
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EVOLVING SPARSITY: LEVERAGING TOKEN IMPOR-
TANCE DYNAMICS FOR EFFICIENT LLM DECODING
WITH SPARSE ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient long-context inference remains a major challenge for large language
models (LLMs), as the cost of attention computation during auto-regressive de-
coding grows linearly with the context length. Recent sparse attention methods
attempt to reduce the computational burden by selecting a subset of tokens at
each step, while most rely on static importance scores that are repeatedly com-
puted over the entire cache, overlooking the relational dynamics of the decoding
process. In this work, we revisit sparse attention in LLMs and propose to model
token importance as a dynamic process that evolves over decoding steps and prop-
agates through model layers. To efficiently measure token importance, we propose
two lightweight mechanisms: (i) Cross-Layer Propagation, which leverages the
model’s intrinsic retrieval heads to compute query-aware indices and efficiently
propagate them across layers; and (ii) Cross-Step Accumulation, which incre-
mentally maintains long-term, query-agnostic importance via decayed accumula-
tion of sparse attention scores, avoiding recomputing the importance of decoded
tokens. Together, these mechanisms preserve both stable context memory and
adaptive query relevance while reduce redundant computation. We evaluate our
approach on PG-19, Needle-in-a-Haystack, and LongBench with models employ-
ing Multi-Head and Grouped-Query Attention. Under varying KV cache budgets,
our method consistently outperforms prior sparse attention baselines, approaches
full attention performance in most settings, and achieves speedups of up to 4.87×
for attention latency and 2.36× for end-to-end decoding. Anonymous code link.

1 INTRODUCTION

Large Language Models (LLMs) such as GPT (Achiam et al. (2023)), LLaMA (Grattafiori et al.
(2024)), and Gemini (Team et al. (2023)) have demonstrated remarkable capabilities in reasoning,
knowledge retrieval, and generation across a wide range of tasks (Bai et al. (2023); Shaham et al.
(2023); An et al. (2023); Zhang et al. (2024a)). A key factor enabling these abilities is the model’s
capacity to process long sequences of tokens. However, as context lengths grow, the computational
and memory demands of the attention mechanism scale quadratically in standard architectures, cre-
ating a substantial bottleneck for long-context modeling (Fu (2024)). The challenge is further ampli-
fied during auto-regressive decoding, where each new query token requires attending over the entire
preceding context.

Fortunately, LLMs exhibit a form of inherent sparsity (Deng et al. (2024)): only a subset of tokens
typically contributes meaningfully to attention outputs. Motivated by this, a range of decoding-
focused sparse attention techniques have been developed to reduce computation by selectively at-
tending to likely relevant tokens rather than the entire context. Representative examples include H2O
(Zhang et al. (2023)), which aggregates attention scores to surface critical tokens; StreamingLLM
(Xiao et al. (2023)), which diagnoses the “attention sink” phenomenon to prioritize computation;
Quest (Tang et al. (2024)), which performs query-aware, block-level evaluations during decoding.
These approaches demonstrate that carefully designed sparsity can substantially lower decoding
cost while preserving most useful context. Despite their differences, many of these methods still
face common limitations. In particular, selection is often treated as a largely stateless, from-scratch
operation at each step, without effectively leveraging signals across layers or across time—a lim-

1

https://anonymous.4open.science/r/ICLR-submission-11418-anonymous-code-repository-E441

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Standard Sparse Attention Pipeline

S
election

K
V

 C
ache

S
parse A

ttention

Step i-1

Layer 0

Layer 31

Layer 1

Layer 0

Layer 31

Layer 1

S
election

K
V

 C
ache

S
parse A

ttention

Layer 0

Layer 31

Layer 1

Layer 0

Layer 31

Layer 1

Step i Step i-1 Step i

EvoSparse Attention Pipeline

Accumulate
Long-Term Importance

Propagate
Query-Aware Indices

Figure 1: Pipeline overview comparing standard sparse attention with EvoSparse. Standard methods
select tokens independently at each step and layer, incurring extra computation and limited selec-
tion quality. EvoSparse instead reuses query-aware indices and accumulates long-term importance
across the network, leveraging cross-layer and cross-step signals to improve both effectiveness and
efficiency.

itation we visualize in Figure 1. This lack of cross-layer or cross-step continuity can reduce the
effectiveness of token selection, while repeated selection procedures introduce additional efficiency
overheads. As a result, there remains considerable room to improve the trade-off between perfor-
mance and efficiency.

Based on this observation, we propose EvoSparse, a framework that models token importance as a
continuously evolving process (Figure 1, right). Our approach is instantiated through two comple-
mentary and efficient mechanisms: (1) Cross-Layer Propagation: We design a Retrieval mecha-
nism that explicitly computes query-aware indices at a few retrieval heads (Wu et al. (2024)) and
propagates these indices to non-retrieval heads in subsequent layers. This propagation guides non-
retrieval heads to focus on query-aware retrieval signals while reusing the same indices, thereby
reducing the computational overhead of repeated selection. (2) Cross-Step Accumulation: We
introduce a Heat mechanism that captures long-term, query-agnostic importance. It performs a
temporal decay accumulation on the sparse attention scores that are already being computed, incre-
mentally updating a long-term relevance signal. Together, these mechanisms convert token selection
into a dynamic, evolving process that improves the effectiveness of selected tokens while reducing
redundant computation, yielding a better performance–efficiency trade-off.

We conduct a comprehensive evaluation on diverse long-context benchmarks (Perplexity on PG-19
(Rae et al. (2019)), Needle-in-a-Haystack (Kamradt (2023)), and LongBench (Bai et al. (2023)))
with both Multi-Head Attention (Vaswani et al. (2017)) and Grouped-Query Attention (Ainslie et al.
(2023)) Model. Our method achieves the best balance between performance and efficiency: it con-
sistently outperforms existing sparse attention baselines while recovering or closely matching full
attention performance under constrained KV cache budgets. Moreover, our optimized implementa-
tion delivers substantial speedups, with attention latency improved by up to 4.87× and end-to-end
latency by up to 2.36×.

2 RELATED WORK

Long-Context LLMs Efficiently handling long-context inputs is a critical challenge for modern
large language models (LLMs). As context lengths grow, the memory and computation required for
attention scale rapidly, creating significant bottlenecks in both training and inference. To address
this, prior work has explored several complementary strategies. One approach focuses on training
and fine-tuning with long-text corpora, enabling models to better capture dependencies across ex-
tended (Chen et al. (2023); Xiong et al. (2023); Fu et al. (2024)). Another line of work investigates
positional encoding schemes, such as rotary positional embeddings (Su et al. (2024)) and its vari-
ants (Zhang et al. (2024b); Ding et al. (2024); Peng et al. (2023)), to support longer effective context
lengths. Additionally, external memory and retrieval-augmented architectures have been proposed
to provide LLMs with access to relevant long-range information without overloading the KV cache
(Tworkowski et al. (2023); Mohtashami & Jaggi (2023); Xu et al. (2023)). Despite these advances,
processing very long contexts remains computationally intensive, motivating more targeted methods
for reducing attention cost.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2K 7K 12K 17K 22K 27K 32K

0
11
22
33
44
56
67
78
89

100

Do
cu

m
en

t D
ep

th
 (%

)

Independent Selection

2K 7K 12K 17K 22K 27K 32K

0
11
22
33
44
56
67
78
89

100

Index-only Propagation

2K 7K 12K 17K 22K 27K 32K

0
11
22
33
44
56
67
78
89

100

Full Propagation

0.0
0.1
0.2
0.3
0.4
0.6
0.7
0.8
0.9
1.0

Sc
or

e

Figure 2: Effect of propagating retrieval indices to non-retrieval heads on NIHA (Kamradt (2023))
tasks with a token budget of 512. We follow Wu et al. (2024) to select the 15 heads with the highest
retrieval scores as retrieval heads. Index-only Propagation substantially improves performance over
Independent Selection.

Sparse Attention Sparse attention techniques reduce the computational cost of long-context
LLMs by selecting the most relevant tokens at each decoding step. They generally fall into two
categories: eviction-based methods, which remove less important tokens from the KV cache at the
risk of losing information, and selection-based methods, which retain the full KV cache but dy-
namically focus attention on tokens most likely to influence the current output. Recent methods
within this framework, including H2O (Zhang et al. (2023)), StreamingLLM (Xiao et al. (2023)),
Quest (Tang et al. (2024)), Sparq Attention (Ribar et al. (2023)), Loki (Singhania et al. (2024))
and DuoAttention (Xiao et al. (2024)), introduce mechanisms such as attention score accumulation,
query-aware evaluation, low-rank selection, and retrieval head to further improve efficiency while
preserving essential context.

Among selection-based methods, TidalDecode (Yang et al. (2024)) employs two designated layers
(selection and re-selection) to identify tokens whose indices are propagated forward, motivated by
the observation of Position Persistent Sparse Attention (PPSA). While this resembles our Cross-
Layer Propagation in reusing token indices, two key differences remain. First, TidalDecode exploits
PPSA, whereas our method leverages retrieval heads to guide non-retrieval heads toward query-
aware tokens. Second, our approach depends on inherent model signals rather than manually tuned
layer-specific hyperparameters, making it more naturally integrated with existing attention structures
while efficiently capturing query-aware information.

Collectively, these approaches demonstrate that decoding-phase sparsity can balance efficiency and
performance, motivating our modeling of token importance as a process that accumulates over steps
and propagates across layers.

3 METHOD

Our method is driven by two core hypotheses designed to maximize information reuse. First, we
posit that retrieval indices are a transferable resource. While retrieval heads are essential for identify-
ing query-relevant tokens from a long context (Wu et al. (2024); (Xiao et al. (2024))), the positional
indices they compute are valuable in their own right. We hypothesize that the retrieval indices com-
puted by retrieval heads can directly guide non-retrieval heads, maintaining access to query-relevant
tokens across layers. To verify this, we conduct a preliminary experiment (Figure 2) comparing
three configurations:

• Independent Selection: Retrieval heads are fully disabled. They neither provide indices
nor perform attention. Each non-retrieval head independently selects its own top-k tokens
and attends only to those tokens.

• Index-only Propagation: Retrieval heads first compute the top-k retrieval indices, which
are then passed to non-retrieval heads in the same layer and in subsequent layers, while the
retrieval heads themselves mask out their own attention.

• Full Propagation: Retrieval heads propagate their top-k indices to non-retrieval heads, but
do not mask their own attention.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

6.2-0.8 -5.4-0.8-0.8 -5.46.2-0.8

3.4 -2.0 0.2 -0.8 -1.1 -5.1 -7.1 6.2 -2.0 -5.4 -4.3 -1.5

Sink Range

-2.9 -1.7 -1.2 2.7

Retrieval Select Range

3.4 -2.0 0.2 -0.8 -1.1 -5.1 -7.1 6.2 -2.0 -5.4 -4.3 -1.5

Sink Range

-2.9 -1.7 -1.2 2.7

Retrieval Select Range

KTKT

Retrieval Heads Slicing

K
V

 C
ache

Retrieval Heads Exist

Retrieval Block
Selection

Top-k Retrieval Block

F
ull A

ttention

Block Sparse Attention

Sink
Block

Heat
Block

Local
Block

0.12 0.21 0.130.030.070.24

0.10 0.14 0.080.040.36 0 00.02

0 0 0

2.84 0.48 0.32 0.29 0.51 0.15 0.19 0.47 0.21 0.33 0.07 0.09 0.26 0.04

Block Sum

0.95 0.87 0.62

0.22

× decay

E
voS

parse

Sink Block

Local Block

Selected Block Element-wise Add

Attention Output

Retrieval Block Indices

Layer 1 Layer 31

if

×

Block Max

Q

Top-k Heat Block

Cross-Step
Accumulation

Retrieval
Block

Inherited Retrieval Block

C
ross-L

ayer P
ropagation

F
ull A

ttention

E
voS

parse

Layer 2 Layer 3

E
voS

parse

Layer 4

0 0

K
T

Query

Sink Range Heat Select Range Local Range
Retrieval Select RangeSink Range

Local
Range

3.4 -2.0 0.2 -0.8 -1.1 -5.1 -7.1 6.2 -2.0 -2.9 -1.7 -1.2 -5.4 -4.3 -1.5 2.7

-1.5-1.26.2-0.8

0.070.15

0.03 0.06 0.11

Figure 3: Overview of EvoSparse. The framework integrates two key mechanisms: (1) Cross-
Step Accumulation, which aggregates token importance signals over time to capture long-term con-
text; and (2) Cross-Layer Propagation, which reuses retrieval indices to guide non-retrieval heads,
thereby enhancing their focus while maintaining efficiency.

Results show that Index-only Propagation substantially outperforms Independent Selection, though
it does not fully match the performance of Full Retrieval Propagation. This demonstrates that prop-
agating retrieval indices across layers is a powerful mechanism for maintaining focus on query-
relevant information in non-retrieval heads.

Second, prior work such as H2O (Zhang et al. (2023)) suggests that token salience may exhibit
temporal continuity: accumulating full attention scores can reveal query-agnostic importance maps,
indicating that attention to certain tokens can persist over time. However, this approach requires
access to all token attention scores, which is infeasible under sparse attention. This raises the ques-
tion of whether accumulating only the sparse attention scores available at each step can similarly
capture long-term token importance. We hypothesize that such step-wise accumulation may form a
lightweight, persistent memory of globally salient tokens, serving as a query-agnostic prior to guide
attention in subsequent steps.

3.1 CROSS-LAYER PROPAGATION: EXPLOITING TRANSFERABLE INDICES

To investigate whether retrieval indices can serve as a transferable resource, we introduce a Cross-
Layer Propagation mechanism (Figure 3, right). This technique allows the query-aware contextual
cues identified by a few retrieval heads in one layer to be efficiently shared with non-retrieval heads
in subsequent layers.

The process begins in a layer l containing H retrieval heads. For a given query ql, we compute its
dot-product similarity against all keys kl in the sequence to get pre-softmax scores:

alj =
ql(klj)

⊤
√
d

, j = 1, . . . , H. (1)

Instead of every head performing this costly operation, the retrieval heads identify the indices of the
top-kr keys with the highest scores. This creates a compact set of query-aware candidate indices:

Il
retrieval = TopK

({
alj
}H

j=1
, kr

)
. (2)

These valuable indices are then passed down the network. A subsequent layer l + 1 inherits these
indices directly if it does not contain its own retrieval heads. This cascading behavior is defined as:

Il+1
retrieval =

{
Il
retrieval if layer l + 1 has no retrieval head,

TopK((ql+1)(Kl+1)⊤, kr) if otherwise.
. (3)

This propagation strategy ensures that most layers receive high-quality, query-relevant indices with-
out incurring the computational cost of a full attention score calculation, effectively democratizing
the insights of the specialized retrieval heads.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 CROSS-STEP ACCUMULATION: CAPTURING TEMPORAL SALIENCE

To explore whether token salience can be maintained over time under sparse attention, we introduce
a lightweight Cross-Step Accumulation mechanism (Figure 3, left). This counters the query-aware
nature of retrieval by building a persistent, query-agnostic map of token importance over the entire
decoding process.

We maintain a score for each token, which we term its “Heat”. At each decoding step t, the Heat
value ht

i for every token i is updated using the newly computed sparse attention scores. Let It
sparse

be the set of indices attended to at step t, and {sti}i∈It
sparse

their corresponding post-softmax attention
scores. The Heat is updated via an exponential moving average:

ht
i = λ · ht−1

i + sti, ∀i ∈ {1, . . . , N} , (4)

where N denotes the sequence length. Here, λ ∈ (0, 1) is a decay factor that gracefully reduces
the influence of older scores, preventing early tokens from dominating indefinitely. For any token
i /∈ It

sparse its score sti is treated as zero for the update. This accumulated Heat provides a robust,
long-term signal of a token’s overall importance. From this, we select a candidate set of historically
salient tokens:

It
heat = TopK

({
ht
i

}N

i=1
, kh

)
, (5)

where kh denotes the number of top-scoring tokens retained by the heat mechanism. This mecha-
nism provides a stable, global view of the context with minimal computational overhead, comple-
menting the immediate, query-aware view from Cross-Layer Propagation.

3.3 UNIFIED SPARSE ATTENTION

At any decoding step t and layer l, our two mechanisms produce complementary sets of indices.
The final sparse attention pattern is computed over the union of these sets, along with standard sink
tokens Isink and local tokens Ilocal:

It,l = Isink ∪ Il
retrieval ∪ It

heat ∪ Ilocal. (6)

The attention function is then applied exclusively to the keys and values corresponding to this unified
index set It,l:

Attn(ql,Kl, V l) = softmax

(
ql(Kl[It,l])⊤√

d

)
V l[It,l]. (7)

This composite strategy creates a powerful synergy. Cross-Layer Propagation injects immediate,
query-aware relevance, while Cross-Step Accumulation provides long-term stability and coherence.
Together, they enable the model to perform efficient and effective attention over long contexts, pre-
serving performance while reducing computational requirements

4 EXPERIMENTS

4.1 SETUPS

Tasks, Models and Baselines We evaluate our EvoSparse on three representative long-context
benchmarks: PG-19 (Rae et al. (2019)) for long-text language modeling, Needle-in-a-Haystack
(NIHA) (Kamradt (2023)) for factual retrieval accuracy, and 10 tasks from LongBench (Bai et al.
(2023)), including multi-document QA, single-document QA, summarization, few-shot tasks, syn-
thetic tasks, and code-related tasks. Experiments are conducted on two large language models
with distinct attention mechanisms: Llama-2-7B-32K-Instruct with standard Multi-Head Atten-
tion (Vaswani et al. (2017)), and Llama-3-8B-Instruct-Gradient-1048k (Pekelis et al. (2024)) with
Grouped-Query Attention (Ainslie et al. (2023)). We compare against several training-free sparse
attention baselines, including Quest (Tang et al. (2024)), TidalDecode (Yang et al. (2024)), and
StreamingLLM (Xiao et al. (2023)), with Full Attention included as an upper bound.

Implementation Details Retrieval heads are detected following Wu et al. (2024) with a maximum
sequence length of 5,000 on NIHA. For all sparse attention baselines, the first two layers remain full
attention, and sparsity is applied only to subsequent layers, following Quest and TidalDecode.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 5000 10000 15000 20000 25000 30000

6.0

6.2

6.5

6.8

7.0 Llama-2-7B, Token Budget=2048

0 5000 10000 15000 20000 25000 30000

6.0

6.2

6.5

6.8

7.0 Llama-2-7B, Token Budget=4096

0 5000 10000 15000 20000 25000 30000

7.5

8.0

8.5

9.0

9.5 Llama-3-8B, Token Budget=2048

0 5000 10000 15000 20000 25000 30000

7.5

8.0

8.5

9.0

9.5 Llama-3-8B, Token Budget=4096

Input Context Length

Pe
rp

le
xi

ty
 (l

ow
er

 is
 b

et
te

r)

Full Attention Quest TidalDecode StreamingLLM EvoSparse

Figure 4: Perplexity of different methods across varying context lengths from 0 to 32k tokens.
The results illustrate how each method scales with context length, highlighting the effectiveness of
EvoSparse in maintaining low perplexity for long inputs.

2K 7K12K17K22K27K32K

0
22

44
67

89
Do

cu
m

en
t D

ep
th

 (%
) Full Attention

2K 7K12K17K22K27K32K

0
22

44
67

89

StreamingLLM (256)

2K 7K12K17K22K27K32K

0
22

44
67

89

StreamingLLM (512)

2K 7K12K17K22K27K32K

0
22

44
67

89

TidalDecode (256)

2K 7K12K17K22K27K32K

0
22

44
67

89

TidalDecode (512)

2K 7K12K17K22K27K32K

0
22

44
67

89

Quest (256)

2K 7K12K17K22K27K32K
0

22
44

67
89

Quest (512)

2K 7K12K17K22K27K32K

0
22

44
67

89

EvoSparse (256)

2K 7K12K17K22K27K32K

0
22

44
67

89

EvoSparse (512)

10K29K49K69K88K
108K

128K

0
22

44
67

89
Do

cu
m

en
t D

ep
th

 (%
) Full Attention

10K29K49K69K88K
108K

128K

0
22

44
67

89

StreamingLLM (256)

10K29K49K69K88K
108K

128K

0
22

44
67

89

StreamingLLM (512)

10K29K49K69K88K
108K

128K

0
22

44
67

89

TidalDecode (256)

10K29K49K69K88K
108K

128K

0
22

44
67

89

TidalDecode (512)

10K29K49K69K88K
108K

128K

0
22

44
67

89

Quest (256)

10K29K49K69K88K
108K

128K

0
22

44
67

89

Quest (512)

10K29K49K69K88K
108K

128K
0

22
44

67
89

EvoSparse (256)

10K29K49K69K88K
108K

128K

0
22

44
67

89

EvoSparse (512)

Llama-2-7B

Llama-3-8B

Figure 5: Performance on Needle-in-a-Haystac (NIHA) tasks across different context lengths.
Llama-2 results are shown up to 32k tokens, while Llama-3 results extend to 128k tokens, illus-
trating how EvoSparse maintains strong retrieval accuracy in long-context scenarios.

4.2 PERFORMANCE EVALUATION

4.2.1 LANGUAGE MODELING ON PG-19

Perplexity (PPL) measures a model’s ability to predict the next token, with lower values indicat-
ing stronger language modeling. As shown in Figure 4, EvoSparse achieves PPL comparable to
Full Attention across models and token budgets, preserving performance under constrained condi-
tions. In contrast, baselines exhibit limitations: Quest retrieves across all heads, introducing noise
from ineffective ones; TidalDecode is sensitive to re-selection layer, performing well on LLaMA-3
but dropping on LLaMA-2 when layers mismatch; StreamingLLM drops tokens indiscriminately,
causing consistent PPL degradation.

4.2.2 FACTUAL RETRIEVAL ON NEEDLE-IN-A-HAYSTACK

Needle-in-a-Haystack (NIHA) (Kamradt (2023)) evaluates a model’s ability to retrieve relevant to-
kens from extremely long contexts under limited token budgets. As shown in Figure 5, baseline
methods exhibit various limitations: StreamingLLM degrades due to fixed token eviction; Quest
struggles under small budgets as retrieval across all heads introduces noise, with only 1–5% of heads
being effective retrieval heads (Wu et al. (2024)). TidalDecode performs reasonably well on Llama-
3, but its performance drops markedly on Llama-2. We note that TidalDecode is highly sensitive to
the choice of re-selection layer, which requires manual tuning per model. While prior work reports
the optimal layer to be Layer 13 for Llama-3, we follow their setting on Yarn-Llama-2-7B-128K

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

25
6

51
2

10
24

20
48

40
96

15
20
25
30
35

Token Budget vs Average

25
6

51
2

10
24

20
48

40
96

10
15
20
25
30

MultiFieldQA­EN

25
6

51
2

10
24

20
48

40
96

4
6
8

10
12

Qasper

25
6

51
2

10
24

20
48

40
96

10

12

14

16
2WikiMultihopQA

25
6

51
2

10
24

20
48

40
96

6

9

12

15

HotpotQA

25
6

51
2

10
24

20
48

40
96

6

12

18

24

30
GovReport

0.5 1.0 1.5 2.0
FLOPs (G)

15
20
25
30
35

FLOPs vs Average

25
6

51
2

10
24

20
48

40
96

12

15

18

21
QMSum

25
6

51
2

10
24

20
48

40
96

30

45

60

75

TriviaQA

25
6

51
2

10
24

20
48

40
96

0
10
20
30
40

PassageRetrieval­EN

25
6

51
2

10
24

20
48

40
96

32

40

48

56

RepoBench­P

25
6

51
2

10
24

20
48

40
96

40
45
50
55
60

LCC

25
6

51
2

10
24

20
48

40
96

20

25

30

35

Token Budget vs Average
25

6
51

2
10

24

20
48

40
96

16
20
24
28
32

MultiFieldQA­EN

25
6

51
2

10
24

20
48

40
96

6

9

12

15
Qasper

25
6

51
2

10
24

20
48

40
96

10

12

14

2WikiMultihopQA

25
6

51
2

10
24

20
48

40
96

8

10

12

14
HotpotQA

25
6

51
2

10
24

20
48

40
96

20

25

30

35
GovReport

0.5 1.0 1.5 2.0
FLOPs (G)

20

25

30

35

FLOPs vs Average

25
6

51
2

10
24

20
48

40
96

16

18

20

QMSum
25

6
51

2
10

24

20
48

40
96

30

45

60

75

90
TriviaQA

25
6

51
2

10
24

20
48

40
96

20

40

60

80
PassageRetrieval­EN

25
6

51
2

10
24

20
48

40
96

44
46
48
50
52

RepoBench­P

25
6

51
2

10
24

20
48

40
96

45

48

51

LCC

Ll
am

a­
2­

7B
Ll

am
a­

3­
8B

Token Budget

Full Quest TidalDecode StreamingLLM EvoSparse

Figure 6: Evaluation on 10 LongBench tasks under varying token budgets {256, 512, 1024, 2048,
4096}. For each task, individual performance scores are reported, along with the average score
across all tasks at each budget. We additionally analyze the relationship between average score and
attention FLOPs, highlighting the efficiency-performance trade-off of different methods.

(Peng et al. (2023)) and adopt Layer 7 for Llama-2. This mismatch partly explains the performance
degradation observed on Llama-2. By contrast, our method achieves nearly identical retrieval ac-
curacy to full attention across, under both 256 and 512 token budgets. This demonstrates that our
approach robustly preserves retrieval capability without requiring model-specific or layer-specific
tuning, consistently outperforming all baselines.

4.2.3 GENERAL LONG-CONTEXT CAPABILITIES ON LONGBENCH

LongBench (Bai et al. (2023)) is a diverse suite of long-context benchmarks spanning multiple
domains, designed to evaluate a model’s ability to handle extended inputs across retrieval, question
answering, and summarization. We report results on 10 representative LongBench tasks, as shown
in Figure 6. In addition to per-task scores, we provide averaged performance under different token
budgets, as well as the attention computation cost per forward pass at the average sequence length
of these tasks, measured in terms of matrix multiplications within the attention module (excluding
the Q/K/V/O projections).

From an overall perspective, our method achieves the best average performance across both mod-
els compared to StreamingLLM, TidalDecode, and Quest. At higher token budgets, our method
attains accuracy on par with full attention, while at lower token budgets, it surpasses all baselines.
StreamingLLM suffers from its fixed token dropping strategy, Quest is less effective under small
budgets due to noisy retrieval across all heads, and TidalDecode performs relatively well on Llama-
3 but falls behind on Llama-2 because of its reliance on manually tuned re-selection layers. In
contrast, our approach maintains strong retrieval accuracy while reducing attention computation,
showing robustness across architectures and budget regimes.

4.3 EFFICIENCY EVALUATION

4.3.1 THEORETICAL FLOPS ANALYSIS

We analyze the theoretical FLOPs of different attention mechanisms under the decoding setting. Let
N denote the sequence length in the KV cache, d the hidden dimension per head, k the number of
tokens selected by sparse attention, and B the block size in block-based strategies.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Full 4096 2048 1024
0.0

0.4

0.8

1.2
Context = 40k

Full 4096 2048 1024
0.0

0.5

1.0

1.5

Context = 60k

Full 4096 2048 1024
0.0

0.8

1.6

2.4
Context = 80k

Full 4096 2048 1024
0.0

0.8

1.6

2.4

Context = 100k
At

te
nt

io
n

La
te

nc
y

(m
s)

Full Attention Get Indices Block Sparse Attention Heat Update

Figure 7: Attention latency of EvoSparse components under different token budgets {1024, 2048,
4096} across context lengths from 40k to 100k tokens. The results illustrate the contribution of each
component to overall latency and demonstrate the scalability of EvoSparse in long-context scenarios.

20k 40k 60k 80k 100k
0

20

40

60

80

100

120

En
d-

to
-E

nd
 L

at
en

cy
 (m

s)

Full Attention 256 512 1024 2048 4096

Figure 8: End-to-end latency of EvoSparse under varying token budgets {256, 512, 1024, 2048,
4096} across context lengths from 20k to 100k tokens. The results demonstrate how overall infer-
ence time scales with both token budget and context length, highlighting the efficiency of EvoSparse
in long-context scenarios.

Full Attention Each head requires 4dN FLOPs to compute (QK⊤)V .

Quest (Tang et al. (2024)) Each head consumes 4dk + 3d⌈N/B⌉ FLOPs, as it performs retrieval
across all heads irrespective of their contribution, which results in overhead under small token bud-
gets.

TidalDecode (Yang et al. (2024)) Non-retrieval head cost 4dk FLOPs, while heads in the selection
layer incur 4dN FLOPs.

StreamingLLM (Xiao et al. (2023)) Each head requires 4dk FLOPs.

EvoSparse Non-retrieval heads incur 4dk FLOPs, while retrieval heads require 4dk+2dN FLOPs.
In addition, heat computation and update introduce 2N − ⌈N/B⌉ FLOPs operations per layer.

By considering model depth, head dimension, number of heads, and average sequence lengths in
LongBench, we estimate the attention FLOPs for a single forward pass of each method. As shown
in Figure 6, EvoSparse achieves the best trade-off between attention FLOPs and average score,
reflecting the effect of extensive reuse of information across steps and layers.

4.3.2 EMPIRICAL LATENCY EVALUATION

We further benchmark the empirical efficiency of EvoSparse on Llama-3-8B-Instruct-Gradient-
1048k (Pekelis et al. (2024)) using an RTX 5090 GPU with BF16 precision. We report the results
for two aspects of latency under varying context lengths and token budgets: the attention latency
alone (Figure 7) and the end-to-end decoding latency for generating a single token (Figure 8).

In particular, under a 100K context with a 2048-token budget, EvoSparse accelerates the attention
computation by up to 4.87× relative to Full Attention. This improvement directly translates to
end-to-end decoding: EvoSparse yields up to 2.36× speedup under the same setting.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2K 7K 12K 17K 22K 27K 32K

0
22

44
67

89
Do

cu
m

en
t D

ep
th

 (%
) Sinl & Local (512)

2K 7K 12K 17K 22K 27K 32K

0
22

44
67

89

EvoSparse w/o Retrieval (512)

2K 7K 12K 17K 22K 27K 32K

0
22

44
67

89

EvoSparse w/o Heat (512)

2K 7K 12K 17K 22K 27K 32K

0
22

44
67

89

EvoSparse (512)

Figure 9: Ablation study on NIHA tasks using Llama-2-7B-32K-Instruct. The results highlight the
contribution of each component to retrieval accuracy.

256512 1024 2048 4096
Token Budget

20

24

28

32

36

Av
er

ag
e

Sc
or

e

0 5000 10000 15000 20000 25000 30000
Input Context Length

7.5

8.0

8.5

9.0

9.5

Pe
rp

le
xi

ty
 (l

ow
er

 is
 b

et
te

r)

Full Attention Sink & Local EvoSparse w/o Retrieval EvoSparse w/o Heat EvoSparse

Figure 10: Ablation study on both LongBench tasks and Perplexity using Llama-3-8B-Instruct-
Gradient-1048k. The results highlight the contribution of each component across language modeling
and long-context comprehensive benchmarks.

4.4 ABLATION STUDY

To quantify the contribution of EvoSparse’s components, we perform ablation experiments on PG-
19 Perplexity, NIHA, and 10 tasks from LongBench. EvoSparse consists of a sink & local streaming
backbone, a heat mechanism preserving long-term token importance, and an explicit retrieval mech-
anism reusing selected retrieval tokens. We compare the full model against two ablations (EvoSparse
w/o Heat & EvoSparse w/o Retrieval) and the Sink & Local backbone as a baseline.

Effect of the retrieval mechanism Removing retrieval causes a clear accuracy drop on NIAH (Fig-
ure 9) and LongBench (Figure 10, left), but only moderately affects PG-19 perplexity (Figure 10,
right). This reflects that explicit retrieval is essential for locating sparse, task-relevant evidence,
whereas heat alone cannot fully recover such information.

Effect of the heat mechanism Removing heat leads to the largest drop in PG-19 perplexity (Figure
10, right), while having only a moderate impact on NIAH (Figure 9) and LongBench (Figure 10,
left). This indicates that heat primarily supports language-modeling quality by maintaining globally
relevant context, partially compensating for the lack of explicit retrieval.

Sink & Local backbone The streaming backbone without heat or retrieval performs worst, showing
that both mechanisms provide complementary gains for long-context modeling.

5 CONCLUSION

We presented EvoSparse, a simple yet effective sparse attention framework that reuses information
across layers and decoding steps. By propagating transferable retrieval indices and accumulating
sparse attention score, EvoSparse achieves a synergy of query-aware relevance and long-term sta-
bility. Experiments across PG-19, NIHA, and LongBench demonstrate that EvoSparse matches full
attention under generous budgets while substantially outperforming prior sparse methods under con-
strained settings. In addition, EvoSparse delivers up to 4.9× faster attention computation and 2.4×
faster end-to-end decoding, offering a strong efficiency-performance trade-off for long-context LLM
decoding.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng Kong,
and Xipeng Qiu. L-eval: Instituting standardized evaluation for long context language models.
arXiv preprint arXiv:2307.11088, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023.

Yichuan Deng, Zhao Song, and Chiwun Yang. Attention is naturally sparse with gaussian distributed
input. CoRR, 2024.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. arXiv
preprint arXiv:2402.13753, 2024.

Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance analy-
sis. arXiv preprint arXiv:2405.08944, 2024.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
Data engineering for scaling language models to 128k context. arXiv preprint arXiv:2402.10171,
2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Greg Kamradt. Llmtest needleinahaystack: Doing simple retrieval from llm models at various con-
text lengths to measure accuracy, 2023.

Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers. arXiv preprint arXiv:2305.16300, 2023.

Leonid Pekelis, Michael Feil, Forrest Moret, Mark Huang, and Tiffany Peng. Llama 3 gra-
dient: A series of long context models, 2024. URL https://gradient.ai/blog/
scaling-rotational-embeddings-for-long-context-language-models.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient llm inference. arXiv preprint arXiv:2312.04985, 2023.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. Zeroscrolls: A zero-shot
benchmark for long text understanding. arXiv preprint arXiv:2305.14196, 2023.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-
rank keys for efficient sparse attention. Advances in Neural Information Processing Systems, 37:
16692–16723, 2024.

10

https://gradient.ai/blog/scaling-rotational-embeddings-for-long-context-language-models
https://gradient.ai/blog/scaling-rotational-embeddings-for-long-context-language-models

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Szymon Tworkowski, Konrad Staniszewski, Mikołaj Pacek, Yuhuai Wu, Henryk Michalewski, and
Piotr Miłoś. Focused transformer: Contrastive training for context scaling. Advances in neural
information processing systems, 36:42661–42688, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanisti-
cally explains long-context factuality. arXiv preprint arXiv:2404.15574, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming
heads. arXiv preprint arXiv:2410.10819, 2024.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context scaling
of foundation models. arXiv preprint arXiv:2309.16039, 2023.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep Subramanian,
Evelina Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval meets long context
large language models. arXiv preprint arXiv:2310.03025, 2023.

Lijie Yang, Zhihao Zhang, Zhuofu Chen, Zikun Li, and Zhihao Jia. Tidaldecode: Fast and accurate
llm decoding with position persistent sparse attention. arXiv preprint arXiv:2410.05076, 2024.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen
Thai, Shuo Wang, Zhiyuan Liu, et al. Infinity bench: Extending long context evaluation beyond
100k tokens. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15262–15277, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

Zhenyu Zhang, Runjin Chen, Shiwei Liu, Zhewei Yao, Olatunji Ruwase, Beidi Chen, Xiaoxia Wu,
Zhangyang Wang, et al. Found in the middle: How language models use long contexts better
via plug-and-play positional encoding. Advances in Neural Information Processing Systems, 37:
60755–60775, 2024b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

256512 1024 2048 4096
Token Budget

34

36

38
Av

er
ag

e
Sc

or
e

0 5000 10000 15000 20000 25000 30000
Input Context Length

7.5

8.0

8.5

9.0

9.5

Pe
rp

le
xi

ty
 (l

ow
er

 is
 b

et
te

r)

28000 30000 32000
7.65
7.70
7.75

Full Attention EvoSparse w/ 64 Block Size EvoSparse w/ 32 Block Size EvoSparse w/ 16 Block Size

Figure 1: Ablation study on both Perplexity and LongBench tasks using Llama-3-8B-Instruct-
Gradient-1048k, examining the impact of varying block sizes.

2K 7K 12K 17K 22K 27K 32K

0
22

44
67

89Do
cu

m
en

t D
ep

th
 (%

)

EvoSparse w/ 16 Block Size (512)

2K 7K 12K 17K 22K 27K 32K

0
22

44
67

89
EvoSparse w/ 32 Block Size (512)

2K 7K 12K 17K 22K 27K 32K

0
22

44
67

89

EvoSparse w/ 64 Block Size (512)

Figure 2: Ablation study on NIHA tasks using Llama-2-7B-32K-Instruct, examining the impact of
varying block sizes.

A APPENDIX

A.1 STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we used large language models (LLMs), such as ChatGPT,
solely for language polishing and improving the clarity and readability of the text. All scientific
content, experimental design, data analysis, and conclusions were independently developed by the
authors. The LLM was not involved in any scientific decision-making or data processing.

A.2 ADDITIONAL ABLATION STUDIES

To further validate the design choices and robustness of EvoSparse, we conduct additional ablation
studies on key hyperparameters and design decisions.

A.2.1 ABLATION ON BLOCK SIZE

Since EvoSparse operates at a block level, the choice of block size is an important hyperparame-
ter. We experiment with block sizes of 16, 32, and 64. The default block size used in our main
experiments is 16. The experiments are conducted on the PG-19 (Rae et al. (2019)) (Perplexity),
Needle-in-a-Haystack (NIHA) (Kamradt (2023)), and LongBench (Bai et al. (2023)) benchmarks.
The results are presented in Figure 1 and Figure 2.

PG-19 Perplexity We observe no significant difference in perplexity across the three block size
(Figure 1, right). This demonstrates the robustness of EvoSparse on language modeling tasks, where
performance is not highly sensitive to the granularity of token selection.

LongBench Interestingly, on the diverse tasks within LongBench, block sizes of 32 and 64 often
perform on par with or even slightly better than the default block size of 16 (Figure 1, left). The

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0 5000 10000 15000 20000 25000 30000
Input Context Length

7.2

7.4

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

Pe
rp

le
xi

ty
 (l

ow
er

 is
 b

et
te

r)

Full Attention
EvoSparse w/ 0.996 decay
EvoSparse w/ 0.95 decay
EvoSparse w/ 0.9 decay
EvoSparse w/ 0.8 decay
EvoSparse w/o decay

28000 30000 32000
7.65

7.70

7.75

Figure 3: Ablation study on Perplexity task using Llama-3-8B-Instruct-Gradient-1048k,examining
the impact of varying decay hyperparameters.

only notable exception is a slight performance drop for the 64-block size under the tightest 256-token
budget. Overall, these results highlight the stability of EvoSparse across different block configura-
tions. To ensure a fair and direct comparison with prior work like Quest (Tang et al. (2024)), which
uses a block size of 16, we retain this value for all experiments reported in the main paper.

Needle-in-a-Haystack The NIHA task appears to be moderately more sensitive to block size (Fig-
ure 2). The performance with a block size of 32 is nearly identical to that of 16, but we observe a
slight degradation with a block size of 64. This suggests that for retrieval tasks like NIHA, a smaller
block size might be more effective at precisely isolating the “needle” token.

A.2.2 ABLATION ON DECAY FACTOR λ

The Cross-Step Accumulation mechanism relies on a decay factor, λ, to balance the influence of
past and present attention scores. We analyze the sensitivity of our model to this hyperparameter.
We conduct this ablation on the PG-19 perplexity task, varying λ across a range of values.

Our experiments reveal that the model’s performance is highly robust to the choice of λ, with nearly
identical perplexity scores for all tested values except for λ=1.0 (Figure 3). The poor performance
at λ=1.0 (i.e., no decay) is expected and aligns with our analysis in Section 3.2 of the main paper.
Without decay, the accumulation of sparse attention scores is susceptible to the “Matthew effect”:
tokens selected in early decoding steps will have their scores perpetually increased, making them
more likely to be selected again. This process effectively prevents other potentially relevant tokens
from ever being considered, leading to a significant degradation in modeling quality. The stability
across other λ values demonstrates that EvoSparse does not require extensive tuning of this hyper-
parameter.

A.3 DISCUSSION

A.3.1 FURTHER DETAILS ON EFFICIENCY OPTIMIZATIONTHE

The significant speed improvements of EvoSparse reported in the main paper stem from several key
implementation optimizations beyond the reduction in theoretical FLOPs.

Block-wise KV Cache Handling We process the KV cache in blocks, which yields two primary
benefits. First, it helps maintain the memory contiguity of the large KV cache tensor, which is
crucial for efficient memory access on modern hardware. Second, our block-wise gather strategy is
more efficient for loading the selected blocks into compute units compared to gathering individually
selected tokens from scattered memory locations.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Optimized repeat kv for GQA Grouped-Query Attention architectures require repeating the Key
and Value heads to match the number of Query heads before the attention computation. In a naive
implementation for long contexts, this repeat operation on the entire KV cache introduces a non-
negligible latency bottleneck. Our implementation mitigates this by applying the repeat operation
only to the selected, important blocks of the KV cache after they have been gathered. This dramat-
ically reduces the size of the tensor being repeated, significantly lowering the overhead associated
with this step and contributing to the overall end-to-end latency reduction.

Notably, our current implementation does not rely on specialized kernel frameworks such as Tri-
ton (Tillet et al. (2019)) or custom CUDA kernels. Despite being implemented purely in PyTorch,
EvoSparse already achieves substantial inference speedups over full attention. We expect that lever-
aging high-performance kernel frameworks in future work could further accelerate our method and
amplify these gains.

14

	Introduction
	Related Work
	Method
	Cross-Layer Propagation: Exploiting Transferable Indices
	Cross-Step Accumulation: Capturing Temporal Salience
	Unified Sparse Attention

	Experiments
	Setups
	Performance Evaluation
	Language Modeling on PG-19
	Factual Retrieval on Needle-in-a-Haystack
	General Long-Context Capabilities on LongBench

	Efficiency Evaluation
	Theoretical FLOPs Analysis
	Empirical Latency Evaluation

	Ablation Study

	Conclusion
	Appendix
	Statement on the Use of Large Language Models
	Additional Ablation Studies
	Ablation on Block Size
	Ablation on Decay Factor lambda

	Discussion
	Further Details on Efficiency OptimizationThe

