-level downstream tasks, excluding graph classifi-
cation. The alignment of node (atom) attributes in molecules (one classical data type
of graph classification) mitigates the challenges in graph transfer learning.

DGI (Deep Graph Infomax) [42] and MVGRL (Contrastive Multi-
View Representation Learning on Graphs) [11]. However, these
approaches inherently constrain the models’ generalizability to
other application domains. In simpler terms, pre-trained models
derived from this strategy lack the versatility to be effectively ap-
plied to attributed graphs originating from diverse application do-
mains. Contrastingly, the second group [29, 49] directs its attention
towards learning transferable patterns by discerning local graph
structures, thus completely circumventing the challenge of poten-
tially unshared attributes. Nevertheless, real-world downstream
datasets are often imbuedwith semantic attributes. Effectively lever-
aging this downstream-specific information within this paradigm
remains an unresolved challenge.

2.2 Graph Transfer Learning
Graph transfer learning [19, 28, 58] involves transferring trained
model parameters to facilitate the training of new models, thereby
conserving training time and occasionally enhancing downstream
performance. Various strategies, such as domain adaptation [47],
multi-task learning [34], and fine-tuning [37], are employed to
achieve transfer learning.

In light of the remarkable achievements in pre-training tech-
niques, this study places emphasis on fine-tuning. Initially, a generic
model undergoes pre-training on extensive unlabeled graph data
(source data). Subsequently, these pre-trained models are tailored
for specific downstream tasks (target data). Notably, current fine-
tuning methods [29] predominantly focus on adjusting pre-trained
model parameters while simply incorporating target data. However,
a substantial challenge arises when the feature distribution of the
target data diverges from that of the source data, potentially ex-
tending to differences in feature space. For example, the pre-trained
model may have a fixed input dimension (e.g., 32) for structural
attributes, whereas semantic attributes (e.g., keywords, abstract
in paper) in the target data can vary across arbitrary dimensions.
Traditional fine-tuning methods inadequately tackle this issue.

To address the non-trivial problem, we propose a deploy-
ment module, coined as GraphControl, designed to incorporate
downstream-specific information as input conditions. The condi-
tion will be processed to align with the format of pre-training data,
enabling comprehension by pre-trained models, and steering the
pre-trained model to predict more accurately, significantly enhanc-
ing the effectiveness of graph domain transfer learning.

3 BACKGROUND AND PROBLEM
FORMULATION

In this section, we will start with the notations we use throughout
the rest of the paper in Sec. 3.1. Subsequently, we will outline the
specific problems under consideration in Sec. 3.2.

3.1 Notations
Let G,Y represent input and label space. 𝑓𝜙 (·) represents graph pre-
dictor which consists of a GNN encoder 𝑔𝜃 (·) and a classifier 𝑝𝜔 (·).
The graph predictor 𝑓𝜙 : G ↦→ Y maps instance 𝐺 = (𝐴,𝑋,𝑌 ) ∈ G
to label 𝑌 ∈ Y where 𝐴 ∈ R𝑁×𝑁 is the adjacency matrix and

2 Submission ID: 682. 2023-10-12 13:32. Page 2 of 1–13.
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𝑋 ∈ R𝑁×𝑑 is the node attribute matrix. Here, 𝑁 , 𝑑 denote the num-
ber of nodes and attributes, respectively. Let 𝐺𝑖 denote a subgraph
centered around node 𝑖 sampled from the original graph 𝐺 .

3.2 Problem Definition
3.2.1 Universal Graph Representation Learning, UGRL. UGRL en-
deavors to acquire a universal feature extractor 𝑔𝜃 from abun-
dant unlabeled graph data, encapsulating common and generic
knowledge. This extractor is versatile and applicable to diverse
datasets sourced from similar domains. Varying and occasionally
absent node attributes pose challenges for effective transfer in node
attribute-based pre-training. To address this challenge, we intro-
duce structure pre-training models that mainly utilize structural
information, collectively termed UGRL in this paper. These mod-
els offer a solution, ensuring efficient knowledge transfer despite
disparities in node attributes across datasets.

GCC[29] is a classical structural pre-training method that lever-
ages structural information as input. This approach aligns the input
space across all datasets using structural information, facilitating
domain transfer. To learn common knowledge, GCC will sample
subgraphs {𝐺𝑖 }𝑁𝑖=1 from the original large graph 𝐺 and embed
subgraphs with similar local structures closely through subgraph
instance discrimination. Inspired by GCC, we employ generalized
positional embedding as input features during pre-training. For-
mally, given an adjacency matrix 𝐴 and the corresponding degree
matrix𝐷 , we conduct eigen-decomposition on its normalized graph
Laplacian 𝑈Λ𝑈𝑇 = 𝐼 − 𝐷−

1
2𝐴𝐷−

1
2 . The top eigenvectors in 𝑈

will serve as generalized positional embedding. The GNN encoder
𝑔𝜃 : R𝑁×𝑘 ↦→ R𝑁×𝑙 maps the positional embedding 𝑃 ∈ R𝑁×𝑘
(𝑘 set as 32 in this paper) to node embedding 𝐻 ∈ R𝑁×𝑙 . To learn
transferable structural patterns from positional embedding, we will
maximize the mutual information between two similar subgraphs.
Taking the InfoNCE loss[27] as an example, the formulation follows:

LMI (𝑔𝜃 ;𝐺) = − E
𝐺𝑖 ,𝐺

′
𝑖
∈𝐺



𝑔𝜃 (𝐺𝑖 ) − 𝑔𝜃 (
𝐺 ′𝑖

)

2
+ E
𝐺𝑖 ∈𝐺

log E
𝐺 𝑗 ∈𝐺

[
𝑒 ∥𝑔𝜃 (𝐺𝑖 )−𝑔𝜃 (𝐺 𝑗 )∥2

]
,

(1)

where 𝑔𝜃 denotes GNN encoder with readout function, 𝐺𝑖 ,𝐺 ′𝑖 rep-
resents subgraphs centered around node 𝑖 sampled from the orig-
inal graph 𝐺 . The sampling strategy is random walk with restart
which is also adopted in GCC [29] and RoSA [55]. So this method
is scalable on large graphs. 𝐺𝑖 and 𝐺 ′𝑖 share similar local structural
information, serving as positive pairs, while 𝐺𝑖 and 𝐺 𝑗 (sampled
from different central nodes) act as negative samples. Through this
self-supervised objective, UGRL obtains pre-trained models appli-
cable to various downstream datasets, addressing specific tasks like
node classification. This learning framework is commonly referred
to as graph transfer learning.

3.2.2 Graph Transfer Learning. Graph transfer learning aims to
leverage the universal knowledge within a pre-trained model,
trained on source data, and apply it to target data for specific tasks.
There exists source data Dsource and target data Dtarget from sim-
ilar domains. In this paper, we assume source data is abundant
but without labels and target data is limited but with labels. UGRL

acquires pre-trained models 𝑔★
𝜃
on the source data, which are then

fine-tuned on the limited target data to accomplish specific tasks.
Take the downstream node classification tasks as an example, it

involves learning a conditional probability 𝑃 (𝑌 | 𝐺 ;𝜙) to categorize
unlabeled nodes. To model this probability, the graph predictor
𝑓𝜙 (·) = 𝑝𝜔 ◦ 𝑔★𝜃 (·) is employed where 𝑝𝜔 is a classifier and 𝑔★

𝜃
is pre-trained GNN encoder obtained by the last part. The graph
predictor is then optimized with training nodes from target data:

𝑓 ∗
𝜙
= argmin

𝜙

E𝐺∼Dtarget ℓ

(
𝑓𝜙 (𝑋train, 𝐴) , 𝑌train

)
, (2)

where𝑋train represents the attribute set of training nodes and Ytrain
denotes their labels, and ℓ (·, ·) is cross-entropy loss. Finally, the
optimal graph predictor 𝑓 ∗

𝜙
is utilized for classifying testing nodes.

However, during pre-training, we only utilize structural infor-
mation to obtain transferable pre-trained models while disregard-
ing non-transferable node attributes. Sometimes, downstream data
includes specific node attributes (e.g., age, gender, and interests)
crucial for the task but incompatible with the pre-trained model
(due to disparities in feature space and dimensions). Incorporating
these meaningful attributes into the model and guiding it towards
superior performance represents a substantial challenge. We will
present the solution to this challenge in Sec. 4.

Neural 

Network

Trainable 

Copy

Zero Conv

Zero Conv

+

+

ControlNet

Figure 1: ControlNet injects conditions into neural network.
𝑥 represents original input and 𝑐 denotes condition input.

4 GRAPHCONTROL: GRAPH TRANSFER
LEARNING WITH CONDITIONAL CONTROL

In this section, we will outline our approach to address the afore-
mentioned challenge. Firstly, we retrospect the ControlNet in
Sec. 4.1. Then in Sec. 4.2, we first introduce the common chal-
lenges of adding conditional control to the graph data in Sec. 4.2.1,
followed up by the condition generation mechanism proposed in
Sec. 4.2.2. Subsequently, we detail our module GraphControl de-
signed to adapt the pre-trained model to the target data in Sec. 4.2.3.
Lastly, we demonstrate how to incorporate our module with fine-
tuning and prompt-tuning techniques in Sec. 4.3. Furthermore, we
add time complexity analysis in Appendix B due to the space limit.

4.1 Background: ControlNet
Firstly, let us retrospect the concepts of ControlNet [51]. ControlNet
is a neural network architecture designed to incorporate spatial
conditioning controls into pre-trained diffusion models [5, 15, 33] to
generate customized images. Specifically, it freezes the pre-trained
model and reuses the deep and robust encoding layers as a robust

Submission ID: 682. 2023-10-12 13:32. Page 3 of 1–13. 3
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Figure 2: The pipeline of Graph Domain Transfer Learning with GraphControl: Universal structure pre-training will be applied
on extensive source data, then the pre-trained model will be deployed on target data with GraphControl , which includes
Condition Generation and modified ControlNet.

backbone (trainable copy) for acquiring diverse conditional con-
trols. The trainable copy and original model are linked by zero
convolution layers, progressively growing parameters from zero,
ensuring a noise-free fine-tuning process [51]. This approach al-
lows us to control diffusion models with learned conditions. For
example, utilizing a human pose stretch as a condition ensures that
all generated images share the same pose [51].

4.2 GraphControl: Transfer Learning with
ControlNet

4.2.1 Leveraging Node Attributes in Graph Transfer Learning. In
graph domain, the downstream-specific node attributes pose com-
patibility challenges with the pre-trained model, primarily due to
the disparities in terms of feature semantics and dimensions. One
straightforward approach is to train a dedicated feature extractor
for these attributes and integrate it with pre-trained models for
prediction. However, this solution encounters three main issues:
(i) The downstream data is of a small scale, akin to few-shot sce-
narios [8], making training-from-scratch susceptible to overfitting
on the training data and poor generalization on testing data. (ii)
The pre-trained model’s assistance remains limited, failing to fully
leverage its potential. (iii) Selecting an appropriate feature extractor
for node attributes is an open question, as different datasets may
require different extractors. A brute-force approach trains with all
choices and selects the best, incurring high training costs [46].

Our purpose is to enable the existing structural knowledge
pre-training framework to utilize the node attributes of different
downstream datasets in the fine-tuning or prompt-tuning stage.
To achieve this, we draw inspiration from ControlNet [51], a neu-
ral network architecture that incorporates conditioning controls
into large pre-trained text-to-image diffusion models. Consider-
ing the unique structure of the graph data, there are two primary
distinctions that set our work apart from ControlNet:

• The motivation and application domain: ControlNet aims
to generate customized images through user instructions.
In this study, we address the challenge of graph domain
transfer learning by incorporating elaborate conditional

control, generated from downstream specific information,
into universal pre-trained models.

• The input condition: In ControlNet, the input condition for
pre-trained text-to-image models is easily designed using
sketches (e.g., cartoon line drawings, shape normals). In our
study, we utilize structural pre-trained models for graph
transfer learning. Integrating downstream-specific informa-
tion as a comprehensible condition for pre-trained models
is non-trivial.

4.2.2 Condition Generation in the GraphDomain. In order to obtain
conditions meeting the requirements in the second distinction, we
propose a condition generation module depicted in Figure 2 (green
region). It utilizes the downstream-specific characteristics like node
attributes to design the condition in a similar format to the adjacent
matrix. Specifically, firstly, we measure the distance between nodes
through a kernel function 𝜅 (·, ·). Thus we have a kernel matrix [18]
(attribute distance matrix) 𝐾 ∈ R𝑁×𝑁 where 𝐾𝑖 𝑗 = 𝜅 (𝑥𝑖 , 𝑥 𝑗 ). In
this work, we use the linear kernel with normalized term (cosine
similarity function) for computational simplicity:

𝜅 (𝑥𝑖 , 𝑥 𝑗 ) =
𝑥𝑇
𝑖
𝑥 𝑗

∥𝑥𝑖 ∥∥𝑥 𝑗 ∥
. (3)

We then discretize this kernel matrix by applying a threshold filter
𝑣 to it. The values that are bigger than the threshold 𝑣 will be set to
1 otherwise 0:

𝐴′𝑖, 𝑗 =


0, if 𝐾𝑖, 𝑗 ≤ 𝑣

1, o.w.
(4)

We call 𝐴′ as feature adjacent matrix that aligns and maps node
features of different dimensions and different semantics to the ad-
jacency matrix space. Finally, we will use the same process during
pre-training to obtain the generalized positional embedding 𝑃 ′,
which will be used during fine-tuning. For non-attributed down-
stream graphs lacking node attributes, node embedding strategies
like Node2Vec [10] can be applied to generate node attributes. These
attributes can then be utilized for creating conditions via our con-
dition generation module.

4 Submission ID: 682. 2023-10-12 13:32. Page 4 of 1–13.
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Next, we elucidate the integration of ControlNet into the graph
domain, leveraging our designed condition to facilitate graph do-
main transfer.

4.2.3 Overall Framework of GraphControl . In this work, we draw
inspiration from ControNet to solve the challenges of graph do-
main transfer learning. Considering the non-euclidean nature and
oversmoothing problem [4] in graph domain, we substitute zero
convolution layers with zero MLPs rather than zero graph convo-
lution layers. We leverage universal structural pre-trained models
and incorporate the downstream-specific information as condition
input, effectively tackling the “transferability-specificity dilemma.”
The structural information of target data will be fed to the frozen
pre-trained model (to avoid catastrophic forgetting [17, 20, 24, 25])
and the elaborate condition (generated by Condition Generation
Module) will be fed into the trainable copy. These two compo-
nents are linked by zero MLPs, gradually growing the parameters
from zero. This approach ensures that no harmful noise affects the
fine-tuning process while progressively incorporating downstream-
specific information.

The procedure of our method can be formalized as follows:

𝐻𝑐 = 𝑔
★
𝜃
(𝑃) + Z2 (𝑔𝑐 (𝑃 + Z1 (𝑃 ′))), (5)

whereZ1 andZ2 represent the first and the second zero MLP, and
𝑔𝑐 (·) represents the trainable copy of the pre-trained encoder 𝑔★

𝜃
.

Similar to ControlNet, because the parameters of the zero MLP
are set to 0 during initialization, we haveZ2 (𝑔𝑐 (𝑃 + Z1 (𝑃𝑐 ))) = 0.
Hence, during initialization, our model’s output aligns with us-
ing the pre-trained encoder alone. Throughout optimization, the
downstream-specific information is progressively integrated.

4.3 GraphControl in Two Learning Scenarios
4.3.1 Fine-tuning with GraphControl. Given an input graph 𝐺 =

(𝐴,𝑋 ), our process begins with preprocessing the graph data, in-
volving subgraph sampling, generalized positional embedding cal-
culation, and condition generation. In the training phase, we keep
the parameters of the pre-trained GNN encoder 𝑔𝜃 fixed to pre-
vent catastrophic forgetting. The original positional embedding 𝑃
is input into 𝑔★

𝜃
, and the generated condition is input into the Con-

trolNet. The resulting representations 𝐻𝑐 are utilized for specific
tasks. For example, in the node classification task, a linear classi-
fier is added to map these representations to predicted labels. The
classification error is then calculated using the cross-entropy loss
function. All components are optimized in an end-to-end manner.
The entire procedure is outlined in Algorithm 1.

4.3.2 Graph Prompt Tuning with GraphControl. In the last section,
we introduce how to perform fine-tuning with our method on tar-
get data. In scenarios where training data for the target dataset
is notably scarce (e.g., fewshot setting), tuning all parameters can
result in overfitting and difficulties in generalizing effectively on
the test set. To address these challenges, graph prompt tuning meth-
ods [7, 21, 39, 40, 54] have emerged which focus on tuning only a
few parameters of the prompt. In this section, we will demonstrate
that our method (GraphControl) can seamlessly integrate with ex-
isting graph prompt methods, significantly enhancing downstream
performance. Taking the GPF graph prompt tuning method [7] as
an example, the workflow is illustrated in Figure 3. Firstly, two
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Copy
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Zero MLP

Zero MLP
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Prediction
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Graph Prompt 
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Figure 3: Graph prompt tuning with GraphControl.

trainable graph prompt features 𝑝, 𝑝′ ∈ R1×𝑘 are randomly initial-
ized. Then, these prompt features are broadcasted to be added to
the input features. The formulation is as follows:

𝐻𝑐 = 𝑔
★
𝜃
(𝑃 + 𝑞) + Z2 (𝑔𝑐 ((𝑃 + 𝑞) + Z1 (𝑃 ′ + 𝑞′))), (6)

In contrast to the previous section, in graph prompt tuning, the
parameters of the trainable copy 𝑔𝑐 will be frozen to prevent over-
fitting. Besides, more intricate graph prompt methods, such as All-
in-One (ProG) [40], can be integrated with our method to enhance
downstream performance. Detailed experiments are in Sec. 5.3.2.

5 EXPERIMENTS
In this section, we first introduce the datasets, baselines, and ex-
perimental setup in Sec. 5.1, 5.2 and 5.3 respectively. Secondly, we
conduct main experiments under fine-tuning (Sec. 5.3.1) and prompt
tuning (Sec. 5.3.2) to prove the effectiveness of GraphControl. We
then perform an ablation study to demonstrate the effectiveness
of each proposed component in Sec. 5.4. Lastly, we analyze the
convergence of GraphControl (Sec.5.5) and the impact of important
hyper-parameters (Sec. 5.6).

5.1 Datasets
Pre-training datasets. The details of the pre-training datasets
are presented in Table 6 and Appendix C.1. Notably, these datasets
are substantial in scale, with the largest graph (LiveJournal [1])
comprising approximately 4.8 million nodes and 85 million edges.
Downstream datasets. We select eight public benchmark
datasets as target data that include four attributed datasets (i.e.,
Cora_ML, Amazon-Photo, DBLP, and Coauthor-Physics), and four
non-attributed datasets (i.e., USA-Airport, Europe-Airport, Brazil-
Airport, and H-index) to evaluate the effectiveness of GraphControl.
The statistics of datasets is in Table 1. Detailed illustrations of these
datasets can be found in Appendix C.1.

5.2 Baselines
We evaluate GraphControl with four self-supervised pre-training
methods (using GIN as encoder): Deep Graph Contrastive Represen-
tation Learning (GRACE) [57], A Simple Framework for Graph Con-
trastive Learning without Data Augmentation (simGRACE) [44],
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Table 1: Statistics of datasets. These datasets can be further
classified into attributed graphs and non-attributed graphs.

#Nodes #Edges #Attributes #Classes

Cora_ML[3] 2,995 16,316 2,879 7
Amazon-Photo[36] 7,650 238,162 745 8
DBLP[3] 17,716 105,734 1,639 4
Coauthor-Physics[36] 34,493 495,924 8,415 5

USA-Airport[30] 1,190 27,198 - 4
Europe-Airport[30] 399 5,995 - 4
Brazil-Airport[30] 131 1,047 - 4
H-index[29] 5,000 44,020 - 44

Covariance-Preserving Feature Augmentation for Graph Con-
trastive Learning (COSTA) [52], and A Robust Self-Aligned Frame-
work for Node-Node Graph Contrastive Learning (RoSA) [55]. De-
tailed descriptions of these methods are available in Appendix C.3.
Except for GCC, other pre-training methods are designed for attrib-
uted graphs. To integrate them into our setting, we replace their
input with structural information, disregarding the original node
attributes during pre-training. To demonstrate the superiority of
our approach over training from scratch, we compare it with the su-
pervised GINmodel, initialized randomly and trained on target data.
Notably, GCC’s encoder is based on GIN but with a little different
implementation (e.g., incorporates additional information as input,
further details are provided in Appendix). GCC(rand) signifies the
utilization of a randomly initialized GCC encoder, trained from
scratch on the target data. Additionally, we include two baselines
that only use node attributes (i.e., MLP [31]) and structural informa-
tion (i.e., Node2Vec [10]) of downstream datasets to demonstrate
the effectiveness of both for classification. Considering the abun-
dance of source data and its occasional unavailability (we only have
access to pre-trained models), domain adaptation baselines [47] are
not included in this work.

5.3 Graph Domain Transfer Learning
5.3.1 Fine-tuning with GraphControl. In this subsection, we evalu-
ate the effectiveness of GraphControl on target data by fine-tuning.
Experimental setup. For pre-trained models, GCC [29] is pre-
trained on abundant unlabeled large graphs (e.g., Facebook [32],
LiveJournal [1]), we use their released pre-trained checkpoint2. In
the case of GRACE, simGRACE, RoSA, and COSTA, we perform
pre-training on the downstream graphs, excluding node attributes.
During fine-tuning, we incorporate the original node attributes. All
pre-training methods use a 4-layer Graph Isomorphism Network
(GIN) [45] with 64 hidden units as encoders.

Regarding data splitting, we randomly divide the training and
testing data into a 1:9 ratio, and the results represent the mean
accuracy with a standard deviation of 20 runs with different random
seeds. Details and hyperparameters can be found in Appendix C.2.
Analysis. From Table 2, we can draw the following conclusions:
firstly, structural pre-training methods can learn transferable struc-
tural patterns because GCC surpasses GCC(rand)3 with comparable

2https://github.com/THUDM/GCC
3GCC(rand) refers to a randomly initialized encoder of GCC, trained from scratch on
target data, focusing on structural information.

margins. For instance, on H-index and Cora_ML datasets, GCC
achieves over 5% absolute improvement compared to GCC(rand).

Secondly, applying structural pre-training methods directly
to target attributed graphs fails to achieve satisfactory perfor-
mance and notably lags behind training-from-scratch methods (e.g.,
GIN(A,X)) on target data. This underscores the essential role of
downstream-specific information (e.g., node attributes) for optimal
performance. For instance, on the DBLP dataset, GCC achieves only
57% accuracy, lagging behind GIN(A,X) by approximately 17%.

Thirdly, deploying structural pre-trained models on target data
with GraphControl significantly enhances performance. For in-
stance, on Cora_ML and Photo datasets, our method achieves 2-
3x performance gains compared to direct deployment. Moreover,
when pre-trained models are combined with GraphControl , intelli-
gently leveraging downstream-specific information, they outper-
form training-from-scratch methods on target data, showcasing
GraphControl ’ ability to fully harness the potential of pre-trained
models. Even for non-attributed target data, our method can en-
hance downstream performance with additional node embeddings
from Node2Vec [10]. Specifically, GRACE with GraphControlout-
performs GIN(A,X𝑃𝐸 ) by approximately 5% absolute improvement.

These statistics show the effectiveness of our module for deploy-
ing universal pre-trained models on target data.

5.3.2 Prompt Tuning with GraphControl (Few-shot classification).
In many real-world scenarios, the target data is notably limited,
with only a few training samples for each class. Few-shot learning is
a well-known case of low-resource scenarios. Standard fine-tuning
tends to overfit on the training data, leading to poor generalization.
To solve these problems, Graph prompt tuning emerged which
can align the training objectives and train a few parameters of
prompt. In this section, we will perform experiments of existing
graph prompt tuning with GraphControl under few-shot setting.
Baselines & Experimental setup. We choose two graph prompt
methods, GPF [7] and ProG [40], which are not limited to spe-
cific pre-trained GNN models. Other graph prompt methods like
GPPT [39], GraphPrompt [21], and SGL-PT [54] heavily rely on
specific pre-trained models will not included in this study. GPF
introduces trainable graph prompt features applied to the original
graph, imitating any graph manipulations. ProG is a more com-
plex version, inserting a prompt graph comprising multiple prompt
features and relations into the original graph. For the pre-trained
model, we adopt GCC here for simplicity.

‘Finetuned GIN’ and ‘Finetuned GCC’ refer to randomly initial-
ized GIN and pre-trained GCCfine-tuned on target data. ‘GCC+GPF’
indicates pre-trained GCC prompt tuning on target data with GPF,
while ‘Ours+GPF’ involves deploying pre-trained GCC with Graph-
Control using GPF as prompt tuning. ‘GCC+PorG’ and ‘Ours+PorG’
use ProG as prompt tuning method.

As for data splitting, target data is initially divided into 1:9 for
candidate and testing data. In 3-shot(5-shot) setting, 3(5) samples
per class are subsequently selected from candidate data for training.
Results show mean accuracy with standard deviation over 20 differ-
ent random seeds. For more details, please refer to Appendix C.2.
Analysis. From Table 3, we can draw the following conclusions:
firstly, we can see the ‘Finetuned GIN’ achieves the worst per-
formance because the training from scratch will easily overfit on

6 Submission ID: 682. 2023-10-12 13:32. Page 6 of 1–13.
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Table 2: Experimental results of baselines and our method on downstream datasets. In the data column, 𝐴 represents adjacent
matrix,𝑋 denotes node attribute matrix and𝑋𝑃𝐸 means positional embeddings. Rows with gray background denote our method.

Data Methods Cora_ML Photo DBLP Physics USA Europe Brazil H-index

X MLP[31] 60.31±2.96 77.56±2.42 64.47±1.36 88.90±1.10 - - - -
A Node2Vec[10] 69.93±1.27 84.08±0.63 77.52±0.38 88.13±0.39 59.59±2.04 47.92±3.66 46.53±8.41 75.02±0.50
A,X𝑃𝐸 GIN[45] 29.94±1.37 30.41±1.07 57.53±0.78 54.76±0.69 56.33±1.90 49.72±3.05 57.63±8.96 69.90±1.26
A,X GIN[45] 69.57±3.65 79.71±4.72 74.62±3.00 92.02±2.79 58.89±2.70 47.85±4.86 58.52±9.98 72.23±1.20

A,X𝑃𝐸 GCC(rand) 26.34±1.40 26.15±1.20 53.46±0.79 54.30±0.68 54.85±2.31 42.60±3.31 51.20±8.49 64.18±1.83
A,X𝑃𝐸 GCC[29] 31.14±1.23 33.85±1.19 57.02±0.68 56.25±0.37 55.80±2.23 47.35±3.44 57.92±9.00 70.31±1.89
A,X𝑃𝐸 ,X +GraphControl 77.43±1.62 88.65±0.60 80.25±0.90 94.31±0.12 57.03±2.21 50.53±3.43 59.28±8.14 73.55±0.70

A,X𝑃𝐸 GRACE[57] 30.74±1.48 32.64±1.57 58.43±0.37 59.86±1.96 57.68±1.75 50.49±2.90 57.98±9.45 69.68±2.18
A,X𝑃𝐸 ,X +GraphControl 77.26±1.50 88.78±0.61 80.42±0.65 94.12±0.24 58.94±1.84 52.83±3.10 59.92±7.59 74.47±0.07

A,X𝑃𝐸 simGRACE[44] 30.39±1.82 33.62±1.52 57.87±0.32 59.82±2.93 57.11±1.90 50.22±3.91 58.09±8.50 69.65±1.50
A,X𝑃𝐸 ,X +GraphControl 77.34±1.08 89.66±0.56 80.33±0.69 94.03±0.47 59.40±1.62 51.15±3.17 59.41±7.66 76.10±0.70

A,X𝑃𝐸 RoSA[55] 30.96±0.81 33.42±1.59 56.41±0.70 60.14±2.48 57.18±2.02 50.32±3.78 58.99±8.30 69.80±2.48
A,X𝑃𝐸 ,X +GraphControl 77.40±1.06 89.35±0.61 80.23±0.79 94.22±0.26 58.71±1.35 51.89±2.69 59.16±7.13 74.22±1.46

A,X𝑃𝐸 COSTA[52] 30.07±1.31 33.22±1.28 59.01±0.19 59.96±3.29 57.07±2.53 50.33±3.64 59.55±9.30 68.49±2.10
A,X𝑃𝐸 ,X +GraphControl 76.63±1.67 89.17±1.14 80.74±0.65 94.02±0.31 59.00±1.82 51.88±3.08 62.16±6.95 73.57±2.17

Table 3: Experimental results of fine-tuning (FT) and prompt
tuning (PT) under few-shot settings (3-shot and 5-shot).

USA Europe
3-shot 5-shot 3-shot 5-shot

FT Finetuned GIN 34.28±4.06 35.73±4.45 37.99±4.38 40.61±3.18
Finetuned GCC 48.75±4.76 51.76±4.98 45.08±4.24 48.62±3.77

PT

GCC+GPF[7] 49.10±4.70 50.78±5.19 47.10±3.57 49.69±3.47
Ours+GPF[7] 50.40±3.33 53.05±4.52 47.50±3.99 50.29±2.42

GCC+ProG[40] 48.80±4.36 49.36±5.64 46.04±4.38 48.47±3.67
Ours+ProG[40] 49.73±4.34 52.61±5.22 46.81±4.39 50.65±2.93

limited training data. ‘Finetuned GCC’ achieves a decent result but
lags behind prompt methods with few training samples. For exam-
ple, under 3-shot, ‘Finetuned GCC’ is outperformed by ‘GCC+GPF’
and ‘GCC+ProG’, but surpasses them with more training data (5-
shot). This highlights the greater effectiveness of prompt methods
under limited resources.

Secondly, with prompt tuning, our method GraphControl can
still enhance the downstream performance. Specifically, both
‘Ours+ProG’ and ‘Ours+GPF’ outperform their corresponding base-
lines (‘GCC+ProG’ and ‘GCC+GPF’) by 2% absolute improvement.
In the small-scale dataset like 5-shot Europe-Airport, ‘Ours+ProG’
reaches comparable performance to full-shot in the last section.

5.4 Ablation Studies
In this section, we assess the effectiveness of GraphControl by
masking each component. Ours (soft C) uses soft attribute distance
matrix 𝐾 as condition. Ours (w/o zero) removes zero MLPs in Con-
trolNet. Ours (w/o CG) removes the condition generation and Con-
trolNet, similar to finetuing GCC. Ours (w/o frozen pre.) excludes
the frozen pre-trained model branch, utilizing only the ControlNet
branch. Lastly, ‘Simple Cat.’ signifies a basic approach: training a
dedicated feature extractor for downstream attributes from scratch

and integrating it with pre-trained models for predictions. As for
the pre-trained model, we use GCC in this section.

Each component is crucial for the effectiveness of the method,
as shown in Table 4. Specifically, Ours(w/o CG) performs poorly on
attributed datasets, emphasizing the importance of downstream-
specific information. Ours(soft C) also underperforms, highlighting
the significance of aligning the format of condition and input during
pre-training. Ours(w/o zero) lags behind GraphControl by a compa-
rable margin, indicating the importance of zero MLPs in linking the
frozen pre-trained model and the trainable copy, avoiding detrimen-
tal noise during fine-tuning. Ours(w/o frozen pre.) is also inferior
to GraphControl, indicating the effectiveness of incorporating com-
mon knowledge from the pre-trained model. Finally, ‘Simply Cat.’
achieves subpar results on most datasets, emphasizing the risks of
overfitting when training from scratch on limited data, especially
in smaller datasets like Cora_ML (10% lower than GraphControl).

5.5 Convergence Analysis
Earlier sections demonstrate the efficacy of our method in perfor-
mance enhancement. In this section, we delve into the convergence
speed analysis of GraphControl. Here, ‘GIN’ denotes training from
scratch, while GraphControl signifies using GCC as the pre-trained
model and fine-tuning it with GraphControl.

As depicted in Figure 4, GraphControl achieves convergence
within 100 epochs on all datasets, whereas GIN reaches the best
performance around 600 epochs on Cora_ML and Photo datasets,
exhibiting instability. Our approach not only improves performance
but also notably reduces training time in downstream applications.

5.6 Sensitivity Analysis
In this section, we analyze crucial hyperparameters, starting with
the impact of the threshold used in condition generation, followed
by an analysis of the subsampling hyperparameters.

Submission ID: 682. 2023-10-12 13:32. Page 7 of 1–13. 7
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Table 4: Ablation studies for GraphControl by masking out each component. The bold and underlined results means the top-1
performance and the underline represents the second performance.

Data Methods Cora_ML Photo DBLP Physics USA Europe Brazil H-index
A,X𝑃𝐸 ,X Ours 77.43±1.62 88.65±0.60 80.25±0.90 94.31±0.12 57.03±2.21 50.53±3.43 59.28±8.14 73.55±0.70
A,X𝑃𝐸 ,X Ours(soft C) 27.42±3.32 51.85±7.30 51.42±3.37 77.75±2.51 55.03±2.57 48.67±3.95 58.81±8.31 73.26±0.63
A,X𝑃𝐸 ,X Ours(w/o zero) 71.93±2.73 81.30±4.33 77.24±5.55 93.70±0.25 55.35±3.08 48.49±3.39 58.03±9.91 71.71±1.63
A,X𝑃𝐸 Ours(w/o CG) 20.29±2.09 27.31±3.09 49.62±3.54 51.96±0.70 55.31±2.32 47.93±3.41 56.65±8.76 72.79±0.53
A,X Ours(w/o frozen pre.) 75.06±1.90 82.38±4.72 79.22±1.58 93.56±0.22 55.85±2.71 47.75±3.04 56.57±8.65 73.16±0.72
A,X𝑃𝐸 ,X Simple Cat. 66.64±1.41 82.80±0.95 67.32±0.60 90.56±0.46 53.59±4.74 45.28±5.29 57.67±7.14 72.74±1.16

Figure 4: The convergence analysis on GIN and GraphControl.

Figure 5: Sensitivity analysis on threshold.

5.6.1 Analysis on threshold for discretization. In the process of con-
dition generation, we discretize the attribute distance matrix using
a specific threshold, converting it into a feature-based adjacency
matrix to align with the input space during pre-training. Empiri-
cally, we explore the impact of this threshold, ranging from 0.1 to
0.35. The results, shown in Figure 5, indicate stable performance
from 0.1 to 0.2 on DBLP, Cora_ML, and Physics datasets. However,
when the threshold exceeds 0.3, most datasets experience a rapid
drop in performance due to the matrix becoming overly sparse and
providing limited information. Optimal thresholds range from 0.15
to 0.2, guiding our experiments across most datasets.

5.6.2 Analysis on hyper-parameters of subsampling. In this work,
random walk with restart serves as the subsampling technique,
with walk steps and restart rate as pivotal hyperparameters. Walk
steps are selected from {32, 64, 128, 256, 512}, and the restart rate
spans {0.1, 0.3, 0.5, 0.7, 0.9}. Based on Figure 6, optimal results are
observed with 256 and 512 walk steps, alongside restart rates of 0.7

Figure 6: Analysis of subsampling hyperparameters on
Cora_ML (left) and DBLP (right) datasets.

and 0.9. For memory efficiency, we standardize walk steps to 256
across all datasets and set the restart rate to 0.8 for most datasets.

6 CONCLUSION
In this work, we propose a novel deployment module coined as
GraphControl to address the challenges of the ‘pre-training and
finetuning (or prompt-tuning)’ paradigm in graph domain transfer
learning. GraphControl seamlessly integrates with existing univer-
sal structural pre-trained models, significantly boosting their per-
formance on target data by intelligently incorporating downstream-
specific information. Specifically, to achieve this, we draw inspira-
tion from ControlNet and apply its core concepts to graph domain
transfer learning. Downstream-specific information is processed
into conditions using our condition generation module and gradu-
ally integrated for enhanced performance. Extensive experiments
on diverse real-world datasets demonstrate the superiority of Graph-
Control in fine-tuning and prompt tuning scenarios, substantially
improving the adaptability of pre-trained models on target data.

8 Submission ID: 682. 2023-10-12 13:32. Page 8 of 1–13.
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Algorithm 1: GraphControl algorithm
Input: Frozen pre-trained GNN encoder 𝑔★

𝜃
, trainable copy

of pre-trained model 𝑔𝜃𝑐 , two zero MLPsZ1,Z2
with parameters 𝜃𝑍1 , 𝜃𝑍2 , random initialized linear
classifier 𝑝𝜔 , input graph 𝐺 = (𝐴,𝑋,𝑌 ), sampler
function T (𝐺, 𝑖), training epochs 𝐸, learning rate 𝜂.

Output: Optimized models, 𝑔𝜃𝑐 ,Z1,Z2, 𝑝𝜔
/* subsampling */

for 𝑖 ← 1 to 𝑁 do
𝐺𝑖 = T (𝐺, 𝑖) = (𝐴𝑖 , 𝑋𝑖 );
Generate condition 𝐴′

𝑖
through Condition Generation

Module using node attributes;
Generate positional embedding 𝑃𝑖 from graph adjacency
matrix 𝐴𝑖 and conditional positional embedding 𝑃 ′

𝑖

from attribute adjacency matrix 𝐴′
𝑖
;

𝐺𝑖 = (𝐴𝑖 , 𝑃𝑖 , 𝑃 ′𝑖 , 𝑦𝑖 )
end
S = {𝐺𝑖 }, 𝑖 = 1, ..., 𝑁 ; // collect training samples

for 𝑒 ← 1 to 𝐸 do
Sampled batch B = {𝐺𝑖 }𝐵𝑖=1 ∈ S;
/* For symbol unclutter, we omit subscript */

Batched graph 𝐺 = (𝐴, 𝑃, 𝑃 ′, 𝑌 );
/* Forward */

𝐻 ← 𝑔𝜃 (𝑃) + Z2 (𝑔𝜃𝑐 (𝑃 + Z1 (𝑃 ′))) ;
ℓsup ← L(𝑝𝜔 (𝐻 ), 𝑌 ) ;
/* Backward */
𝜃𝑐 ← 𝜃𝑐 − 𝜂∇𝜃𝑐 ℓsup; 𝜃𝑍1 ← 𝜃𝑍1 − 𝜂∇𝜃𝑍1

ℓsup;
𝜃𝑍2 ← 𝜃𝑍2 − 𝜂∇𝜃𝑍2

ℓsup ;
end

A ALGORITHM
The complete procedure of our method with fine-tuning is outlined
in Algorithm 1. Given an input graph𝐺 = (𝐴,𝑋,𝑌 ), we employ a
subsampling function T to sample subgraphs for each node. Sub-
sequently, we generate the condition 𝑃 ′

𝑖
using node attributes and

positional embeddings 𝑃𝑖 using adjacency matrix for each subgraph
𝐺𝑖 . The training dataloader S is then created with a batch size of
128 for subgraphs of training nodes. During each iteration, batched
graphs are inputted into the frozen pre-trained model 𝑔★

𝜃
, while the

condition is fed into the trainable copy 𝑔𝜃𝑐 . These two components
are interconnected using zero MLPs. Finally, the representations
𝐻 are passed through a classifier 𝑝𝜔 , with the cross-entropy loss
L utilized to compute the classification error ℓsup. The parameters
of the trainable copy, zero MLPs, and classifier are optimized by
minimizing the loss.

B TIME COMPLEXITY ANALYSIS
Given an sparse input graph𝐺 = (𝐴,𝑋,𝑋PE, 𝑌 ), the attribute matrix
𝑋 ∈ R𝑁×𝐷 , the positional embedding 𝑋PE ∈ R𝑁×𝐾 where 𝐾 ≪ 𝐷 .
Let the hidden size and the number of layers in themodel be denoted
as 𝐻 and 𝐿, respectively. 𝐻 is comparable to 𝐷 in most cases, so we
consider them to be the same in this analysis for simplicity.

The time complexities of the baselines and our method are out-
lined in Table 5. Notably, GIN’s input features comprise 𝐷 dimen-
sions, whereas GCC’s input dimension, denoted as 𝐾 , is consider-
ably smaller than 𝐷 . Consequently, GCC exhibits higher efficiency
compared to GIN. Our method involves both the frozen GCC and its
trainable counterpart. The main computational workload is twofold
compared to GCC, encompassing the additional processing time
required for zero MLPs and feature summations.

Table 5: Time complexity analysis of baselines and our
method.

Data Method Forward Time complexity

A,X GIN 𝑂 (𝐿𝐸𝐷 + 𝐿𝑁𝐷2)
A,𝑋PE GCC 𝑂 (𝐿𝐸𝐷 + (𝐿 − 1)𝑁𝐷2 + 𝑁𝐾𝐷)

A,𝑋PE,X GCC+GraphControl 𝑂 (2(𝐿𝐸𝐷 + (𝐿 − 1)𝑁𝐷2 + 𝑁𝐾𝐷)
+𝑁𝐾 + 𝑁𝐾2 + 𝑁𝐷 + 𝑁𝐷2)

C EXPERIMENT
In this section, we will provide detailed information about experi-
ments. Firstly, we introduce the datasets used in the main content
in detail. And then we introduce the baselines used in the main
content. Lastly, we provide the hyper-parameters of experiments.

C.1 Datasets
C.1.1 Pretraining datasets. The pre-training datasets utilized by
GCC are outlined in Table 6. These datasets fall into two main
categories: academic graphs, including Academia, and two DBLP
datasets, and social graphs, including IMDB, Facebook, and Live-
Journal datasets. The Academia dataset is sourced fromNetRep [32],
and the two DBLP datasets are obtained from SNAP [1] and
NetRep [32] respectively. Additionally, the IMDB and Facebook
datasets are gathered from NetRep [32], and the LiveJournal dataset
is collected from SNAP [1].

C.1.2 Downstream datasets. The datasets can be categorized into
two groups: attributed datasets (Cora_ML, Amazon Photo, DBLP,
and Coauthor Physics) and non-attributed datasets (USA Airport,
Europe Airport, Brazil Airport, and H-index). Below are detailed
descriptions of these datasets.

• Amazon Photo [36] consists of segments from the Amazon
co-purchase graph [22]. In this dataset, nodes represent
goods, edges signify frequent co-purchases between goods,
node features are bag-of-words encoded product reviews,
and class labels are assigned based on product categories.

• Cora_ML and DBLP datasets [3] are citation networks used
for predicting article subject categories. In these datasets,
graphs are created from computer science article citation
links. Nodes represent articles, and undirected edges signify
citation links between articles. Class labels are assigned
based on paper topics.

• In the Coauthor Physics dataset [36], graphs are co-
authorship networks derived from the Microsoft Academic
Graph. Nodes in this dataset represent authors and are con-
nected by edges if they co-authored a paper. Node features
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Table 6: Statistics of pre-training datasets.

Dataset Academia DBLP (SNAP) DBLP (NetRep) IMDB Facebook LiveJournal

#Nodes 137,969 317,080 540,486 896,305 3, 097, 165 4, 843, 953
#Edges 739,384 2, 099, 732 30, 491, 458 7, 564, 894 47, 334, 788 85, 691, 368

Table 7: Hyper-parameters for GIN(A,X) baseline.

Cora_ML Amazon-Photo DBLP Coauthor-Physics USA Europe Brazil H-index

Model GIN GIN GIN GIN GIN GIN GIN GIN
# Hidden size 64 64 64 64 64 64 64 64

# Layers 4 4 4 4 4 4 4 4
# Epochs 1000 800 100 100 100 100 200 200

Learning rate 1e-3 1e-2 1e-3 1e-3 1e-3 1e-2 1e-2 1e-3
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam

Weight decay 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4

represent paper keywords from each author’s publications,
and class labels indicate the authors’ most active fields of
study.

• The USA Airport dataset [30] consists of data collected
from the Bureau of Transportation Statistics4 between Jan-
uary and October 2016. The network comprises 1,190 nodes
and 13,599 edges, with a diameter of 8. Airport activity
is quantified by the total number of people who passed
through the airport (both arrivals and departures) during
the corresponding period.

• The Europe Airport dataset [30] comprises data gathered
from the Statistical Office of the European Union (Eurostat)5
between January and November 2016. The network consists
of 399 nodes and 5,995 edges, with a diameter of 5. Airport
activity is evaluated based on the total number of landings
and takeoffs during the corresponding period.

• The Brazil Airport dataset [30] is sourced from the National
Civil Aviation Agency (ANAC)6 and covers the period from
January to December 2016. The network comprises 131
nodes and 1,038 edges, with a diameter of 5. Airport activity
is quantified based on the total number of landings and
takeoffs during the corresponding year.

• The H-index dataset [29] is derived from a co-authorship
graph extracted from OAG[50]. To enhance suitability for
the node classification task, smaller subgraphs are extracted
from the original graph due to its vast scale. This resulting
network comprises 5,000 nodes and 44,020 edges, with a di-
ameter of 7. Labels in the H-index dataset indicate whether
the author’s h-index is above or below the median.

C.2 Hyper-parameters
In this section, we will provide the hyper-parameters used in our ex-
periments. Table 7 lists the parameters of baselines. And Table 8 lists

the parameters of structural pre-training methods. Lastly, Table 9
provides the details of transfer learning.

C.3 Baselines
In Section 5.3, four pre-training methods are incorporated: GCC,
GRACE, simGRACE, RoSA, and COSTA. In this section, we will
elucidate these methods.

• GCC [29] is a structural pre-training method based on lo-
cal structural information. It utilizes position embeddings
as model input to learn transferable structural patterns
through subgraph discrinimation.

• GRACE [57] is node-node graph contrastive learning
method. It designs two augmentation functions (i.e., re-
moving edges and masking node features) to generate two
augmented views. Then a shared graph model will be ap-
plied on augmented views to generate node embedding
matrices. The node representations augmented from the
same original node are regarded as positive pairs, otherwise
are negative pairs. Lastly, pairwise loss (e.g., InfoNCE [27])
will be applied on these node matrices.
• simGRACE [44] eliminates data augmentation while intro-

ducing encoder perturbations to generate distinct views for
graph contrastive learning.

• RoSA [55] is a robust self-aligned graph contrastive frame-
work which does not require the explicit alignment of nodes
in the positive pairs so that allows more flexible graph aug-
mentation. It proposes the graph earth move distance (g-
EMD) to calculate the distance between unaligned views to
achieve self-alignment. Furthermore, it will use adversarial
training to realize robust alignment.

• COSTA [52] proposes feature augmentation to decrease the
bias introduced by graph augmentation.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

4https://transtats.bts.gov/
5http://ec.europa.eu/
6http://www.anac.gov.br/
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Table 8: Hyper-parameters for pre-training method GRACE.

Cora_ML Amazon-Photo DBLP Coauthor-Physics USA Europe Brazil H-index

Model GIN GIN GIN GIN GIN GIN GIN GIN
# Hidden size 64 64 64 64 64 64 64 64

# Layers 4 4 4 4 4 4 4 4
# Epochs 20 50 100 20 50 500 200 100

Learning rate 1e-3 1e-4 1e-3 1e-4 1e-3 1e-2 1e-2 1e-3
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam

Weight decay 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4
Walk steps 256 256 256 256 256 256 256 256
Restart rate 0.3 0.5 0.3 0.5 0.3 0.5 0.5 0.5

𝜏 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
𝑝 𝑓 ,1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2
𝑝 𝑓 ,2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3
𝑝𝑒,1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
𝑝𝑒,1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Table 9: Hyper-parameters for Transfer Learning (GraphControl with GCC pre-trained model).

Cora_ML Amazon-Photo DBLP Coauthor-Physics USA Europe Brazil H-index

Model GCC GIN GCC GCC GCC GCC GCC GCC
# Hidden size 64 64 64 64 64 64 64 64

# Layers 4 4 4 4 4 4 4 4
# Epochs 100 100 100 100 100 100 400 100

Learning rate 0.5 0.5 0.1 0.01 0.3 0.2 0.1 0.1
Optimizer AdamW AdamW Adam Adam SGD SGD SGD SGD

Weight decay 5e-4 5e-4 5e-4 1e-2 1e-3 5e-4 1e-3 5e-4
Walk steps 256 256 256 256 256 256 256 256
Restart rate 0.8 0.8 0.8 0.8 0.5 0.5 0.3 0.5
Threshold 0.17 0.2 0.3 0.15 0.15 0.15 0.3 0.17

Table 10: Hyper-parameters for Domain Transfer (GraphControl with other pre-trained models).

Cora_ML Amazon-Photo DBLP Coauthor-Physics USA Europe Brazil H-index

Model GIN GIN GIN GIN GIN GIN GIN GIN
# Hidden size 64 64 64 64 64 64 64 64

# Layers 4 4 4 4 4 4 4 4
# Epochs 100 100 100 100 100 100 200 200

Learning rate 1e-1 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 5e-4
Optimizer Adam Adam Adam Adam Adam Adam Adam SGD

Weight decay 1e-3 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4
Walk steps 256 256 256 256 256 256 256 256
Restart rate 0.3 0.5 0.3 0.3 0.3 0.3 0.3 0.3
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