
Under review as a conference paper at ICLR 2024

HYPERGRAPH NEURAL NETWORKS THROUGH THE
LENS OF MESSAGE PASSING: A COMMON PERSPEC-
TIVE TO HOMOPHILY AND ARCHITECTURE DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Most of the current hypergraph learning methodologies and benchmarking datasets
in the hypergraph realm are obtained by lifting procedures from their graph analogs,
simultaneously leading to overshadowing hypergraph network foundations. This
paper attempts to confront some pending questions in that regard: Q1 Can the
concept of homophily play a crucial role in Hypergraph Neural Networks (HGNNs),
similar to its significance in graph-based research? Q2 Is there room for improving
current hypergraph architectures and methodologies? (e.g. by carefully addressing
the specific characteristics of higher-order networks) Q3 Do existing datasets
provide a meaningful benchmark for HGNNs? Diving into the details, this paper
proposes a novel conceptualization of homophily in higher-order networks based
on a message passing scheme; this approach harmonizes the analytical frameworks
of datasets and architectures, offering a unified perspective for exploring and
interpreting complex, higher-order network structures and dynamics. Further, we
propose MultiSet, a novel message passing framework that redefines HGNNs by
allowing hyperedge-dependent node representations, as well as introduce a novel
architecture –MultiSetMixer– that leverages a new hyperedge sampling strategy.
Finally, we provide an extensive set of experiments that contextualize our proposals
and lead to valuable insights in hypergraph representation learning.

1 INTRODUCTION

Hypergraph learning techniques have rapidly grown in recent years, demonstrating their effectiveness
in processing higher-order interactions in numerous fields, spanning from recommender systems (Yu
et al., 2021; Zheng et al., 2018; La Gatta et al., 2022), to bioinformatics (Zhang et al., 2018; Yadati
et al., 2020; Klamt et al., 2009) and computer vision (Li et al., 2022; Xu et al., 2022; Gao et al., 2012;
Yin et al., 2017; Kim et al., 2011). However, so far, the development of HyperGraph Neural Networks
(HGNNs) has been largely influenced by the well-established Graph Neural Network (GNN) field.
In fact, most of the current methodologies and benchmarking datasets in the hypergraph realm are
obtained by lifting procedures from their graph counterparts.

The advancement of hypergraph research has been significantly propelled by drawing inspiration
from graph-based models (Feng et al., 2019; Yadati et al., 2019; Chien et al., 2022), but it has
simultaneously led to overshadowing hypergraph network foundations. We argue that it is now
the time to address fundamental questions in order to pave the way for further innovative ideas
in the field. In that regard, this study explores some of these open questions to understand better
current HGNN architectures and benchmarking datasets. Q1 Can the concept of homophily play a
crucial role in HGNNs, similar to its significance in graph-based research? Q2 Given that current
HGNNs are predominantly extensions of GNN architectures adapted to the hypergraph domain, are
these extended methodologies suitable, or should we explore new strategies tailored specifically
for handling hypergraph-based data? Q3 Are the existing hypergraph benchmarking datasets truly
meaningful and representative enough to draw robust and valid conclusions?

To begin with, we explore how the concept of homophily can be characterized in complex, higher-
order networks. Notably, there are many ways of characterizing homophily in hypergraphs –such as
the distribution of node features, the analogous distribution of the labels, or the group connectivity

1

Under review as a conference paper at ICLR 2024

similarity (as already discussed in (Veldt et al., 2023)). In particular, this work places the node class
distribution at the core of the analysis, and introduces a novel definition of homophily that relies on a
Message Passing (MP) scheme. Interestingly, this enables us to analyze both hypergraph datasets
and architecture designs from the same perspective. In fact, we reckon that this unified message
passing framework has the potential to inspire the development of meaningful contributions for
processing higher-order relationships more effectively, as well as to successfully describe HGNN
model performances (see Section 3 and Appendix A).

Next, we study state-of-the-art HGNN architectures and introduce a new framework called MultiSet.
We demonstrate that MultiSet generalizes most existing frameworks for HGNNs, including AllSet
(Chien et al., 2022) and UniGCNII (Huang & Yang, 2021). Our framework presents an innovative
approach to message passing, where multiple hyperedge-dependent representations of nodes are
enabled. Then, we introduce novel methodologies to process hypergraphs –including MultiSetMixer,
a new HGNN architecture based on a particular implementation of a MultiSet layer. In these imple-
mentations, we introduce a novel connectivity-based mini-batching strategy capable of processing
large hyperedges and discuss the intriguing property of natural connectivity-based distribution shifts.

Last, but not least, we provide an extensive set of experiments that, driven by the general questions
stated above, aim to gain a better understanding on fundamental aspects of hypergraph representation
learning. In fact, the obtained results not only help us contextualize the proposals introduced in this
work, but indeed offer valuable insights that might help improve future hypergraph approaches.

Summary of contributions:

• We introduce a novel definition of the MP homophily for hypergraphs capable of effectively
describing HGNN model performances (Q1 and Q3).

• We present the novel MultiSet framework, which generalizes previous AllSet (Chien et al.,
2022) and UniGCNII (Huang & Yang, 2021) formulations and allows for hyperedge-
dependent node representations (Q2).

• We implement a novel MultiSetMixer model, a straightforward implementation of MultiSet
framework that incorporates a novel hyperedge processing methodology based on hyperedge
mini-batching sampling. Our proposed strategy addresses some scalability issues of current
hypergraph models, and reveals a natural connectivity-based distribution shift with relevant
implications in our experimental results (Q2).

• We perform a large set of experiments assessing the meaningfulness of benchmarking
datasets, studying different MP propagation schemes and finally connecting homophily with
models’ performance (Q1, Q2, Q3).

2 RELATED WORKS

Homophily in hypergraphs. Homophily measures are typically defined for graph models and
consider only pairwise relationships. In the context of Graph Neural Networks (GNNs), many of the
current models implicitly use the homophily assumption, which is shown to be crucial for achieving
a robust performance with relational data (Zhou et al., 2020; Chien et al., 2020; Halcrow et al.,
2020). Nevertheless, despite the pivotal role that homophily plays in graph representation learning,
its hypergraph counterpart mainly remains unexplored. In fact, to the best of our knowledge, Veldt
et al. (2023) is the only work that faces the challenge of defining homophily in higher-order networks.
Veldt et al. (2023) introduces a framework in which hypergraphs are used to quantify homophily from
group interactions; however, the definition of homophily is restricted to uniform hypergraphs –i.e.
where all hyperedges have exactly the same size (more details in Section 3). This represents a hard
assumption that complicates its applicability to most of the current hypergraph datasets.

Hypergraph Neural Networks. The work of Chien et al. (2022) introduced AllSet, a general frame-
work to describe HGNNs through a two-step message passing based mechanism, and demonstrated
that most of the current hypergraph models are special instances of their formulation, based on the
composition of two learnable permutation invariant functions that transmit information from nodes to
hyperedges, and back from hyperedges to nodes. In particular, AllSet can be seen as a generalization
of the most commonly used HGNNs, including all clique expansion based (CE) methods, HGNN
(Feng et al., 2019), HNHN (Dong et al., 2020), HCHA (Bai et al., 2021), HyperSAGE (Arya et al.,

2

Under review as a conference paper at ICLR 2024

(a)

(b)

Figure 1: Node Homophily Distribution Scores for CORA-CA (a) and 20Newsgroups (b) using
Equation 2 at t = 0, 1, and 10 (left, middle, and right plots correspondingly). Horizontal lines depict
class mean homophily, with numbers above indicating the number of visualized points per class.

2020) and HyperGCN(Yadati et al., 2019). Chien et al. (2022) also proposes two novel AllSet-like
learnable layers: the first one –AllDeepSet– exploits Deep Set (Zaheer et al., 2017), and the second
one –AllSetTransformer– Set Transformer (Lee et al., 2019), both of them achieving state-of-the-art
results in the most common hypergraph benchmarking datasets. Concurrent to AllSet, the work of
Huang & Yang (2021) also aimed at designing a common framework for graph and hypergraph NNs,
and its more advanced UniGCNII method leverages initial residual connections and identity mappings
in the hyperedge–to-node propagation to address over-smoothing issues; notably, UniGCNII do not
fall under AllSet notation due to these residual connections. With Chien et al. (2022) and Huang &
Yang (2021) being the most relevant ones to our work, we extend this review in Appendix D.

Notation. A hypergraph is an ordered pair of sets G = (V, E), where V is the set of nodes and E
is the set of hyperedges. Each hyperedge e ∈ E is a subset of V , i.e., e ⊆ V . A hypergraph is a
generalization of the concept of a graph where (hyper)edges can connect more than two nodes. A
vertex v and a hyperedge e are said to be incident if v ∈ e. For each node v, we denote its class by
yv , and by Ev = {e ∈ E : v ∈ e} the subset of hyperedges in which it is contained, with dv = |Ev|
depicting the node degree. The set of classes of the hypergraph is represented by C = {ci}|C|i=1.

3 DEFINING AND MEASURING HOMOPHILY IN HYPERGRAPHS

As previously stated in Section 2, the only rigorous work that faces the challenge of defining
homophily in hypergraph networks is Veldt et al. (2023); however, it is restricted to k–uniform
hypergraphs, which hugely limits its applicability to real-world higher-order datasets (a detailed
description can be found in Appendix L). In this Section, we present a novel propagation-based
homophily measure which is applicable for general, non-uniform hypergraphs. In essence, the score
proposed in Veldt et al. (2023) tends to primarily assess the composition of hyperedges within the
graph by quantifying the distribution of classes among hyperedges. In contrast, our definition places
a greater emphasis on capturing the interconnections between different hyperedges by the exchange
of information between nodes following the message passing scheme. Our introduced formulation,
as well as the related findings described below, play a pivotal role on our attempt to answer the
fundamental question Q1 raised in the Introduction.

Message Passing Homophily We present a novel two-step message passing homophily measure
that, unlike the one proposed by Veldt et al. (2023), does not assume a k-uniform hypergraph
structure. Furthermore, the proposed measure enables the definition of a score for each node and
hyperedge for any neighborhood resolution, i.e., the connectivity of the hypergraph can be explicitly
investigated. Our homophily definition follows the two-step message passing mechanism starting
from the hyperedges of the hypergraph. Thus, given an edge e, we define the 0-level hyperedge

3

Under review as a conference paper at ICLR 2024

homophily h0
e(c) as the fraction of nodes within each hyperedge that belong to class c, i.e.

h0
e(c) =

1

|e|
∑
v∈e

1yv=c. (1)

This score describes how homophilic the initial connectivity is with respect to class c. By computing
the score for every class ci ∈ C we obtain a categorical distribution for each hyperedge e ∈ E ,
i.e. h0

e = (h0
e(c0), . . . , h

0
e(c|C|)). We can then use this 0-level homophily information as a starting

point to calculate higher-level homophily measurements for both nodes and hyperedges through the
two-step message passing approach. Formally, we define the t-level homophily score as

ht−1
v =AGGE

(
{ht−1

e (yv)}e∈Ev

)
, (2) ht

e(c)=AGGV
(
{ht−1

v }v∈e,yv=c

)
, (3)

where AGGE and AGGV are functions that aggregate edge and node homophily scores, respectively.
In our implementation, we considered the mean operation for both aggregations.

Qualitative Analysis In this paragraph, we are taking a closer look at the qualitative analysis of the
node homophily measure we introduced. One of the most straightforward ways to make use of the
message passing homophily measure is to visualize how the node homophily score, as described in
Eq. 2, changes dynamically. We’ve depicted this process in Figure 1, focusing on the CORA-CA and
20NewsGroup datasets. Note that in the figure, we are only showing non-isolated nodes. Looking
at Figure 1 (a), we can observe several notable trends. First, in the initial node distribution (t = 0),
every class, except class 6, has a significant number of fully homophilic nodes. As we move to
the 1-hop neighborhood (t = 1), the corresponding classes either exhibit a moderate decrease in
homophily or show no decrease at all. It’s worth noting that at t = 0, 1, and 10, class 2 maintains
a stable homophily distribution, hinting at an isolated subnetwork within. Furthermore, at t = 10,
some points still maintain a node homophily score of 1, indicating the presence of multiple small
subnetworks. Class 6 consistently displays the lowest average homophily measure at every step,
with an average score of approximately 38% at t = 10. The node homophily distribution for the
20Newsgroups dataset is visualized in Figure 1 (b). At time step t = 0, we observe a wide range of
homophily scores from 0 to 1 for each class. This suggests that the network is highly irregular with
respect to connectivity. Moving to time step t = 1, there is a significant decrease in the homophily
scores for every class, indicating a high degree of heterophily within the 1-hop neighborhood, which
is not surprising considering step zero node homophily distribution. Finally, at time step t = 10, we
can observe that all the classes converge to approximately the same homophily values within each
class. This convergence suggests that the network is highly interconnected. More insights regarding
node homophily measure and related HGNNs performances are described in Section 5 while the rest
of the plots for the datasets can be found in Appendix L.

4 METHODS

Current HGNNs aim to generalize GNN concepts to the hypergraph domain, and are specially
focused on redefining graph-based propagation rules to accommodate higher-order structures. In
this regard, the work of Chien et al. (2022) introduced a general notation framework, called AllSet,
that encompasses most of the currently available HGNN layers, including CEGCN/CEGAT, HGNN
(Feng et al., 2019), HNHN (Dong et al., 2020), HCHA (Bai et al., 2021), HyperGCN (Yadati et al.,
2019), and the AllDeepSet and AllSetTransformer presented in the same work (Chien et al., 2022).

The first part of this Section revisits the original AllSet formulation. Then, we introduce a new
framework –termed MultiSet– which extends AllSet by allowing multiple hyperedge-dependent
representations of nodes. Finally, we present some novel methodologies to process hypergraphs
–including MultiSetMixer, a new HGNN architecture within the MultiSet framework. In contrast to
previous formulations and models, our proposed framework and implementations are inspired by
hypergraph needs and features, and motivated by the raised fundamental question Q2.

4

Under review as a conference paper at ICLR 2024

4.1 ALLSET PROPAGATION SETTING

Figure 2: AllSet layout

For a given node v ∈ V and hyperedge e ∈ E in a hypergraph G =

(V, E), let x(t)
v ∈ Rf and z

(t)
e ∈ Rd denote their vector representations

at propagation step t. We say that a function f is a multiset function if it
is permutation invariant w.r.t. each of its arguments in turn. Typically,
x
(0)
v and z

(0)
e are initialized based on the corresponding node and

hyperedge original features, if available. The vectors x
(0)
v and z

(0)
e

represent the initial node and hyperedge features, respectively. In
this context, the AllSet framework (Chien et al., 2022) consists in the
following two-step update rule:

z(t+1)
e = fV→E({x(t)

u }u:u∈e; z
(t)
e), (4)

x(t+1)
v = fE→V({z(t+1)

e }e∈Ev
;x(t)

v), (5)
where fV→E and fE→V are two permutation invariant functions with respect to their first input.
Equations 4 and 5 describe the propagation from nodes to hyperedges and vice versa, respectively.
We extend the original AllSet formulation to accommodate UniGCNII (Huang & Yang, 2021), by
modifying the node update rule (Eq. 5) in order to allow residual connections, i.e.:

x(t+1)
v = fE→V({z(t+1)

e }e∈Ev ; {x(k)
v }tk=0). (6)

There is no requirement for the function to be permutation invariant with respect to this second set.
Proposition 1. UniGCNII Huang & Yang, 2021 is a special case of AllSet considering 4 and 6.

In the practical implementation of a model, fV→E and fE→V are parametrized and learnt for each
dataset and task, and particular choices of these functions give rise to the different HGNN layer
architectures considered in this paper; more details in Appendix E.

4.2 MULTISET FRAMEWORK

Figure 3: MultiSet layout

In this Section, we introduce our proposed MultiSet framework,
which can be seen as an extension of AllSet where nodes can have
multiple co-existing hyperedge–based representations. For a given
hyperedge e ∈ E in a hypergraph G = (V, E), we denote by z

(t)
e ∈

Rd its vector representation at step t. However, for a node v ∈ V ,
MultiSet allows for as many representations of the node as the
number of hyperedges it belongs to. We denote by x

(t)
v,e ∈ Rf the

vector representation of node v in a hyperedge e ∈ Ev at propagation
time t, and by X(t)

v = {x(t)
v,e}e∈Ev

the set of all dv hidden states of
that node in the specified time-step. Accordingly, the hyperedge
and node update rules of MultiSet are formulated to accommodate
hyperedge–dependent node representations:

z(t+1)
e = fV→E({X(t)

u }u:u∈e; z
(t)
e), (7)

x(t+1)
v,e = fE→V({z(t+1)

e }e∈Ev
; {X(k)

v }tk=0), (8)
where fV→E and fE→V are two multiset functions with respect to their first input.

After T iterations of message passing, MultiSet also considers a last readout-based step with the idea
of obtaining a unique final representation xT

v ∈ Rf ′
for each node from the set of its hyperedge–based

representations:
x(T)
v = fV→V({X(k)

v }Tk=0) (9)
where fV→V is also a multiset function.
Proposition 2. AllSet 4-5, as well as its extension 4-6, are special cases of MultiSet 7-8-9.

4.3 TRAINING MULTISET NETWORKS

This Section describes the main characteristics of our MultiSet layer implementation, termed Multi-
SetMixer, and presents a novel sampling procedure that our model incorporates.

5

Under review as a conference paper at ICLR 2024

Learning MultiSet Layers Following the mixer-style block designs (Tolstikhin et al., 2021) and
standard practice, we propose the following MultiSet layer implementation for HGNNs:

z(t+1)
e = fV→E({x(t)

u,e}u:u∈e; z
(t)
e) :=

1

|e|
∑
v∈e

x(t)
u,e + MLP

(
LN

(
1

|e|
∑
v∈e

x(t)
u,e

))
, (10)

x(t+1)
v,e = fE→V(z

(t+1)
e ;x(t)

v,e) := x(t)
v,e + MLP

(
LN(x(t)

v,e)
)
+ z(t+1)

e , (11)

x(T)
v = fV→V(X(T)

v) :=
1

dv

∑
e∈Ev

x(t)
v,e (12)

where MLPs are composed of two fully-connected layers, and LN stands for layer normalisation.
This novel architecture, which we call MultiSetMixer, is based on a mixer-based pooling operation
for (i) updating hyperedges from its node’s representations, and (ii) generate and update hyperedge-
dependent representations of the nodes.
Proposition 3. The functions fV→E , fE→V and fV→V defined in MultiSetMixer are permutation
invariant. Furthermore, these functions are universal approximators of multiset functions when the
size of the input multiset is finite.

Mini-batching The motivation for introducing a new strategy to iterate over hypergraph datasets is
twofold. On the one hand, current HGNN pipelines suffer from scalability issues to process large
datasets and very large hyperedges. On the other, pooling operations over relatively large sets can also
lead to over-squashing the signal. To help in these directions, we propose sampling X mini-batches of
a certain size B at each iteration. At step 1, it samples B hyperedges from E . The hyperedge sampling
over E can be either uniform or weighted (e.g. by taking into account hyperedge cardinalities). Then
in step 2 L nodes are in turn sampled from each sampled hyperedge e, padding the hyperedge with
L − |e| special padding tokens if |e| < L –consisting of 0 vectors that can be easily discarded in
some computations. Overall, the shape of the obtained mini-batch X has fixed size B × L. Please
refer to Appendix K for additional analysis.

5 EXPERIMENTAL RESULTS

The questions that we introduced in the Introduction have shaped our research, leading to a new
definition of higher-order homophily and novel architectural designs and sampling strategies that can
potentially fit better the properties of hypergraph networks. In subsequent subsections, we set again
three main questions that follow up from these fundamental inquiries and can help contextualize the
technical contributions introduced in this paper.

Dataset and Models We use the same datasets used in Chien et al. (2022), which includes Cora,
Citeseer, Pubmed, ModelNet40, NTU2012, 20Newsgroups, Mushroom, ZOO, CORA-CA, and
DBLP-CA. More information about datasets and corresponding statistics can be found in Appendix
I.2. We also utilize the benchmark implementation provided by Chien et al. (2022) to conduct the
experiments with several models, including AllDeepSets, AllSetTransformer, UniGCNII, CEGAT,
CEGCN, HCHA, HGNN, HNHN, HyperGCN, HAN, and HAN (mini-batching). Additionally, we
consider vanilla MLP applied to node features and a transformer architecture and introduce three new
models: MultiSetMixer, MLP Connectivity Batching (MLP CB), and Multiple MLP CB (MMLP
CB). The MLP CB and MMLP CB models use connectivity information to form and process batches.
Specifically, the MMLP CB model processes the top three most frequent connectivities using separate
MLP encoders, while the fourth encoder is used to process the remaining connectivities. We refer to
Section 4.3 for further details about all these architectures. All models are optimized using 15 splits
with 2 model initializations, resulting in a total of 30 runs; see Appendix I.1 for further details.

5.1 HOW DOES MULTISETMIXER PERFORM?

Our first experiment directly targets our fundamental Q2 by assessing the performance of our
proposed MultiSetMixer model and the two introduced baselines, MLP CB and MMLP CB. Figure 4
shows the average rankings –across all models and datasets– of the top-3 best performing models
for different training splits, exhibiting that those splits can impact the relative performance among

6

Under review as a conference paper at ICLR 2024

models. However, due to space limitations, we restrict our analysis to the 50% split results shown in
Table 1,1 and relegate to Appendix J.1 the corresponding tables for the other scenarios.

Figure 4: Average ranking and stan-
dard deviation for various training
percentages.

Table 1 emphasizes the MultiSetMixer model’s relatively
solid performance, being the best-performing model on the
NTU2012, ModelNet40, and 20Newsgroups datasets. Its per-
formance on the 20Newsgroups dataset is especially notewor-
thy, significantly outperforming the other models. Moreover,
it is notable that MLP CB and MMLP CB exhibit similar be-
haviour on this dataset. In contrast, the performance of all
other models achieves roughly the same performance as the
MLP. This observation suggests that these models can not ac-
count for dataset connectivity; in particular, as we demonstrated
in Section 3, the dispersion of the node homophily measure,
with a subsequent convergence to a similar value within each
class, indicates that the dataset’s connectivity is notably non-
homophilic and presents a challenge. In contrast, CORA-CA exhibits a high degree of homophily
within its hyperedges and shows the most significant performance gap between the best-performing
model, AllSetTransformer, and the basic MLP. A similar trend is observed for DBLP-CA (see node
homophily plot in Appendix L). Please refer to Section 5.4 for additional experiments analyzing
the impact of connectivity on the models. On the other hand, we can notice that CEGAT, CEGCN
and our proposed model don’t perform well on the Mushroom dataset. This is noteworthy because
the Mushroom dataset’s features are highly representative, as demonstrated by the near-perfect
performance of the MLP classifier. This suggests that, in this particular case, connectivity may not
play a crucial role in achieving high performance.

Table 1: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllDeepSets 77.11 ± 1.00 70.67 ± 1.42 89.04 ± 0.45 82.23 ± 1.46 91.34 ± 0.27 99.96 ± 0.05 86.49 ± 1.86 96.70 ± 0.25 81.19 ± 0.49 89.10 ± 7.00 6.00

AllSetTransformer 79.54 ± 1.02 72.52 ± 0.88 88.74 ± 0.51 84.43 ± 1.14 91.61 ± 0.19 99.95 ± 0.05 88.22 ± 1.42 98.00 ± 0.12 81.59 ± 0.59 91.03 ± 7.31 2.85
UniGCNII 78.46 ± 1.14 73.05 ± 1.48 88.07 ± 0.47 83.92 ± 1.02 91.56 ± 0.18 99.89 ± 0.07 88.24 ± 1.56 97.84 ± 0.16 81.16 ± 0.49 89.61 ± 8.09 4.15

CEGAT 76.53 ± 1.58 71.58 ± 1.11 87.11 ± 0.49 77.50 ± 1.51 88.74 ± 0.31 96.81 ± 1.41 82.27 ± 1.60 92.79 ± 0.44 OOM 44.62 ± 9.18 11.00
CEGCN 77.03 ± 1.31 70.87 ± 1.19 87.01 ± 0.62 77.55 ± 1.65 88.12 ± 0.25 94.91 ± 0.44 80.90 ± 1.74 90.04 ± 0.47 OOM 49.23 ± 6.81 11.67
HCHA 79.53 ± 1.33 72.57 ± 1.06 86.97 ± 0.55 83.53 ± 1.12 91.21 ± 0.28 98.94 ± 0.54 86.60 ± 1.96 94.50 ± 0.33 80.75 ± 0.53 89.23 ± 6.81 6.75
HGNN 79.53 ± 1.33 72.24 ± 1.08 86.97 ± 0.55 83.45 ± 1.22 91.26 ± 0.26 98.94 ± 0.54 86.71 ± 1.48 94.50 ± 0.33 80.75 ± 0.52 89.23 ± 6.81 6.85
HNHN 77.68 ± 1.08 73.47 ± 1.36 87.88 ± 0.47 78.53 ± 1.15 86.73 ± 0.40 99.97 ± 0.04 88.28 ± 1.50 97.84 ± 0.15 81.53 ± 0.55 89.23 ± 7.85 5.05

HyperGCN 74.78 ± 1.11 66.06 ± 1.58 82.32 ± 0.62 77.48 ± 1.14 86.07 ± 3.32 69.51 ± 4.98 47.65 ± 5.01 46.10 ± 7.95 80.84 ± 0.49 51.54 ± 9.88 13.80
HAN 80.73 ± 1.37 73.69 ± 0.95 86.34 ± 0.61 84.19 ± 0.81 91.10 ± 0.20 91.33 ± 0.91 83.78 ± 1.75 93.85 ± 0.33 79.67 ± 0.55 80.26 ± 6.42 8.10

HAN minibatch 80.24 ± 2.17 73.55 ± 1.13 85.41 ± 2.32 82.04 ± 2.56 90.52 ± 0.50 93.87 ± 1.04 80.62 ± 2.00 92.06 ± 0.63 79.76 ± 0.56 70.39 ± 11.29 9.90
MultiSetMixer 79.38 ± 1.08 72.79 ± 1.12 85.71 ± 0.49 82.62 ± 1.20 89.87 ± 0.29 95.85 ± 3.21 88.73 ± 1.29 98.15 ± 0.19 87.83 ± 2.68 78.67 ± 9.08 6.40

MLP CB 74.06 ± 1.26 71.93 ± 1.53 85.83 ± 0.51 74.39 ± 1.40 84.91 ± 0.44 96.83 ± 2.18 85.43 ± 1.51 96.41 ± 0.32 86.13 ± 2.82 81.61 ± 10.98 9.80
MMLP CB 71.05 ± 2.03 69.26 ± 1.91 85.20 ± 0.54 71.16 ± 2.17 84.08 ± 0.42 95.71 ± 2.42 NA NA 85.04 ± 4.04 83.89 ± 9.52 12.75

MLP 73.27 ± 1.09 72.07 ± 1.65 87.13 ± 0.49 73.27 ± 1.09 84.77 ± 0.41 99.91 ± 0.08 79.70 ± 1.56 95.31 ± 0.28 80.93 ± 0.59 85.13 ± 6.90 10.40
Transformer 74.15 ± 1.17 71.82 ± 1.51 87.37 ± 0.49 73.61 ± 1.55 85.26 ± 0.38 99.95 ± 0.08 82.88 ± 1.93 96.29 ± 0.29 81.17 ± 0.54 88.72 ± 10.25 9.05

5.2 CAN HOMOPHILY HELP US UNDERSTAND OUR EXPERIMENTAL RESULTS?

Our following step is to analyze whether the previously introduced message passing homophily
measure (Section 3) can be useful in describing the observed results, which is totally aligned with our
fundamental Q1. Due to space limitations, we leave to Appendix A the detailed study we perform
on this relevant aspect, but highlight here the main finding: our homophily concept correlates better
with HGNN models’ performance (and specially our MultiSetMixer implementation) compared to
classical homophily measures over the clique-expanded hypergraph. In doing so, we demonstrate the
advantages of the dynamic nature of the proposed message passing score. These insights underscore
the crucial role of correctly expressing homophily in hypernetworks, emphasizing the potential of our
proposed homophily score in capturing higher-order dynamics.

5.3 WHAT IS THE IMPACT OF THE INTRODUCED MINI-BATCH SAMPLING STRATEGY?

Next, we examine the role of our proposed mini-batching sampling (i) in explaining Table 1 results
and (ii) influencing other models’ performance. These experiments provide valuable insights on Q2.

1Unless otherwise specified, all tables in the main body of the paper use a 50%/25%/25% split between
training and testing. The results are shown as Mean Accuracy Standard Deviation, with the best result highlighted
in bold and shaded in grey, and results within one standard deviation are displayed in blue-shaded boxes.

7

Under review as a conference paper at ICLR 2024

Figure 5: Distribution of
classes

Class distribution analysis To evaluate and motivate the potential of
the proposed mini-batching sampling, we investigate the reason behind
both the superior performance of MultiSetMixer, MLP CB and MMLP
CB on 20NewsGroup and their poor performance on Mushroom. Framing
mini-batching from the connectivity perspective presents a challenge that
conceals significant potential for improvement (Teney et al., 2023). It is
important to note that connectivity, by definition, describes relationships
among the nodes, implying that some parts of the dataset might intercon-
nect more densely, creating some sort of hubs within the network. Thus,
mini-batching might introduce unexpected skew in training distribution.
In particular, in Figure 5, we depict the class distribution of the original
dataset, referred to as Node, while ‘Step 1 and 2’ and ‘Step 1’ shows the
distribution after each step in our mini-batching procedure. The sampling
procedure tends to rebalance class distributions in certain cases, such as
the 20NewsGroup dataset, while in contrast, it introduces an imbalance
that was not present in the original labels in the Mushroom dataset, where
our model demonstrated suboptimal performance. This observation leads to the hypothesis that, in
some cases, the sampling procedure produces a shift distribution that rebalances the class distributions
and conducts our model to outperform the comparison models.

Application to Other Models Furthermore, we explore the proposed mini-batch sampling proce-
dure with the AllSetTransformer and UniGCNII models by implementing Step 1 of the mini-batch
procedure without additional hyperparameter optimization. From Table 2, we can observe a drop in
performance for most of the datasets both for AllSetTransformer and for UniGCNII; both models,
on average, outperform the HAN (mini-batching) model. This suggests the substantial potential of
the proposed sampling procedure. More in detail, AllsetTransformer has a substantial decrease in
accuracy for the CORA-CA dataset, in contrast to the UniGCNII, which registers only marginal
decreases. An analogous pattern emerges with the DBLP-CA dataset.

Table 2: Mini-batching experiment. Test accuracy in % averaged over 15 splits.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllSetTransformer (batched) 74.34 ± 1.08 69.67 ± 1.46 87.75 ± 0.30 75.75 ± 1.46 86.06 ± 0.22 99.91 ± 0.05 87.55 ± 0.86 96.42 ± 0.17 81.37 ± 0.28 93.20 ± 5.38 2.70

UniGCNII (batched) 77.88 ± 0.69 69.51 ± 0.87 86.82 ± 0.33 83.12 ± 0.89 90.45 ± 0.28 99.95 ± 0.04 87.64 ± 0.99 97.55 ± 0.17 81.23 ± 0.31 90.00 ± 4.43 2.20
HAN minibatch 80.24 ± 2.17 73.55 ± 1.13 85.41 ± 2.32 82.04 ± 2.56 90.52 ± 0.50 93.87 ± 1.04 80.62 ± 2.00 92.06 ± 0.63 79.76 ± 0.56 70.39 ± 11.29 3.00
MultiSetMixer 79.38 ± 1.08 72.79 ± 1.12 85.71 ± 0.49 82.62 ± 1.20 89.87 ± 0.29 95.85 ± 3.21 88.73 ± 1.29 98.15 ± 0.19 87.83 ± 2.68 78.67 ± 9.08 2.10

5.4 HOW DO CONNECTIVITY CHANGES AFFECT PERFORMANCE?

We design two different experimental approaches, aiming to systematically modify the original
connectivity of datasets. The first experiment tests the performance when some hyperedges are
removed following different drop connectivity strategies. Then, a second experiment examines
the model’s performance by introducing two preprocessing strategies applied to the hypergraph
connectivity. Our findings below shed some light on our fundamental questions Q1, Q2 and Q3.

Reducing Connectivity This experiment aims to investigate the significance of connectivity in
datasets and the extent to which it influences the performance of the models. We divide this
experiment into two parts: (i) drop connectivity and (ii) connectivity rewiring. In the first part of the
experiment, we employ three strategies to introduce variations in the initial dataset’s connectivity.
The first two strategies involve ordering hyperedges based on their lengths in ascending order.
In the first approach, referred to as trimming, we remove the initial x% of ordered hyperedges.
The second approach, referred to as retention, involves keeping the first x% of hyperedges and
discarding the remaining 100 − x%. Finally, the last strategy involves randomly dropping x% of
hyperedges from the dataset, referred to as random drop. Results shown in Table 3 also indicate
that connectivity minimally impacts CEGCN, and AllSetTransformer for the Citeseer and Pubmed
datasets. On the other hand, MultiSetMixer performs better at the trimming 25% setting, although
the achieved performance is on par with MLP reported in Table 1. This suggests that the proposed
model was negatively affected by the distribution shift. Conversely, we observe a similar but opposite
trend for the Mushroom dataset, where MultiSetMixer’s performance improves due to the reduced
impact of the distribution shift. Another interesting observation is that the CEGCN model gains
improvement in 6 out of 9 datasets, with a doubled increase for the ZOO dataset. In the case of

8

Under review as a conference paper at ICLR 2024

Cora, CORA-CA, and DBLP-CA datasets, another interesting pattern emerges: retaining only 25%
of the highest relationships (retention 25%) consistently results in better performance compared to
retaining 50% or 75%. This is intriguing because, at the 25% level, we are preserving only a small
fraction of the higher-order relationships. The opposite pattern holds for the trimming strategy. For
the datasets mentioned above, this phenomenon remained consistent across all models. Notice that
this phenomenon doesn’t appear when we remove hyperedges randomly; in this case, as expected,
the more hyperedges we remove, the more the performances decrease.

Rewiring Connectivity In Appendix J.3, we show that the ‘Label Based’ strategy enhances the
performance for all datasets and models, as seen in Table 15. Notably, the graph-based method
CEGCN achieves similar results to HGNNs in this strategy. Additionally, on average, only CEGCN
performs better with the ‘k-means’ strategy and mitigates distribution shifts for MultiSetMixer. These
findings collectively suggest the crucial role of connectivity preprocessing, especially for graph-based
models.

Table 3: Drop connectivity. Test accuracy in % averaged over 15 splits.

Model Type Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking

A
llS

et
Tr

an
sf

or
m

er

Original 79.54 ± 1.02 72.52 ± 0.88 88.74 ± 0.51 84.43 ± 1.14 91.61 ± 0.19 99.95 ± 0.05 88.22 ± 1.42 98.00 ± 0.12 81.59 ± 0.59 91.03 ± 7.31 1.95
Random 25% 79.11 ± 0.99 72.75 ± 1.14 88.67 ± 0.47 82.36 ± 1.38 90.61 ± 0.29 99.94 ± 0.09 87.50 ± 1.36 97.98 ± 0.17 81.70 ± 0.52 89.87 ± 7.66 3.10
Random 50% 77.77 ± 1.34 72.21 ± 1.25 88.50 ± 0.45 79.73 ± 1.58 89.46 ± 0.27 99.96 ± 0.04 87.34 ± 1.55 97.83 ± 0.17 81.55 ± 0.66 89.49 ± 6.30 5.85
Random 75% 76.92 ± 1.20 72.40 ± 1.22 88.54 ± 0.47 77.88 ± 1.74 87.73 ± 0.32 99.76 ± 0.15 86.31 ± 1.34 97.52 ± 0.20 81.46 ± 0.62 87.69 ± 6.09 8.10
Retention 25% 79.19 ± 1.11 72.49 ± 0.86 88.73 ± 0.40 83.58 ± 1.30 91.18 ± 0.17 99.93 ± 0.09 87.21 ± 1.58 97.82 ± 0.17 81.63 ± 0.48 86.92 ± 7.18 4.10
Retention 50% 78.16 ± 0.98 72.55 ± 1.13 88.70 ± 0.37 82.90 ± 1.15 90.80 ± 0.22 99.89 ± 0.18 86.67 ± 1.64 97.36 ± 0.21 81.61 ± 0.49 88.08 ± 7.51 5.20
Retention 75% 77.38 ± 1.35 72.43 ± 0.98 88.71 ± 0.39 81.07 ± 1.20 89.83 ± 0.25 99.97 ± 0.04 85.58 ± 1.70 97.27 ± 0.22 81.58 ± 0.48 88.97 ± 6.91 5.80
Trimming 25% 75.83 ± 1.31 72.39 ± 1.50 88.40 ± 0.45 76.51 ± 1.35 86.38 ± 0.32 99.84 ± 0.13 86.88 ± 1.66 97.10 ± 0.24 81.55 ± 0.55 93.08 ± 7.79 8.05
Trimming 50% 77.37 ± 1.17 72.32 ± 1.30 88.49 ± 0.40 77.41 ± 1.73 87.03 ± 0.27 99.91 ± 0.12 86.86 ± 1.53 97.86 ± 0.21 81.45 ± 0.50 89.74 ± 8.53 7.50
Trimming 75% 78.15 ± 1.11 72.67 ± 1.00 88.48 ± 0.39 78.91 ± 1.54 88.55 ± 0.26 99.92 ± 0.09 87.68 ± 1.56 97.90 ± 0.23 81.41 ± 0.61 91.03 ± 7.17 5.35

C
E

G
C

N

Original 77.03 ± 1.31 70.87 ± 1.19 87.01 ± 0.62 77.55 ± 1.65 88.12 ± 0.25 94.91 ± 0.44 80.90 ± 1.74 90.04 ± 0.47 OOM 49.23 ± 6.81 4.61
Random 25% 76.08 ± 1.55 71.35 ± 1.44 86.89 ± 0.59 76.51 ± 1.53 87.01 ± 0.39 93.11 ± 0.46 80.68 ± 1.86 90.36 ± 0.46 OOM 49.74 ± 6.22 6.22
Random 50% 75.55 ± 1.63 71.42 ± 1.60 86.70 ± 0.48 75.27 ± 1.22 86.24 ± 0.35 93.28 ± 0.61 80.63 ± 1.78 90.69 ± 0.54 OOM 56.92 ± 7.24 6.33
Random 75% 75.34 ± 1.62 71.73 ± 1.90 86.97 ± 0.51 74.53 ± 1.56 85.36 ± 0.26 93.01 ± 0.45 80.56 ± 1.76 91.91 ± 0.54 OOM 63.20 ± 5.59 6.33
Retention 25% 76.12 ± 1.58 70.87 ± 1.42 86.94 ± 0.56 76.98 ± 1.53 87.90 ± 0.29 94.94 ± 0.48 79.20 ± 1.42 90.59 ± 0.59 OOM 49.87 ± 7.59 5.50
Retention 50% 75.43 ± 1.28 70.83 ± 1.52 86.95 ± 0.54 76.87 ± 1.49 87.58 ± 0.28 94.97 ± 0.40 78.53 ± 1.90 90.09 ± 0.56 OOM 45.77 ± 6.88 6.89
Retention 75% 75.53 ± 1.25 71.72 ± 1.42 87.11 ± 0.53 76.36 ± 1.42 87.03 ± 0.28 94.74 ± 0.39 79.82 ± 1.41 92.29 ± 0.46 OOM 40.38 ± 5.42 5.44
Trimming 25% 75.58 ± 1.56 72.26 ± 1.52 87.36 ± 0.51 74.84 ± 1.31 84.97 ± 0.31 99.60 ± 0.11 83.10 ± 1.69 91.85 ± 0.42 OOM 87.69 ± 7.31 3.44
Trimming 50% 76.57 ± 1.47 71.81 ± 1.44 87.07 ± 0.55 74.66 ± 1.68 85.24 ± 0.33 99.54 ± 0.18 80.72 ± 1.64 90.64 ± 0.54 OOM 71.28 ± 6.60 4.00
Trimming 75% 76.53 ± 1.50 71.45 ± 1.45 86.75 ± 0.54 74.56 ± 1.32 85.56 ± 0.33 99.14 ± 0.23 80.38 ± 1.91 90.06 ± 0.37 OOM 58.46 ± 7.17 6.22

M
ul

tiS
et

M
ix

er

Original 79.38 ± 1.08 72.79 ± 1.12 85.71 ± 0.49 82.62 ± 1.20 89.87 ± 0.29 95.85 ± 3.21 88.73 ± 1.29 98.15 ± 0.19 87.83 ± 2.68 78.67 ± 9.08 2.75
Random 25% 78.63 ± 1.30 72.37 ± 1.50 85.71 ± 0.55 81.18 ± 1.16 89.11 ± 0.31 93.80 ± 4.69 87.92 ± 1.50 98.01 ± 0.19 76.65 ± 1.76 77.60 ± 9.00 4.75
Random 50% 77.66 ± 1.18 72.24 ± 1.42 85.92 ± 0.45 78.51 ± 1.58 88.13 ± 0.34 94.36 ± 3.79 86.22 ± 2.01 97.92 ± 0.13 74.36 ± 1.23 75.53 ± 14.10 6.40
Random 75% 76.59 ± 1.27 72.12 ± 1.43 86.10 ± 0.53 76.91 ± 1.43 86.42 ± 0.42 98.74 ± 0.90 85.31 ± 1.64 97.48 ± 0.21 76.53 ± 0.75 58.75 ± 17.97 7.25
Retention 25% 78.99 ± 1.00 72.12 ± 1.28 85.73 ± 0.44 82.01 ± 1.56 89.61 ± 0.33 97.18 ± 2.01 86.96 ± 1.62 97.95 ± 0.19 88.17 ± 2.51 80.15 ± 8.87 3.85
Retention 50% 77.88 ± 1.28 72.32 ± 1.36 85.89 ± 0.52 80.85 ± 1.14 89.24 ± 0.31 97.72 ± 1.42 84.56 ± 1.97 97.39 ± 0.24 85.04 ± 2.06 76.31 ± 12.45 5.20
Retention 75% 77.44 ± 1.32 72.18 ± 1.32 85.93 ± 0.54 78.67 ± 1.32 87.86 ± 0.35 94.75 ± 3.86 83.94 ± 1.79 97.00 ± 0.26 84.65 ± 1.52 67.06 ± 18.55 7.10
Trimming 25% 75.54 ± 1.17 72.57 ± 1.45 87.26 ± 0.38 76.30 ± 1.11 85.57 ± 0.34 99.97 ± 0.03 83.19 ± 1.55 96.87 ± 0.29 78.80 ± 0.52 88.51 ± 9.76 6.00
Trimming 50% 76.91 ± 1.18 72.30 ± 1.63 86.79 ± 0.53 77.54 ± 1.44 86.16 ± 0.33 99.91 ± 0.13 84.20 ± 1.75 97.70 ± 0.27 72.70 ± 0.88 69.83 ± 14.25 6.60
Trimming 75% 78.06 ± 1.16 72.53 ± 1.30 86.45 ± 0.57 79.03 ± 1.16 87.83 ± 0.29 98.49 ± 0.61 86.59 ± 1.58 97.86 ± 0.24 61.17 ± 1.32 76.08 ± 10.14 5.10

6 DISCUSSION

This last section aims to summarize some key findings from our extensive evaluation that can
potentially help in improving future HGNN related research. Here, we connect our findings to each
of the fundamental questions raised in Section 1, which actually drove our research.

Q1: We show that the introduced message passing homophily measure allows for a deeper understand-
ing of hypernetwork dynamics and its correlation to the HGNN models’ performances, representing
a more meaningful measure than previous homophily concepts to further explore and develop new
ways of assessing and processing hypernetworks and experimental results.

Q2: We argue that three main contributions presented in this paper –Message Passing Homophily,
MultiSet framework with hyperedge-dependent node representations, MultiSetMixer model with
mini-batch sampling– have been directly inspired from natural properties of hypernetworks and higher-
order dynamics within them, thus no longer relying on extensions of graph-based approaches. Our
experimental findings initiate a compelling discussion on the implications of innovative techniques
for processing hypergraph data and defining HGNNs.

Q3: Accross our extensive evaluation, our results suggest that the expressive power of node features
alone is sufficient for a decent performance in the node classification task execution; the gap between
models with inductive bias and without is far shorter than one would expect. Addressing this gap
presents an open challenge for future research endeavors, and we posit the necessity for additional
benchmark datasets where connectivity plays a pivotal role.

For a more in-depth discussion, please refer to the extended conclusion and discussion in Appendix
C.

9

Under review as a conference paper at ICLR 2024

7 REPRODUCIBILITY

We include all the details about our experimental setting, including the choice of hyperparameters,
the specifications of our machine and environment, the training/validation/test split, in Appendix I.1
and in Section 5. To ensure the reproducibility of our results, we will provide the source code along
with the camera-ready version.

REFERENCES

Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs. In
Proceedings of the 23rd international conference on Machine learning, pp. 17–24, 2006.

Ryan Aponte, Ryan A Rossi, Shunan Guo, Jane Hoffswell, Nedim Lipka, Chang Xiao, Gromit
Chan, Eunyee Koh, and Nesreen Ahmed. A hypergraph neural network framework for learning
hyperedge-dependent node embeddings. arXiv preprint arXiv:2212.14077, 2022.

Devanshu Arya, Deepak K Gupta, Stevan Rudinac, and Marcel Worring. Hypersage: Generalizing
inductive representation learning on hypergraphs. arXiv preprint arXiv:2010.04558, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021.

Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In International
Conference on Machine Learning, pp. 599–608. PMLR, 2021.

Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual similarity based 3d
model retrieval. In Computer graphics forum, volume 22, pp. 223–232. Wiley Online Library,
2003.

Guanzi Chen and Jiying Zhang. Preventing over-smoothing for hypergraph neural networks. arXiv
preprint arXiv:2203.17159, 2022.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pp. 1725–1735. PMLR,
2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function frame-
work for hypergraph neural networks. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=hpBTIv2uy_E.

Minyoung Choe, Sunwoo Kim, Jaemin Yoo, and Kijung Shin. Classification of edge-dependent
labels of nodes in hypergraphs. arXiv preprint arXiv:2306.03032, 2023.

Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge neurons.
arXiv preprint arXiv:2006.12278, 2020.

Dheeru Dua, Casey Graff, et al. Uci machine learning repository, 2017. URL http://archive. ics. uci.
edu/ml, 7(1), 2017.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3558–3565, 2019.

Yue Gao, Meng Wang, Dacheng Tao, Rongrong Ji, and Qionghai Dai. 3-d object retrieval and
recognition with hypergraph analysis. IEEE transactions on image processing, 21(9):4290–4303,
2012.

10

https://openreview.net/forum?id=hpBTIv2uy_E

Under review as a conference paper at ICLR 2024

Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit graph
neural networks. Advances in Neural Information Processing Systems, 33:11984–11995, 2020.

Jonathan Halcrow, Alexandru Mosoi, Sam Ruth, and Bryan Perozzi. Grale: Designing networks for
graph learning. In Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2523–2532, 2020.

Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram. The total variation
on hypergraphs-learning on hypergraphs revisited. Advances in Neural Information Processing
Systems, 26, 2013.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pp. 2563–2569. International Joint Conferences on Artificial Intelligence
Organization, 8 2021. doi: 10.24963/ijcai.2021/353. URL https://doi.org/10.24963/
ijcai.2021/353. Main Track.

Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang Yoo. Higher-order correlation
clustering for image segmentation. Advances in neural information processing systems, 24, 2011.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Steffen Klamt, Utz-Uwe Haus, and Fabian Theis. Hypergraphs and cellular networks. PLoS
computational biology, 5(5):e1000385, 2009.

Valerio La Gatta, Vincenzo Moscato, Mirko Pennone, Marco Postiglione, and Giancarlo Sperlı́.
Music recommendation via hypergraph embedding. IEEE Transactions on Neural Networks and
Learning Systems, 2022.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
conference on machine learning, pp. 3744–3753. PMLR, 2019.

Jiachen Li, Chuanbo Hua, Jinkyoo Park, Hengbo Ma, Victoria Dax, and Mykel J Kochenderfer.
Evolvehypergraph: Group-aware dynamic relational reasoning for trajectory prediction. arXiv
preprint arXiv:2208.05470, 2022.

Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications. Advances in
neural information processing systems, 30, 2017.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view convolutional
neural networks for 3d shape recognition. In Proceedings of the IEEE international conference on
computer vision, pp. 945–953, 2015.

Xiangguo Sun, Hong Cheng, Bo Liu, Jia Li, Hongyang Chen, Guandong Xu, and Hongzhi Yin.
Self-supervised hypergraph representation learning for sociological analysis. IEEE Transactions
on Knowledge and Data Engineering, 2023.

Damien Teney, Jindong Wang, and Ehsan Abbasnejad. Selective mixup helps with distribution shifts,
but not (only) because of mixup. arXiv preprint arXiv:2305.16817, 2023.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

11

https://doi.org/10.24963/ijcai.2021/353
https://doi.org/10.24963/ijcai.2021/353

Under review as a conference paper at ICLR 2024

Nate Veldt, Austin R Benson, and Jon Kleinberg. Combinatorial characterizations and impossibilities
for higher-order homophily. Science Advances, 9(1):eabq3200, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hypergraph
diffusion neural operators. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=RiTjKoscnNd.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In The world wide web conference, pp. 2022–2032, 2019.

Jinfeng Wei, Yunxin Wang, Mengli Guo, Pei Lv, Xiaoshan Yang, and Mingliang Xu. Dy-
namic hypergraph convolutional networks for skeleton-based action recognition. arXiv preprint
arXiv:2112.10570, 2021.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Chenxin Xu, Maosen Li, Zhenyang Ni, Ya Zhang, and Siheng Chen. Groupnet: Multiscale hypergraph
neural networks for trajectory prediction with relational reasoning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6498–6507, 2022.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergcn: A new method for training graph convolutional networks on hypergraphs.
Advances in neural information processing systems, 32, 2019.

Naganand Yadati, Vikram Nitin, Madhav Nimishakavi, Prateek Yadav, Anand Louis, and Partha
Talukdar. Nhp: Neural hypergraph link prediction. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, CIKM ’20, pp. 1705–1714, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450368599. doi: 10.1145/
3340531.3411870. URL https://doi.org/10.1145/3340531.3411870.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, and Tarek Abdelzaher. Hypergraph learning with line
expansion. arXiv preprint arXiv:2005.04843, 2020.

Jaehyuk Yi and Jinkyoo Park. Hypergraph convolutional recurrent neural network. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
3366–3376, 2020.

Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. Local higher-order graph clustering.
In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and
data mining, pp. 555–564, 2017.

Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung, and Xiangliang
Zhang. Self-supervised multi-channel hypergraph convolutional network for social recommenda-
tion. In Proceedings of the web conference 2021, pp. 413–424, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Muhan Zhang, Zhicheng Cui, Shali Jiang, and Yixin Chen. Beyond link prediction: Predicting
hyperlinks in adjacency space. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Xiaoyao Zheng, Yonglong Luo, Liping Sun, Xintao Ding, and Ji Zhang. A novel social network
hybrid recommender system based on hypergraph topologic structure. World Wide Web, 21:
985–1013, 2018.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clustering,
classification, and embedding. Advances in neural information processing systems, 19, 2006.

12

https://openreview.net/forum?id=RiTjKoscnNd
https://doi.org/10.1145/3340531.3411870

Under review as a conference paper at ICLR 2024

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

13

Under review as a conference paper at ICLR 2024

Supplementary Materials

A INTERPLAY OF MESSAGE PASSING HOMOPHILY AND MODELS’
PERFORMANCES

(a)

(b)

Figure 6: (a) Normalized Accuracy vs ∆ homophily utilizing steps 0 and 1. (b) Normalized Accuracy
vs CE Homophily (Wang et al., 2023). CE Homophily is computed as node graph homophily (Pei
et al., 2020) on the clique expansion of the hypergraph. Normalized accuracy is computed using Eq.
14, utilizing different model A (depicted in the titles of the columns) while model B is ‘MLP CB.’
∆ homophily (Eq. 13), and CE Homophily utilized in Wang et al. (2023). Both axes on the plot
represent rank values, indicating that lower values correspond to better metrics for their respective
measures.

In this section, our goal is to evaluate the influence of the inductive bias introduced by incorporating
connectivity information into the model architecture. Specifically, we aim to understand how the
message passing mechanism influences performance in relation to a downstream task and to correlate
this impact with the corresponding homophily measures.

We compare two measures of homophily: Clique Expanded (CE) homophily and ∆ homophily.
Clique Expanded (CE) homophily, employed in Wang et al. (2023), is determined by calculating
node homophily Pei et al. (2020) on the graph derived from the clique-expanded hypergraphs. In
addition, as detailed below, we introduce ∆ homophily, derived from our dynamic definition of
message passing homophily (Section 3).

∆ homophily As emphasized in Section 3, extending homophily to higher-order interactions is
challenging but crucial for obtaining valuable information about group compositions. In this work,
we introduce the novel concept of ‘message passing homophily’ to capture higher-order homophily.
This concept places a greater emphasis on capturing interconnections between different hyperedges
through the exchange of information between nodes following the message passing scheme. In

14

Under review as a conference paper at ICLR 2024

Section 3, we define node-level ‘message passing homophily’ (Eq. 2), showcasing its dynamic
nature, and we conduct qualitative analyses to demonstrate its applicability in studying higher-order
networks. Here, we aim to illustrate that the proposed ‘message passing homophily’ can be leveraged
to derive novel metrics for studying higher-order networks. One way to utilize ‘message passing
homophily’ to derive novel metrics is to analyze higher-order networks from a dynamic point of
view rather than simply measuring average network homophily. To achieve this, we introduce the ∆
homophily measure. This measure is based on the assumption that if the one-step neighborhood of a
node u ∈ V is predominantly homophilic (i.e., shares the same class as node u itself), then the change
in its homophily score at steps t = 0 and t = 1 will be around zero. Conversely, a substantial change
in u homophily implies that the node resides in a neighborhood characterized as heterophilic. In
other words, we assess the change in node homophily following a one-step message passing iteration.
Specifically, for each node, we quantify the homophily change after one-step message passing by
subtracting the node homophily at step t = 1 from its value at previous step t = 0. Subsequently,
after obtaining the homophily change for every node, we discretize the resulting vector with a step
size of 0.1. We then calculate the proportion of nodes falling within a bin around 0, see Eq. 13.
This methodology enables us to assess, on average, the impact of one-step message passing on the
hypernetwork from a dynamic point of view. It is noteworthy that ∆ homophily could be defined
for any steps; however, we focus on steps t = 0 and t = 1 for further analysis and comparison
with AllDeepSet and AllSetTransformers, which consistently utilize one layer of two-step message
passing, as suggested in the original work (see Appendix J of Chien et al. (2022)).

∆ =
1

|V|
∑
v∈V

∣∣h0
v − h1

v

∣∣ < 0.1 (13)

Here ht
v is computed according to Eq. 2.

Table 4: Relative Performance Gap: Model A and Model B represent the models with and without
Inductive Bias.

Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO
Model A Model B

AllDeepSets MLP 3.84 -1.40 1.91 8.96 6.57 0.05 6.79 1.39 0.26 3.97
MLP CB 3.05 -1.26 3.21 7.84 6.43 3.13 1.06 0.29 -4.94 7.49

AllSetTransformer MLP 6.27 0.45 1.61 11.16 6.84 0.04 8.52 2.69 0.66 5.90
MLP CB 5.48 0.59 2.91 10.04 6.70 3.12 2.79 1.59 -4.54 9.42

MultiSetMixer MLP 6.11 0.72 -1.42 9.35 5.10 -4.06 9.03 2.84 6.90 -6.46
MLP CB 5.32 0.86 -0.12 8.23 4.96 -0.98 3.30 1.74 1.70 -2.94

Relative Performance Gap One way to quantify the impact of inductive bias in absolute value
involves calculating the difference in performances between Model A, which leverages inductive bias,
and Model B, which does not utilize inductive bias in its architecture. We refer to the difference
between Model A and Model B as a relative performance gap (see Table 4).

The real-world datasets employed in this study span diverse domains and, as depicted in Table 1,
exhibit considerable performance variations in absolute values. To alleviate the aforementioned
problem, we consider the Normalized Accuracy, which can be computed as follows:

NA =
Model A Acc. − Model B Acc.

100− Model B Acc.
(14)

where Acc. accounts for the performance accuracies of the models.

Analysis Figure 6 illustrates the rank dependency of normalized accuracy considering two ho-
mophily measures: (a) ∆ homophily, (b) CE Homophily. The ideal correlation aligns points with
the middle dashed line, indicating a positive linear relationship. We chose MLP CB since it’s the
strongest baseline (according to Table 1), not using connectivity within the architecture (notice
that the Transformer uses positional encodings derived from connectivity). The difference between
AllDeepSet and AllSetTransformer lies in the attention mechanism, highlighting its impact, while the
difference between MultiSetMixer and AllSets models lies in the way message passing propagates

15

Under review as a conference paper at ICLR 2024

information (see Section 4.2). Mushroom and Zoo datasets were excluded due to Mushroom’s
discriminatory node features and Zoo’s small hypernetwork size.

Figure 6 (a) demonstrates notably stronger correlation across all ‘models A’ compared to Figure 6
(b). Notably, MultiSetMixer and AllSetTransformer exhibit nearly ideal positive correlation. While
Citeseer and NTU2012 deviate from the diagonal line for MultiSetMixer, it has been demonstrated
in Section 5.4 that Citeseer’s connectivity minimally impacts downstream task performance, in
particular, we have shown that HGNN models ignore the conenctivity. In the middle and right plots
of Figure 6 can be seen how the attention mechanism impacts the ModelNet40 dataset, elevating its
rank from 5th to 2nd position.

At the same time, we can see that CE homophily does not exhibit any correlation with normalized
accuracy, showcasing that assessing the results through this other metric does not provide any
meaningful insight. In particular, CORA-CA, with a significant performance gap, attains the one of
the lowest CE homophily score. Notably, Citeseer and Pubmed have the highest CE homophily scores,
as demonstrated in Section 5.4, where HGNN models prioritize node features over connectivity.
We hypothesize that Citeseer and Pubmed exhibits this behaviour due to a large percentage of
isolated nodes. Consequently, HGNN models tend to ignore connectivity, and the presence of many
self-hyperedges skews the CE homophily measure to a higher positive value.

In summary, we presented a novel way to express the homophily for higher-order networks, termed
∆ homophily, based on the dynamic nature of the proposed message passing homophily (see Section
3). We demonstrated its superior correlation with HGNN models’ performance compared to classical
homophily measures over the clique-expanded hypergraph. Our findings underscore the crucial role
of accurately expressing homophily in HGNNs, emphasizing the complexity in capturing higher-order
dynamics.

B COMPARISON AND ANALYSIS BETWEEN MULTISET AND ALLSET
FRAMEWORK PERFORMANCES

In this section, we compare the MultiSetMixer and AllSet models. Table 1 highlights MultiSet-
Mixer’s superior performance on three datasets: NTU2012, ModelNet40, and 20Newsgroups. The
enhanced result on 20Newsgroups can be attributed to the distribution shift and the pooling oper-
ations over restricted neighbors within hyperedges. These are the results of mini-batching steps
1 and 2. We believe MultiSetMixer achieves worse performance on Mushroom and Zoo due to
the negative impact of the distribution shift. We showed that this can be mitigated by applying
‘k-means’ to the connectivity, as demonstrated in Section 5.4 and Appendix J.3, particularly Table
15. Applying ‘k-means’ to the initial connectivity leads the MultiSetMixer model to achieve results
like AllSetTransformer and AllDeepSets on Mushroom, Zoo, and 20Newsgroups. Furthermore, we
noticed that MultiSetMixer excels in processing Computer Vision/Graphics datasets (NTU2021 and
ModelNet40). This is attributed to the construction of the initial graph, which involved lifting the
initial k-uniform graph by constructing hyperedges based on the one-hop neighborhood of every node.
On Cora and Citeseer, MultiSetMixer outperforms AllDeepSets and performs on par with AllSet-
Transformer without requiring an attention mechanism. Conversely, AllSetTransformer outperforms
MultiSetMixer on CORA-CA, while MultiSetMixer achieves similar results as AllDeepSets. Finally,
MultiSetMixer’s lower scores on Pubmed and DBLP-CA can be attributed to mini-batching. This is
due to the impossibility of processing the entire hypergraph with one forward pass, given the memory
constraints for storing all hyperedge-dependent node representations.

C EXTENDED CONCLUSION AND DISCUSSION

This section summarizes key findings from our extensive evaluation and proposed frameworks. Here
we recap the question and summarize the answers to these questions revealed by this work.

Q1: Can the concept of homophily play a crucial role in HGNNs, similar to its significance
in graph-based research? We have demonstrated that the concept of homophily in higher-order
networks is considerably more complicated compared to networks that exhibit only pairwise connec-
tions. We introduce a novel message passing homophily framework that is capable of characterizing
homophily in hypergraphs through the distribution of node features as well as node class distribution.

16

Under review as a conference paper at ICLR 2024

In Appendix A, we present ∆ homophily, based on the dynamic nature of the proposed message
passing homophily (see Section 3), showing that it correlates better with HGNN models’ performance
than classical homophily measures over the clique-expanded hypergraph. Our findings underscore
the crucial role of accurately expressing homophily in HGNNs, emphasizing its complexity and the
potential in capturing higher-order dynamics. Moreover, in our experiments (see Appendix J.3) we
demonstrate that rewiring hyperedges for perfect homophily leads to similar results for graph-based
methods (CEGCN, CEGAT) and HGNN models, and also that simple k-means improves the per-
formance of graph-based models. Overall, our findings potentially pave the way for new research
directions in hypergraph literature, from defining new dynamic-based homophily measures to develop
novel connectivity rewiring techniques.

Q2: Given that current HGNNs are predominantly extensions of GNN architectures adapted to
the hypergraph domain, are these extended methodologies suitable, or should we explore new
strategies tailored specifically for handling hypergraph-based data? The three main contributions
presented in this paper –Message Passing Homophily, MultiSet framework with hyperedge-dependent
node representations, MultiSetMixer model with mini-batch sampling– have been directly inspired
from natural properties of hypernetworks and higher-order dynamics within them, thus no longer
relying on extensions of graph-based approaches. Based on our experimental results and analysis, the
proposed methodologies open an interesting discussion about the impact of novel ways of processing
hypergraph-data and defining HGNNs. For instance, our mini-batching sampling strategy –which
helps addressing scalability issues of current solutions– allowed us to realize the implicit introduction
of node class distribution shifts in the process, whose study could potentially lead to the definition of
meaningful connectivity rewiring techniques (as we already explore in Section 5.4). Furthermore, we
show that the introduced message-passing homophily measure allows for a deeper understanding of
hypernetwork dynamics and its correlation to the HGNN models’ performances. Overall, and despite
the fact that we also identify some common failure modes of our proposed methods (Section 5),
we argue that these contributions provide a new perspective on dealing and processing higher-order
networks that go beyond the graph domain.

Q3: Are the existing hypergraph benchmarking datasets meaningful and representative enough
to draw robust and valid conclusions? In Section 5.4 and Appendices A and J.3, we demonstrate
that the significant performance gap between models and MLP on Cora, CORA-CA, and DBLP-CA
is primarily influenced by the largest hyperedge cardinalities. Further analysis using ∆ homophily
reveals that their notable improvement is strongly tied to the homophilic nature of the one-hop
neighborhood. Additionally, the experimental results in Section 5.1 and 5.4 highlight challenges
for current HGNNs with certain benchmark hypergraph datasets. Specifically, we find that HGNN
models ignore connectivity for Citeseer, Pubmed, and 20Newsgroups, as well as for the Mushroom
dataset, due to highly discriminative features. Furthermore, we observe that models that do not
rely on inductive bias (i.e. do not use connectivity in the architecture), consistently exhibit good
performance across the majority of datasets. This suggests that the expressive power of node features
alone is sufficient for efficient task execution. Addressing this gap presents an open challenge
for future research endeavors, and we posit the necessity for additional benchmark datasets where
connectivity plays a pivotal role. In addition to this, we believe it would be also interesting to analyze
datasets involving higher-order relationships where node classes explicitly depend on hyperedges,
as introduced in Choe et al. (2023), and which can represent a insightful line of research to further
exploit hyperedge-based node representations.

D EXTENDED RELATED WORKS ON HYPERGRAPH NEURAL NETWORKS

Numerous machine-learning techniques have been developed for processing hypergraph data. One
commonly used approach in early literature is to transform the hypergraph into a graph through clique
expansion (CE). This technique involves substituting each hyperedge with an edge for every pair of
vertices within the hyperedge, creating a graph that can be analyzed using graph-based algorithms
(Agarwal et al., 2006; Zhou et al., 2006; Zhang et al., 2018; Li & Milenkovic, 2017).

Several techniques have been proposed that use Hypergraph Neural Networks (HGNNs) for semi-
supervised learning. One of the earliest methods extends the graph convolution operator by incor-
porating the normalized hypergraph Laplacian (Feng et al., 2019). As pointed out in Dong et al.
(2020), spectral convolution with the normalized Laplacian corresponds to performing a weighted

17

Under review as a conference paper at ICLR 2024

CE of the hypergraph. HyperGCN (Yadati et al., 2019) employs mediators for incomplete CE on the
hypergraph, which reduces the number of edges required to represent a hyperedge from a quadratic
to a linear number of edges. The information diffusion is then carried out using spectral convolution
for hypergraph-based semi-supervised learning. Hypergraph Convolution and Hypergraph Attention
(HCHA) (Bai et al., 2021) employs modified degree normalizations and attention weights, with the
attention weights depending on node and hyperedge features.

CE may cause the loss of important structural information and result in suboptimal learning perfor-
mance (Hein et al., 2013; Chien et al., 2022). Furthermore, these models typically obtain the best
performance with shallow 2-layer architectures. Adding more layers can lead to reduced performance
due to oversmoothing (Huang & Yang, 2021). In the recent study Chen & Zhang (2022), an attempt
was made to address oversmoothing in this type of network by incorporating residual connections;
however, the method still relies on using hypergraph Laplacians to build a weighted graph through
clique expansion. Another method presented in Yang et al. (2020) introduces a new hypergraph
expansion called line expansion (LE) that treats vertices and hyperedges equally. The LE bijectively
induces a homogeneous structure from the hypergraph by modeling vertex-hyperedge pairs. In
addition, the LE and CE techniques require significant computational resources to transform the
original hypergraph into a graph and perform subsequent computations, hence making the methods
unpractical for large hypergraphs.

Another line of research explores hypergraph modeling involving a two-stage procedure: information
is transmitted from nodes to hyperedges and then back from hyperedges to nodes (Wei et al., 2021;
Yi & Park, 2020; Dong et al., 2020; Arya et al., 2020; Huang & Yang, 2021; Yadati et al., 2020). This
procedure can be viewed as a two-step message passing mechanism. HyperSAGE (Arya et al., 2020)
is a prominent early example of this line of research allowing transductive and inductive learning
over hypergraphs. Although HyperSAGE has shown improvement in capturing information from
hypergraph structures compared to spectral-based methods, it involves only one learnable linear
transformation and cannot model arbitrary multiset function (Chien et al., 2022). Moreover, the
algorithm utilizes nested loops resulting in inefficient computation and poor parallelism.

UniGNN (Huang & Yang, 2021) addresses some of these limitations by using a permutation-invariant
function to aggregate vertex features within each hyperedge in the first stage and using learnable
weights only during the second stage to update each vertex with its incident hyperedges. One of the
variations of UniGNN, called UniGCNII addresses the oversmoothing problem, which is common
for most of the methods described above. It accomplishes this by adapting GCNII (Chen et al.,
2020) to hypergraphs. The AllSet method, proposed in Chien et al. (2022), employs a composition
of two learnable multiset functions to model hypergraphs. It presents two model variations: the
first one exploits Deep Set (Zaheer et al., 2017) and the second one Set Transformer (Lee et al.,
2019). The AllSet method can be seen as a generalization of the most commonly used hypergraph
HGNNs (Yadati et al., 2019; Feng et al., 2019; Bai et al., 2021; Dong et al., 2020; Arya et al.,
2020). More implementation details and detailed drawbacks discussion can be found in Section 4.1.
Although AllSet achieves state-of-the-art results, it suffers from the drawbacks of the message passing
mechanism, including the local receptive field, resulting in a limited ability to model long-range
interactions (Gu et al., 2020; Balcilar et al., 2021). Two additional issues are poor scalability to large
hypergraph structures and oversmoothing that occurs when multiple layers are stacked.

Finally, we would like to mention two related papers that put the focus on hyperedge-dependent
computations. On the one hand, EDHNN (Wang et al., 2023) incorporates the option of hyperedge-
dependent messages from hyperedges to nodes; however, at each iteration of the message passing it
aggregates all these messages to generate a unique node hidden representation, and thus it doesn’t
enable to keep different hyperedge-based node representations across the whole procedure –as our
MultiSetMixer does. On the other hand, the work Aponte et al. (2022) does allow multiple hyperedge-
based representations across the message passing, but the theoretical formulation of this unpublished
paper is not clear and rigorous, and the evaluation is neither reproducible nor comparable to other
hypergraph models. Hence, we argue that our MultiSet framework represents a step forward by
rigorously formulating a simple but general MP framework for hypergraph modelling that is flexible
enough to deal with hyperedge-based node representations and residual connections, demonstrating
as well that it generalizes previous hypergraph and graph models.

18

Under review as a conference paper at ICLR 2024

E DETAILS OF THE IMPLEMENTED METHODS

We provide a detailed overview of the models analyzed and tested in this work. In order to make
their similarities and differences more evident, we express their update steps through a standard and
unified notation.

Notation A hypergraph with n nodes and m hyperedges can be represented by an incidence matrix
H ∈ Rn×m. If the hyperedge ej is incident to a node vi (meaning vi ∈ ej), the entry in the incidence
matrix Hi,j is set to 1. Instead, if vi /∈ ej , then Hi,j = 0.

We denote with W and b a learnable weight matrix and bias of a neural network, respectively.
Generally, xv and ze are used to denote features for a node v and a hyperedge e respectively.
Stacking all node features together we obtain the node feature matrix X , while Z is instead the
hyperedge feature matrix. σ(·) indicates a nonlinear activation function (such as ReLU, ELU or
LeakyReLU) that depends on the model used. Finally, we use ∥ to denote concatenation.

E.1 ALLSET-LIKE MODELS

This Section addresses the models that are covered in the AllSet unified framework introduced in 4.1,
and that can potentially be expressed as particular instances of equations 4 and 6. For a detailed proof
of the claim for most of the following models, refer to Theorem 3.4 in Chien et al. (2022).

CEGCN / CEGAT

As introduced in the previous Sections, the CE of a hypergraph G = (V, E) is a weighted graph
obtained from G with the same set of nodes. In terms of incidence matrix, it can be described as
H(CE) = HHT (Chien et al., 2022). A one-step update of the node feature matrix X ∈ Rn×f can
be expressed both in a compact way as H(CE)X or directly as a node-level update rule, as

x(t+1)
v =

∑
e∈Ev

∑
u:u∈e

x(t)
v . (15)

Some types of hypergraph convolutional layers in the literature adopt a CE-based propagation, for
example generalizing popular graph-targeting models such as Graph Convolutional Networks (Kipf
& Welling, 2017) and Graph Attention Networks (Veličković et al., 2017).

HGNN

Before describing how HGNN (Feng et al., 2019) works, it is necessary to define some notation.
Let H be the hypergraph’s incidence matrix. Suppose that each hyperedge e ∈ E is assigned a
fixed positive weight ze, and let Z ∈ Rm×m now denote the matrix stacking all these weights in the
diagonal entries. Additionally, the vertex degree is defined as

dv =
∑
e∈Ev

ze (16)

while the hyperedge degree, instead, is

be =
∑
v:v∈e

1. (17)

The degree values can be used to define two diagonal matrices, D ∈ Rn×n and B ∈ Rm×m.

The core of the hypergraph convolution introduced in Feng et al. (2019) can be expressed as

x(t+1)
v = σ

(∑
e∈Ev

∑
u:u∈e

zex
(t)
v W (t)

)
(18)

19

Under review as a conference paper at ICLR 2024

where σ is a non-linear activation function like LeakyReLU and ELU, and W (t) ∈ Rf(t)×f(t+1)

is a
weight matrix between the (t)-th and (t+ 1)-th layer, to be learnt during traning. Note that in this
case the dimensionality of the node feature vectors f (t) can be layer-dependent.

The update step can be rewritten also in matrix form as

X(t+1) = σ(HZHTX(t)W (t)), (19)

where X(t+1) ∈ Rn×f(t+1)

and X(t) ∈ Rn×f(t)

.

In practice, a normalized version of this update procedure is proposed. The matrix-based formulation
allows to clearly express the symmetric normalization that is actually put in place through the vertex
and hyperedge degree matrices D and B defined above:

X(t+1) = σ(D−1/2HZB−1HTD−1/2X(t)W (t)). (20)

HCHA

With respect to the previously described models, HCHA (Bai et al., 2021) uses a different kind
of weights that depend on the node and hyperedge features. Specifically, starting from the same
convolutional model proposed by Feng et al. (2019) and described in Equation 20, they explore the
idea of introducing an attention learning model on H .

Their starting point is the intuition that hypergraph convolution as implemented in Equation 20
implicitly puts in place some attentional mechanism, which derives from the fact that the afferent and
efferent information flow to vertexes may be assigned different importance levels, which are statically
encoded in the incidence matrix H , hence depend only on the graph structure. In order to allow for
such information on magnitude of importance to be determined dynamically and possibly vary from
layer to layer, they introduce an attention learning module on the incidence matrix H: instead of
maintaining H as a binary matrix with predefined and fixed entries depending on the hypergraph
connectivity, they suggest that its entries could be learnt during the training process. The entries of the
matrix should express a probability distribution describing the degree of node-hyperedge connectivity,
through non-binary and real values.

Nevertheless, the proposed hypergraph attention is only feasible when the hyperedge and vertex sets
share the same homogeneous domain, otherwise, their similarities would not be compatible. In case
the comparison is feasible, the computation of attentional scores is inspired by (Veličković et al.,
2017): for a given vertex v and a hyperedge e, the score is computed as

Hv,e =
exp(σ(sim(xvW , zeW)))∑

g∈Ev
exp(σ(sim(xvW , zgW)))

, (21)

where σ is a non-linear activation function, and sim is a similarity function defined as

sim(xv, ze) = aT [xv ∥ ze] (22)

in which a is a weight vector, and the resulting similarity value is a scalar.

HyperGCN

The method proposed by Yadati et al. (2019) can be described as performing two steps sequentially:
first, a graph structure is defined starting from the input hypergraph, through a particular procedure,
and then the well known CGN model (Kipf & Welling, 2017) for standard graph structures is executed
on it. Depending on the approach followed in the first step, three slight variations of the same model
can be identified: 1-HyperGCN, HyperGCN (enhancing 1-HyperGCN with so-called mediators) and
FastHyperGCN.

Before analyzing the differences among the three techniques, we introduce some notation and express
how the GCN-update step is performed. Suppose that the input hypergraph G = (V, E) is equipped
with initial edge weights {ze}e∈E and node features {xv}v∈V (if missing, suppose to initialize them

20

Under review as a conference paper at ICLR 2024

randomly or with constant values). Let Ā(t) denote the normalized adjacency matrix associated to
the graph structure at time-step (t). The node-level one-step update for a specific node v can be
formalized as:

x(t+1)
v = σ

((
W (t)

)T ∑
u∈Nv

Ā(t)
u,v · x(t)

u

)
(23)

in which x
(t+1)
v is the (t+ 1)-th step hidden representation of node v and Nv is the set of neighbors

of v. For what concerns Ā(t)
u,v, it refers to the element at index u, v of Ā(t), which can be defined in

the following ways according to the method:

1. 1-HyperGCN: starting from the hypergraph G = (V, E), a simple graph is defined by
considering exactly one representative simple edge for each hyperedge e ∈ E , and it
is defined as (ve, ue) such that (ve, ue) = argmaxv,u∈e∥

(
W (t)

)T
(x

(t)
v − x

(t)
u)∥2. This

implies that each hyperedge e is represented by just one pairwise edge (ve, ue), and this
may also change from one step to the other, which leads to the graph adjacency matrix Ā(t)

being layer-dependent, too.

2. HyperGCN: the model extends the graph construction procedure of 1-HyperGCN by also
considering mediator nodes, that for each hyperedge e consist in Ke := {k ∈ e : k ̸=
ve, k ̸= ue}. Once the representative edge (ve, ue) is determined and added to the newly
defined graph, two edges for each mediator are also introduced, connecting the mediator
to both ve and ue. Because there are 2|e| − 3 edges for each hyperedge e, each weight is
chosen to be 1

2|e|−3 in order for the weights in each hyperedge to sum to 1. The generalized
Laplacian obtained this way satisfies all the properties of the HyperGCN’s Laplacian (Yadati
et al., 2019).

3. FastHyperGCN: in order to save training time, in this case the adjacency matrix Ā(t) is
computed only once before training, by using only the initial node features of the input
hypergraph.

UniGCNII

This model aims to extend to hypergraph structures the GCNII model proposed by Chen et al. (2020)
for simple graph structures, that is a deep graph convolutional network that puts in place an initial
residual connection and identity mapping as a way to reduce the oversmoothing problem (Huang &
Yang, 2021).

Let dv denote the degree of vertex v, while de = 1
|e|
∑

i∈e di for each hyperedge e ∈ E . A single
node-level update step performed by UniGCNII can be expressed as:

x̂(t)
v =

1√
dv

∑
e∈Ev

z
(t)
e√
de

, (24)

x(t+1)
v = ((1− β)I + βW (t))((1− α)x̂(t)

v + αx(0)
v) (25)

in which α and β are hyperparameters, I is identity matrix and x
(0)
v is the initial feature of vertex i.

HNHN

For the HNHN model by Dong et al. (2020), hypernode and hyperedge features are supposed to share
the same dimensionality d, hence in this case X ∈ Rn×d and Z ∈ Rm×d. The update rule in this
case can be easily expressed using the incidence matrix as

Z(t+1) = σ(HTX(t)WZ + bZ) (26)

X(t+1) = σ(HZ(t+1)WX + bX) (27)

21

Under review as a conference paper at ICLR 2024

in which σ is a nonlinear activation function, WX ,WZ ∈ Rd×d are weight matrices, and bX , bZ ∈
Rd are bias terms.

AllSet

The general formulation for the propagation setting of AllSet (Chien et al., 2022) is introduced in
Subsection 4.1 and, starting from that, we now analyze the different instances of the model obtained
by imposing specific design choices in the general framework.

In the practical implementation of the model, the update functions fV→E and fE→V , that are required
to be permutation invariant with respect to their first input, are parametrized and learnt for each
dataset and task. Furthermore, the information of their second argument is not utilized in practice,
hence their input can be more generally denoted as a set S.

The two architectures AllDeepSets and AllSetTransformer are obtained in the following way, depend-
ing on whether the update functions are defined either as MLPs or Transformers:

1. AllDeepSets (Chien et al., 2022): fV→E(S) = fE→V(S) = MLP(
∑

s∈S MLP(s));

2. AllSetTransformer (Chien et al., 2022), in which the update functions are defined iteratively
through multiple steps as they were first designed by Vaswani et al. (2017).
The first set of operations corresponds to the self-attention module. Suppose that h attention
heads are considered: first of all, h pairs of matrices Ki (keys) and Vi (values) with
i ∈ {1, ..., h} are computed from the input set through different MLPs. Additionally, h
weights θi, i ∈ {1, ..., h} are also learned and together with the keys and values they allow
for the computation of each head-specific attention value Oi using an activation function
ω (Vaswani et al., 2017). The h attention heads are processed in parallel and they are then
concatenated, leading to a unique vector being the result of the multi-head attention module
MHh,ω. After that, a sum operation and a Layer Normalization (LN) (Ba et al., 2016) are
applied:

Ki = MLPK
i (S),Vi = MLPV

i (S), where i ∈ {1, ..., h}, (28)

θ
∆
= ∥hi=1θi, (29)

Oi = ω(θi(Ki)
T)Vi, where i ∈ {1, ..., h}, (30)

MHh,ω(θ,S,S) = ∥hi=1O
(i), (31)

Y = LN(θ + MHh,ω(θ,S,S)) (32)

A feed-forward module follows the self-attention computations, in which a MLP is applied
to the feature matrix and then sum and LN are performed again, corresponding to the last
operations to be performed:

fV→E(S) = fE→V(S) = LN(Y + MLP(Y)) (33)

E.2 OTHER MODELS

This Section describes the models that are considered for the experiments but that don’t fall directly
under the AllSet unified framework defined in Section 4.1.

HAN

The Heterogeneous Graph Attention Network model (Wang et al., 2019) is specifically designed for
processing and performing inference on heterogeneous graphs. Heterogeneous graphs have various
types of nodes and/or edges, and standard GNN models that treat all of them equally are not able to
properly handle such complex information.

In order to apply this model on hypergraphs, (Chien et al., 2022) define a preprocessing step to derive
a heterogeneous graph from a hypergraph. Specifically, a bipartite graph is defined such that there is
a bijection between its nodes and the set of nodes and hyperedges in the original hypergraph. The
nodes obtained in this way belong to one of two distinct types, that are the sets V and E (if they
correspond to either a node or a hyperedge in the original hypergraph, respectively). Edges only
connect nodes of two different types, and one edge exists between a node uv ∈ V and a node ue ∈ E
if and only if v ∈ e in the input hypergraph. We consider two types of so-called meta-paths (in this

22

Under review as a conference paper at ICLR 2024

case, paths of length 2) in the heterogeneous graph, that are V → E → V and E → V → E. We
denote the sets of such meta-paths as ΦV and ΦE respectively. Furthermore, let NΦV

uv
denote the

neighbors of node uv ∈ V through paths γv ∈ ΦV , and viceversa let NΦE
ue

denote the neighbors of
node ue ∈ E through paths γe ∈ ΦV .

At each step, the model updates separately and sequentially the node features of nodes in V and E.
Consider for example the case of nodes in V (for nodes in E the process is the same, except that ΦE
is considered instead of ΦV). The node-level update is performed as follows, for a certain u ∈ V:

x̂(t)
u = W

(t)
ΦV

x(t)
u , (34)

x(t+1)
u = σ

 ∑
w∈NΦV

u

αΦV
u,wx̂

(t)
u

 (35)

In the equations above, W (t)
ΦV

is a meta-path dependent weight matrix while αΦV
u,w is an attentional

score computed between neighboring nodes in the same way as proposed in Veličković et al. (2017),
through similar equations as 21 and 22. More generally, h attention heads may be considered, that
give rise to different attentional scores for each head and consequently multiple results for the node
feature update, that are then concatenated to obtain a unique feature vector x(t+1)

u .

MLP

We also add the MLP model as a baseline; this model doesn’t use connectivity at all and only relies
on the initial node features to predict their class. The node feature matrix X is obtained as

X(t) = MLP(X(t−1)) (36)

MMLP CB

MMLP stands for Multiple-Multilayer-Perceptrons, and it is an additional baseline model we imple-
mented in order to test whether improving the results is achievable by deploying different tailored
MLPs for different connectivity values.

In particular, 4 different MLPs are learned: 3 of them target the overall top-3 connectivity levels (most
frequent sizes of hyperedges in the hypergraph), while the 4th one deals with all other hyperedges
of different sizes. Specifically, we consider the sizes of all the hyperedge, order them according
to the descending frequency of appearance in the graph, and select the top-3 ones. Hence, we use
three separate encoders for the corresponding hyperedges (cardinalities in top-3). For the rest of the
hyperedges, we used a 4th separate encoder.

MLP CB

This model, in contrast to its counterparts, employs a sampling procedure as outlined in Section
4.2. In this procedure, we straightforwardly apply a Multilayer Perceptron to the initial features of
nodes. During the training phase, we incorporate dropout by applying an MLP with distinct weights
dropped out for each hyperedge, resulting in slightly different representations for nodes for each
hyperedge they belong to. Furthermore, we execute the mini-batching procedure in accordance
with the guidelines presented in Section 4.2. It is important to note that these two choices affect
the training approach significantly so that the results of this model are very different from MLP’s
performances: see, for example, Table 1.

During the validation phase, dropout is not utilized, ensuring that the representations used for each
hyperedge remain exactly the same. Consequently, there is no need for the readout operation in this
context. Let dv denote the degree of vertex v; the node-level update is then described by:

x(t+1)
v,e = x(t)

v,e + MLP(LN(x(t)
v,e)) (37)

x(T)
v =

1

dv

∑
e∈Ev

x(T)
v,e (38)

Transformer

23

Under review as a conference paper at ICLR 2024

Along with MLP, we consider another simple baseline that is the basic Transformer model (Vaswani
et al., 2017).

Also in this case, let S denote the set of input vectors, and define as S = MLP(S) the matrix of input
embeddings, obtained from the input set through a MLP. The operations performed on S generalize
the ones described for the Transformer module adopted in AllSetTransformer, and they can be split
in two main modules, that are the self-attention module and the feed-forward module:

1. Suppose that h attention heads are considered in the self attention module. First of all, h
triples of matrices Ki (keys), Vi (values) and Qi (queries) with i ∈ {1, ..., h} are obtained
from S through linear matrix multiplications with weight matrices WK

i ,W V
i and WQ

i
that are learned during training. The result for each attention module is computed through
the key, query and key matrices using an activation function ω (Vaswani et al., 2017) and
a normalization factor dk, that corresponds to the dimension of the key and query vectors
associated to each input element. The h outputs of the different attention heads are then
concatenated, leading to a unique result matrix. After that, a sum operation and a Layer
Normalization (LN) (Ba et al., 2016) are applied:

Ki = SWK
i ,Vi = SW V

i ,Qi = SWQ
i , where i ∈ {1, ..., h}, (39)

Oi = ω

(
Qi(Ki)

T

√
dk

)
Vi, where i ∈ {1, ..., h}, (40)

MHh,ω(S,S) = ∥hi=1O
(i), (41)

Y = LN(S + MHh,ω(S,S)) (42)

2. As described for AllSetTransformer (Chien et al., 2022), in the feed-forward module a MLP
is applied to the feature matrix, followed by a sum operation and Layer Normalization. After
that, the output of the overall Transformer architecture is obtained:

Yout = LN(Y + MLP(Y)). (43)

F PROOF OF PROPOSITION 1

UniGCNII inherits the same hyperedge update rule of other hypergraph models (e.g. HGNN (Feng
et al., 2019), HyperGCN (Yadati et al., 2019)), so it directly follows from Theorem 3.4 of (Chien
et al., 2022) that it can be expressed through 4. By looking at the definition of the node update rule of
UniGCNII (Eq. 24 and 25), we can re-express it as

x(t+1)
v = ((1−β)I+βW (t))

(
(1− α)

1√
dv

∑
e∈Ev

z
(t+1)
e√
de

+ αx(0)
v

)
= fE→V({z(t+1)

e }e∈Ev
;x(0)

v).

(44)
Note that this is a particular instance of the extended AllSet node update rule 6 where only a residual
connection to the initial node features is considered. Lastly, it is straightforward to see that fE→V is
permutation invariant w.r.t the set {z(t+1)

e }e∈Ev
, as it processes the set through a weighted mean.

G PROOF OF PROPOSITION 2

We prove this proposition by showing that we can obtain AllSet update rules 4-5 and 6 from our
proposed MultiSet framework 7-8-9. This can easily follow by not distinguishing node representations
among hyperedges, so X(t)

v = {x(t)
v,e}e∈Ev = x

(t)
v . With this particular choice, we directly get 4 from

7, and 6 can be obtained from 8 by further disregarding the hyperedge subscript –as there is only a
single node representation to update. Analogously, we can get 5 from 8 if we additionally do not
consider node residual connections, so {X(k)

v }tk=0 simply becomes x(t)
v . Finally, the readout 9 can be

defined as the identity function applied to the node representations at the last message passing step T .

24

Under review as a conference paper at ICLR 2024

H PROOF OF PROPOSITION 3

It is straightforward that functions fV→E , fE→V and fV→V defined in MultiSetMixer (Equations
10-12) are permutation invariant w.r.t their first argument: hyperedge update rule 10 and readout 12
process it through a mean operation, whereas the node update rule only receives a single-element set.
The rest of the proof follows from the proof of Proposition 4.1 of Chien et al. (2022).

I EXPERIMENTS

I.1 HYPERPARAMETERS OPTIMIZATION

In order to implement the benchmark models, we followed the procedure described in Chien et al.
(2022); in particular, the maximum epochs were set to 200 for all the models. The models were
trained with categorical cross-entropy loss, and the best architecture was selected at the end of training
depending on validation accuracy. For the AllDeepSets (Chien et al., 2022), AllSetTransformer
(Chien et al., 2022), UniGCNII (Huang & Yang, 2021), CEGAT, CEGCN, HCHA (Bai et al., 2021),
HGNN (Feng et al., 2019), HNHN (Dong et al., 2020), HyperGCN (Yadati et al., 2019), HAN(Wang
et al., 2019), and HAN (mini-batching) (Wang et al., 2019) and MLP, we performed the same
hyperparameter optimization proposed in Chien et al. (2022). For both the proposed model and the
introduced baseline, we conducted a thorough hyperparameter search across the following values:

• Learning rate within the range of 0.001, 0.01;
• Weight decay values from the set 0.0, 1e− 5, 1;
• MLP hidden layer sizes of 64, 128, 256, 512;
• Mini-batch sizes set to 256, 512, with full-batch utilization when memory resources allow;
• The number of sampled neighbors per hyperedge ranged from 2, 3, 5, 10.

It’s important to note that the limitation of the number of sampled neighbors per hyperedge to this
small range was intentional. This limitation showcases that even for datasets with large hyperedges,
effective processing can be achieved by considering only a subset of neighbors.

The models’ hyperparameters were optimized for a 50% split and subsequently applied to all the
other splits.

I.2 FURTHER INFORMATION ABOUT THE DATASETS

For our experiments we utilized various benchmark datasets from existing literature on hypergraph
neural networks. For what concerns co-authorship networks (Cora-CA and DPBL-CA) and co-citation
networks (Cora, Citeseer, and Pubmed), we relied on the datasets provided in Yadati et al. (2019).
Additionally, we employed the Princeton ModelNet40 (Wu et al., 2015) and the National Taiwan
University (Chen et al., 2003) dataset introduced for 3D object classification. For these two datasets,
we complied with what Feng et al. (2019) and Yang et al. (2020) proposed for the construction of
the hypergraphs, using both MVCNN (Su et al., 2015) and GVCNN (Feng et al., 2019) features.
Additionally, we tested our model on three datasets with categorical attributes, namely 20Newsgroups,
Mushroom, and ZOO, obtained from the UCI Categorical Machine Learning Repository (Dua et al.,
2017). In order to construct hypergraphs for these datasets, we followed the approach described in
Yadati et al. (2019), where a hyperedge is defined for all data points sharing the same categorical
feature value.

25

Under review as a conference paper at ICLR 2024

Table 5: Statistics of hypergraph datasets: |e| denotes the size of hyperedges while dv denotes the
node degree.

Cora Citeseer Pubmed CORACA DBLP-CA ZOO 20Newsgroups Mushroom NTU2012 ModelNet40

|E| 1579 1079 7963 1072 22363 43 100 298 2012 12311
classes 7 6 3 7 6 7 4 2 67 40
min |e| 2 2 2 2 2 1 29 1 5 5
med |e| 3 2 3 3 3 40 537 72 5 5
max dv 145 88 99 23 18 17 44 5 19 30
min dv 0 0 0 0 1 17 1 5 1 1
avg dv 1.77 1.04 1.76 1.69 2.41 17 4.03 5 5 5
med dv 1 0 0 2 2 17 3 5 5 4

CE Homophily 89.74 89.32 95.24 80.26 86.88 82.88 75.25 85.33 46.07 24.07
1
|V|
∑

v∈V h0
v 84.10 78.25 82.05 80.81 88.86 91.13 81.26 88.05 53.24 42.16

1
|V|
∑

v∈V h1
v 78.08 74.18 75.73 76.51 86.01 85.79 74.78 84.41 41.95 29.42

We downloaded co-citation and co-authoring networks from Yadati et al. (2019). Below are the
details on how the hypergraph was constructed. Cora-CA, DBLP: all documents co-authored by
an author are in one hyperedge, following what was done in Yadati et al. (2019). Co-citation data
Citeseer, Pubmed, Cora: all documents cited by a document are connected by a hyperedge. Each
hypernode (document abstract) is represented by bag-of-words features (feature matrix X).

Citation and co-authorship datasets In the co-citation and co-authorship networks datasets, the
node features are the bag-of-words representations of the corresponding documents. In co-citation
datasets (Cora, Citeseer, PubMed) all documents cited by a document are connected by a hyperedge.
In co-authored datasets (CORA-CA, DBLP-CA), all documents co-authored by an author belong to
the same hyperedge.

Computer vision/graphics The hyperedges are constructed using the k-nearest neighbor algorithm
in which k = 5.

Categorical datasets There are instances with categorical attributes within the datasets. To con-
struct the hypergraph, each attribute value is treated as a hyperedge, meaning that all instances
(hypernodes) with the same attribute value are contained in a hyperedge. The node features of
20Newsgroups are the TF-IDF representations of news messages. The node features of mushrooms
(in Mushroom dataset) represent categorical descriptions of 23 species. The node features of a zoo
(in ZOO dataset) are a combination of categorical and numeric measurements describing various
animals.

Table 6: Node Connectivity Statistics. For brevity we use the following notation in this table: under
the columns labeled |Ev| = k, we report the amount of nodes that belong to k hyperedges. This value
can be expressed in a more formal way as |v ∈ V : |Ev| = k|. Moreover, |Ev| = 0, denotes the number
of isolated nodes. In addition, the columns labeled “% |Ev| = k” indicate the percentage of nodes
belonging to k hyperedges relatively to the total number of nodes. Finally,

∑
e∈E |e| corresponds to

the number of hyperedge-dependent node representations.

|V| |Ev| = 0 |Ev| = 1 |{v : |Ev| = 2}| |Ev| = 3 |Ev| > 3 % |Ev| = 0 % |Ev| = 1 % |Ev| = 2 % |Ev| = 31 % |Ev| > 3
∑

e∈E |e|
Cora 2708 1274 575 327 156 376 47.05 21.23 12.08 5.76 13.88 6060

Citeseer 3312 1854 798 307 144 209 55.98 24.09 9.27 4.35 6.31 5307
Pubmed 19717 15877 339 313 292 2896 80.52 1.72 1.59 1.48 14.69 50506

CORA-CA 2708 320 995 951 287 155 11.82 36.74 35.12 10.60 5.72 4905
DBLP-CA 41302 0 8998 16724 9249 6331 0.00 21.79 40.49 22.39 15.33 99561
Mushroom 8124 0 0 0 0 8124 0.00 0.00 0.00 0.00 100.00 40620
NTU2012 2012 0 173 256 296 1287 0.00 8.60 12.72 14.71 63.97 10060

ModelNet40 12311 0 1491 1755 1594 7471 0.00 12.11 14.26 12.95 60.69 61555
20newsW100 16242 0 3053 3149 2720 7320 0.00 18.80 19.39 16.75 45.07 65451

ZOO 101 0 0 0 0 101 0.00 0.00 0.00 0.00 100.00 1717

J EXPERIMENT RESULTS

J.1 BENCHMARKING MODELS ACROSS MULTIPLE TRAINING PROPORTIONS SPLITS

26

Under review as a conference paper at ICLR 2024

Table 7: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits.
Training split: 50%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllDeepSets 77.11 ± 1.00 70.67 ± 1.42 89.04 ± 0.45 82.23 ± 1.46 91.34 ± 0.27 99.96 ± 0.05 86.49 ± 1.86 96.70 ± 0.25 81.19 ± 0.49 89.10 ± 7.00 6.00

AllSetTransformer 79.54 ± 1.02 72.52 ± 0.88 88.74 ± 0.51 84.43 ± 1.14 91.61 ± 0.19 99.95 ± 0.05 88.22 ± 1.42 98.00 ± 0.12 81.59 ± 0.59 91.03 ± 7.31 2.85
UniGCNII 78.46 ± 1.14 73.05 ± 1.48 88.07 ± 0.47 83.92 ± 1.02 91.56 ± 0.18 99.89 ± 0.07 88.24 ± 1.56 97.84 ± 0.16 81.16 ± 0.49 89.61 ± 8.09 4.15

CEGAT 76.53 ± 1.58 71.58 ± 1.11 87.11 ± 0.49 77.50 ± 1.51 88.74 ± 0.31 96.81 ± 1.41 82.27 ± 1.60 92.79 ± 0.44 nan 44.62 ± 9.18 11.00
CEGCN 77.03 ± 1.31 70.87 ± 1.19 87.01 ± 0.62 77.55 ± 1.65 88.12 ± 0.25 94.91 ± 0.44 80.90 ± 1.74 90.04 ± 0.47 nan 49.23 ± 6.81 11.67
HCHA 79.53 ± 1.33 72.57 ± 1.06 86.97 ± 0.55 83.53 ± 1.12 91.21 ± 0.28 98.94 ± 0.54 86.60 ± 1.96 94.50 ± 0.33 80.75 ± 0.53 89.23 ± 6.81 6.75
HGNN 79.53 ± 1.33 72.24 ± 1.08 86.97 ± 0.55 83.45 ± 1.22 91.26 ± 0.26 98.94 ± 0.54 86.71 ± 1.48 94.50 ± 0.33 80.75 ± 0.52 89.23 ± 6.81 6.85
HNHN 77.68 ± 1.08 73.47 ± 1.36 87.88 ± 0.47 78.53 ± 1.15 86.73 ± 0.40 99.97 ± 0.04 88.28 ± 1.50 97.84 ± 0.15 81.53 ± 0.55 89.23 ± 7.85 5.05

HyperGCN 74.78 ± 1.11 66.06 ± 1.58 82.32 ± 0.62 77.48 ± 1.14 86.07 ± 3.32 69.51 ± 4.98 47.65 ± 5.01 46.10 ± 7.95 80.84 ± 0.49 51.54 ± 9.88 13.80
HAN 80.73 ± 1.37 73.69 ± 0.95 86.34 ± 0.61 84.19 ± 0.81 91.10 ± 0.20 91.33 ± 0.91 83.78 ± 1.75 93.85 ± 0.33 79.67 ± 0.55 80.26 ± 6.42 8.10

HAN minibatch 80.24 ± 2.17 73.55 ± 1.13 85.41 ± 2.32 82.04 ± 2.56 90.52 ± 0.50 93.87 ± 1.04 80.62 ± 2.00 92.06 ± 0.63 79.76 ± 0.56 70.39 ± 11.29 9.90
MultiRepMixer 79.38 ± 1.08 72.79 ± 1.12 85.71 ± 0.49 82.62 ± 1.20 89.87 ± 0.29 95.85 ± 3.21 88.73 ± 1.29 98.15 ± 0.19 87.83 ± 2.68 78.67 ± 9.08 6.40

MLP CB 74.06 ± 1.26 71.93 ± 1.53 85.83 ± 0.51 74.39 ± 1.40 84.91 ± 0.44 96.83 ± 2.18 85.43 ± 1.51 96.41 ± 0.32 86.13 ± 2.82 81.61 ± 10.98 9.80
MMLP CB 71.05 ± 2.03 69.26 ± 1.91 85.20 ± 0.54 71.16 ± 2.17 84.08 ± 0.42 95.71 ± 2.42 nan nan 85.04 ± 4.04 83.89 ± 9.52 12.75

MLP Classic 73.27 ± 1.09 72.07 ± 1.65 87.13 ± 0.49 73.27 ± 1.09 84.77 ± 0.41 99.91 ± 0.08 79.70 ± 1.56 95.31 ± 0.28 80.93 ± 0.59 85.13 ± 6.90 10.40
Transformer Classic 74.15 ± 1.17 71.82 ± 1.51 87.37 ± 0.49 73.61 ± 1.55 85.26 ± 0.38 99.95 ± 0.08 82.88 ± 1.93 96.29 ± 0.29 81.17 ± 0.54 88.72 ± 10.25 9.05

Table 8: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits.
Training split: 40%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllDeepSets 76.09 ± 1.22 70.32 ± 1.39 88.58 ± 0.46 81.32 ± 1.27 90.96 ± 0.24 99.94 ± 0.08 85.60 ± 1.46 96.71 ± 0.21 81.11 ± 0.43 89.57 ± 5.91 6.30

AllSetTransformer 78.81 ± 0.99 71.65 ± 1.05 88.17 ± 0.45 83.26 ± 1.12 91.26 ± 0.24 99.94 ± 0.09 87.04 ± 1.07 97.92 ± 0.14 81.30 ± 0.41 91.72 ± 6.38 3.15
UniGCNII 77.78 ± 1.15 72.30 ± 1.45 87.86 ± 0.37 83.39 ± 0.95 91.32 ± 0.19 99.88 ± 0.09 87.30 ± 1.34 97.86 ± 0.16 81.14 ± 0.45 89.68 ± 6.42 3.55

CEGAT 75.68 ± 1.09 70.59 ± 0.89 86.39 ± 0.47 76.91 ± 1.22 88.18 ± 0.31 96.72 ± 1.50 80.97 ± 1.30 92.46 ± 0.29 nan 45.27 ± 9.41 10.67
CEGCN 76.19 ± 1.06 70.08 ± 1.26 86.22 ± 0.50 76.17 ± 1.44 87.61 ± 0.26 95.00 ± 0.38 79.41 ± 1.26 89.79 ± 0.39 nan 51.40 ± 7.24 11.83
HCHA 78.87 ± 1.04 71.73 ± 0.91 86.28 ± 0.43 83.05 ± 0.99 91.04 ± 0.23 99.00 ± 0.48 85.53 ± 1.43 94.53 ± 0.28 80.77 ± 0.31 90.54 ± 5.29 6.30
HGNN 78.87 ± 1.04 71.44 ± 1.00 86.28 ± 0.43 82.95 ± 1.06 91.06 ± 0.24 99.00 ± 0.48 85.71 ± 1.37 94.53 ± 0.28 80.77 ± 0.31 90.54 ± 5.29 6.30
HNHN 76.47 ± 0.90 72.25 ± 1.10 87.17 ± 0.45 77.27 ± 1.11 86.61 ± 0.31 99.96 ± 0.08 87.14 ± 1.23 97.82 ± 0.17 81.28 ± 0.49 89.46 ± 6.50 5.30

HyperGCN 73.56 ± 0.91 64.65 ± 1.28 82.09 ± 0.67 76.44 ± 1.06 86.22 ± 2.93 69.49 ± 5.02 46.78 ± 4.61 45.34 ± 7.34 80.82 ± 0.59 52.80 ± 8.90 13.50
HAN 79.89 ± 0.78 73.16 ± 1.04 86.11 ± 0.56 83.84 ± 0.91 90.96 ± 0.19 91.39 ± 0.93 82.79 ± 1.16 93.83 ± 0.27 79.52 ± 0.47 80.11 ± 6.46 7.95

HAN minibatch 80.07 ± 1.68 69.44 ± 6.58 86.08 ± 0.84 82.33 ± 1.91 nan 93.60 ± 0.91 79.41 ± 1.62 nan 79.43 ± 0.91 64.84 ± 12.59 10.81
MultiRepMixer 78.60 ± 0.89 71.75 ± 1.20 85.00 ± 0.54 81.67 ± 0.84 89.74 ± 0.27 97.76 ± 1.70 87.07 ± 1.06 98.17 ± 0.14 86.85 ± 3.30 79.01 ± 8.08 6.60

MLP CB 72.60 ± 1.44 71.08 ± 1.68 85.14 ± 0.47 72.63 ± 1.31 84.63 ± 0.31 97.86 ± 1.46 83.72 ± 1.40 96.25 ± 0.25 87.28 ± 3.50 81.42 ± 11.55 9.50
MMLP CB 69.85 ± 1.51 67.46 ± 1.62 84.91 ± 0.45 70.17 ± 2.01 83.68 ± 0.32 95.23 ± 2.54 nan nan 86.81 ± 3.32 83.57 ± 7.45 12.62

MLP Classic 70.61 ± 7.44 70.96 ± 1.65 86.60 ± 0.40 70.70 ± 7.33 84.42 ± 0.28 99.91 ± 0.09 77.83 ± 1.63 95.24 ± 0.23 80.95 ± 0.54 85.38 ± 8.02 10.25
Transformer Classic 72.65 ± 1.15 70.70 ± 1.50 86.79 ± 0.34 71.96 ± 1.03 84.97 ± 0.27 99.92 ± 0.09 80.69 ± 1.55 96.18 ± 0.24 80.95 ± 0.46 89.68 ± 7.31 8.90

Table 9: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits.
Training split: 30%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllDeepSets 74.78 ± 1.02 69.10 ± 1.34 88.01 ± 0.39 79.69 ± 1.44 90.57 ± 0.20 99.95 ± 0.06 84.04 ± 1.39 96.49 ± 0.26 80.99 ± 0.41 87.04 ± 6.74 6.45

AllSetTransformer 77.67 ± 0.92 71.06 ± 1.00 87.62 ± 0.34 82.14 ± 0.96 91.10 ± 0.18 99.94 ± 0.09 85.73 ± 1.38 97.73 ± 0.21 81.05 ± 0.49 90.19 ± 6.18 3.30
UniGCNII 76.29 ± 1.05 71.38 ± 1.32 87.48 ± 0.35 81.93 ± 1.09 90.97 ± 0.20 99.88 ± 0.08 85.59 ± 1.60 97.89 ± 0.16 81.10 ± 0.44 88.33 ± 6.29 3.65

CEGAT 74.25 ± 1.24 69.75 ± 0.90 85.41 ± 0.44 75.24 ± 1.05 87.54 ± 0.23 96.86 ± 1.27 79.12 ± 1.60 91.89 ± 0.30 nan 42.87 ± 8.96 10.94
CEGCN 74.84 ± 1.35 69.17 ± 0.93 85.17 ± 0.41 74.83 ± 1.72 87.10 ± 0.25 95.08 ± 0.40 78.13 ± 1.35 89.34 ± 0.40 nan 48.70 ± 5.96 11.44
HCHA 77.81 ± 1.07 71.10 ± 1.11 84.97 ± 0.41 81.81 ± 1.08 90.85 ± 0.18 99.00 ± 0.47 84.34 ± 1.61 94.38 ± 0.28 80.78 ± 0.43 90.65 ± 5.58 6.30
HGNN 77.81 ± 1.07 70.88 ± 1.05 84.97 ± 0.41 81.78 ± 1.13 90.85 ± 0.16 99.00 ± 0.47 84.40 ± 1.38 94.38 ± 0.28 80.78 ± 0.43 90.65 ± 5.58 6.60
HNHN 74.85 ± 1.14 71.34 ± 1.03 86.34 ± 0.39 75.46 ± 1.02 86.33 ± 0.25 99.95 ± 0.07 84.93 ± 1.49 97.75 ± 0.20 81.10 ± 0.48 85.37 ± 7.96 5.50

HyperGCN 71.54 ± 1.26 63.82 ± 1.34 81.87 ± 0.56 74.44 ± 1.25 85.63 ± 2.89 69.44 ± 5.02 46.70 ± 4.01 45.28 ± 8.18 80.64 ± 0.48 55.46 ± 6.78 13.70
HAN 78.60 ± 1.28 72.44 ± 1.05 85.89 ± 0.44 82.69 ± 0.77 90.85 ± 0.19 91.47 ± 0.79 81.54 ± 1.44 93.79 ± 0.20 79.51 ± 0.58 79.81 ± 6.61 7.10

HAN minibatch 78.84 ± 1.19 72.26 ± 0.93 85.70 ± 0.81 79.81 ± 1.53 nan 93.59 ± 0.84 77.97 ± 1.63 nan 79.46 ± 1.10 45.74 ± 13.83 9.25
MultiRepMixer 77.43 ± 0.80 71.02 ± 1.19 84.07 ± 0.61 80.64 ± 0.94 89.55 ± 0.26 97.65 ± 1.11 85.49 ± 1.60 98.04 ± 0.18 85.97 ± 3.14 75.79 ± 10.03 6.80

MLP CB 71.14 ± 1.09 70.21 ± 1.14 84.24 ± 0.63 71.14 ± 1.61 84.17 ± 0.24 97.46 ± 1.59 81.18 ± 1.79 96.10 ± 0.22 85.94 ± 5.83 79.58 ± 8.22 10.10
MMLP CB 67.43 ± 1.12 66.48 ± 1.20 84.32 ± 0.52 68.53 ± 1.25 83.00 ± 0.30 94.78 ± 2.67 nan nan 86.75 ± 3.67 82.88 ± 7.48 11.88

MLP Classic 66.14 ± 11.37 69.92 ± 1.32 85.86 ± 0.29 66.14 ± 11.37 83.96 ± 0.25 99.89 ± 0.11 75.08 ± 1.69 95.05 ± 0.31 80.82 ± 0.45 82.87 ± 7.37 10.80
Transformer Classic 70.41 ± 1.13 69.75 ± 1.33 86.05 ± 0.28 69.93 ± 0.92 84.57 ± 0.25 99.93 ± 0.10 78.20 ± 1.73 95.92 ± 0.20 80.87 ± 0.37 86.85 ± 9.97 9.25

Table 10: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits.
Training split: 20%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllDeepSets 72.56 ± 1.60 67.49 ± 1.57 87.24 ± 0.36 77.24 ± 1.52 89.91 ± 0.26 99.92 ± 0.07 80.71 ± 1.32 96.30 ± 0.24 80.59 ± 0.33 84.72 ± 7.95 6.25

AllSetTransformer 75.69 ± 1.09 69.39 ± 1.30 86.63 ± 0.40 80.54 ± 0.94 90.72 ± 0.17 99.92 ± 0.07 82.58 ± 1.31 97.48 ± 0.24 80.82 ± 0.28 85.61 ± 7.29 3.35
UniGCNII 74.11 ± 1.28 70.51 ± 1.48 86.97 ± 0.41 79.41 ± 1.23 90.47 ± 0.19 99.90 ± 0.06 82.54 ± 1.60 97.83 ± 0.15 80.88 ± 0.32 88.21 ± 5.55 3.50

CEGAT 71.86 ± 1.42 68.11 ± 1.34 84.03 ± 0.51 73.18 ± 1.32 86.98 ± 0.27 96.19 ± 1.38 76.14 ± 1.20 91.34 ± 0.31 nan 41.22 ± 6.16 10.67
CEGCN 73.25 ± 1.35 67.23 ± 1.39 83.47 ± 0.52 72.50 ± 1.44 86.29 ± 0.21 94.98 ± 0.31 75.55 ± 1.37 88.60 ± 0.41 nan 49.51 ± 6.31 11.56
HCHA 76.04 ± 1.30 69.90 ± 1.25 83.65 ± 0.37 80.03 ± 0.87 90.53 ± 0.17 99.03 ± 0.43 81.48 ± 1.29 94.31 ± 0.20 80.60 ± 0.29 89.35 ± 5.89 5.40
HGNN 76.04 ± 1.30 69.59 ± 1.22 83.65 ± 0.37 80.02 ± 0.88 90.51 ± 0.19 99.03 ± 0.43 81.60 ± 1.24 94.31 ± 0.20 80.60 ± 0.29 89.35 ± 5.89 5.60
HNHN 72.47 ± 1.06 69.44 ± 1.21 85.10 ± 0.47 73.16 ± 0.99 85.82 ± 0.21 99.88 ± 0.10 81.56 ± 1.54 97.61 ± 0.24 80.48 ± 0.32 82.60 ± 7.71 7.20

HyperGCN 68.59 ± 1.79 62.08 ± 1.28 81.57 ± 0.43 71.42 ± 1.27 85.45 ± 2.31 69.36 ± 5.10 44.01 ± 3.47 46.40 ± 8.41 80.38 ± 0.37 53.25 ± 8.74 13.60
HAN 76.73 ± 1.18 71.21 ± 1.13 85.72 ± 0.44 80.83 ± 0.89 90.56 ± 0.15 91.50 ± 0.98 79.46 ± 1.30 93.77 ± 0.23 79.33 ± 0.45 78.54 ± 6.50 6.75

HAN minibatch 76.89 ± 1.51 nan 85.59 ± 0.72 78.55 ± 1.43 nan 93.22 ± 1.34 73.79 ± 1.54 nan 79.50 ± 0.42 47.72 ± 14.96 9.57
MultiRepMixer 75.64 ± 1.01 69.77 ± 1.30 82.95 ± 0.70 78.47 ± 1.32 89.24 ± 0.26 96.60 ± 1.78 82.36 ± 1.27 97.90 ± 0.22 84.98 ± 2.90 76.12 ± 7.88 6.60

MLP CB 68.07 ± 1.50 68.64 ± 1.34 83.06 ± 0.58 68.37 ± 1.23 83.43 ± 0.25 96.48 ± 1.89 77.01 ± 1.69 95.85 ± 0.27 85.66 ± 5.70 75.61 ± 9.73 10.00
MMLP CB 63.62 ± 1.52 64.30 ± 1.14 83.57 ± 0.49 65.64 ± 1.58 82.01 ± 0.31 93.81 ± 3.29 nan nan 85.76 ± 2.79 78.77 ± 7.30 11.62

MLP Classic 51.73 ± 17.51 68.20 ± 1.21 85.09 ± 0.34 51.73 ± 17.51 83.22 ± 0.21 99.84 ± 0.12 69.35 ± 9.49 94.69 ± 0.34 80.58 ± 0.31 78.54 ± 8.98 10.95
Transformer Classic 67.34 ± 1.26 68.06 ± 1.39 85.31 ± 0.40 66.61 ± 1.50 83.93 ± 0.27 99.86 ± 0.13 74.17 ± 1.65 95.65 ± 0.29 80.51 ± 0.38 81.45 ± 6.81 9.80

27

Under review as a conference paper at ICLR 2024

Table 11: Hypergraph model performance benchmarks. Test accuracy in % averaged over 15 splits.
Training split: 10%.

Model Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
AllDeepSets 68.51 ± 1.64 64.50 ± 1.43 85.55 ± 0.38 73.67 ± 1.79 88.82 ± 0.25 99.88 ± 0.08 73.44 ± 1.91 95.96 ± 0.21 79.61 ± 0.36 76.81 ± 7.05 6.15

AllSetTransformer 71.82 ± 1.18 65.96 ± 1.48 84.71 ± 0.55 76.16 ± 1.36 90.09 ± 0.18 99.86 ± 0.09 75.78 ± 1.96 96.93 ± 0.21 80.18 ± 0.31 75.22 ± 10.78 4.05
UniGCNII 69.36 ± 1.63 66.41 ± 1.59 85.51 ± 0.50 75.84 ± 1.13 89.70 ± 0.25 99.86 ± 0.09 74.86 ± 2.20 97.58 ± 0.18 80.44 ± 0.26 79.86 ± 7.97 3.65

CEGAT 68.08 ± 1.65 64.15 ± 1.60 81.83 ± 0.43 69.04 ± 1.60 85.92 ± 0.23 96.01 ± 1.31 69.26 ± 2.27 90.17 ± 0.37 nan 39.20 ± 6.19 10.89
CEGCN 70.22 ± 1.62 62.68 ± 1.49 82.13 ± 0.44 67.45 ± 1.54 85.41 ± 0.26 94.85 ± 0.36 68.31 ± 2.08 87.28 ± 0.39 nan 49.20 ± 5.69 11.00
HCHA 72.76 ± 1.82 66.15 ± 1.27 82.41 ± 0.36 76.97 ± 0.95 90.00 ± 0.19 98.93 ± 0.41 74.44 ± 2.31 94.04 ± 0.21 80.23 ± 0.32 79.78 ± 7.89 4.95
HGNN 72.76 ± 1.82 65.69 ± 1.57 82.41 ± 0.36 76.96 ± 1.10 90.00 ± 0.18 98.93 ± 0.41 74.53 ± 2.44 94.04 ± 0.21 80.23 ± 0.32 79.78 ± 7.89 5.15
HNHN 67.43 ± 1.62 65.02 ± 1.40 82.33 ± 0.76 68.10 ± 1.67 84.74 ± 0.31 99.69 ± 0.18 73.82 ± 2.11 97.34 ± 0.25 80.00 ± 0.26 73.12 ± 6.57 7.80

HyperGCN 63.21 ± 1.95 57.81 ± 1.91 80.83 ± 0.46 65.58 ± 2.02 84.37 ± 1.73 67.56 ± 8.16 40.30 ± 3.67 45.92 ± 7.60 79.57 ± 0.38 51.96 ± 6.32 13.60
HAN 72.08 ± 1.47 67.86 ± 1.46 85.10 ± 0.43 77.48 ± 1.22 90.02 ± 0.17 91.67 ± 0.86 72.91 ± 1.88 93.52 ± 0.32 78.77 ± 0.49 70.94 ± 14.54 6.50

HAN minibatch 69.61 ± 6.86 68.25 ± 1.15 84.93 ± 0.65 76.27 ± 1.54 nan nan 63.36 ± 2.66 nan nan 43.62 ± 9.44 7.50
MultiRepMixer 71.54 ± 1.37 66.54 ± 1.44 81.40 ± 0.85 74.94 ± 1.25 88.50 ± 0.31 93.93 ± 2.80 75.05 ± 1.94 97.50 ± 0.24 83.82 ± 3.17 66.30 ± 7.66 6.80

MLP CB 62.42 ± 1.37 64.85 ± 1.30 81.43 ± 0.86 62.82 ± 1.80 82.02 ± 0.36 94.17 ± 2.92 68.80 ± 1.51 95.16 ± 0.26 85.21 ± 3.81 67.46 ± 9.14 10.10
MMLP CB 57.17 ± 1.86 59.40 ± 1.86 82.06 ± 0.59 59.03 ± 1.52 80.22 ± 0.35 91.88 ± 2.50 nan nan 85.03 ± 2.38 69.95 ± 8.10 12.00

MLP Classic 38.64 ± 12.37 64.21 ± 1.53 83.56 ± 0.49 37.85 ± 11.79 81.88 ± 0.21 99.72 ± 0.15 63.39 ± 2.24 93.71 ± 0.38 79.63 ± 0.42 72.17 ± 9.21 10.80
Transformer Classic 61.45 ± 1.66 63.75 ± 1.39 83.86 ± 0.50 60.65 ± 1.87 82.40 ± 0.47 99.74 ± 0.20 65.14 ± 1.61 94.66 ± 0.42 79.61 ± 0.39 68.82 ± 8.32 10.25

Table 12: Average Rankings for All Splits and Mean Average Ranking.

Model AllSetTransformer UniGCNII HCHA HNHN HGNN AllDeepSets MultiSetMixer HAN Transformer Classic MLP HP MLP classic CEGAT CEGCN MMLP HP MLP HyperGCN

0.1 3.75 3.35 4.85 7.45 5.05 5.85 6.700 6.80 9.320 10.100 10.090 10.670 11.000 11.880 12.05 13.70
0.2 3.35 3.50 5.50 7.20 5.70 6.25 6.700 7.25 9.270 10.300 10.500 11.000 11.890 12.000 12.70 14.10
0.3 3.30 3.65 6.40 5.50 6.70 6.55 6.900 7.60 8.680 10.400 10.270 11.280 11.780 12.120 13.00 14.20
0.4 3.15 3.55 6.50 5.30 6.50 6.40 6.700 8.45 8.360 9.800 9.770 11.000 12.170 12.880 12.80 14.00
0.5 2.85 4.15 6.95 5.05 7.05 6.10 6.270 8.60 8.500 9.640 9.910 11.330 12.000 11.890 12.90 14.30
avg 3.28 3.64 6.04 6.10 6.20 6.23 6.654 7.74 8.826 10.048 10.108 11.056 11.768 12.154 12.69 14.06

J.2 CONNECTIVITY MODIFICATION

Table 13: Adjust connectivity. Test accuracy in % averaged over 15 splits.

Model Type Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
Label Based 82.24 ± 1.12 75.65 ± 1.57 90.49 ± 0.40 91.12 ± 0.92 96.59 ± 0.17 99.96 ± 0.04 93.13 ± 1.29 99.52 ± 0.11 99.79 ± 0.13 91.54 ± 7.24 1.05

AllDeepSets k-means 75.20 ± 1.11 70.87 ± 1.54 88.96 ± 0.48 79.59 ± 1.42 89.75 ± 0.25 99.94 ± 0.09 84.23 ± 1.50 97.17 ± 0.13 81.18 ± 0.54 86.92 ± 7.73 2.80
Original 77.11 ± 1.00 70.67 ± 1.42 89.04 ± 0.45 82.23 ± 1.46 91.34 ± 0.27 99.96 ± 0.05 86.49 ± 1.86 96.70 ± 0.25 81.19 ± 0.49 89.10 ± 7.00 2.15

Label Based 83.43 ± 1.36 76.45 ± 1.43 90.19 ± 0.42 91.71 ± 0.89 96.75 ± 0.16 99.96 ± 0.05 94.81 ± 1.04 99.68 ± 0.09 99.93 ± 0.03 94.10 ± 6.91 1.05
AllSetTransformer k-means 77.14 ± 1.46 72.83 ± 1.07 88.60 ± 0.41 81.92 ± 1.35 89.79 ± 0.30 99.96 ± 0.06 87.95 ± 1.28 97.29 ± 0.20 81.58 ± 0.55 88.72 ± 7.69 2.75

Original 79.54 ± 1.02 72.52 ± 0.88 88.74 ± 0.51 84.43 ± 1.14 91.61 ± 0.19 99.95 ± 0.05 88.22 ± 1.42 98.00 ± 0.12 81.59 ± 0.59 91.03 ± 7.31 2.20
Label Based 82.12 ± 1.11 75.23 ± 1.64 89.18 ± 0.50 89.80 ± 0.95 94.78 ± 0.13 99.93 ± 0.07 92.87 ± 1.32 99.31 ± 0.10 99.70 ± 0.10 94.74 ± 6.35 1.00

UniGCNII k-means 76.49 ± 1.01 72.73 ± 1.50 88.02 ± 0.48 81.13 ± 1.41 90.13 ± 0.26 99.88 ± 0.07 88.05 ± 1.78 97.10 ± 0.21 81.06 ± 0.48 89.23 ± 7.52 3.00
Original 78.46 ± 1.14 73.05 ± 1.48 88.07 ± 0.47 83.92 ± 1.02 91.56 ± 0.18 99.89 ± 0.07 88.24 ± 1.56 97.84 ± 0.16 81.16 ± 0.49 89.61 ± 8.09 2.00

Label Based 83.05 ± 1.08 77.82 ± 1.59 90.25 ± 0.39 91.42 ± 0.88 96.25 ± 0.13 99.91 ± 0.07 94.23 ± 0.77 99.26 ± 0.14 OOM 93.85 ± 7.39 1.00
CEGAT k-means 75.45 ± 1.54 72.57 ± 1.12 87.32 ± 0.47 77.11 ± 1.51 87.27 ± 0.29 97.66 ± 0.72 85.48 ± 1.66 96.39 ± 0.26 OOM 68.08 ± 8.28 2.33

Original 76.53 ± 1.58 71.58 ± 1.11 87.11 ± 0.49 77.50 ± 1.51 88.74 ± 0.31 96.81 ± 1.41 82.27 ± 1.60 92.79 ± 0.44 OOM 44.62 ± 9.18 2.67
Label Based 83.70 ± 1.02 77.50 ± 1.53 90.08 ± 0.42 91.28 ± 0.97 96.68 ± 0.14 99.95 ± 0.05 94.03 ± 1.24 99.30 ± 0.14 OOM 95.00 ± 7.08 1.00

CEGCN k-means 75.89 ± 1.53 72.07 ± 1.18 87.13 ± 0.51 76.43 ± 1.41 86.76 ± 0.24 94.84 ± 0.47 85.34 ± 1.71 95.77 ± 0.31 OOM 73.72 ± 7.89 2.44
Original 77.03 ± 1.31 70.87 ± 1.19 87.01 ± 0.62 77.55 ± 1.65 88.12 ± 0.25 94.91 ± 0.44 80.90 ± 1.74 90.04 ± 0.47 OOM 49.23 ± 6.81 2.56

Label Based 84.06 ± 1.08 77.12 ± 1.37 88.81 ± 0.43 92.77 ± 0.73 96.70 ± 0.12 99.96 ± 0.06 95.21 ± 1.27 99.67 ± 0.09 99.93 ± 0.04 94.61 ± 6.97 1.00
HCHA k-means 77.51 ± 1.41 72.62 ± 1.33 86.89 ± 0.48 81.19 ± 1.31 89.42 ± 0.29 99.56 ± 0.27 87.62 ± 1.33 96.98 ± 0.15 80.58 ± 0.57 84.10 ± 9.83 2.60

Original 79.53 ± 1.33 72.57 ± 1.06 86.97 ± 0.55 83.53 ± 1.12 91.21 ± 0.28 98.94 ± 0.54 86.60 ± 1.96 94.50 ± 0.33 80.75 ± 0.53 89.23 ± 6.81 2.40
Label Based 84.06 ± 1.08 77.11 ± 1.47 88.81 ± 0.43 92.86 ± 0.65 96.70 ± 0.11 99.96 ± 0.06 95.34 ± 1.07 99.67 ± 0.09 99.93 ± 0.04 94.61 ± 6.97 1.00

HGNN k-means 77.51 ± 1.41 72.41 ± 1.55 86.89 ± 0.48 81.19 ± 1.38 89.42 ± 0.27 99.56 ± 0.27 87.52 ± 1.51 96.98 ± 0.15 80.58 ± 0.57 84.10 ± 9.83 2.60
Original 79.53 ± 1.33 72.24 ± 1.08 86.97 ± 0.55 83.45 ± 1.22 91.26 ± 0.26 98.94 ± 0.54 86.71 ± 1.48 94.50 ± 0.33 80.75 ± 0.52 89.23 ± 6.81 2.40

Label Based 72.88 ± 1.23 66.10 ± 1.79 82.18 ± 0.62 76.20 ± 1.50 84.86 ± 0.39 69.68 ± 4.90 43.37 ± 4.65 47.19 ± 6.42 82.14 ± 0.43 53.97 ± 8.24 1.50
HyperGCN k-means 45.76 ± 1.97 49.96 ± 1.68 77.97 ± 0.75 47.63 ± 1.36 40.88 ± 4.04 69.53 ± 4.91 32.21 ± 2.57 41.96 ± 2.40 80.85 ± 0.46 53.46 ± 8.65 2.70

Original 74.78 ± 1.11 66.06 ± 1.58 82.32 ± 0.62 77.48 ± 1.14 86.07 ± 3.32 69.51 ± 4.98 47.65 ± 5.01 46.10 ± 7.95 80.84 ± 0.49 51.54 ± 9.88 1.80
Label Based 82.59 ± 0.94 76.14 ± 1.03 88.35 ± 0.59 90.86 ± 0.67 96.38 ± 0.22 99.97 ± 0.04 93.72 ± 1.00 99.56 ± 0.12 99.85 ± 0.06 91.79 ± 6.90 1.05

MultiSetMixer kmeans based 76.78 ± 1.15 73.10 ± 1.18 85.84 ± 0.59 80.06 ± 1.45 88.54 ± 0.27 99.97 ± 0.05 87.75 ± 1.09 96.94 ± 0.26 81.14 ± 0.47 85.41 ± 6.77 2.55
Original 79.38 ± 1.08 72.79 ± 1.12 85.71 ± 0.49 82.62 ± 1.20 89.87 ± 0.29 95.85 ± 3.21 88.73 ± 1.29 98.15 ± 0.19 87.83 ± 2.68 78.67 ± 9.08 2.40

Label Based 74.54 ± 1.51 72.41 ± 1.47 86.02 ± 0.50 74.71 ± 1.16 84.88 ± 0.38 99.97 ± 0.06 85.94 ± 1.59 96.38 ± 0.32 81.09 ± 0.52 87.56 ± 7.33 1.50
MLP CB k-means 74.53 ± 1.34 72.23 ± 1.55 85.99 ± 0.39 74.46 ± 1.32 84.78 ± 0.35 99.97 ± 0.04 86.16 ± 1.54 96.31 ± 0.27 81.09 ± 0.55 87.44 ± 7.75 2.10

Original 74.06 ± 1.26 71.93 ± 1.53 85.83 ± 0.51 74.39 ± 1.40 84.91 ± 0.44 96.83 ± 2.18 85.43 ± 1.51 96.41 ± 0.32 86.13 ± 2.82 81.61 ± 10.98 2.40
Label Based 74.39 ± 1.52 72.09 ± 1.68 84.94 ± 0.61 74.61 ± 1.42 83.68 ± 0.37 99.95 ± 0.07 NA NA 81.31 ± 0.51 87.18 ± 8.10 1.62

MMLP CB k-means 74.18 ± 1.54 71.21 ± 1.41 85.51 ± 0.47 74.49 ± 1.44 82.44 ± 0.41 99.97 ± 0.05 NA NA 81.23 ± 0.53 85.90 ± 8.65 2.00
Original 71.05 ± 2.03 69.26 ± 1.91 85.20 ± 0.54 71.16 ± 2.17 84.08 ± 0.42 95.71 ± 2.42 NA NA 85.04 ± 4.04 83.89 ± 9.52 2.38

28

Under review as a conference paper at ICLR 2024

Table 14: Drop connectivity. Test accuracy in % averaged over 15 splits.

Model Type Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking

A
llD

ee
pS

et
s

Original 77.11 ± 1.00 70.67 ± 1.42 89.04 ± 0.45 82.23 ± 1.46 91.34 ± 0.27 99.96 ± 0.05 86.49 ± 1.86 96.70 ± 0.25 81.19 ± 0.49 89.10 ± 7.00 2.85
Random 25% 76.65 ± 1.03 70.83 ± 1.70 88.87 ± 0.47 80.39 ± 1.51 90.36 ± 0.28 99.91 ± 0.09 85.49 ± 1.74 96.85 ± 0.26 81.15 ± 0.52 88.72 ± 5.97 4.05
Random 50% 75.66 ± 1.18 70.70 ± 1.77 88.86 ± 0.41 77.97 ± 1.18 89.36 ± 0.25 99.93 ± 0.05 84.42 ± 1.75 96.88 ± 0.27 81.21 ± 0.39 84.49 ± 6.66 4.90
Random 75% 74.96 ± 1.08 70.46 ± 1.66 88.76 ± 0.45 76.09 ± 1.27 87.68 ± 0.30 99.53 ± 0.13 81.70 ± 1.57 96.84 ± 0.27 81.31 ± 0.50 81.15 ± 6.88 7.50
Retention 25% 76.87 ± 0.98 70.96 ± 1.82 88.94 ± 0.48 81.63 ± 1.26 90.93 ± 0.18 99.83 ± 0.09 85.13 ± 2.05 96.85 ± 0.26 81.09 ± 0.46 86.67 ± 7.26 3.65
Retention 50% 75.80 ± 1.06 70.44 ± 1.63 88.84 ± 0.40 80.50 ± 1.38 90.55 ± 0.21 99.91 ± 0.09 82.25 ± 2.21 96.42 ± 0.23 81.04 ± 0.45 69.61 ± 9.28 6.75
Retention 75% 75.52 ± 1.49 70.36 ± 1.71 88.78 ± 0.47 79.50 ± 1.09 89.48 ± 0.21 99.97 ± 0.04 78.85 ± 1.93 96.44 ± 0.27 81.19 ± 0.45 74.49 ± 9.97 6.85
Trimming 25% 74.12 ± 1.30 70.95 ± 1.92 88.77 ± 0.45 74.87 ± 1.32 86.39 ± 0.31 99.85 ± 0.15 77.47 ± 1.67 96.18 ± 0.28 81.61 ± 0.47 89.23 ± 8.11 7.10
Trimming 50% 75.24 ± 0.99 70.42 ± 1.62 88.87 ± 0.46 75.89 ± 1.53 87.14 ± 0.31 99.93 ± 0.06 82.76 ± 1.61 96.75 ± 0.23 81.47 ± 0.48 86.28 ± 8.73 6.15
Trimming 75% 76.03 ± 1.39 70.86 ± 1.48 88.83 ± 0.48 77.50 ± 1.52 88.64 ± 0.27 99.93 ± 0.09 84.74 ± 1.81 96.82 ± 0.20 81.20 ± 0.48 86.03 ± 8.48 5.20

A
llS

et
Tr

an
sf

or
m

er

Original 79.54 ± 1.02 72.52 ± 0.88 88.74 ± 0.51 84.43 ± 1.14 91.61 ± 0.19 99.95 ± 0.05 88.22 ± 1.42 98.00 ± 0.12 81.59 ± 0.59 91.03 ± 7.31 1.95
Random 25% 79.11 ± 0.99 72.75 ± 1.14 88.67 ± 0.47 82.36 ± 1.38 90.61 ± 0.29 99.94 ± 0.09 87.50 ± 1.36 97.98 ± 0.17 81.70 ± 0.52 89.87 ± 7.66 3.10
Random 50% 77.77 ± 1.34 72.21 ± 1.25 88.50 ± 0.45 79.73 ± 1.58 89.46 ± 0.27 99.96 ± 0.04 87.34 ± 1.55 97.83 ± 0.17 81.55 ± 0.66 89.49 ± 6.30 5.85
Random 75% 76.92 ± 1.20 72.40 ± 1.22 88.54 ± 0.47 77.88 ± 1.74 87.73 ± 0.32 99.76 ± 0.15 86.31 ± 1.34 97.52 ± 0.20 81.46 ± 0.62 87.69 ± 6.09 8.10
Retention 25% 79.19 ± 1.11 72.49 ± 0.86 88.73 ± 0.40 83.58 ± 1.30 91.18 ± 0.17 99.93 ± 0.09 87.21 ± 1.58 97.82 ± 0.17 81.63 ± 0.48 86.92 ± 7.18 4.10
Retention 50% 78.16 ± 0.98 72.55 ± 1.13 88.70 ± 0.37 82.90 ± 1.15 90.80 ± 0.22 99.89 ± 0.18 86.67 ± 1.64 97.36 ± 0.21 81.61 ± 0.49 88.08 ± 7.51 5.20
Retention 75% 77.38 ± 1.35 72.43 ± 0.98 88.71 ± 0.39 81.07 ± 1.20 89.83 ± 0.25 99.97 ± 0.04 85.58 ± 1.70 97.27 ± 0.22 81.58 ± 0.48 88.97 ± 6.91 5.80
Trimming 25% 75.83 ± 1.31 72.39 ± 1.50 88.40 ± 0.45 76.51 ± 1.35 86.38 ± 0.32 99.84 ± 0.13 86.88 ± 1.66 97.10 ± 0.24 81.55 ± 0.55 93.08 ± 7.79 8.05
Trimming 50% 77.37 ± 1.17 72.32 ± 1.30 88.49 ± 0.40 77.41 ± 1.73 87.03 ± 0.27 99.91 ± 0.12 86.86 ± 1.53 97.86 ± 0.21 81.45 ± 0.50 89.74 ± 8.53 7.50
Trimming 75% 78.15 ± 1.11 72.67 ± 1.00 88.48 ± 0.39 78.91 ± 1.54 88.55 ± 0.26 99.92 ± 0.09 87.68 ± 1.56 97.90 ± 0.23 81.41 ± 0.61 91.03 ± 7.17 5.35

C
E

G
A

T

Original 76.53 ± 1.58 71.58 ± 1.11 87.11 ± 0.49 77.50 ± 1.51 88.74 ± 0.31 96.81 ± 1.41 82.27 ± 1.60 92.79 ± 0.44 nan 44.62 ± 9.18 5.17
Random 25% 75.88 ± 1.53 71.81 ± 1.05 87.03 ± 0.47 78.00 ± 1.68 87.58 ± 0.35 94.56 ± 2.09 82.03 ± 1.47 93.14 ± 0.34 nan 46.03 ± 9.01 5.94
Random 50% 75.34 ± 1.52 71.86 ± 1.22 86.91 ± 0.48 76.92 ± 1.00 86.81 ± 0.32 95.14 ± 2.00 81.73 ± 1.44 93.62 ± 0.35 nan 47.69 ± 8.78 6.89
Random 75% 75.26 ± 1.45 72.17 ± 1.59 87.02 ± 0.47 76.37 ± 1.26 85.79 ± 0.35 96.90 ± 1.40 82.66 ± 1.39 94.54 ± 0.43 nan 59.87 ± 8.55 5.22
Retention 25% 75.96 ± 1.16 71.39 ± 1.33 87.13 ± 0.50 77.35 ± 1.52 88.48 ± 0.30 96.65 ± 1.49 80.39 ± 1.53 93.20 ± 0.45 nan 45.26 ± 9.40 6.39
Retention 50% 75.36 ± 1.30 71.56 ± 1.27 87.16 ± 0.53 77.35 ± 1.52 88.14 ± 0.31 96.73 ± 1.59 80.56 ± 2.16 93.86 ± 0.41 nan 45.38 ± 9.97 6.00
Retention 75% 75.02 ± 1.64 72.06 ± 1.41 87.22 ± 0.48 77.20 ± 1.47 87.54 ± 0.28 97.49 ± 0.89 81.82 ± 1.23 94.94 ± 0.29 nan 45.38 ± 9.22 5.06
Trimming 25% 75.40 ± 1.45 72.67 ± 1.76 87.68 ± 0.52 76.14 ± 1.10 85.32 ± 0.42 99.72 ± 0.10 84.94 ± 1.57 94.42 ± 0.33 nan 89.23 ± 7.38 3.67
Trimming 50% 75.90 ± 1.48 72.15 ± 1.62 87.41 ± 0.51 76.09 ± 1.65 85.69 ± 0.40 99.80 ± 0.12 82.04 ± 1.32 93.22 ± 0.38 nan 67.05 ± 7.87 4.44
Trimming 75% 76.19 ± 1.68 71.82 ± 1.32 87.03 ± 0.56 76.04 ± 0.95 86.18 ± 0.38 99.31 ± 0.24 81.74 ± 1.48 92.79 ± 0.33 nan 53.33 ± 6.60 6.22

C
E

G
C

N

Original 77.03 ± 1.31 70.87 ± 1.19 87.01 ± 0.62 77.55 ± 1.65 88.12 ± 0.25 94.91 ± 0.44 80.90 ± 1.74 90.04 ± 0.47 nan 49.23 ± 6.81 4.61
Random 25% 76.08 ± 1.55 71.35 ± 1.44 86.89 ± 0.59 76.51 ± 1.53 87.01 ± 0.39 93.11 ± 0.46 80.68 ± 1.86 90.36 ± 0.46 nan 49.74 ± 6.22 6.22
Random 50% 75.55 ± 1.63 71.42 ± 1.60 86.70 ± 0.48 75.27 ± 1.22 86.24 ± 0.35 93.28 ± 0.61 80.63 ± 1.78 90.69 ± 0.54 nan 56.92 ± 7.24 6.33
Random 75% 75.34 ± 1.62 71.73 ± 1.90 86.97 ± 0.51 74.53 ± 1.56 85.36 ± 0.26 93.01 ± 0.45 80.56 ± 1.76 91.91 ± 0.54 nan 63.20 ± 5.59 6.33
Retention 25% 76.12 ± 1.58 70.87 ± 1.42 86.94 ± 0.56 76.98 ± 1.53 87.90 ± 0.29 94.94 ± 0.48 79.20 ± 1.42 90.59 ± 0.59 nan 49.87 ± 7.59 5.50
Retention 50% 75.43 ± 1.28 70.83 ± 1.52 86.95 ± 0.54 76.87 ± 1.49 87.58 ± 0.28 94.97 ± 0.40 78.53 ± 1.90 90.09 ± 0.56 nan 45.77 ± 6.88 6.89
Retention 75% 75.53 ± 1.25 71.72 ± 1.42 87.11 ± 0.53 76.36 ± 1.42 87.03 ± 0.28 94.74 ± 0.39 79.82 ± 1.41 92.29 ± 0.46 nan 40.38 ± 5.42 5.44
Trimming 25% 75.58 ± 1.56 72.26 ± 1.52 87.36 ± 0.51 74.84 ± 1.31 84.97 ± 0.31 99.60 ± 0.11 83.10 ± 1.69 91.85 ± 0.42 nan 87.69 ± 7.31 3.44
Trimming 50% 76.57 ± 1.47 71.81 ± 1.44 87.07 ± 0.55 74.66 ± 1.68 85.24 ± 0.33 99.54 ± 0.18 80.72 ± 1.64 90.64 ± 0.54 nan 71.28 ± 6.60 4.00
Trimming 75% 76.53 ± 1.50 71.45 ± 1.45 86.75 ± 0.54 74.56 ± 1.32 85.56 ± 0.33 99.14 ± 0.23 80.38 ± 1.91 90.06 ± 0.37 nan 58.46 ± 7.17 6.22

H
C

H
A

Original 79.53 ± 1.33 72.57 ± 1.06 86.97 ± 0.55 83.53 ± 1.12 91.21 ± 0.28 98.94 ± 0.54 86.60 ± 1.96 94.50 ± 0.33 80.75 ± 0.53 89.23 ± 6.81 2.40
Random 25% 78.74 ± 1.30 72.33 ± 1.28 86.84 ± 0.56 81.98 ± 1.34 90.09 ± 0.35 98.55 ± 0.55 85.94 ± 1.76 94.78 ± 0.28 80.16 ± 0.46 89.10 ± 6.71 4.30
Random 50% 77.65 ± 1.46 72.11 ± 1.42 86.67 ± 0.48 79.23 ± 1.41 88.88 ± 0.35 98.61 ± 0.48 85.32 ± 1.75 95.17 ± 0.28 79.68 ± 0.50 87.56 ± 6.97 6.60
Random 75% 76.56 ± 1.60 72.23 ± 1.33 86.72 ± 0.56 77.11 ± 1.28 87.07 ± 0.34 98.59 ± 0.76 84.88 ± 1.44 95.57 ± 0.34 79.49 ± 0.43 82.18 ± 6.58 7.30
Retention 25% 79.09 ± 1.25 72.29 ± 1.17 86.95 ± 0.52 83.06 ± 1.09 90.63 ± 0.25 98.82 ± 0.50 85.56 ± 1.66 94.73 ± 0.34 80.27 ± 0.44 86.03 ± 5.20 3.85
Retention 50% 77.77 ± 1.38 72.20 ± 1.20 86.82 ± 0.48 82.16 ± 1.27 90.17 ± 0.29 98.22 ± 0.28 84.80 ± 1.79 94.54 ± 0.22 79.96 ± 0.44 75.77 ± 6.86 6.70
Retention 75% 77.05 ± 1.53 72.37 ± 1.20 86.79 ± 0.47 80.79 ± 0.95 88.97 ± 0.24 97.62 ± 0.30 84.35 ± 1.65 95.21 ± 0.30 79.40 ± 0.52 84.36 ± 6.77 6.70
Trimming 25% 75.68 ± 1.21 72.15 ± 1.72 86.83 ± 0.47 75.94 ± 1.35 85.85 ± 0.40 99.87 ± 0.11 85.60 ± 1.92 95.02 ± 0.26 80.66 ± 0.56 91.92 ± 7.10 5.50
Trimming 50% 77.76 ± 1.28 72.10 ± 1.49 86.96 ± 0.48 77.26 ± 1.17 86.57 ± 0.36 99.84 ± 0.11 84.58 ± 1.37 94.73 ± 0.28 80.18 ± 0.60 83.08 ± 8.72 6.45
Trimming 75% 78.38 ± 1.30 72.22 ± 1.12 86.81 ± 0.53 78.82 ± 0.95 88.09 ± 0.27 99.73 ± 0.18 86.05 ± 1.60 94.61 ± 0.27 80.02 ± 0.57 89.36 ± 8.49 5.20

H
G

N
N

Original 79.53 ± 1.33 72.24 ± 1.08 86.97 ± 0.55 83.45 ± 1.22 91.26 ± 0.26 98.94 ± 0.54 86.71 ± 1.48 94.50 ± 0.33 80.75 ± 0.52 89.23 ± 6.81 2.50
Random 25% 78.74 ± 1.30 72.15 ± 1.36 86.84 ± 0.56 81.94 ± 1.31 90.11 ± 0.34 98.55 ± 0.55 85.82 ± 1.65 94.78 ± 0.28 80.16 ± 0.43 89.10 ± 6.71 4.70
Random 50% 77.65 ± 1.46 72.20 ± 1.62 86.67 ± 0.48 79.20 ± 1.48 88.84 ± 0.42 98.61 ± 0.48 85.59 ± 1.49 95.17 ± 0.28 79.68 ± 0.50 87.56 ± 6.97 5.95
Random 75% 76.56 ± 1.60 72.16 ± 1.56 86.72 ± 0.56 77.03 ± 1.37 86.95 ± 0.34 98.59 ± 0.76 85.12 ± 1.27 95.57 ± 0.34 79.50 ± 0.42 82.18 ± 6.58 7.30
Retention 25% 79.09 ± 1.25 72.13 ± 1.17 86.95 ± 0.52 83.11 ± 1.09 90.66 ± 0.23 98.82 ± 0.50 85.33 ± 1.52 94.73 ± 0.34 80.23 ± 0.44 86.03 ± 5.20 4.25
Retention 50% 77.77 ± 1.38 72.20 ± 1.32 86.82 ± 0.48 82.20 ± 1.29 90.21 ± 0.27 98.22 ± 0.28 84.51 ± 1.77 94.54 ± 0.22 79.93 ± 0.46 75.77 ± 6.86 6.45
Retention 75% 77.05 ± 1.53 72.35 ± 1.40 86.79 ± 0.47 80.88 ± 0.93 89.02 ± 0.23 97.62 ± 0.30 84.19 ± 1.49 95.21 ± 0.30 79.36 ± 0.54 84.36 ± 6.77 6.60
Trimming 25% 75.68 ± 1.21 71.91 ± 1.61 86.83 ± 0.47 75.73 ± 1.44 85.78 ± 0.41 99.87 ± 0.11 85.89 ± 1.67 95.02 ± 0.26 80.66 ± 0.56 91.92 ± 7.10 5.55
Trimming 50% 77.76 ± 1.28 71.91 ± 1.50 86.96 ± 0.48 77.29 ± 1.18 86.48 ± 0.34 99.84 ± 0.11 84.67 ± 1.43 94.73 ± 0.28 80.18 ± 0.60 83.08 ± 8.72 6.30
Trimming 75% 78.38 ± 1.30 72.07 ± 1.25 86.81 ± 0.53 78.78 ± 1.04 87.99 ± 0.34 99.73 ± 0.18 86.00 ± 1.55 94.61 ± 0.27 80.02 ± 0.57 89.36 ± 8.49 5.40

H
yp

er
G

C
N

Original 74.78 ± 1.11 66.06 ± 1.58 82.32 ± 0.62 77.48 ± 1.14 86.07 ± 3.32 69.51 ± 4.98 47.65 ± 5.01 46.10 ± 7.95 80.84 ± 0.49 51.54 ± 9.88 3.40
Random 25% 35.60 ± 1.76 34.71 ± 1.62 68.80 ± 0.62 55.31 ± 1.83 81.18 ± 0.39 69.61 ± 4.77 57.42 ± 3.22 47.78 ± 7.33 77.50 ± 0.54 51.41 ± 9.82 6.05
Random 50% 33.75 ± 2.58 39.94 ± 1.72 69.37 ± 0.59 40.11 ± 1.97 67.36 ± 2.94 67.59 ± 6.63 49.36 ± 3.42 48.12 ± 5.98 71.74 ± 0.58 51.67 ± 9.40 6.80
Random 75% 42.42 ± 2.51 49.31 ± 1.85 70.99 ± 0.65 37.25 ± 1.94 50.33 ± 0.74 66.01 ± 8.15 45.31 ± 3.01 49.08 ± 2.52 62.76 ± 0.73 51.92 ± 9.02 6.60
Retention 25% 37.56 ± 1.65 35.87 ± 1.80 68.73 ± 0.53 63.64 ± 1.22 84.26 ± 0.32 69.61 ± 4.81 61.33 ± 2.63 72.36 ± 3.39 79.24 ± 0.48 51.54 ± 8.84 4.55
Retention 50% 34.87 ± 2.14 37.98 ± 1.70 69.04 ± 0.53 56.45 ± 1.70 77.98 ± 0.36 69.58 ± 4.75 76.59 ± 2.60 81.69 ± 1.75 75.60 ± 0.57 51.54 ± 9.45 4.70
Retention 75% 36.71 ± 1.95 44.39 ± 1.69 69.98 ± 0.52 45.09 ± 2.09 63.78 ± 3.04 69.20 ± 5.16 77.44 ± 3.62 84.44 ± 2.23 67.99 ± 0.51 52.18 ± 8.61 4.60
Trimming 25% 50.59 ± 1.72 55.15 ± 1.57 74.16 ± 0.66 52.78 ± 1.99 68.13 ± 0.79 52.37 ± 1.41 79.05 ± 2.74 81.31 ± 4.34 73.13 ± 0.92 46.67 ± 21.96 4.60
Trimming 50% 36.20 ± 2.74 44.47 ± 1.38 71.35 ± 0.58 39.84 ± 2.35 55.53 ± 0.45 54.57 ± 7.40 59.52 ± 1.81 65.29 ± 3.52 68.07 ± 1.26 51.03 ± 10.20 6.70
Trimming 75% 34.73 ± 1.52 36.60 ± 1.89 69.59 ± 0.54 37.81 ± 1.86 61.89 ± 1.82 61.73 ± 3.19 65.10 ± 2.77 73.05 ± 1.78 73.42 ± 0.63 50.90 ± 11.14 7.00

U
ni

G
C

N
II

Original 78.46 ± 1.14 73.05 ± 1.48 88.07 ± 0.47 83.92 ± 1.02 91.56 ± 0.18 99.89 ± 0.07 88.24 ± 1.56 97.84 ± 0.16 81.16 ± 0.49 89.61 ± 8.09 2.25
Random 25% 78.31 ± 1.29 72.91 ± 1.24 88.09 ± 0.47 82.42 ± 1.05 90.86 ± 0.22 99.85 ± 0.10 87.82 ± 1.46 97.87 ± 0.19 81.08 ± 0.52 89.10 ± 7.76 3.55
Random 50% 77.36 ± 1.34 72.54 ± 1.40 87.94 ± 0.52 80.17 ± 1.16 89.96 ± 0.24 99.85 ± 0.12 87.42 ± 1.44 97.77 ± 0.15 81.06 ± 0.55 87.31 ± 8.21 6.10
Random 75% 76.70 ± 1.35 72.23 ± 1.81 87.91 ± 0.50 77.75 ± 1.31 88.54 ± 0.25 99.87 ± 0.09 87.56 ± 1.56 97.49 ± 0.18 81.06 ± 0.54 87.05 ± 6.50 7.30
Retention 25% 78.80 ± 0.92 72.67 ± 1.24 88.10 ± 0.51 83.68 ± 0.96 91.26 ± 0.20 99.87 ± 0.06 87.56 ± 1.43 97.76 ± 0.16 81.01 ± 0.49 87.18 ± 7.58 4.05
Retention 50% 77.18 ± 1.32 72.51 ± 1.54 88.02 ± 0.47 82.81 ± 1.32 90.99 ± 0.17 99.83 ± 0.08 87.16 ± 1.33 97.29 ± 0.17 80.82 ± 0.49 86.15 ± 8.49 7.15
Retention 75% 76.63 ± 1.23 72.64 ± 1.15 88.07 ± 0.52 81.33 ± 1.27 90.17 ± 0.20 99.83 ± 0.14 86.71 ± 1.33 97.04 ± 0.16 80.87 ± 0.45 87.44 ± 7.49 7.20
Trimming 25% 75.34 ± 1.26 72.68 ± 1.57 87.81 ± 0.47 76.18 ± 1.19 87.42 ± 0.30 99.87 ± 0.10 87.43 ± 1.53 97.00 ± 0.17 81.50 ± 0.47 92.95 ± 8.15 6.70
Trimming 50% 76.75 ± 1.10 72.30 ± 1.64 87.87 ± 0.48 77.19 ± 1.42 88.00 ± 0.27 99.90 ± 0.10 87.47 ± 1.56 97.71 ± 0.18 81.22 ± 0.54 90.26 ± 7.40 6.15
Trimming 75% 77.27 ± 1.08 72.69 ± 1.31 87.93 ± 0.52 78.68 ± 0.96 89.26 ± 0.28 99.84 ± 0.10 87.93 ± 1.69 97.86 ± 0.16 81.22 ± 0.45 90.64 ± 6.90 4.55

M
ul

tiS
et

M
ix

er

Original 79.38 ± 1.08 72.79 ± 1.12 85.71 ± 0.49 82.62 ± 1.20 89.87 ± 0.29 95.85 ± 3.21 88.73 ± 1.29 98.15 ± 0.19 87.83 ± 2.68 78.67 ± 9.08 2.75
Random 25% 78.63 ± 1.30 72.37 ± 1.50 85.71 ± 0.55 81.18 ± 1.16 89.11 ± 0.31 93.80 ± 4.69 87.92 ± 1.50 98.01 ± 0.19 76.65 ± 1.76 77.60 ± 9.00 4.75
Random 50% 77.66 ± 1.18 72.24 ± 1.42 85.92 ± 0.45 78.51 ± 1.58 88.13 ± 0.34 94.36 ± 3.79 86.22 ± 2.01 97.92 ± 0.13 74.36 ± 1.23 75.53 ± 14.10 6.40
Random 75% 76.59 ± 1.27 72.12 ± 1.43 86.10 ± 0.53 76.91 ± 1.43 86.42 ± 0.42 98.74 ± 0.90 85.31 ± 1.64 97.48 ± 0.21 76.53 ± 0.75 58.75 ± 17.97 7.25
Retention 25% 78.99 ± 1.00 72.12 ± 1.28 85.73 ± 0.44 82.01 ± 1.56 89.61 ± 0.33 97.18 ± 2.01 86.96 ± 1.62 97.95 ± 0.19 88.17 ± 2.51 80.15 ± 8.87 3.85
Retention 50% 77.88 ± 1.28 72.32 ± 1.36 85.89 ± 0.52 80.85 ± 1.14 89.24 ± 0.31 97.72 ± 1.42 84.56 ± 1.97 97.39 ± 0.24 85.04 ± 2.06 76.31 ± 12.45 5.20
Retention 75% 77.44 ± 1.32 72.18 ± 1.32 85.93 ± 0.54 78.67 ± 1.32 87.86 ± 0.35 94.75 ± 3.86 83.94 ± 1.79 97.00 ± 0.26 84.65 ± 1.52 67.06 ± 18.55 7.10
Trimming 25% 75.54 ± 1.17 72.57 ± 1.45 87.26 ± 0.38 76.30 ± 1.11 85.57 ± 0.34 99.97 ± 0.03 83.19 ± 1.55 96.87 ± 0.29 78.80 ± 0.52 88.51 ± 9.76 6.00
Trimming 50% 76.91 ± 1.18 72.30 ± 1.63 86.79 ± 0.53 77.54 ± 1.44 86.16 ± 0.33 99.91 ± 0.13 84.20 ± 1.75 97.70 ± 0.27 72.70 ± 0.88 69.83 ± 14.25 6.60
Trimming 75% 78.06 ± 1.16 72.53 ± 1.30 86.45 ± 0.57 79.03 ± 1.16 87.83 ± 0.29 98.49 ± 0.61 86.59 ± 1.58 97.86 ± 0.24 61.17 ± 1.32 76.08 ± 10.14 5.10

M
L

P
C

B

Original 74.06 ± 1.26 71.93 ± 1.53 85.83 ± 0.51 74.39 ± 1.40 84.91 ± 0.44 96.83 ± 2.18 85.43 ± 1.51 96.41 ± 0.32 86.13 ± 2.82 81.61 ± 10.98 4.25
Random 25% 73.94 ± 1.58 72.21 ± 1.40 85.93 ± 0.49 74.57 ± 1.92 84.65 ± 0.37 96.34 ± 2.35 85.27 ± 1.68 96.38 ± 0.29 76.60 ± 1.74 77.14 ± 10.93 5.00
Random 50% 74.06 ± 1.46 72.00 ± 1.70 85.86 ± 0.52 73.93 ± 1.47 84.54 ± 0.44 95.58 ± 2.14 84.53 ± 1.73 96.33 ± 0.34 74.17 ± 1.77 74.95 ± 14.05 6.95
Random 75% 74.32 ± 1.44 72.20 ± 1.72 86.23 ± 0.47 74.26 ± 1.48 84.27 ± 0.39 99.25 ± 0.36 84.09 ± 1.97 96.33 ± 0.32 76.84 ± 0.86 65.07 ± 18.93 5.20
Retention 25% 74.14 ± 1.45 72.01 ± 1.54 85.79 ± 0.43 74.21 ± 1.68 84.89 ± 0.40 98.11 ± 1.79 84.69 ± 1.84 96.15 ± 0.29 87.77 ± 2.39 81.33 ± 11.46 5.00
Retention 50% 74.10 ± 1.56 71.90 ± 1.66 85.82 ± 0.51 73.16 ± 1.57 84.73 ± 0.53 98.46 ± 1.46 83.02 ± 2.01 95.81 ± 0.35 85.56 ± 2.37 76.89 ± 13.21 6.70
Retention 75% 74.20 ± 1.47 71.73 ± 1.64 86.00 ± 0.39 72.59 ± 1.77 84.38 ± 0.45 94.40 ± 4.49 83.65 ± 1.47 95.83 ± 0.36 84.55 ± 1.47 72.78 ± 16.06 7.60
Trimming 25% 74.25 ± 1.37 72.49 ± 1.44 86.97 ± 0.43 74.30 ± 1.31 84.61 ± 0.32 99.97 ± 0.05 82.23 ± 1.94 96.12 ± 0.38 79.00 ± 0.52 84.79 ± 7.81 4.15
Trimming 50% 74.25 ± 1.40 72.44 ± 1.45 86.56 ± 0.54 74.75 ± 1.27 84.63 ± 0.32 99.94 ± 0.08 82.54 ± 1.76 96.19 ± 0.32 72.64 ± 0.84 64.76 ± 13.35 4.90
Trimming 75% 74.09 ± 1.40 72.32 ± 1.44 86.12 ± 0.59 74.70 ± 1.11 84.63 ± 0.38 98.91 ± 0.59 83.71 ± 1.97 96.33 ± 0.28 60.80 ± 1.20 74.24 ± 9.22 5.25

J.3 REWIRING CONNECTIVITY

In this experiment, we preserve the original connectivity and investigate the influence of homophilic
hyperedges on performance. To do so, we adjust the given connectivity in two different ways. The
first strategy aims to unveil the full potential of homophily for each dataset by dividing the given
hyperedges into fully homophilic ones based on the node labels. In contrast, the second strategy
explores the possibility of splitting hyperedges based on their initial node features. More in detail,

29

Under review as a conference paper at ICLR 2024

the hyperedge division results from applying multiple times k-means for each hyperedge e, varying
at each iteration the number of centroids m from 2 to min(C, |e|); the elbow method is then used to
determine the optimal hyperedge partitioning.

AS we can see the ‘Label Based’ strategy enhances performance for all datasets and models, as seen
in Table 15. Notably, the graph-based method CEGCN achieves similar results to HGNNs in this
strategy. Additionally, on average, only CEGCN performs better with the ‘k-means’ strategy and
mitigates distribution shifts for MultiSetMixer. These findings collectively suggest the crucial role of
connectivity preprocessing, especially for graph-based models.

Table 15: Adjust connectivity. Test accuracy in % averaged over 15 splits.

Model Type Cora Citeseer Pubmed CORA-CA DBLP-CA Mushroom NTU2012 ModelNet40 20Newsgroups ZOO avg. ranking
Label Based 82.24 ± 1.12 75.65 ± 1.57 90.49 ± 0.40 91.12 ± 0.92 96.59 ± 0.17 99.96 ± 0.04 93.13 ± 1.29 99.52 ± 0.11 99.79 ± 0.13 91.54 ± 7.24 1.05

AllDeepSets k-means 75.20 ± 1.11 70.87 ± 1.54 88.96 ± 0.48 79.59 ± 1.42 89.75 ± 0.25 99.94 ± 0.09 84.23 ± 1.50 97.17 ± 0.13 81.18 ± 0.54 86.92 ± 7.73 2.80
Original 77.11 ± 1.00 70.67 ± 1.42 89.04 ± 0.45 82.23 ± 1.46 91.34 ± 0.27 99.96 ± 0.05 86.49 ± 1.86 96.70 ± 0.25 81.19 ± 0.49 89.10 ± 7.00 2.15

Label Based 83.43 ± 1.36 76.45 ± 1.43 90.19 ± 0.42 91.71 ± 0.89 96.75 ± 0.16 99.96 ± 0.05 94.81 ± 1.04 99.68 ± 0.09 99.93 ± 0.03 94.10 ± 6.91 1.05
AllSetTransformer k-means 77.14 ± 1.46 72.83 ± 1.07 88.60 ± 0.41 81.92 ± 1.35 89.79 ± 0.30 99.96 ± 0.06 87.95 ± 1.28 97.29 ± 0.20 81.58 ± 0.55 88.72 ± 7.69 2.75

Original 79.54 ± 1.02 72.52 ± 0.88 88.74 ± 0.51 84.43 ± 1.14 91.61 ± 0.19 99.95 ± 0.05 88.22 ± 1.42 98.00 ± 0.12 81.59 ± 0.59 91.03 ± 7.31 2.20
Label Based 83.70 ± 1.02 77.50 ± 1.53 90.08 ± 0.42 91.28 ± 0.97 96.68 ± 0.14 99.95 ± 0.05 94.03 ± 1.24 99.30 ± 0.14 OOM 95.00 ± 7.08 1.00

CEGCN k-means 75.89 ± 1.53 72.07 ± 1.18 87.13 ± 0.51 76.43 ± 1.41 86.76 ± 0.24 94.84 ± 0.47 85.34 ± 1.71 95.77 ± 0.31 OOM 73.72 ± 7.89 2.44
Original 77.03 ± 1.31 70.87 ± 1.19 87.01 ± 0.62 77.55 ± 1.65 88.12 ± 0.25 94.91 ± 0.44 80.90 ± 1.74 90.04 ± 0.47 OOM 49.23 ± 6.81 2.56

Label Based 82.59 ± 0.94 76.14 ± 1.03 88.35 ± 0.59 90.86 ± 0.67 96.38 ± 0.22 99.97 ± 0.04 93.72 ± 1.00 99.56 ± 0.12 99.85 ± 0.06 91.79 ± 6.90 1.05
MultiSetMixer kmeans based 76.78 ± 1.15 73.10 ± 1.18 85.84 ± 0.59 80.06 ± 1.45 88.54 ± 0.27 99.97 ± 0.05 87.75 ± 1.09 96.94 ± 0.26 81.14 ± 0.47 85.41 ± 6.77 2.55

Original 79.38 ± 1.08 72.79 ± 1.12 85.71 ± 0.49 82.62 ± 1.20 89.87 ± 0.29 95.85 ± 3.21 88.73 ± 1.29 98.15 ± 0.19 87.83 ± 2.68 78.67 ± 9.08 2.40

J.4 ADDITIONAL EXPERIMENTS WITH HETEROPHILIC DATASETS

Here we include additional experiments on the set of heterophilic datasets used in Wang et al.
(2023): Senate, Congress, House and Walmart. In contrast to our selected dataset benchmark,
they do not include node features; this implies that node attributes need to be artificially generated
before hypergraph models can be applied. Table 16 shows the results of our model and AllSet-like
architectures.

Looking at the results, we observe that our MultiSetMixer model outperforms AllSetTransformer and
AllDeepSets on the Senate and House datasets, while being on par within a standard deviation in the
other two. Overall, we observe that our MultiSetMixer architecture shows good performance over
low-homophilic datasets.

Table 16: Additional Hypergraph model performance benchmarks on heterophilic datasets. Test
Accuracy. Performances of AllDeepSets and AllSetTransformer are taken from Wang et al. (2023)

MultiSet AllDeepSets AllSetTransformer
Senate 61.34 ± 3.45 48.17 ± 5.67 51.83 ± 5.22
Congress 92.13 ± 1.30 91.80 ± 1.53 92.16 ± 1.05
House 70.77 ± 2.03 67.82 ± 2.40 69.33 ± 2.20
Walmart 64.23 ± 0.41 64.55 ± 0.33 65.46 ± 0.25

K SAMPLING ANALYSIS

As it has been discussed in Section 4.3, the proposed mini-batching procedure consists of two steps.
At step 1, it samples B hyperedges from E . The hyperedge sampling over E can be either uniform or
weighted (e.g. by taking into account hyperedge cardinalities). Then in step 2 L nodes are in turn
sampled from each sampled hyperedge e, padding the hyperedge with L− |e| special padding tokens
if |e| < L –consisting of 0 vectors that can be easily discarded in some computations. Overall, the
shape of the obtained mini-batch X has fixed size B × L.

Step 0 (hyperedge mini-batching) is particularly beneficial for large datasets; however, it can be
skipped when the network fits fully into memory. Empirically, we found step 1 (node mini-batching
within a hyperedge) to be useful for two reasons: (i) pooling operations over a large set may over-
squash the signal, and (ii) node batching leads to the training distribution shift, hence it can be useful
to keep it even when the full hyperedge can be stored in memory.

When both step 1 and step 2 are employed, considering the hidden dimension size, the batch size
required to be stored in memory during the forward pass is B ×L× d, where d represents the hidden
dimension. If only step 2 is employed, the batch size is |E| × L × d, where |E| is the number of
hyperedges within the hypernetwork. Finally, when no mini-batching steps are used, the batch size is
|E| ×maxe∈E |e| × d, where maxe∈E |e| is the size of the longest hyperedge.

30

Under review as a conference paper at ICLR 2024

Theoretical Analysis In this Section, we provide an analysis regarding the uniform sampling of
the hyperedges in Step 1. We propose sampling X mini-batches of a certain size B at each iteration.
At step 1, we sample B hyperedges from E ; in step 2, for each hyperedge we sample a fixed number
of nodes, that are randomly chosen among the ones belonging to that specific hyperedge. If the
hyperedge does not contain enough samples, we use padding so that the size of the set of sampled
nodes is increased to the desired value. By choosing to sample the nodes uniformly at random from
the hyperedge, there is no guarantee that we will eventually sample all the nodes of each hyperedge.
Indeed, sampling uniformly at random c items from a set of size n, the probability of not sampling
our desired one is 1− c

n . The probability of having to wait for T independent trials before finding
node x among the sampled nodes is described by the geometric distribution.
Namely, let x ∈ e and |e| = n, and assume the size of the considered mini-batch is c:

P (Sample node x from hyperedge e for the first time at epoch T) =
(
1− c

n

)T−1 c

n
. (45)

It follows that
E [# of epochs to wait before sampling node x] =

n

c
.

Assume now that a node x belongs to k hypergraphs e1, . . . , ek of respective sizes n1, . . . , nk.
The events {Node x is sampled from hyperedge ei } and {Node x is sampled from hyperedge ej }
are independent if i ̸= j. It follows that the random variable { # of epochs to wait until we sample node
x from all the hyperedges e1, . . . , ek} is the maximum of k independent non-identically distributed
geometric distributions. Denote by Ti the random variable that corresponds to the number of epochs
we have to wait before sampling sample x from edge ei. The exact distribution for the random
variable T , that is, the number of epochs we have to wait until we sample node x from all hyperedges
e1, . . . ek at least once, is

P (T ≤ h) = P
(

max
i=1,...,k

Ti ≤ h

)
=

k∏
i=1

P (Ti ≤ h) =

k∏
i=1

(1− pi)
h

It follows that

E (# of epochs to wait until we sample node x from all the hyperedges e1, . . . , ek) = (46)

E
(

max
i=1,...,k

Ti

)
=

k∑
i=0

(
1−

h∏
i=1

(
1− (1− pi)

k
))

(47)

This can’t be expressed in closed form: we can use the Moment Generating Function to bound the
expected value of the maximum. Alternatively, we can also try to use the inequality due to Aven
(1985), so that

E
(

max
i=1,...,k

Ti

)
(48)

≤ max
i=1,...k

E (Ti) +

√√√√k − 1

k

k∑
i=1

V (Ti) = max
i=1,...k

n

c
+

√
k − 1

k
k
[n
c

(
1− n

c

)]
(49)

=
n

c
+

√
k − 1

[n
c

(
1− n

c

)]
(50)

Probability that a specific node is not sampled in one epoch Let v be a node and let dv be its
degree. In one epoch, we “see” all hyperedges but, of course, not necessarily all their nodes. It holds
that

P (node v is sampled in epoch T) = 1− P (node v is not sampled in epoch T) (51)

We can write the event

{ node v is not sampled in epoch T } = ∩e s.t.v∈e { node v is not sampled in e} .

31

Under review as a conference paper at ICLR 2024

It follows that

P (node v is sampled in epoch T) = max

{
1−

dv∏
i=1

c

|ei| − 1
,1mini=1,...,dv |ei|<c

}
(52)

Indeed, if any on the edges v belongs to has a size smaller than the batch size for nodes (c), the node
is for sure seen in the first epoch.

L NODE HOMOPHILY

In this Section, we report the node homophily plots for the datasets not illustrated in Figure 1. For each
dataset, we choose to illustrate 3 different levels of node homophily, respectively 0, 1and10− level
homophily, using Equation 2 at t = 0, 1 and 10 (left, middle, and right plots respectively). Horizontal
lines depict class mean homophily, with numbers above indicating the number of visualized points
per class.

L.1 FIGURE - NODE HOMOPHILY

Figure 7: Node Homophily Distribution Scores for Cora.

Figure 8: Node Homophily Distribution Scores for Citeseer.

Figure 9: Node Homophily Distribution Scores for CORA-CA.

32

Under review as a conference paper at ICLR 2024

Figure 10: Node Homophily Distribution Scores for DBLP-CA.

Figure 11: Node Homophily Distribution Scores for NTU2012.

Figure 12: Node Homophily Distribution Scores for ModelNet40.

33

Under review as a conference paper at ICLR 2024

Figure 13: Node Homophily Distribution Scores for Mushroom.

Figure 14: Node Homophily Distribution Scores for 20NewsW100.

Figure 15: Node Homophily Distribution Scores for ZOO.

M COMPARISONS WITH OTHERS HOMOPHILY MEASURE IN LITERATURE

K-UNIFORM HOMOPHILY MEASURE

Hyperedge homophily Veldt et al. (2023) defines the group homophily measure for k-uniform
hypergraphs as Gk = (V, E). The type t-affinity score for each t ∈ {1, . . . , k}, indicates the
likelihood of a node belonging to class c participating in groups in which exactly t group members
also belong to class c and defined as in equation 53. dt(v) is the number of hyperedges that v belongs
to with exactly t members from class c. The authors also consider a standard baseline score bt(c),
equation 54, that measures the probability that a class-c node is in the group where t members are
from class c, given that the other k − 1 nodes were chosen uniformly at random.

ηt(c) =

∑
v:yv=c dt(v)∑
v:yv=c dv

, (53) bt(c) =

(
nc−1
t−1

)(
n−nc

k−t

)(
n−1
k−1

) (54)

nc is the number of nodes in class c and n is the total number of nodes in the hypergraph. The
k-uniform hypergraph homophily measure can be expressed as a ratio of affinity and baseline scores,
with a ratio value of 1 indicating that the group is formed uniformly at random, while any other
number indicates that group interactions are either overexpressed or underexpressed for class c.

34

Under review as a conference paper at ICLR 2024

They suggest three possible ways for extending the concept of homophily to the hypergraph context.
The first one is the simple homophily and it means that ηt(c) > bt(c) for t = k and check whether a
class has a higher-than-baseline affinity for group interactions that only involve members of their
class. The second one is order-j majority homophily that is obtained when the top j affinity scores for
one class are higher than the baseline, i.e. ηk−j+1(c) > bk−j+1(c), . . . , ηk(c) > bk(c). The last one
they consider is order-j monotonic homophily, which corresponds to the case when top j ratio scores
are increasing monotonic, i.e. ηk(c)/bk(c) > ηk−1(c)/bk−1(c) > · · · > ηk−j+1(c) > bk−j+1(c).

Finally, considering that the value ηt(c) − bt(c) is the bias of class c for type t, they introduce a
type-t normalized bias score that normalizes the maximum possible bias, hence the obtained metric
is bounded in [0, 1] and it is computed as:

ft(c) =

{
ηt(c)−bt(c)
1−bt(c)

if ηt(c) ≥ bt(c)
ηt(c)−bt(c)

bt(c)
if ηt(c) < bt(c)

(55)

Comparisons to our measure Unlike Veldt et al. (2023) our measure of homophily does not
assume a k-uniform hypergraph structure and can be defined for any hypergraph. Furthermore, the
proposed measure enables the definition of a score for each node and hyperedge for any neighborhood
resolution, i.e., the connectivity of the hypergraph can be explicitly investigated. It gives a definitaion
of homophily that puts more emphasis on the connections following the two-step message passing
mechanism starting from the hyperedges of the hypergraph.

M.1 FIGURE - k-UNIFORM HOMOPHILY

Some of the hypergraphs have a lot of different size for hyperedges, here, we report the plots only for
some k for each dataset for brevity. All additional plots can be found in the supplementary material’s
zip files.

Figure 16: k-uniform homophily Cora.

Figure 17: k-uniform homophily Cora.

35

Under review as a conference paper at ICLR 2024

Figure 18: k-uniform homophily Cora.

Figure 19: k-uniform homophily CORA-CA.

Figure 20: k-uniform homophily CORA-CA.

36

Under review as a conference paper at ICLR 2024

Figure 21: k-uniform homophily CORA-CA.

Figure 22: k-uniform homophily DBLP-CA.

Figure 23: k-uniform homophily DBLP-CA.

37

Under review as a conference paper at ICLR 2024

Figure 24: k-uniform homophily DBLP-CA.

Figure 25: k-uniform homophily ModelNet40.

Figure 26: k-uniform homophily NTU2012.

38

Under review as a conference paper at ICLR 2024

Figure 27: k-uniform homophily Pubmed.

Figure 28: k-uniform homophily Pubmed.

Figure 29: k-uniform homophily Pubmed.

39

Under review as a conference paper at ICLR 2024

Figure 30: k-uniform homophily ZOO.

Figure 31: k-uniform homophily ZOO.

Figure 32: k-uniform homophily ZOO.

SOCIAL EQUIVALENCE

The social equivalence Sun et al. (2023) is calculated through an expectation taken over pairs of users
sampled from probability distributions. Specifically, E(u, v ∼ P (Ep)) represents the expectation
over positive user pairs sampled from the distribution of the hyperedges of the hypergraph P (Ep). In
contrast, E(u0, v0 ∼ P (V × V \ Ep)) represents the expectation over negative user pairs sampled
from P (V × V \ Ep). The measure is a fraction between the numerator that involves the expected
Jaccard index of environments for positive user pairs and the denominator, which comprises a similar
calculation for negative user pairs. The Jaccard index is used to measure the similarity between two
sets, and in this context, it assesses the similarity of hyperedges associated with positive user pairs. If
the expected Jaccard index for positive user pairs is higher than that for negative pairs, the measure
exceeds 1, indicating a significant level of observed social equivalence among users. Comparisons
to our measure The concept of Social Equivalence, as introduced by Sun et al. (2023), differs
significantly from our definition of homophily. In our approach, the measure is initially defined at
both the node and hyperedge levels. Our primary objective is to address the question: ‘How similar a
node is to its neighbors?’ Following a message passing scheme, our definition allows us to examine
different time points, attempting to answer how similar a node is to the nodes it can reach with t
steps of message passing. This consideration also extends to edges, where we seek to understand
the coherence or uniformity of an edge within itself. The guiding notion of similarity in our work is
belonging to the same class. Specifically, in level-0 homophily, we evaluate whether a node is more
connected with nodes of the same classes. We can then aggregate the node-level/hyperedge-level
homophily to provide a definition for hypergraph homophily. In contrast, in the work of Sun et al.

40

Under review as a conference paper at ICLR 2024

(2023), the concept of social equivalence yields a single result for the entire hypergraph. The approach
involves comparing the set of similar nodes that are connected with those that are not connected. The
key question is whether the set of non-connected nodes is, on average, more similar or if the set of
connected pairs exhibits greater similarity. It’s important to note that this definition makes sense only
for the entire hypergraph and captures a different notion of similarity.

SOCIAL CONFORMITY

Social conformity, as described in Sun et al. (2023), involves leveraging learned representations of
users and hyperedges within a model to understand and quantify the level of conformity among users
in a social network.

NODE HOMOPHILY COMPUTED ON THE CLIQUE EXPANSION OF THE HYPERGRAPH

Clique-expanded (CE) homophily, employed in Wang et al. (2023), is determined by calculating node
homophily Pei et al. (2020) on the graph derived from the clique-expanded hypergraphs.

Comparisons to our measure The node homophily for a graph computes the fraction of neighbors
with the same class for all nodes and then averages these values across the nodes. In contrast to
our metric, CE homophily is not defined directly on the hypergraph but necessitates an expanded
clique representation. While sharing some similarities with our node-wise measure h0, it lacks the
dynamic aspect inherent in the MP homophily measure, consequently failing to capture the dynamic
information within connections. Our analysis in Appendix A underscores the significance of this
dynamic element in understanding the correlation between homophily measures and the observed
patterns in Hypergraph Neural Networks (HGNNs).

FURTHER CONSIDERATION ON THE CONCEPTS OF SIMULATED SOCIAL ENVIRONMENT
EVOLVING AND GROUP ENTROPY FROM SUN ET AL. (2023)

Further exploration of the concepts of simulated social environment evolving and group entropy is
presented by Sun et al. (Sun et al., 2023). In their study, a dynamic analysis of specific hypergraph
characteristics is conducted through message passing. They specifically focus on the evolving
proportion of ’significant nodes’ within the hyperedge relative to the original nodes across different
epochs. These ’significant nodes’ are identified as those with a probability of belonging to the
hyperedge greater than 0.5, initially determined by multiplying the representation of the node with
that of the hyperedge (averaged over its constituent nodes).

A noteworthy distinction from our methodology lies in their reliance on representations provided by
a model, in contrast to our representation-independent approach. Despite the shared use of message
passing in both approaches, we underscore these methodological differences.

It’s important to highlight that the concept of group entropy introduced by Sun et al. is also noteworthy,
representing an evolving model concept; however, its computation requires node representations
provided by a model.

We posit that our measure and the metrics employed in Sun et al. (2023)’s paper can complement
each other effectively.

N CLASS DISTRIBUTION SHIFT

We now report the results for the class distribution shift obtained by applying the mini-batch sampling
procedure described in Section E. For each dataset, we choose to illustrate 3 different distributions:
the one corresponding to the original labels (“Node”), the one obtained by applying both Step 1 and
Step 2 described in the mini-batch paragraph of Section 4.2 and the one obtained by only applying
Step 2.

N.1 FIGURE - NODE HOMOPHILY

41

Under review as a conference paper at ICLR 2024

(a) Class distribution for Cora. (b) Class distribution for CORA-CA.

(c) Class distribution for 20Newsgroup. (d) Class distribution for DBLP-CA.

(e) Class distribution for Mushroom. (f) Class distribution for 20NewsW100.

Figure 33: Class distribution shifts.

42

	Introduction
	Related Works
	Defining and measuring homophily in hypergraphs
	Methods
	AllSet Propagation Setting
	MultiSet Framework
	Training MultiSet networks

	Experimental Results
	How does MultiSetMixer perform?
	Can homophily help us understand our experimental results?
	What is the impact of the introduced mini-batch sampling strategy?
	How do connectivity changes affect performance?

	Discussion
	Reproducibility
	Interplay of Message Passing Homophily and Models' Performances
	Comparison and Analysis between MultiSet and AllSet Framework Performances
	Extended Conclusion and Discussion
	Extended Related Works on Hypergraph Neural Networks
	Details of the Implemented Methods
	AllSet-like Models
	Other Models

	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Experiments
	Hyperparameters optimization
	Further Information about the datasets

	Experiment results
	Benchmarking models across multiple training proportions splits
	Connectivity Modification
	Rewiring Connectivity
	Additional Experiments with Heterophilic Datasets

	Sampling analysis
	Node Homophily
	Figure - node homophily

	Comparisons with others Homophily measure in literature
	Figure - k-uniform homophily

	Class Distribution Shift
	Figure - node homophily

