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Abstract

LLM-as-a-judge approaches are a practical and001
effective way of assessing a range of text tasks.002
However, when using pairwise comparisons to003
rank a set of candidates, the computational cost004
scales quadratically with the number of candi-005
dates, which has practical limitations. This pa-006
per introduces a Product of Expert (PoE) frame-007
work for efficient LLM Comparative Assess-008
ment. Here individual comparisons are con-009
sidered experts that provide information on a010
pair’s score difference. The PoE framework011
combines the information from these experts to012
yield an expression that can be maximized with013
respect to the underlying set of candidates, and014
is highly flexible where any form of expert can015
be assumed. When Gaussian experts are used016
one can derive simple closed-form solutions017
for the optimal candidate ranking, as well as018
expressions for selecting which comparisons019
should be made to maximize the probability of020
this ranking. Our approach enables efficient021
comparative assessment, where by using only a022
small subset of the possible comparisons, one023
can generate score predictions that correlate024
well with human judgements. We evaluate the025
approach on multiple NLG tasks and demon-026
strate that our framework can yield consider-027
able computational savings when performing028
pairwise comparative assessment. With many029
candidate texts, using as few as 2% of com-030
parisons the PoE solution can achieve similar031
performance to when all comparisons are used.032

1 Introduction033

The advent of instruction-following (Wei et al.,034

2021; Ouyang et al., 2022) Large Language Models035

(LLMs) (Brown et al., 2020; Touvron et al., 2023)036

has enabled systems to exhibit impressive zero-037

shot capabilities on a range of Natural Language038

Processing (NLP) tasks. One such practical appli-039

cation is in Natural Language Generation (NLG)040

evaluation (Fabbri et al., 2021), where LLMs can041

be prompted to assess the quality of texts for partic- 042

ular attributes (Wang et al., 2023; Liu et al., 2023a; 043

Zheng et al., 2023). A popular approach is LLM 044

comparative assessment, where pairwise compar- 045

isons are used to determine which of two texts is 046

better (Zheng et al., 2023; Qin et al., 2023; Liusie 047

et al., 2024b). Although using pairwise compar- 048

isons has shown to better align with human pref- 049

erences (Liusie et al., 2024b) than LLM scoring 050

approaches (Wang et al., 2023; Liu et al., 2023a), 051

the set of all comparisons scales quadratically with 052

the number of inputs, which can be impractical in 053

real-world use cases. Therefore, one may instead 054

consider methods that only use a subset of compar- 055

isons to predict the scores, such that performance 056

is maintained in computationally efficient settings. 057

Due to its applicability to sports, search and 058

many other domains, the task of going from a sub- 059

set of comparisons to a final ranking/scoring has 060

been well-studied and extensively explored (David- 061

son and Farquhar, 1976; David, 1963; Luce, 2005; 062

Cattelan, 2012). However, in the majority of set- 063

ups, the comparative decisions are binary (win/loss, 064

although occasionally also win/loss/tie). LLMs, 065

however, not only provide the outcome of the com- 066

parison but also additional information, such as 067

the associated probability that A is better than B. 068

Despite this available information, current LLM 069

comparative works often leverage naive metrics 070

such as win-ratio (Qin et al., 2023; Zheng et al., 071

2023; Liusie et al., 2024b) and average probability 072

(Park et al., 2024; Molenda et al., 2024), with little 073

analysis on how to maximally extract the informa- 074

tion from the comparisons. 075

This paper introduces a theoretical framework 076

for viewing comparative assessment that enables 077

practical scoring even in cases when the full set of 078

comparisons is not used. We conceptualize the pro- 079

cess as a Product of Experts (PoE) (Hinton, 1999; 080

Welling, 2007), where each comparative decision 081

is assumed to provide information on the quality 082
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difference between the two competing texts. The083

framework is highly flexible and can use any form084

of expert. By considering two forms of experts,085

namely 1) the Gaussian distribution with linear as-086

sumptions and 2) an extension of the Bradley-Terry087

(BT) model for soft probabilities (motivated by088

looking at its limiting behaviour), we demonstrate089

that the PoE framework for comparative assess-090

ment can achieve efficient and effective NLG as-091

sessment. With the Gaussian expert, the framework092

yields a closed-form solution for the scores, which093

conveniently yields standard metrics when using094

the full set of comparisons. We demonstrate that095

our Product of Expert framework leads to signif-096

icant performance boosts across models, datasets097

and assessment attributes, and even when using a098

fraction of the possible comparisons, can achieve099

high performance with minimal performance degra-100

dation from the full set.101

This paper makes several contributions. 1) We102

introduce the PoE perspective of comparative as-103

sessment, a highly flexible theoretical framework104

which enables one to directly model the distribu-105

tion of scores given a set of comparisons. 2) We106

propose two experts, a soft Bradley-Terry expert107

(by considering the limiting behaviour of BT) and a108

Gaussian expert that has closed-form solutions and109

can be used to select the most informative compar-110

isons. 3) We demonstrate practically that the PoE111

solution yields significant computational savings112

and empirically show that convergence is reached113

significantly faster than when using other baseline114

approaches for several datasets.115

2 Background and Related Work116

Traditional/Tailored NLG Evaluation: Initially,117

the outputs of NLG systems were evaluated against118

ground-truth human-annotated references, using119

N-gram overlap metrics (Papineni et al., 2002; Lin,120

2004; Banerjee and Lavie, 2005) or similarity met-121

rics (Zhang et al., 2019). For more fine-grained122

evaluation, later studies developed bespoke evalua-123

tors for particular task dimensions such as summary124

consistency (Wang et al., 2020; Manakul et al.,125

2023; Kryściński et al., 2020) or dialogue coher-126

ence (Dziri et al., 2019; Ye et al., 2021). Further ex-127

tensions considered unified evaluators, which eval-128

uate multiple independent attributes (Mehri and Es-129

kenazi, 2020; Yuan et al., 2021; Zhong et al., 2022).130

A drawback with these traditional NLG evaluation131

approaches is that they typically are bespoke to-132

wards particular tasks and attributes and, therefore, 133

cannot easily be extended to new domains. 134

LLM-Based NLG Evaluation: Given the impres- 135

sive instruction-following (Ouyang et al., 2022; 136

Chung et al., 2022) capabilities of LLMs such as 137

GPT-4 (Achiam et al., 2023) and open-sourced vari- 138

ants (Chung et al., 2022; Touvron et al., 2023), re- 139

cent works have studied leveraging these LLMs 140

for general zero-shot NLG evaluation. Methods 141

include GPTScore (Fu et al., 2023), which com- 142

putes the LLM likelihood of generating the re- 143

sponse, and LLM-as-a-judge approaches (Zheng 144

et al., 2023) that prompt models to provide scores 145

(Wang et al., 2023; Kocmi and Federmann, 2023; 146

Liu et al., 2023a) or use pairwise comparisons to 147

determine which of two responses is better (Qin 148

et al., 2023; Liusie et al., 2024b). 149

LLM Comparative Assessment: Various recent 150

works have used pairwise LLM comparative assess- 151

ment for ranking texts: Liusie et al. (2024b) demon- 152

strate that for moderate-sized LLMs, comparative 153

assessment outperforms LLM scoring as well as 154

various bespoke baselines. They compute the win- 155

ratio using all N(N−1) comparisons as well as 156

with a subset of comparisons (where large degra- 157

dations are observed). Further, Qin et al. (2023) 158

use pairwise comparisons for retrieving relevant 159

sources, both using the full set of comparisons as 160

well as sorting-based algorithms. Park et al. (2024) 161

apply comparative assessment to dialogue evalu- 162

ation, computing the average probability over a 163

randomly sampled set of comparisons as the score 164

quality. They also adapt the model with supervised 165

training. Lastly, Liu et al. (2024) demonstrate lim- 166

itations for LLM scoring and, therefore, instead, 167

consider pairwise comparisons. They introduce 168

PAirwise-preference Search (PAIRS), a variant of 169

the merge sort algorithm using LLM probabilities. 170

Comparisons to Scores: Although LLMs have 171

only recently been used as pairwise evaluators, the 172

problem of ranking a set of candidates from a set of 173

pairwise comparisons has been extensively studied 174

in many different contexts, including sports (Beau- 175

doin and Swartz, 2018; Csató, 2013), information 176

retrieval (Cao et al., 2007; Liu et al., 2009) and so- 177

cial studies (Manski, 1977; Louviere et al., 2000). 178

Arguably the most widely used parametric model is 179

the Bradley-Terry model (Bradley and Terry, 1952), 180

which models the win probabilities based on the dif- 181

ference of the latent scores of the compared items. 182

The latent scores are deduced by maximizing the 183

2



likelihood of the observed pairwise comparison184

data, with various works discussing algorithms that185

converge to the solution (Davidson and Farquhar,186

1976; David, 1963; Cattelan, 2012). Additionally,187

(Chen et al., 2022) investigate predicting rankings188

under the Bradley-Terry-Luce model (Luce, 2005),189

while TrueSkill (Herbrich et al., 2006; Minka et al.,190

2018) extends the Bradley-Terry model to incor-191

porate uncertainties in player skills (in a sports192

context) under a Bayesian framework.193

3 A Product of Experts Perspective of194

Comparative Assessment195

Let x1:N ∈ X be a set of N candidate texts and196

s1:N ∈ R the scores of the texts for a particular197

assessed attribute. Given a set of K pairwise com-198

parisons, C1:K , the objective is to determine a pre-199

dicted set of scores, ŝ1:N , that are close to the true200

scores, s∗1:N .201

3.1 The Bradley–Terry Model202

For traditional comparative assessment set-ups,203

outcomes are usually discrete and either binary204

(win/loss) or ternary (win/draw/loss). A stan-205

dard approach of going from a set of discrete206

comparisons C1:K to predicted scores ŝ1:N is the207

Bradley–Terry model (Bradley and Terry, 1952;208

Zermelo, 1929). Assuming each comparison Ck209

is of the form (i, j, yij), where yij ∈ {0, 1} repre-210

sents whether xi is better than xj , one can adopt a211

probabilistic binomial model where the probabil-212

ity of victory depends solely on the difference of213

scores, P(yij |si−sj) = σ(si−sj). The most popular214

form is the sigmoid function, σ(x) = 1/(1 + e−x).215

The Bradley-Terry model treats the scores as pa-216

rameters of the model, and aims to maximize the217

likelihood of the observations,218

P(C1:K |s1:N ) =
∏

i,j∈C1:K

P(yij |s1:N ) (1)219

P(yij |s1:N )=σ(si sj)
yij (1 σ(si sj))

1 yij (2)220

221 ŝ1:N = argmax
s1:N

P(C1:K |s1:N ) (3)222

Although no closed-form solution exists, Zer-223

mello’s algorithm (Zermelo, 1929) can be used to it-224

erate the solution until convergence is reached. Fur-225

thermore, while Zermello’s algorithm is known to226

be slow to converge (Dykstra, 1956; Hunter, 2004),227

later improvements have demonstrated faster con-228

vergence rates (Newman, 2023).229

3.2 A Product of Experts Perspective 230

For LLM comparative assessment, as opposed to 231

traditional binary comparative decisions, one has 232

access to richer information, including the associ- 233

ated probability of a decision. Each comparison 234

outcome can therefore be extended to the form 235

(i, j, pij) where pij=Plm(yi>yj |xi, xj), the LLM 236

probability of the comparative decision. To con- 237

veniently incorporate the soft-probability observa- 238

tions, we explore directly modelling the probability 239

of scores given the comparative observations and 240

reformulate the scores as a Product of Experts. A 241

Product of Experts (PoE) (Hinton, 1999; Welling, 242

2007) combines the information gained from many 243

individual experts by taking their product and nor- 244

malizing the result. One can consider each com- 245

parison as information gained from independent 246

experts, enabling the probability for the scores to 247

be written as: 248

p(s1:N |C1:K) =
1

Z

∏
i,j∈C1:K

p(si−sj |Ck) (4) 249

Each expert can be conditioned on the observed 250

LLM probability such that p(si−sj |Ck) = p(si− 251

sj |pij). As a possible expert, we consider a form re- 252

lated to the limiting behaviour of the Bradley-Terry 253

Model and re-express Equation 2 with a probabilis- 254

tic classification result form, 255

p(si sj |pij)=
1

Zij
σ(si sj)

pij (1 σ(si sj))
1 pij 256

Where 0 < pij < 1, and Zij = π/sin(pijπ) is a 257

normalization constant to ensure a valid probabil- 258

ity density function. However, the experts are not 259

restricted to sigmoid-based modelling; one can se- 260

lect any family of probability distributions, such as 261

Gaussian experts, which are discussed next. 262

3.3 Properties of Gaussian Experts 263

Having Gaussian experts yields convenient proper- 264

ties in the PoE framework, such as a closed-form 265

expression for the solution (Zen et al., 2011). If the 266

underlying distribution is assumed to be Gaussian 267

with the mean fµ(pij) and variance fσ(pij) only 268

dependent on the comparative probability, such 269

that p(si−sj |pij) = N
(
si−sj ; fµ(pij), fσ(pij)

)
, 270

then by representing the scores in vector form, 271

s=[s1:N ], one can express the distribution as, 272

p(Ws|C1:K) = N
(
Ws;µ, diag(σ2)

)
(5) 273

Where W∈RK×N (illustrated in Appendix A.1) 274

is a matrix representing the set of comparisons, 275
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such that for the kth comparison between i and j276

Wki = 1, Wkj = −1, and Wkm = 0 ∀m ̸= i, j277

, s is the N-dimensional column vector of s1:N ,278

µ ∈ RK is a vector of the means, and σ2 ∈ RK279

equivalently represents the variances,280

µ = [fµ(p
(1)
ij ), fµ(p

(2)
ij ), ...fµ(p

(K)
ij )]T (6)281

σ2 = [fσ(p
(1)
ij ), fσ(p

(2)
ij ), ...fσ(p

(K)
ij )]T (7)282

Note that as defined, the matrix W is not full rank283

since any shift of the scores s will yield an equiv-284

alent output. To address this, an additional ex-285

pert on the first element can be added, such that286

p(s1|C0) = N (0, σ2
0), prepending an extra row to287

all of W, µ and σ2, yielding W̃, µ̃ and σ̃2 re-288

spectively. The distribution takes a similar form,289

p(W̃s|C1:K) = N (W̃s; µ̃, diag(σ̃2)), which can290

be rearranged to yield a Gaussian expression for the291

score distribution, p(s1:N |C1:K) = N (s;µ∗
s, Σ̃

∗
s),292

with mean and covariance matrix defined as,293

µ∗
s = W̃TΣ̃−1W̃)−1W̃TΣ̃−1µ̃ (8)294

Σ̃∗
s = (W̃TΣ̃−1W̃)−1 (9)295

where Σ̃ = diag(σ̃2) (the rearranging is shown in296

Appendix A.5). Therefore, the mean of the Gaus-297

sian provides a simple and closed-form solution to298

the maximum probability solution, ŝ1:N ,299

ŝ = argmax
s1:N

p(s1:N |C1:K) (10)300

= (W̃TΣ̃−1W̃)−1W̃TΣ̃−1µ̃ (11)301

3.4 Further Gaussian Assumptions302

A drawback with the Gaussian Expert is that pro-303

ducing µ̃ and σ̃2 requires knowledge of both fµ(p)304

and fσ(p). This is not available without human-305

annotated data, making the approach impractical306

for zero-shot applications. To enable a practi-307

cal solution applicable in zero-shot settings, one308

can make two assumptions on the Gaussian ex-309

perts: 1) that the variance is constant regardless310

of the predicted probability fσ(p) = σ2, and 2)311

that the mean scales linearly with the probability312

fµ(p) = α · (p − β). These assumptions appear313

reasonable for several models and datasets (in Ap-314

pendix Figure 10) and simplify the solution to,315

ŝ = α · (W̃TW̃)−1W̃Tµ̃ (12)316

where µ̃T = [0, p
(1)
ij −β, ..., p

(K)
ij −β]. Note that317

a sensible choice might be β = 0.5, since when318

inputting texts of equal quality into an unbiased 319

system, an average output probability of 0.5 would 320

be expected. Further, the value of α only influences 321

the relative spacing and subjective scale used to 322

score the texts and can arbitrarily be set to 1. 323

3.5 Modelling Bias in Non-Symmetric Settings 324

LLMs can have inconsistent outputs where pij ̸= 325

(1−pji) and, in particular, demonstrate positional 326

bias (Zheng et al., 2023; Chen et al., 2024; Liusie 327

et al., 2024a). Positional bias occurs when the sys- 328

tem prefers one position over another such that 329

Eplm(p)[p] ̸= 0.5, while for unbiased systems, the 330

expectation should be near 0.5. Combining the 331

probabilities from both permutations such that 332

p̃ij=
1
2 ·(pij+(1−pji)) ensures that p̃ij=(1−p̃ij) 333

and eliminates positional bias; however, it requires 334

two LLM calls per comparison and may not be 335

the best use of LLM calls. To efficiently min- 336

imize the impact of positional bias without re- 337

quiring both LLM permutation calls, we investi- 338

gate directly modelling model position bias into 339

the experts. A simple approach is to introduce a 340

bias parameter γ that shifts the experts such that, 341

Pγ(si − sj |pij) = P (si−sj− γ|pij). The value of 342

γ can be determined by noting that the expected 343

score difference between two randomly sampled 344

texts is zero, E[si − sj ] = 0. For the linear Gaus- 345

sian expert, this is equivalent to applying a linear 346

shift in the mean, and therefore by considering 347

N
(
si−sj ;α·(pij − β), σ2

)
, 348

E[si − sj ] = E[fµ(pij)] = α
(
E[pij ]− β

)
(13) 349

setting the expression to zero yields that the debi- 350

asing term β=E[pij ]. For Bradley-Terry, though 351

it can be shown that fµ(pij) = −π ·cot(πpij), this 352

value tends to infinty when p approaches either 0 or 353

1. Therefore, instead of setting the expected value 354

of the skill difference for any random pair to be 355

zero, we approximate finding the bias by ensuring 356

the mode of the underlying (log-) distribution is 0 357

when the skill difference is 0. Based on this ap- 358

proximation, the resulting bias parameters for the 359

extended Bradley-Terry is γ = −logit(E[pij ]) 360

(see Appendix A.8 for further details). 361

3.6 Comparison Selection 362

The previous theory detailed how to determine the 363

predicted scores ŝ1:N given a random set of ob- 364

served comparisons C1:K . As an extension, one 365

may consider how to select the set of comparisons 366
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that provide the most information. Under the Gaus-367

sian model, the probability of the most likely set of368

scores is given as,369

p(ŝ1:N |C1:K) =

√
det(W̃TW̃)

(2πσ2)N/2
(14)370

shown in Appendix A.5. For a fixed number of371

comparisons K, one may therefore aim to find the372

matrix W̃∗ that minimizes the uncertainty,373

W̃∗ = argmax
W̃

p(ŝ1:N |C1:K) (15)374

≡ argmax
W̃

det(W̃TW̃) (16)375

This can be approximated through an iterative376

greedy search. Assume that W̃(k)∗ is the se-377

lected comparison matrix using k comparisons and378

A(k)∗ = (W̃(k)∗TW̃(k)∗)−1. The next selected379

comparison (̂i, ĵ) can be calculated as,380

î, ĵ = argmax
i,j

A
(k)∗
ii +A

(k)∗
jj − 2 ·A(k)∗

ij (17)381

As shown in Appendix A.6, where it is also shown382

that the inverse matrix A(k+1)∗ can be updated383

efficiently from A(k)∗.384

4 Experimental Setup385

4.1 Datasets386

We consider a range of NLG evaluation datasets387

which have available ground-truth scores. For sum-388

mary evaluation we use SummEval (Fabbri et al.,389

2021) which has 100 articles each with 16 machine-390

generated summaries evaluated on coherency (COH),391

consistency (CON), fluency (FLU), and relevancy392

(REL). For dialogue response generation we use393

TopicalChat (Mehri and Eskenazi, 2020) which394

has 60 dialogue contexts with six responses per395

context assessed on coherency (COH), continuity396

(CNT), engagingness (ENG), and naturalness (NAT).397

For question difficulty ranking, we use CMCQRD398

(Mullooly et al., 2023), which has 658 multiple-399

choice reading comprehension questions annotated400

on question difficulty. Lastly, for story evaluation,401

we use HANNA (Chhun et al., 2022) which has402

1056 machine-generated stories annotated by hu-403

mans on coherency (COH), complexity (CMP) and404

surprisingness (SUR). For CMCQRD and HANNA405

we compare the texts across all 658/1056 texts.406

4.2 Methodology407

Base Large Language Models Three different408

families of opensourced LLMs are used as judge409

LLMs: FlanT5 (3B, 11B) (Chung et al., 2022), 410

instruction-tuned Mistral (7B) (Jiang et al., 2023) 411

and Llama2-chat (7B, 13B) (Touvron et al., 2023). 412

LLM Pairwise Probability Calculation To get 413

comparative probabilities, we follow Liusie et al. 414

(2024b) and use P(A)/(P(A)+P(B)). The symmetric 415

set-up (where both permutations are done) is used 416

unless stated otherwise, though in Section 5.4 the 417

non-symmetric set-up is investigated. 418

Comparison Selection When considering com- 419

parative assessment with a subset of comparisons, 420

the base experiments use a randomly drawn set of 421

comparisons such that each comparison is equally 422

likely to be chosen. For a set of inputs x1:N , we ran- 423

domly select K unique pairs (xi, xj) to be judged 424

by the LLM, ensuring that each text xi is involved 425

in at least one comparison. Experiments begin with 426

K=2N comparisons and K is incremented to the 427

full set of comparisons, K=N ·(N−1). 428

Scoring Methods Several different methods of 429

mapping a set of comparisons to scores are used in 430

this paper, categorized into binary decision-based 431

or probability-based. For binary decision meth- 432

ods, our first baseline is the win-ratio which calcu- 433

lates the number of comparisons won as the quality 434

score, as used in Qin et al. (2023); Liusie et al. 435

(2024b); Raina and Gales (2024). The second base- 436

line is the Bradley-Terry model, BT, (Bradley and 437

Terry, 1952), where the solution is found by Zer- 438

melo (Zermelo, 1929) with a convergence thresh- 439

old of 1e−4. Since any candidate that wins/loses 440

all games will have an infinite score, a prior of 441

1/(N−1) wins is added to each selected compari- 442

son. For the methods that leverage the LLM proba- 443

bilities, the baseline is the average probability avg- 444

prob of a text in all its comparisons, as used in Park 445

et al. (2024); Molenda et al. (2024). To better lever- 446

age the probabilistic information, our paper pro- 447

poses to decompose the probability into a product 448

of experts. We propose two variants; 1) PoE-BT 449

which uses a variant of the Bradley-Terry model 450

extended to soft probabilities (described in Section 451

3.2), and 2) PoE-g which uses the Gaussian expert 452

with the linear mean and constant variance assump- 453

tions (described in Section 3.4). Lastly, the final 454

method is PoE-g-hard, which applies the POE- 455

gaussian framework, however, using hard binary 456

decisions and not the soft probabilities. 457

Evaluation For SummEval and TopicalChat, the 458

summary-level Spearman score is used as the as- 459
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sessment metric. For each context, we do pair-460

wise comparisons using the LLM on the full set of461

N(N−1) comparisons. We then simulate using a462

subset of comparisons by randomly selecting K of463

these outcomes. This process is repeated 100 times464

for a particular number of total comparisons, K,465

and we calculate both the mean and standard devi-466

ation of performance over the entire dataset. For467

Hanna and CMCQRD, there is no context depen-468

dence and therefore the number of candidate texts469

is much larger, with N=1050 and N=550 respec-470

tively. As such as we sample 200,000 comparisons471

(all symmetric), which is only a subset of the to-472

tal possible comparisons, and provide analysis by473

simulating randomly sampling further subsets of474

these comparisons. For each K, we run 20 ind-475

pendent runs and average performance. For both476

datasets, equivalent tables for Pearson are provided477

in Appendix C.478

5 Results479

5.1 SummEval and TopicalChat480

In this Section, we investigate whether the Product481

of Experts framework can yield performance boosts482

for SummEval and TopicalChat in efficient settings.483

SummEval has 16 candidates per context (N=16)484

and therefore considering all possible comparisons485

takes 240 comparisons, which though feasible, can486

be quite costly. Table 1 presents SummEval perfor-487

mance when only a subset of the comparisons are488

made, with the average Spearman rank correlation489

coefficient (SCC) over all contexts and attributes490

presented for different base LLMs. Equivalent ta-491

bles for TopicalChat are provided in Appendix C.2492

where similar trends are seen. The following obser-493

vations can be made:494

Average probability performs better than the495

win-ratio in efficient settings When considering496

the full set of comparisons (K =240) the perfor-497

mance of average probability is only marginally498

better than using win-ratio (within 1 SCC). How-499

ever, when using 20% of the comparisons (K=48)500

the average probability yields significant gains of501

3-4 SCC. This highlights that especially when only502

using a subset of comparisons, leveraging the soft503

probabilistic information is beneficial.504

The PoE solution yields large gains in efficient505

settings Even when only using hard decisions, for506

K = 48, both the Bradley-Terry model (BT) and507

the PoE Gaussian with hard decisions (PoE-g-hard)508

have mild performance gains over the win-ratio.509

Decisions Probabilities

System K Win-r BT Avg-pr PoE-BT PoE-g

Llama2-7B 48 21.6 23.4 24.0 26.8 26.6
240 27.8 27.9 28.4 28.4 28.4

Llama2-13B 48 30.8 33.1 33.7 37.7 37.3
240 39.3 39.3 39.3 39.3 39.3

Mistral-7B 48 29.7 31.9 31.1 33.2 32.8
240 38.1 38.1 37.7 37.7 37.7

FlanT5-3B 48 34.1 36.6 38.4 42.6 42.4
240 43.6 43.6 44.3 44.3 44.3

FlanT5-11B 48 31.2 33.4 34.7 38.5 38.4
240 40.0 40.0 40.5 40.5 40.5

Table 1: Spearman Correlations for SummEval, aver-
aged over all attributes (COH, CON, FLU, REL). K is the
number of comparisons made, where K = 240 is the
full set of comparisons.

Nevertheless, the real benefits are seen when using 510

PoEs with soft probabilities, with both POE-BT 511

and PoE-g significantly outperforming the average 512

probability. With these methods, when using only 513

20% of the comparisons, one can achieve perfor- 514

mance close to when using the full comparison set 515

(in four out of five cases within 2 SCC), when win- 516

ratio would have degredations of up to 10 SCC. The 517

findings are general and hold across the different 518

SummEval attributes and models. 519

Gaussian PoE and BT PoE result in sim- 520

ilar performing solutions When using full- 521

comparisons, the Gaussian PoE solution can be 522

shown to be equivalent to the average probability 523

(shown in Appendix A.3) however the BT PoE 524

approach will lead to a different solution. Nonethe- 525

less, the performance for both PoE-BT and PoE-g 526

are very comparable for most models/datasets, in 527

both the hard and soft set-ups. Further the Gaus- 528

sian solution has the benefit of having a convenient 529

closed form solution. 530

Convergence rates The results in Table 1 531

showed performance for the arbitrary chosen op- 532

erating point of K =48. Figures 1a and 1b show 533

the performance for two models/attributes while 534

sweeping K from K=N to the full set of compar- 535

isons, K=N(N−1)/2. The curves show that the 536

performance improves smoothly while increasing 537

number of comparisons, with the convergence rates 538

considerably better with the PoE methods. Fur- 539

ther plots for other models/tasks are provided in 540

Appendix C.3. 541
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(b) FlanT5-11B, TopicalChat, ENG.
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Figure 1: Efficiency curves when sweeping K, the number of comparisons per context, where at each K the
comparisons are randomly drawn 100 times. Average performance with 95% confidence is displayed.

5.2 Comparison Selection542

The previous results used random comparisons,543

however, an alternative would be to pre-select a544

set of comparisons that maximizes the information545

gained from a fixed number of comparisons. Sec-546

tion 3.6 discusses how for the Gaussian-POE, this547

can be achieved with a practical greedy approx-548

imation. Table 2 illustrates that at the operating549

point of K = 48, pre-selecting the comparisons550

can provide further performance boosts, with the551

average performance of the probabilistic PoE ap-552

proaches consistently increasing by 0.5 SCC for all553

approaches, at no extra cost. Although the theory554

was derived using the Gaussian assumptions, the555

performance boosts are seen for all methods, with556

the largest gains for the win-ratio. Lastly, Figure 1c557

shows that performance gains are significant when558

few comparisons are made, but as the number of559

comparisons grows, the performance difference be-560

tween random and optimal selection is negligible.561

System Method Win-r Avg-pr PoE-BT PoE-g

Llama2-7B Random 21.6 24.0 26.8 26.6
Selected 23.0 24.5 27.3 27.2

Llama2-13B Random 30.8 33.7 37.7 37.3
Selected 32.4 34.6 38.2 38.0

Mistral-7B Random 29.7 31.1 33.2 32.8
Selected 31.4 32.2 34.0 33.9

FlanT5-3B Random 34.1 38.4 42.7 42.4
Selected 36.0 39.3 43.2 42.9

FlanT5-11B Random 31.2 34.7 38.4 38.4
Selected 33.1 35.7 39.2 39.0

Table 2: SummEval Spearman correlations when using
the greedy optimal set of comparisons, for K=48.

5.3 Hanna and CMCQRD562

The previous experiments demonstrated that the563

PoE framework yields significant performance564

boosts in efficient settings. However, for the ana-565

lyzed datasets, N is 16 and 6, and though PoE can566
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Figure 2: Mistral-7B, HANNA COH
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Figure 3: Llama2-13B, CMCQRD DIF

reduce the number of LLM calls, it is still feasible 567

to run all O(N2) comparisons. This section now 568

evaluates CMCQRD and HANNA, where N=1056 569

and N=658 respectively. Table 3 presents perfor- 570

mance when using α ·N comparisons, where it’s 571

observed that POE-BT achieves consistently better 572

performance than the average probability across 573

all models and datasets. Faster convergence is ob- 574

served for PoE-BT, with the average performance 575

difference between 5 and 50 comparisons per item 576

0.8 SCC apart, while it is 2.5 SCC for the average 577

probability. Note that evaluation was only con- 578

ducted for Llama2 and Mistral due to FlanT5’s 579

maximum token length of 512. 580

Figure 3 illustrates the full efficiency curves for 581
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CMCQRD DIF HANNA COH HANNA CMP HANNA SUR
system K avg-prob PoE-BT avg-prob PoE-BT avg-prob PoE-BT avg-prob PoE-BT

Llama2-7B

5N 31.9 33.4 39.2 41.3 45.7 47.9 32.8 34.1
10N 33.8 34.4 40.3 41.4 46.9 48.2 33.6 34.3
20N 34.8 35.0 41.1 41.6 47.6 48.3 34.1 34.5
50N 35.3 35.3 41.4 41.6 48.0 48.3 34.4 34.5

Llama2-13N

5N 30.0 31.2 39.9 41.3 51.7 54.6 34.6 36.9
10N 31.5 31.9 41.2 41.8 53.4 54.9 36.0 37.2
20N 32.2 32.3 41.8 41.9 54.3 55.1 36.8 37.5
50N 32.6 32.6 42.1 42.1 54.9 55.1 37.2 37.6

Mistral-7B

5N 38.9 40.7 36.6 38.3 47.3 49.9 24.2 25.5
10N 40.7 41.1 37.9 38.6 49.0 50.6 25.3 26.0
20N 41.1 41.2 38.7 38.8 50.1 50.9 25.9 26.2
50N 41.2 41.2 38.9 38.9 50.7 51.0 26.0 26.1

Table 3: Spearman correlations for CMCQRD and HANNA for specific attributes. K∈{5N, 10N, 20N, 50N} is
the total number of symmetric comparisons made, e.g., 5N refers to each sample being in 5 comparisons.

several models and attributes. We observe that PoE-582

BT typically performs best, and though PoE-g often583

performs similarly to PoE-BT, in very low informa-584

tion regions PoE-g can have poor correlations. In585

all cases, the PoE methods appear to mostly con-586

verge to their solution within 10 ·N comparisons,587

significantly fewer than N(N−1).588

5.4 Non-Symmetric Comparions589

Previously, to minimize the influence of posi-590

tional bias and model inconsistency, both permu-591

tations of any comparison were evaluated. Al-592

though this reduces bias, one may gain more in-593

formation by having a more diverse set of com-594

parisons. Mistral-7B has minimal positional bias595

with E[pij ] = 0.51, while Llama-7B has consid-596

erable bias with E[pij ] = 0.78. To investigate597

whether symmetry is required, we look at perfor-598

mance of the non-symmetric set-up for Mistral-7B599

and Llama-7B (shown in Appendix Figure 7). For600

Llama2-7B, the debiased expert yields large perfor-601

mance gains while for Mistral-7B, the debiasing602

parameter has little influence, as expected since γ603

will be near 0. Note that, although Llama2-7B is604

more biased, it has better judgement capabilities605

and achieves better correlations, though the debias-606

ing parameter is required. Figure 4 compares non-607

symmetric debiased performance with symmetric608

performance and illustrates that the two perform609

similarly, albeit with slightly different characteris-610

tics. Non-symmetric often does better in the low611

number of comparisons region, symmetric some-612

times marginally better after, and performance is613

similar when more comparisons are made. Results614

for other models and attributes are presented in615

Appendix C.6.616
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Figure 4: Mistral-7B, HANNA COH,
symmetric vs non-symmetric

6 Conclusions 617

Comparative assessment using LLMs has been 618

shown to be effective for text assessment. This pa- 619

per investigates framing the scoring process within 620

a Product of Experts framework, where the com- 621

parison information (including model confidence) 622

can be easily combined to determine a set of scores 623

that effectively capture text quality. This enables 624

comparative assessment to not suffer from slow 625

convergence rates, as now only a subset of the pos- 626

sible comparisons is used to predict the scores, but 627

maintain the performance from when using the full 628

set of comparisons. Further, using Gaussian ex- 629

perts yields a closed-form solution and provides 630

a basis for deriving a greedy-optimal set of com- 631

parisons. The paper demonstrated the effective- 632

ness of the approach on multiple different standard 633

NLG evaluation datasets, such as SummEval and 634

TopicalChat, as well as for large datasets where 635

N > 500, which led to substantial computational 636

savings against standard methods. 637
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7 Limitations638

The LLM comparisons can depend largely on the639

selected prompts used and the process used to640

extract probabilities. We chose simple prompts,641

but did not investigate the impact of prompt sen-642

sitivity and how well the approach holds when643

weaker/stronger prompts are used. Though due644

to the zero-shot nature, and the consistent observed645

performance boosts, our method to remain effec-646

tive is likely in such settings, though this was not647

verified. Further, we are able to apply a soft-variant648

of Zermello to quickly optimise the PoE-Bradley-649

Taylor approach. However, when the bias term is650

introduced, soft-zero cannot be applied, and op-651

timization of the solution is significantly slower.652

Nonetheless, since the main computational costs653

is associated with LLM calls, this is not a signifi-654

cant drawback. Lastly, our method is effective only655

when soft LLM probabilities are available, though656

for some APIs probabilities are not available and657

our method is less effective in bure binary decision658

cases.659

8 Ethical Statement660

Our paper addresses the cases of using more effi-661

cient use of LLMs when being used for NLG as-662

sessment. Although our work makes automatic as-663

sessment more practical and applicable to more set-664

tings, overly relying on automatic assessment may665

yield unintended consequences, especially when666

models have implicit biases that may discriminate667

against certain styles. Therefore as well as using668

automatic evaluation as useful metrics for text qual-669

ity, it is useful to maintain human evaluation to670

ensure that systems to not unfairly penalize partic-671

ular styles or properties which in general may be672

fine for the task.673
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A Additional Theory for the Product of927

Expert Framework928

A.1 Structure of W̃ Matrix929

The paper discussed the comparison matrix W̃∈930

RK+1×N , where each row represents the particular931

comparison being considered. It was discussed how932

for the kth comparison between i and j, Wki=1,933

Wkj=−1, and Wkm=0 ∀m ̸= i, j. Further, an934

extra row was prepended to W adding constraints935

on the first score, forming W̃ and ensuring the936

corresponding matrix is not defective. To illustrate937

the structure of W̃, consider the case where one938

has 4 elements x1:4 and all possible comparisons939

are considered,940

W̃ =



1 0 0 0
1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1


(18)941

A.2 Structure of W̃TW̃ Matrix942

In the Gaussian-Products of Experts, the variance943

was shown to be directly related to the matrix944

W̃TW̃. For the full comparison case previously945

considered, this would yield a matrix of the form,946

W̃TW̃ =


4 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 (19)947

Let Ã = W̃TW̃. For any set of selected compar-948

isons, Ãij = w̃i · w̃j . Therefore by taking into949

account the structure of W̃ , it’s easily shown that950

the diagonal elements represent the number of com-951

parisons the element has been involved in, while952

the off-diagonal elements are -1 if the comparison953

is made,954

Ãkk =
∑
i

1(xk ∈ Ci) (20)955

Ãij =

{
−1 if (xi, xj) ∈ CK ,

0 otherwise.
(21)956

This means that for the full comparison matrix,957

irrespective of N , the matrix W̃TW̃ will have the958

form, 959

W̃TW̃ =


N −1 −1 . . . −1
−1 N−1 −1 . . . −1
−1 −1 N−1 . . . −1

...
...

...
. . .

...
−1 −1 −1 . . . N−1

 960

A.3 Equivalence of Gaussian PoE Solution 961

with Average Probability 962

Given the structure of W̃TW̃, when considering 963

the full-comparison set-up, the inverse is given by, 964

(
W̃TW̃

)−1
=


1 1 1 . . . 1
1 1+ 2

N 1+ 1
N . . . 1+ 1

N
1 1+ 1

N 1+ 2
N . . . 1+ 1

N
...

...
...

. . .
...

1 1+ 1
N 1+ 1

N . . . 1+ 2
N

 965

966

=
N + 1

N


1 1 1 . . . 1
1 1 1 . . . 1
1 1 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . 1

 967

+
1

2N


−1 −1 −1 . . . −1
−1 1 0 . . . 0
−1 0 1 . . . 0

...
...

...
. . .

...
−1 0 0 . . . 1

 968

For the Gaussian PoE with linear mean and 969

constant Gaussian assumptions, the solution was 970

shown to be of form ŝ = α · (W̃TW̃)−1W̃µ̃. By 971

noting that µ̃ represents the LLM probabilities for 972

each comparative decision, we observe that W̃µ̃ 973

simply represents the sum of probabilities for all 974

comparisons that each element has been a part of. 975

Therefore, the above equation shows that the solu- 976

tion will be a constant shift of the average proba- 977

bility for any particular sample. 978

A.4 The Limiting Behaviour of the 979

Bradley-Terry Model 980

Recall that the Bradley-Terry model, which uses 981

discrete outcomes, has form 982

P(C1:K |s1:N ) =
∏

i,j∈C1:K

P(yij |s1:N ) (22) 983

P(yij |s1:N )=σ(si sj)
yij (1 σ(si sj))

1 yij 984
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Let us consider the situation where multiple out-985

comes of the same comparison are sampled from986

the LLM, assuming that each hard decision yij987

is drawn from Bernoulli distribution such that988

yij ∼ Bernoulli(pij). One can define C
(i,j)
1:K as989

all the comparisons sampled between xi and xj .990

The log probability of the comparisons can then be991

decomposed as,992

log P(C1:K |s1:N ) (23)993

=
∑
i,j,yij

log P(yij |s1:N ) (24)994

=
∑
i

∑
j

∑
yij∈C

(i,j)
1:K

log P(yij |s1:N ) (25)995

=
∑
i

∑
j

M · 1

M

∑
yij∈C

(i,j)
1:K

log P(yij |s1:N ) (26)996

Where M ∈ R. However, let M represent the997

number of times each comparisons is made, such998

that |C(i,j)
1:K | = M . By considering the limiting case999

where M → ∞, the expression will then tend to,1000

1

M

∑
yij∈C

(i,j)
1:K

log P(yij |s1:N )1001

=
1

M

∑
yij∈C

(i,j)
1:K

yij log σ(si sj)+(1 yij) log(1 σ(si sj))1002

=Eyij [yij log σ(si sj)+(1 yij) log(1 σ(si sj))]1003

=pij log σ(si sj) + (1 pij) log(1 σ(si sj))1004

Therefore as M → ∞,1005

M
√
P(C1:K |s1:N ) (27)1006

=
∏

i,j,pij∈C1:K

σ(si sj)
pij (1 σ(si sj))

1 pij (28)1007

A.5 Form of the Gaussiam PoE Score1008

Distribution1009

Given p(Ws|C1:K) = N
(
Ws; µ̃, Σ̃

)
, to deter-1010

mine p(s|C1:K) one can expand the expression and1011

isolate all terms that have an s, yielding,1012

p(Ws|C1:K) (29)1013

=N
(
Ws; µ̃, Σ̃

)
(30)1014

∝ exp

(
1

2
(Ws− µ̃)TΣ̃−1(Ws− µ̃)

)
(31)1015

∝ exp

(
1

2

(
sTWTΣ̃−1Ws+ 2sTWTΣ̃−1µ̃

))
1016

As the distribution over scores will be Gaussian, 1017

p(s|C1:K) ∼ N (s;µ∗,Σ∗), one can equate coeffi- 1018

cients to derive the form used in the paper, 1019

Σ̃∗
s = (W̃TΣ̃−1W̃)−1 (32) 1020

µ∗
s = (W̃TΣ̃−1W̃)−1W̃TΣ̃−1µ̃ (33) 1021

Which has pdf, 1022

1

(2π)N/2|Σ̃|1/2
exp

(
1

2
(s µ∗

s)
TΣ∗−1(s µ∗

s)

)
1023

The maximum probability scores will be at the 1024

mean, s = µ∗
s, which has a probability of, 1025

1

(2π)N/2det
(
(W̃TΣ̃−1W̃)−1

)1/2
(34) 1026

=

√
det(W̃TΣ̃−1W̃)

(2π)N/2
(35) 1027

For the linear Gaussian, where it is assumed that 1028

Σ̃ = σ2I, this can be reduced to, 1029

p(s=µ∗
s|C1:K) =

√
det(W̃TW̃)

(2πσ2)N/2
(36) 1030

A.6 Efficient Greedy Comparison Selection 1031

Assume that W̃(k)∗ is the selected comparison ma- 1032

trix using k comparisons. Considering an addi- 1033

tional comparison (i, j) is equivalent to adding an 1034

extra row r ∈ RN where ri = 1, rj = −1 and 1035

rl=0 ∀l ̸= i, j. By noting that, 1036

det
(
[W̃; r]T[W̃; r]

)
(37) 1037

=det(W̃TW̃ + rrT) (38) 1038

=det(W̃TW̃)(1 + rT(W̃TW̃)−1r) (39) 1039

the next optimal comparison (̂i, ĵ) is calculated as, 1040

î, ĵ = argmax
i,j

A
(k)∗
ii +A

(k)∗
jj − 2 ·A(k)∗

ij (40) 1041

Updating W̃(k)∗ is trivial, since considering an 1042

additional comparison (i, j) is equivalent to adding 1043

an extra row r ∈ RN to W̃(k)∗, where ri = 1, 1044

rj=−1 and rl=0 ∀l ̸= i, j. Therefore 1045

W̃(k+1)∗ = [W̃(k)∗; r] (41) 1046
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However one can also efficiently update the inverse1047

using the Sherman-Morrison inversion lemma,1048

A(k+1)∗ =
(
[W̃(k)∗; r]T[W̃(k)∗; r]

)−1
(42)1049

=
(
W̃(k)∗TW̃(k)∗ + rrT

)−1
(43)1050

= A(k)∗ − A(k)∗rrTA(k)∗

1 + rTA(k)∗r
(44)1051

Note that to initialize W̃, the simplest option would1052

be to use N − 1 comparisons and follow a stripped1053

diagonal matrix, e.g.1054

W̃ =


1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1

 (45)1055

A.7 Detailed Derivation of β for the Debiased1056

PoE-Gaussian Expert1057

For a given expert, p(si − sj |pij), and an un-1058

derlying LLM which generates comparative de-1059

cisions, pLM(pij) (assuming the underlying texts1060

xi and xj are randomly drawn), there is an associ-1061

ated marginalised distribution of score differences,1062

p(si − sj). Note that as the texts are randomly1063

drawn, they are equally likely to be drawn in either1064

position and therefore, E[si − sj ] = 0. For a de-1065

biased expert pγ(si − sj |pij), the objective is to1066

find the parameter γ for the LLM that ensures that1067

E[si − sj ] = 0,1068

E[si − sj ] (46)1069

=

∫ ∞

−∞
(si sj)p(si sj)d(si sj) (47)1070

=

∫ 1

0

∫ ∞

−∞
(si sj)pγ(si sj |pij)pLM(pij)d(si sj)dpij1071

=

∫ 1

0
pLM(pij)

∫ ∞

−∞
(si sj)pγ(si sj |pij)d(si sj)dpij1072

=

∫ 1

0
pLM(pij) · E[si − sj |pij , γ] dpij (48)1073

The parameter γ was proposed to be a simple1074

linear shift of the score differences, such that1075

pγ(si sj |pij) = p(si sj γ|pij). For the linear1076

Gaussian, N
(
si sj ;α·(pij β), σ2

)
this is equiv-1077

alent to setting the β parameter. The mean of the1078

expert is α·(pij β), and therefore, 1079

E[si sj ] =

∫ 1

0
pLM(pij) · E[si sj |pij ] dpij (49) 1080

=

∫ 1

0
pLM(pij) · α·(pij β) dpij (50) 1081

= α

(∫ 1

0
pij pLM(pij) dpij − β

)
(51) 1082

Which setting to zero yields β = E[pij ] ≈ 1083
1
K

∑K
k=1 p

(k)
ij , i.e. β should be set to the average 1084

LLM probability. 1085

A.8 Deriving γ for the Debiased PoE-BT 1086

Expert 1087

For experts that are unstable or for which the expec- 1088

tation is analytically intractable, one can instead 1089

ensure the mode of the skill difference likelihood 1090

is set to 0 when the skill difference is 0. Differenti- 1091

ating the expected score difference yields, 1092

∂

∂γ
E[log pγ(si − sj)] (52) 1093

=
∂

∂γ

∫ 1

0
log pγ(si sj |pij)p(pij)dpij (53) 1094

=

∫ 1

0
pLM(pij)

∂

∂γ

(
log pγ(si sj |pij)

)
dpij (54) 1095

The probabilistic Bradley-Terry accounting for bias 1096

has form, 1097

pγ(si − sj |pij) =
1

Zij
· epij ·(si−sj−γ)

1 + e(si−sj−γ)
(55) 1098

which when differentiated yields, 1099

∂

∂γ
log p(si − sj |p) (56) 1100

=
∂

∂γ

(
pij · (si sj γ) log(1 + esi sj γ)

)
(57) 1101

=− pij +
esi sj γ

1 + esi sj γ (58) 1102

Evaluating the integral at si − sj = 0, 1103

∂

∂γ
E[log pγ(si − sj)]

∣∣∣∣
si−sj=0

(59) 1104

=

∫ 1

0
pLM(pij)

(
pij +

e−γ

1 + e−γ

)
dpij (60) 1105

setting to zero yields, γ = −1 · log
(

E[pij ]
1+E[pij ]

)
= 1106

−logit(E[pij ]) ≈ logit
(

1
K

∑K
k=1 p

(k)
ij

)
1107
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dataset score prompt

SummEval COH
Article: <context>\n\nSummary A: <A> \n\nSummary B: <B> \n\nWhich
Summary is more coherent, Summary A or Summary B?

SummEval CON
Article: <context> \n\nSummary A: <A> \n\nSummary B: <B> \n\nWhich
Summary is more consistent to the article, Summary A or Summary B?

TopicalChat CNT
Dialogue: <context> \n\nResponse A: <A> \n\nResponse B: <B> \n\nWhich
Response continues the dialogue better, Response A or Response B?

TopicalChat NAT
Dialogue: <context> \n\nResponse A: <A> \n\nResponse B: <B> \n\nWhich
Response appears more natural, Response A or Response B?

HANNA SUR
Story A: \n<A> \n\nStory B: \n<B> \n\nWhich story is more surprising,
Story A or Story B?

HANNA CMP
Story A: \n<A> \n\nStory B: \n<B> \n\nWhich story is more complex, Story
A or Story B?

CMCQRD DIF
Question A: \n<A> \n\nQuestion B: \n<B> \n\nWhich reading comprehen-
sion question is more difficult to answer, Question A or Question B?

Table 4: Prompts used for prompting the LLM to make pairwise decisions between two candidate texts.

B Experimental Details1108

B.1 Prompts1109

Table 4 shows examples of the prompts used for1110

generating comparative decisions (other prompts1111

for other attributes were of similar style). For a1112

particular dataset and attribute, all models are pro-1113

vided with the same simple prompts, which were1114

the only prompts used for experiments. No prompt1115

engineering was done, matching situations where1116

one doesn’t have access to labels to evaluate sys-1117

tems.1118

B.2 Computation Resources1119

All experiments were run on L40 machines, where1120

evaluation was parallelised over 4 machines. Each1121

SummEval attribute took a 1 L40 GPU hours for1122

Llama2-7b, Mistral-7B, and FlanT5-3B (despite be-1123

ing smaller, FlanT5 is float32 and hence not faster)1124

while Llama2-13B took 2 hours and FlanT5-11B1125

took 2.5 hours. For each attribute of HANNA, per-1126

forming 200,000 comparisons required 8/8/9/15/211127

GPU hours for Llama2-7B/Mistral-7B/FlanT5-1128

3B/Llama2-13B/FlanT5-11B. For CMCQRD per-1129

forming 200,000 comparisons required 8/8/9/15/211130

GPU hours for Llama2-7B/Mistral-7B/FlanT5-1131

3B/Llama2-13B/FlanT5-11B. All TopicalChat ex-1132

periments could be run in under 30 minutes.1133

B.3 Model and Dataset Licences1134

Model Licenses: LLaMA-2-7B-chat and LLaMA-1135

2-13B-chat (Touvron et al., 2023) use a LLaMA-21136

license. Mistral-7B-Instruct-v0.2 uses an Apache-1137

2.0 license. Similarly, FlanT5-3B and FlanT5-11B1138

use an Apache-2.0 license. 1139

Dataset Licenses: SummEval (Fabbri et al., 2021) 1140

uses an MIT License. TopicalChat (Mehri and Es- 1141

kenazi, 2020) uses the MIT License. Hanna (Chhun 1142

et al., 2022) uses an MIT License. CMCQRD (Mul- 1143

looly et al., 2023) uses its own license. 1144
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C Additional Results1145

C.1 SummEval Pearson Performance Tables1146

The main paper illustrated the context-level Spearman correlations for SummEval, which Table 5 also1147

shows the standard deviations of. For certain applications, one may not only care about the rank ordering of1148

the points but also the relative spacing between them, as this provides information on the predicted quality1149

difference between any two texts. Table 6 therefore presents the Pearson correlations for SummEval,1150

where similar trends to the Spearman table are observed.1151

decisions only probabilities
system K win-ratio BT PoE-g-hard avg-prob PoE-BT PoE-g

Llama2-7B 48 21.6±0.8 23.4±0.7 22.5±0.7 24.0±0.7 26.8±0.5 26.6±0.5
240 27.8±0.0 27.9±0.0 27.6±0.0 28.4±0.0 28.4±0.0 28.4±0.0

Llama2-13B 48 30.8±0.7 33.1±0.7 31.6±0.7 33.7±0.6 37.7±0.4 37.3±0.4
240 39.3±0.0 39.3±0.0 39.2±0.0 39.3±0.0 39.3±0.0 39.3±0.0

Mistral-7B 48 29.7±0.8 31.9±0.7 30.5±0.6 31.1±0.7 33.2±0.6 32.8±0.6
240 38.1±0.0 38.1±0.0 38.0±0.0 37.7±0.0 37.7±0.0 37.7±0.0

FlanT5-3B 48 34.1±0.8 36.6±0.6 34.9±0.7 38.4±0.6 42.6±0.4 42.4±0.4
240 43.6±0.0 43.6±0.0 43.4±0.0 44.3±0.0 44.3±0.0 44.3±0.0

FlanT5-11B 48 31.2±0.8 33.4±0.7 32.0±0.7 34.7±0.7 38.5±0.4 38.4±0.4
240 40.0±0.0 40.0±0.0 39.7±0.0 40.5±0.0 40.5±0.0 40.5±0.0

Table 5: Spearman Correlations for SummEval, averaged over all attributes (COH, CON, FLU, REL). K is the number
of comparisons made, where K=240 is the full set of comparisons.

system R win-ratio BT PoE-g-hard avg-prob PoE-BT PoE-g

Llama2-7B 48 21.7±0.7 23.5±0.6 22.3±0.7 24.3±0.6 26.9±0.5 26.8±0.4
240 27.8±0.0 27.8±0.0 27.8±0.0 28.4±0.0 28.4±0.0 28.4±0.0

Llama2-13B 48 31.3±0.7 33.8±0.6 32.0±0.7 36.0±0.5 40.6±0.3 39.9±0.4
240 39.8±0.0 40.4±0.0 39.9±0.0 42.1±0.0 42.5±0.0 42.1±0.0

Mistral-7B 48 30.8±0.7 33.3±0.7 31.6±0.6 32.5±0.6 35.5±0.7 34.7±0.7
240 39.7±0.0 40.5±0.0 39.7±0.0 39.9±0.0 41.3±0.0 39.9±0.0

FlanT5-3B 48 34.3±0.8 37.2±0.7 35.0±0.7 42.3±0.5 48.3±0.3 47.1±0.3
240 44.1±0.0 45.0±0.0 44.1±0.0 49.4±0.0 50.0±0.0 49.4±0.0

FlanT5-11B 48 31.7±0.7 34.2±0.7 32.3±0.7 37.3±0.6 41.8±0.5 41.4±0.5
240 40.8±0.0 41.4±0.0 40.8±0.0 43.7±0.0 44.0±0.0 43.7±0.0

Table 6: Pearson correlations for SummEval, averaged over all attributes (COH, CON, FLU, REL). K is the number of
balanced comparisons made, where K=120 is the full set of comparisons.
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C.2 TopicalChat Performance Tables 1152

Table 7 and 8 demonstrate performance for comparative assessment when applied to dialogue evaluation. 1153

The PoE approaches continue to provide considerable performance improvements at the operating point 1154

K=18, albeit since N is not very large (N=6), the full set of comparisons is only 30 comparisons and 1155

fairly feasible to compute, and so for these experiments the computational savings are less significant. 1156

system R win-ratio BT PoE-g-hard avg-prob PoE-BT PoE-g

Llama2-7B 18 28.4±1.2 28.9±1.0 28.7±1.1 27.7±1.4 29.7±0.9 29.5±1.0
30 31.5±0.0 31.6±0.0 31.6±0.0 31.5±0.0 31.5±0.0 31.5±0.0

Llama2-13B 18 37.4±1.1 38.1±1.1 37.9±1.0 38.4±1.2 40.5±0.8 40.5±0.9
30 41.6±0.0 41.7±0.0 41.8±0.0 41.6±0.0 41.6±0.0 41.6±0.0

Mistral-7B 18 42.8±1.1 43.3±0.9 43.2±1.3 42.8±1.2 45.3±1.1 44.8±1.0
30 47.4±0.0 47.2±0.0 47.7±0.0 46.9±0.0 46.9±0.0 46.9±0.0

FlanT5-3B 18 41.3±1.3 41.8±1.2 41.6±1.3 43.4±1.2 45.4±0.8 45.2±0.8
30 45.3±0.0 44.8±0.0 45.3±0.0 44.7±0.0 44.7±0.0 44.7±0.0

FlanT5-11B 18 51.2±1.2 52.4±1.1 51.9±1.1 53.8±1.1 56.2±0.8 56.1±0.8
30 57.0±0.0 56.6±0.0 56.0±0.0 58.1±0.0 58.1±0.0 58.1±0.0

Table 7: Spearman correlations for TopicalChat, averaged over all attributes (COH, CNT, ENG, NAT). K is the number
of comparisons made, where K=30 is the full set of comparisons.

system R win-ratio BT PoE-g-hard avg-prob PoE-BT PoE-g

Llama2-7B 18 28.5±1.1 29.4±0.8 29.1±1.0 29.1±1.1 29.4±0.8 30.2±0.7
30 31.6±0.0 31.6±0.0 31.6±0.0 31.5±0.0 30.7±0.0 31.5±0.0

Llama2-13B 18 37.5±1.1 38.7±1.0 38.4±1.0 40.2±1.0 41.8±0.5 41.8±0.6
30 41.4±0.0 41.5±0.0 41.4±0.0 42.5±0.0 42.6±0.0 42.5±0.0

Mistral-7B 18 42.0±1.1 43.2±0.9 43.0±1.2 44.4±1.0 46.1±0.9 46.1±0.7
30 46.4±0.0 46.3±0.0 46.4±0.0 48.1±0.0 48.4±0.0 48.1±0.0

FlanT5-3B 18 42.1±1.2 43.1±1.1 42.8±1.1 45.7±1.0 48.0±0.7 47.9±0.7
30 46.5±0.0 46.5±0.0 46.5±0.0 48.7±0.0 48.6±0.0 48.7±0.0

FlanT5-11B 18 51.5±1.2 53.3±1.0 52.9±1.0 56.3±0.9 58.1±0.6 58.3±0.6
30 57.5±0.0 57.4±0.0 57.4±0.0 59.8±0.0 59.7±0.0 59.8±0.0

Table 8: Pearson correlations for TopicalChat averaged over all attributes (COH, CNT, ENG, NAT). K is the number of
comparisons made, where K=30 is the full set of comparisons.
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C.3 SummEval and Topical Chat Efficiency Plots1157

Figure 5 showcases the performance of the various scoring approaches for further models/attributes for1158

SummEval and TopicalChat. We observe that in all cases the PoE approaches lead to best performance1159

when only a subset of comparisons are used.1160
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(a) FlanT5-3B, SummEval CON
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(b) Mistral-7B, SummEval COH
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(c) Llama-13B, SummEval FLU
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(d) FlanT5-11B, TopicalChat COH
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(e) Llama-7B, TopicalChat CNT
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(f) Llama2-13B, TopicalChat NAT

Figure 5: Efficiency curves when sweeping K, the number of comparisons per context, where at each K the
comparisons are randomly drawn 100 times. Average performance with 95% confidence is displayed. These curves
were randomly selected from all possible configurations.
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C.4 HANNA and CMCQRD Chat Efficiency Plots 1161

Figure 6 showcases further performance curves for HANNA and CMCQRD, which demonstrate the 1162

effectiveness of the PoE framework in further settings with large N . 1163
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(a) Llama2-7B, HANNA SUR
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(b) Llama2-7B, CMCQRD DIF
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(c) Llama-13B, HANNA COH
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(d) Llama-13B, HANNA SUR
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(e) Mistral-7B, HANNA COH
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(f) Mistral-7B, HANNA CMP

Figure 6: Efficiency curves where comparisons are randomly drawn 20 times. These curves were randomly selected
from all possible configurations.

C.5 Non-Symmetric Efficiency Plots 1164

Figure 7 shows the performance curves for Llama-7B and Mistral 7B. Mistral-7B has minimal positional 1165

bias with E[pij ]=0.51, while Llama-7B has considerable bias with E[pij ]=0.78. For Llama2-7B, the 1166

debiased experts, pγ(si − sj |pij), yield large performance gains and performance does not converge 1167

quickly without it. For Mistral-7B, the debiasing parameter has little influence, as expected since γ will 1168

be near 0. Note that, although Llama2-7B is more biased, it has better judgement capabilities and achieves 1169

better correlations, though the debiasing parameter is required. 1170
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(a) Llama-7B, HANNA COH,
non-symmetric
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(b) Mistral-7B, HANNA COH,
symmetric vs non-symmetric

Figure 7: Efficiency curves in the non-symmetric set-up.
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C.6 Symmetric vs Non-Symmetric Efficiency Plots1171

For several other models and datasets, Figure 8 compares the performance between symmetric and1172

non-symmetric attributes, as well as against the average probability and win-ratio. We observe that1173

both perform well and often similarly, although minor differences in characteristics can be observed, as1174

discussed in the main paper.1175
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(a) Llama2-7B, HANNA COH,
symmetric vs non-symmetric
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(b) Mistral-7B, CMCQRD DIF,
symmetric vs non-symmetric
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Figure 8: Efficiency Curves when sweeping K, the number of comparisons per context, with 95% confidence
intervals using 100 samples per step for non-symmetric set-up. These curves were randomly selected from all
possible configurations.

C.7 Data Analysis1176

In the POE framework, each expert models the distribution p(si−sj |pij). To determine a suitable form of1177

the expert, and whether the Gaussian and/or the extended Bradley-Terry experts are sensible assumptions,1178

Figure 9 displays the joint bivariate distribution between the true score difference si−sj and the observed1179

probability pij . For a particular LLM, all comparisons over all the contexts of the dataset are assessed.1180

The frequency count of the LLM probability and true score difference (calculated using the gold-standard1181

annotator labels) is then plotted. The plots illustrate a clear correlation between the probabilities and score1182

difference, implying that considerable scoring information can be gained from leveraging probabilities and1183

decisions. However, the mapping is not deterministic, and there is considerable noise present. Empirically,1184

The distributions appear to be well approximated by Gaussian distributions, implying that the conditional1185

distributions will also be well-modelled by Gaussian distributions.1186

(a) FlanT5-3B, SummEval COH (b) Llama2-13B, TopicalChat CNT

Figure 9: Joint distribution of the LLM probabilities and true scores.

We further analyze the relationship between the LLM probability p and the expected score difference,1187

δ(p) = Epij [si−sj | |pij−p|<ϵ]. Figure 10 demonstrates that 1) the probability is quite linearly correlated1188

with the expected score difference; and 2) the variance across all score distributions given the probability1189

is quite constant. Therefore the Gaussian assumptions discussed in Section 3.4 appear to be reasonable.1190
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(a) FlanT5-3B, SummEval COH (b) Llama2-13B, TopicalChat CNT

Figure 10: Expected score difference and variance given the LLM probability.

Note that TopicalChat is a smaller dataset (with 1800 total comparisons) and hence has more observed 1191

noise. 1192

C.8 Comparison Against Additional baselines 1193

Throughout the paper, baselines such as the Bradley Terry, average probability and win-ratio were used 1194

as methods to compare the best method to get scores from comparative outcomes. However alternate 1195

methods are possible, which do not necessarily combine information from a subset of the comparisons. 1196

For example, G-EVAL (Liu et al., 2023b) uses a prompt that asks the model to directly score texts and then 1197

calculates the fair mean over the probabilities of scores. While PairS (Liu et al., 2024) considers sorting 1198

algorithms to guide which pairwise comparisons should be made, as well as for determining the final 1199

rankings. Table 9 displays the performance of our Product of Experts Framework of LLM comparative 1200

assessment against these baselines for SummEval and HANNA (using a modest K = 3N and K = 5N 1201

respectively) and demonstrates that our approach has considerably better performance over the other 1202

baseline methods, where in 11/14 settings has the best performance (and often by considerable margins).

SummEval HANNA
K COH CON FLU REL COH CMP SUR

Llama2-7B

G-Eval 15 23 7 20 25 33 17
PAIRS-beam 17 31 18 24 29 17 19
PoE-BT 29 24 20 34 41 48 34

Mistral-7B

G-Eval 25 39 20 25 34 39 25
PAIRS-beam 28 30 24 27 33 31 27
PoE-BT 34 36 26 37 38 50 26

Table 9: SummEval performance for SummEval and HANNA for all particular attributes. 1203
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