Cross-model Control: Improving Multiple Large
Language Models in One-time Training

Jiayi Wu!, Hao Sun?, Hengyi Cai®, Lixin Su*,
Shuaigiang Wang*, Dawei Yin*, Xiang Li!; Ming Gao!**¢
'School of Data Science and Engineering, East China Normal University
2Peking University *Chinese Academy of Sciences *Baidu Inc
SKLATASDS-MOE, School of Statistics, East China Normal University
®Guizhou Zhuwen ECNU Data Power Institute
jiayiwu@stu.ecnu.edu.cn, sunhao@stu.pku.edu.cn
caihengyi@ict.ac.cn, {sulixin,wangshuaiqiang}@baidu.com
yindawei®@acm.org, {xiangli,mgao}@dase.ecnu.edu.cn

Abstract

The number of large language models (LLMs) with varying parameter scales and
vocabularies is increasing. While they deliver powerful performance, they also face
a set of common optimization needs to meet specific requirements or standards,
such as instruction following or avoiding the output of sensitive information from
the real world. However, how to reuse the fine-tuning outcomes of one model
to other models to reduce training costs remains a challenge. To bridge this
gap, we introduce Cross-model Control (CMC), a method that improves multiple
LLMs in one-time training with a portable tiny language model. Specifically,
we have observed that the logit shift before and after fine-tuning is remarkably
similar across different models. Based on this insight, we incorporate a tiny
language model with a minimal number of parameters. By training alongside
a frozen template LLM, the tiny model gains the capability to alter the logits
output by the LLMs. To make this tiny language model applicable to models
with different vocabularies, we propose a novel token mapping strategy named
PM-MinED. We have conducted extensive experiments on instruction tuning and
unlearning tasks, demonstrating the effectiveness of CMC. Our code is available at
https://github.com/wujwyi/CMC.

1 Introduction

In recent years, there has been an increasing number of large language models (LLMs) with varying
parameter scales and vocabularies, whose outstanding performance has significantly impacted human
society (Achiam et al., [2023; [Zhao et al., [2023). At the same time, although large pre-trained
language models have gained the ability to handle various natural language processing tasks after
pre-training, they generally face a series of common optimization needs to meet specific application
requirements or ethical standards. For instance, in the case of instruction following (Wei et al.,
2022)), after pre-training, vanilla models typically require instruction tuning to develop the capacity
to comprehend user instructions accurately. Alternatively, unlearning and detoxification are also
necessary considerations (Gehman et al., 2020; |Chen and Yang, |[2023). During the training process,
models may encounter data containing real-world personal privacy information or content that is
harmful, offensive, or prejudiced. This could lead them to output these information during the

*Corresponding Author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/wujwyi/CMC

oy
% User LLMs for Different
Scales and Vocabularies

Template LLM
g\

Llama-7b-base

+
Portable Tiny LM

=

{ Llama-7b-instruct] [Mistral-?b»instruct]

Figure 1: Cross-model control could apply the fine-tuning outcomes of one model to other models

inference stage (Wei et al.,[2023; [Huang et al.,[2022). When deploying to a large number of users, it
is crucial to avoid outputting these content.

However, existing methods usually could only optimize a single target model at a time, such as
fine-tuning (Hu et al., [2022; [Lester et al.,[2021} |Liu et al.,[2024b), retraining (Keskar et al.,[2019)),
or activation editing (L1 et al., 2023a}; [Leong et al.l | 2023). These methods require altering the
model’s parameters or adding new parameters, which must align with the original parameters. These
newly added or modified parameter values cannot be applied to models with different structures.
Furthermore, although some guided decoding methods (Liu et al., 2021} Krause et al.| [2021}; [Liu
et al.,[2024a)) can be used for a few models of different scales within the same model family, they
cannot be applied to models with other vocabularies. Moreover, these methods introduce a significant
inference burden. For in-context learning (Dong et al.| 2022), although this method can alter the
behavior of models through natural language prompts, it falls short in satisfying the requirements of
complex tasks such as instruction following or unlearning, which are better accomplished through
fine-tuning. Consequently, a critical question arises: When model owners face constraints on data and
computational resources, preventing them from directly fine-tuning their models, can they effectively
leverage the fine-tuning outcomes of other LLMs at a lower cost to improve their models?

To solve this problem, we sought to explore the similarities in the fine-tuning effects across models
with different parameter scales and vocabularies. We define the effect of fine-tuning as the change
in the model’s output logits after the fine-tuning process, compared to the logits before fine-tuning.
We discovered that the shifts in logits across different models exhibit a high degree of similarity. It
further inspires us to think: Could a portable neural network model be utilized to alter the output
logits of various models? Thereby enabling a diverse range of models to achieve their optimization
requirements through this neural network model.

In this paper, we propose Cross-model Control (CMC), a method that could improve multiple
LLMs in one-time training with a portable tiny language model. As demonstrated in Figure[I] we
introduce a tiny language model with significantly fewer parameters than mainstream LLMs. This
model is trained alongside a frozen template LLM, enabling the tiny language model to alter the
logits output by the LLM. Subsequently, to facilitate its application across models with different
vocabularies, we introduce the strategy of prefix match with minimum edit distance (PM-MinED), a
lightweight approach for aligning the vocabularies of the user LLM and the tiny language model at
the token level. Through this approach, we achieve the training of a single model that concurrently
improves multiple models. We conducted extensive experiments on instruction tuning and unlearning
tasks, demonstrating the effectiveness of CMC, where a tiny language model with only 15 million
parameters can empower a large model with 70 billion parameters, which is thousands of times larger.
Our contributions can be summarized as follows:

* To the best of our knowledge, we are the first to propose a training method that improves
multiple models in one-time training. This approach facilitates the multiple utilizations of

logits shifts on Llama2-13b

logits shifts on Mistral-7B logits shifts on Mistral-7B

o

o
-
o
=
o

—

01 01

2
3

time steps
1
ul
time steps
w N

@
Q
Q
-25
v
€
£
c

20 40 60 80 20 40 60 80

token logits shifts (sorted)
logits shifts on Llama2-7b

token logits shifts (sorted)
logits shifts on Llama2-7b

20 40 60 80
token logits shifts (sorted)
logits shifts on Llama2-13b

w N e
o © o
|
o

time steps

N
o

0 20 40 60 80 20 40 60 80 20 40 60 80

token logits shifts (reordered by figure above) token logits shifts (reordered by figure above) token logits shifts (reordered by figure above)

(a) Logits shifs on LLAMA2-13B (b) Logits shifs on MISTRAL-7B (c) Logits shifs on MISTRAL-7B
and LLAMA2-7B. and LLAMA2-7B. and LLAMA2-13B.

Figure 2: Logits shifs on different models exhibit a high degree of similarity.

fine-tuning outcomes, enabling LLM owners who lack data and computational resources to
improves their models. Showcasing a novel method for model enhancement.
* We conducted a detailed analysis of the similarities in fine-tuning across different models
and discovered that the shifts in logits for the same task are similar across various models.
» Through extensive experimentation, we have demonstrated the effectiveness of our proposed

method. Moreover, we discovered that language models with minimal parameter sizes
possess significant potential in assisting LLMs.

2 Preliminaries

Even though different LLMs may have varying parameter sizes and distinct vocabularies, if these
models are fine-tuned on the same task, does the effect of fine-tuning exhibit similarities across them?

Given a dataset D and an vanilla model MY, we fine-tune the model M" using dataset D to obtain
a fine-tuned model M. Provided with a prompt, the models M" and M predict the next token,
resulting in ¢, € RV and ¢; € RV respectively, where V denotes the size of the vocabulary. We
define the effect of fine-tuning as the as the shift in logits, that is {4 — (,.

When comparing the effects of fine-tuning between two distinct models, MY and M3, it involves
comparing the shifts in logits when encodeing the same sequence. Specifically, given an input-
response pair, denoted as [x1, X2, ..., Tn, Y1, Y2, --., Ym), We fed this pair into the models MY, M4,

¢, and M%. We then record the logits from the final layer output of each model. The logits
corresponding to the response part are extracted, yielding ¢ € R™*Mil ¢4 ¢ Rm>xIVil ¢y ¢
R™* V2l and ¢¢ € R™*IV2I. To reduce the effects of varying scales in the logits from different
models, we attempted to apply the LogSoftmax operation to the logits, thereby transforming them
into the same logarithmic probability space. By calculating the difference between the logits after
and before fine-tuning, we obtain the fine-tuning effects.

Taa1 = LogSoftmax(¢{) — LogSoftmax(¢}) 1
T, = LogSoftmax(¢§) — LogSoftmax(¢Y) 2

We selected three vanilla models, LLAMA2-7B , LLAMA2-13B, and MISTRAL-7B , encompassing
diverse parameter scales and vocabularies. To investigate the similarity of fine-tuning effects across
different models on the same dataset, we fine-tuned them individually on the GPT4-Alpaca dataset

(Peng et al., [2023)). All models were fine-tuned using low-rank adaptation (Hu et al.,[2022), with
hyperparameters provided in Appendix [A]

To facilitate an intuitive comparison of fine-tuning effects across different models, we visualized the
shifts in logits before and after fine-tuning in the form of heat mapsEl Taking Figureas an example,

2We use “What causes the northern lights?” as the input, and the output of M¢ as the response.

EM P
* (now get ultimate | $2

X X

H ' i 'MinED now get ultimate
. H H I:H:u:b: > ¢ ¢ ¢ minimal edit
........... ' ' ' distance

now gets estimate)¢

'}w
2
=
>
m
(w)

__________ PM-MIinED

Frozen template Tunable User LLM Delta now - get Al @
L Tiny LM Model ¢ ¢ J/winimaledit

distance

X

now gets [ultimately,]
why[is [... [2]

[Write[some| ... [.| Candidate set found by prefix match
(a) Training stage (b) Inference stage (c) Token mapping

Figure 3: Overview of Cross-model Control

we selected the top 100 tokens with the highest logits values in (&5 % 1A3[§ %% at each time step,

sorted according to the values of 71 xua2-138, and applied the corresponding indices to 7p spa2-75-
We found that the upper and lower sub-figures in Figure [2] were highly similar, both exhibiting a trend
of larger values on the left and smaller ones on the right, indicating a remarkably similar fine-tuning
effect of different models on the same dataset. Additionally, we have quantitatively analyzed the
fine-tuning effects across models using Sinkhorn divergence, as detailed in Appendix [D]

3 Cross Model Control

Given the observation that the logits shifts before and after fine-tuning in different LLMs are
remarkably similar, we introduce a parameter-efficient, portable tiny language model designed to
learn to alter the output logits of LLMs, which we call the “delta model”. Subsequently, we introduce
a lightweight token mapping strategy called PM-MinED. Empowered by PM-MinED, the delta model
becomes applicable to other LLMs with varying parameter sizes and vocabularies. An overview of
the cross-model control is illustrated in Figure 3]

3.1 Training the portable delta model to alter the output of LLM

In Section 2] we found that the logits shifts before and after fine-tuning LLM are very similar.
Therefore, we attempt to fit the logits shifts of LLM using a delta model. Specifically, as shown in
figure[3a we train the template LLM and delta model together, keeping the template LLM frozen and
the delta model tunable. During forward propagation, we add the logits of LLM and the logits of the
delta model together to obtain the final logits, aiming to teach the delta model to alter the logits of
LLM. Considering that the logits of different LLM outputs have different scales, to enhance the delta
model’s applicability during the inference stage after training, we apply a LogSoftmax to the logits of
LLM to project them into logarithmic space.

Formally, we denote the template LLM as M,, the delta model as M, a training data sample as x,
the logits output by M; and M at the final layer as (; and (; respectively, and the final logits used
for calculating the loss as (finai-

Gt = Mq(z), Ca= Ma(x) (3)

Crinar = LogSoftmax () + Cq 4)
We do not apply LogSoftmax to the logits (4 of the delta model because it would lead to poorer
performance, which we will explain in Section [3.2]

3.2 Sharing the portable delta model with other LLMs

After the delta model has acquired the capability to alter LLM logits, we share it with other user
LLM:s to achieve fine-tuning effects. During the inference stage, the interaction between the LLM

and the delta model remains consistent with the training stage. We apply LogSoftmax to the logits
output by the LLM, projecting them into logarithmic space, and then add them to the logits output by
the delta model to obtain the final logits used for decoding. When applying the delta model to LLMs
with different vocabularies, we employ a token mapping strategy called PM-MinED to map tokens
from the delta model’s vocabulary to tokens in the LLM’s vocabulary. The implementation details of
this strategy will be presented in Section [3.3]

Formally, we represent the user LLM as M,,, a prompt as [zg, 1, ..., Tt—1]. At time step ¢, the logits
output by M,, and M, at the final layer are denoted as ¢!, and ¢}, respectively, where

G =Mu(z<t), (G=Ma(z<t) ©)
The logits output by the user LLM assisted by the delta model at time step ¢ are represented as
C}inar = LogSoftmax(C;,) + a - TokenMap((}) (6)

Here, TokenMap represents the PM-MinED strategy, and « denotes a strength coefficient that
can adjust the intensity of alteration made by the delta model to the LLM outputs, which will be
demonstrated in Section We do not apply LogSoftmax to the delta model’s logits in both
Equationsd]and[6] This is because the outputs of LogSoftmax are all negative. If a token from the
LLM cannot find its corresponding delta model token in the token mapping, the logits of this token
will not be able to receive a negative adjustment.

3.3 Token Mapping Strategy PM-MinED

To enable the delta model to be adapted to user LLMs with varying vocabularies , it is imperative
to establish a mapping relationship between the vocabularies of the user LLM and the delta model.
In previous token mapping strategies, [Fu et al.|(2023)) implemented an exact match method, which
involves finding tokens in the delta model’s vocabulary that are completely identical to the tokens of
the user LLM; if a perfect match cannot be found, the matching attempt is abandoned. This method’s
limitation is that the logits of tokens that cannot be perfectly matched will not be adjusted by the
delta model. Building upon this, Wan et al.| (2024) introduced the minimum edit distance strategy,
aiming to utilize tokens that cannot be perfectly matched by finding the token in the delta model’s
vocabulary with the smallest edit distance to the user LLM’s token. However, this method might
lead to matching tokens with the smallest edit distance but irrelevant semantics, such as erroneously
matching “ultimate” with “estimate”.

To overcome the aforementioned issues, we propose a new mapping strategy: Prefix-Match with
Minimal Distance (PM-MinED). This strategy not only considers the edit distance between tokens
but also introduces the concept of prefix matching to enhance the accuracy and semantic relevance of
the mapping. As illustrated in Figure in the process of matching the token “ultimate” with the
corresponding token in the delta model vocabulary, we initially create a candidate set consisting of
tokens that either have “ultimate” as a prefix or are prefixes of “ultimate”, which includes elements
such as [“ultimately”, “ult”, “ul”, “u”]. Subsequently, within this candidate set, by comparing the edit
distances, the token “ultimately” is identified as the one most closely matching “ultimate”.

4 Experiment

To evaluate the effectiveness of our method, we conducted experiments on two optimization tasks
commonly required for LLMs: instruction tuning and unlearning, with the results presented in
Sections[4.T]and Furthermore, we analyzed the impact of different sizes of delta models and the
strength coefficient o on performance in Sections 4.3]and[4.4] Finally, the outcomes of the ablation
studies are demonstrated in Section[4.5] where we investigate the necessity of applying LogSoftmax
to the logits of LLM outputs and employing prefix match during token mapping.

4.1 Experiment on Instruction Tuning

Instruction tuning refers to the process of fine-tuning pre-trained models to better understand and
follow human natural language instructions.

Training Dataset We utilized the GPT4-Alpaca dataset (Peng et al.,|2023)) to train our delta model.
This dataset consists of 52k instruction-following examples, with instructions sourced from Stanford
Alpaca data (Taori et al.l 2023)) and responses generated by GPT-4.

Table 1: Instruction tuning results on AlapcaEval (Win %). In cross-model control, all base models
incorporate the same delta model, which is trained using the LLAMA2-7B as the template model.

Method | Params Add | LLAMA2-7B LLAMA2-138 LLAMA2-70B MISTRAL-7B
Vanilla Base Model - 4.22 5.34 11.55 6.83
LoRA (upper bound) 110M 68.18 75.16 OOM 79.91
. 8.47 10.47 8.59 -
Proxy-tuning ‘ 220M ‘ (+4.25) (+5.13) (-2,96) :
30.41 39.04 4981 33.29
CMC (ours) ‘ oM ‘ (+26.19) (+31.51) (+38.26) (+26.46)

Evaluation Method We employed the AlpacaEval benchmark (Li et al.,[2023b) to evaluate the
instruction-following ability of our method. This benchmark includes 805 instructions, with GPT-4
serving as the annotator to compare the output of the tested model against Davinci003’s output, using
win rate as the evaluation metric.

Implementation We introduce TINYLLAMA-1 10ME] as the delta model, which is based on the
Llama (Touvron et al., [2023) architecture with a parameter size of 110M, featuring 12 Transformer
decoder layers and a hidden size of 768. We use LLAMA2-7B as the template LLM to guide the
delta model in learning to modify the output of the LLM. LLAMA2-13B, LLAMA2-70B , and
MISTRAL-7B are selected as user LLMs to assess the effectiveness of the delta model on LLMs with
different parameter sizes and vocabularies.

Baseline Methods a) LoRA fine-tuning (Hu et al., [2022): A parameter-efficient fine-tuning
method that freezes the pre-trained model weights during training and incorporates trainable rank
decomposition matrices into the Transformer layer to reduce the number of trainable parameters.
As an immovable method, LoRA is not suitable for direct comparison with our approach but
serves as a performance upper bound for reference. b) Proxy-tuning (Liu et al.|[2024a): A method
that does not directly fine-tune the model itself but selects a smaller-scale model within the model
family as an anti-expert, fine-tunes it as an expert, and leverages the difference in logits between
the expert and anti-expert during decoding for larger models. To facilitate a fair comparison, we
use TINYLLAMA-110M as the anti-expert, fine-tuned on GPT4-Alpaca as the expert. This approach
cannot be directly applied to models with different vocabularies.

Analysis The results of instruction tuning are shown in Table[T} where we observe that:

A single portable delta model can enable LLMs with different parameter sizes and vocabularies to
achieve the ability to follow instructions. Furthermore, this ability is not constrained by the template
model’s capabilities, and as the user model’s capabilities increase, the ability of the user model to
follow instructions also increases. This indicates that the logits transformation for enabling a model
to follow instructions can be applied to a wide range of LLLMs, which is consistent with the findings
in Section 2l

Our approach achieves better performance than Proxy-tuning with the same trainable parameters and
fewer inference costs, as our delta model can alter the outputs of LLMs through training with the
template model, while Proxy-tuning is constrained by the performance of the anti-expert model.

Our method’s performance is not as good as LoRA’s, as LoRA incorporates new tunable parameters
in each Transformer layer, enabling deep interactions between the LoRA module and the model.
However, this approach also prevents the LoORA module from being used as a portable neural network
for models in different parameter spaces.

4.2 Experiment on Unlearning

Unlearning refers to the process of making a model forget specific information from the training data
in order to prevent privacy leakage.

*https://huggingface.co/mickypro/tinyllama-110M

https://huggingface.co/nickypro/tinyllama-110M

Table 2: Unlearning results on TOFU benchmark. All chat models incorporate the same delta model,
which is trained using the LLAMA2-7B-TOFU as the template model. Better scores are bolded.

Forget Set Retain Set Real Author World Fact
Method RL() P{) TRY) RL(M PH) TR RL P TR RL P 1R
LLAMA2-7B-TOFU 0.99 0.99 051 098 099 048 093 045 058 087 043 0.56
+LoRA 0.01 0.00 0.77 071 075 048 088 0.51 0.68 0.88 046 0.60
+CMC (ours) 0.00 0.00 0.33 091 097 051 084 043 058 085 045 0.57
LLAMA2-13B-TOFU 1.00 1.00 046 099 100 053 0.89 051 0.67 08 046 0.62
+0-UNLEARNING 0.38 0.06 0.53 053 048 052 061 036 046 083 041 0.59
+LoRA 0.03 0.00 050 085 092 052 087 054 070 086 048 0.63
+CMC (ours) 0.00 0.00 0.29 097 099 055 077 049 0.65 083 047 0.65
MISTRAL-7B-TOFU 1.00 1.00 049 1.00 100 048 084 061 075 088 0.62 0.78
+LoRA 0.00 0.00 0.72 095 096 049 079 057 071 087 0.64 0.78
+CMC (ours) 0.00 0.00 0.30 099 099 051 073 0.62 075 086 063 0.77

Evaluation Method We utilized the TOFU benchmark (Maini et al.,[2024) to evaluate our approach.
The test data consists of four subsets of QA pairs, namely Forget Set, Retain Set, Real Author, and
World Fact. The Forget Set and Retain Set contain fictitious author information, with the Forget Set
representing the information to be forgotten and the Retain Set representing the information to be
retainedE] Real Author and World Fact are used to test the impact of unlearning on other knowledge
within the model. Following TOFU’s setting, we employed the following three evaluation metrics:
ROUGE-L evaluates the matching degree between the output of the tested model and the ground
truth answer; Probability assesses the conditional probability of the tested model outputting the
correct answer; Truth Ratio calculates a ratio that compares the likelihood of its correct answer to an
incorrect answer.

Implementation Initially, we trained LLAMA2-7B-CHAT , LLAMA2-13B-CHAT , and MISTRAL-
7B-INSTRUCT on the Forget Set and Retain Set of TOFU to memorize fictitious author infor-
mation, resulting in LLAMA2-7B-TOFU, LLAMA2-13B-TOFU, and MISTRAL-7B-TOFU. We
selected TINYLLAMA-110M as the delta model, with the model learning fictitious author information,
LLAMA2-7B-TOFU, serving as the template LLM, and LLAMA2-13B-TOFU and MISTRAL-7B-
TOFU serving as user LLMs. During the training phase, we employed a gradient difference strategy,
specifically conducting gradient ascent on the Forget Set and gradient descent on the Retain Set. The
loss function can be expressed as:

Laisy = —L(SF) + L(SR) (N
Here, £ represents the cross-entropy loss, S denotes the Forget Set, and Sk denotes the Retain Set.

Baseline methods a) LoRA fine-tuning, which involves training each model separately. b)
0-UNLEARNING (Huang et al [2024) fine-tunes LLAMA2-7B-CHAT model, and guides LLAMA2-
13B-CHAT during training and decoding to avoid outputting private information using the changes in
logits between the tuned and the original LLAMA?2-7B-CHAT. This method necessitates inferring
three models during the inference, incurring substantial computational costs.

Analysis The results are shown in Table [2] The delta model trained with LLAMA2-7B-TOFU
enables models with varying parameter scales and vocabularies to achieve unlearning effects. Its
performance is comparable to LoRA while offering the capability of improving multiple models in a
single training session. Furthermore, compared to §-UNLEARNING, our approach achieves superior
performance at less than half the inference cost.

4.3 Impact of Parameter Size of Delta Model on Performance

We experimented with delta models of smaller parameter sizes, specifically the TINYLLAMA-42ME]
and TINYLLAMA-1 SME]models, and tested their performance on the first 50 data points of AlpacaEval.

*The test data for Forget Set and Retain Set are paraphrased and perturbed training data, serving as the
ground truth answer and incorrect answer, respectively.

Shttps://huggingface.co/nickypro/tinyllama-42M

Shttps://huggingface.co/nickypro/tinyllama-15M

https://huggingface.co/nickypro/tinyllama-42M
https://huggingface.co/nickypro/tinyllama-15M

Table 3: Different delta model size on first 50 data points of AlpacaEval (win %).

Delta Model Size | LLAMA2-7B LLAMA2-138 LLAMA2-708 MISTRAL-7B

15M 40 50 72 52
42M 54 64 82 50
110M 54 66 74 54

The results are presented in Table[3] In most cases, we find that reducing the delta model’s parameter
size leads to a decrease in performance, but the performance does not rapidly decline as the parameter
size decreases. When the delta model is applied to LLAMA2-70B, a larger delta model size may
have a negative effect. We believe this is because the 70B LLM, with a massive parameter size, does
not need to make significant adjustments to the output to acquire the ability to follow instructions,
and an overly large parameter size in the delta model may lead to overfitting. This indicates that a
delta model used for adjusting LLM output logits does not necessarily require a large number of
parameters. It also demonstrates the significant potential for small models to assist large models.

4.4 TImpact of Strength Coefficient on Performance

1.0 A
60 1
% 0.8 1
5 50 A o
c
= 404 § 0.6 1
E 30 A I} 0.4- —8— Real Authors
© 8) Real World
8207 _o— 4 epochs = 0] —A— Retain
< 10 - 2 epochs ' —»— Forget
—— 8 h
. epochs 0.0
0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Alpha Alpha
(a) Impact on instruction tuning (b) Impact on unlearning

Figure 4: Impact of strength coefficient « on performance

We experimented with different strength coefficients o and observed their impact on performance.

For instruction tuning, we tested values within the range of [0.5, 2] and evaluated them on the first
50 data points of AlpacaEval. As shown in Figure[#a] we found that the performance was optimal
when the a value was 1.0, and increasing or decreasing « resulted in decreased performance. This
is similar to causing the delta model to overfit or underfit, so we explored whether adjusting the o
value during inference could counteract the overfitting and underfitting during training. Specifically,
the delta model performed best after training for four epochs, and we selected the checkpoint after
training for two epochs as the underfitting scenario and the checkpoint after training for eight epochs
as the overfitting scenario. We found that adjusting the o value could counteract the overfitting
or underfitting during training. The underfitting delta model had a win rate of 54 when o was
1.0, which increased to 64 when o was 2.0. Similarly, the overfitting delta model had a win rate of
48 when o was 1.0, which increased to 64 when « was 0.75. This phenomenon indicates that our
training method offers a considerable degree of fault tolerance, even if incorrect epoch parameters
are set during the training phase, it is still possible to achieve the desired performance by adjusting
the strength coefficient a.

For unlearning, we found that adjusting the value of « can serve as a balance between forgetting
and retaining. As shown in Figure [db] increasing the value of « can prevent the model from
outputting more sensitive information, but it may also lead to the loss of necessary information.
Conversely, decreasing the value of « can allow the model to retain more essential information, but it
may result in the model outputting more sensitive information. Users of LLM can flexibly adjust the
« value based on the actual circumstances.

4.5 Ablation Study

In the ablation study, we examined the impact of

not applying LogSoftmax to the logits output by Table 4: Ablation study

the LLM and the effect of omitting prefix match-

ing during token mapping on performance. As AlpacaEval
demonstrated in Table E], our findings reveal that Method (Win %)

the removal of LogSoftmax results in a decline in

. Lo LLAMA2-7B+delta model 30.41
performance. This suggests that projecting the log-
! . . . w/o LogSoftmax 28.64
its output by the LLM into the logarithmic space
can reduce the gap between training and inference. LLAMA2-13B+delta model 39.04
Similarly, the absence of prefix matching in token w/o LogSoftmax 36.85
mapping diminishes the supportive effect of the MISTRAL-7B+delta model 33.29
delta model on the LLM. This indicates that prefix w/o LogSoftmax 31.22
matching has a higher priority than selecting tokens w/o Prefix Match 30.19

with the minimal edit distance. Eliminating prefix
matching could lead to the aggregation of token
logits that are semantically unrelated.

5 Related Work

In this paper, we focus on modifying the outputs of the base language model. The related work can
be broadly categorized into two approaches: training-intensive methods and decoding-time methods.

Training-Intensive methods One of the most effective methods for adapting large language models
(LLMs) to specific downstream tasks involves updating only a subset of the model parameters, rather
than the entire set. For instance, LoORA (Hu et al.||2022)) achieves parameter updates by decomposing
them into trainable low-rank vectors. Prefix-tuning (Li and Liang| 2021)) introduces a series of
continuous, task-specific vectors at the beginning of the input sequence for task adaptation. Adapter-
tuning (Houlsby et al.l|2019)) integrates compact, trainable modules within the layers of a pre-trained
model to facilitate transfer learning. BitFit (Zaken et al.| [2021)) selectively updates individual bias
vectors in the model’s parameters. Although these methods enhance performance in downstream
tasks, they still require significant computational resources.

Decoding-Time methods To reduce training costs, some researchers have explored decoding-time
methods. For example, DExperts (Liu et al., 2021)) enhances or suppresses certain text attributes
by integrating expert and anti-expert models during decoding. GeDi (Krause et al., [2021) employs
smaller LMs as generative discriminators to steer the output of larger LMs, enhancing safety and
control. Proxy-tuning (Liu et al.,|2024a) modifies the predictions of an untuned larger model towards
a desired outcome. ITI (Li et al.,[2024) adjusts activation values during inference to generate more
accurate responses. EFT (Mitchell et al., 2023) employs two smaller LMs to emulate the behavior
of a larger LM without the need for additional training. Although these methods are effective, they
often require the use of two additional language models during inference, increasing inference costs.

6 Conclusion and Limitation Discussion

In this paper, we introduced a training method named CMC, designed to improves multiple LLMs
in one-time training, enabling LLM owners who lack data and computational resources to improve
their models at a lower cost. Through comparative analysis of the logits shifts in different LLMs
before and after fine-tuning, we observed a similarity in these shifts. Based on this observation,
we introduced a portable tiny delta model to fit the logits shifts of LLMs, enabling the adjustment
of outputs for LLMs of varying sizes and vocabularies. Our experiments in instruction tuning and
unlearning tasks have demonstrated the effectiveness of our method.

However, our approach has certain limitations. The performance of the delta model is constrained by
the scope of its vocabulary. If the vocabulary of the user’s LLM contains tokens from languages not
covered by the delta model’s vocabulary, then the logits of these linguistically diverse tokens will not
be adjusted accordingly.

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant No.
62377012 and the Special Fund for International Conferences of Graduate Students at East China
Normal University.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774.

Jiaao Chen and Diyi Yang. 2023. Unlearn what you want to forget: Efficient unlearning for Ilms.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2023, Singapore, December 6-10, 2023, pages 12041-12052. Association for Computa-
tional Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. 2021. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey on in-context learning. arXiv preprint arXiv:2301.00234.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. 2023. Specializing smaller language
models towards multi-step reasoning. In International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pages 10421-10430. PMLR.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. 2020. Real-
toxicityprompts: Evaluating neural toxic degeneration in language models. In Findings of the
Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20 November 2020,
volume EMNLP 2020 of Findings of ACL, pages 3356-3369. Association for Computational
Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning
for nlp. In International conference on machine learning, pages 2790-2799. PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2022. Lora: Low-rank adaptation of large language models. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net.

James Y Huang, Wenxuan Zhou, Fei Wang, Fred Morstatter, Sheng Zhang, Hoifung Poon, and Muhao
Chen. 2024. Offset unlearning for large language models. arXiv preprint arXiv:2404.11045.

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. 2022. Are large pre-trained language
models leaking your personal information? In Findings of the Association for Computational
Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages
2038-2047. Association for Computational Linguistics.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher.
2019. |CTRL: A conditional transformer language model for controllable generation. CoRR,
abs/1909.05858.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq R. Joty,
Richard Socher, and Nazneen Fatema Rajani. 2021. |Gedi: Generative discriminator guided
sequence generation. In Findings of the Association for Computational Linguistics: EMNLP
2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021, pages 4929-4952.
Association for Computational Linguistics.

10

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.738
https://proceedings.mlr.press/v202/fu23d.html
https://proceedings.mlr.press/v202/fu23d.html
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.301
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.301
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.148
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.148
http://arxiv.org/abs/1909.05858
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.424
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.424

Chak Tou Leong, Yi Cheng, Jiashuo Wang, Jian Wang, and Wenjie Li. 2023. Self-detoxifying
language models via toxification reversal. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pages
4433-4449. Association for Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021,
pages 3045-3059. Association for Computational Linguistics.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. 2024. Inference-
time intervention: Eliciting truthful answers from a language model. Advances in Neural Informa-
tion Processing Systems, 36.

Kenneth Li, Oam Patel, Fernanda B. Viégas, Hanspeter Pfister, and Martin Wattenberg. 2023a.
Inference-time intervention: Eliciting truthful answers from a language model. In Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023b. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia Tsvetkov, Yejin Choi, and Noah A. Smith. 2024a.
Tuning language models by proxy. CoRR, abs/2401.08565.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A. Smith, and
Yejin Choi. 2021. Dexperts: Decoding-time controlled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6, 2021, pages 6691-6706. Association for
Computational Linguistics.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. 2024b. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. 2024. Tofu: A
task of fictitious unlearning for llms. arXiv preprint arXiv:2401.06121.

Eric Mitchell, Rafael Rafailov, Archit Sharma, Chelsea Finn, and Christopher D Manning. 2023.
An emulator for fine-tuning large language models using small language models. arXiv preprint
arXiv:2310.12962.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. 2023. Instruction
tuning with gpt-4. arXiv preprint arXiv:2304.03277.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. 2024. Knowledge
fusion of large language models. CoRR, abs/2401.10491.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. 2023. Jailbroken: How does LLM safety
training fail? In Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December
10 - 16, 2023.

11

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.269
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.269
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
http://papers.nips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html
https://github.com/tatsu-lab/alpaca_eval
https://doi.org/10.48550/ARXIV.2401.08565
https://doi.org/10.18653/V1/2021.ACL-LONG.522
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/ARXIV.2401.10491
https://doi.org/10.48550/ARXIV.2401.10491
http://papers.nips.cc/paper_files/paper/2023/hash/fd6613131889a4b656206c50a8bd7790-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/fd6613131889a4b656206c50a8bd7790-Abstract-Conference.html

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. 2022. Finetuned language models are zero-shot learners. In
The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. arXiv preprint arXiv:2106.10199.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey of large language models. arXiv
preprint arXiv:2303.18223.

A Hyperparameters and experimental details

A.1 Instruction Tuning

During the training of the delta model, we set the learning rate to 2e-4, batch size to 64, and trained
for 4 epochs.

For LoRA fine-tuning, for both LLAMA2-7B and MISTRAL-7B models, we set r to 140 and alpha to
280, while for LLAMA2-13B, r is set to 90 and alpha to 180. For all models, the learning rate is 2e-5,
batch size is 32, LoRA target are [q_proj,k_proj,k_proj], and the training lasted for 2 epochs.

When training the expert models for Proxy-tuning, the learning rate was set to 2e-4, batch size to 64,
and trained for 16 epochs. We also experimented with varying the number of training epochs and
found that performance was best with 16 epochs.

A.2 Unlearning

In training the delta model, we set the learning rate to le-4, batch size to 16, and trained for 20
epochs.

For LoRA fine-tuning, across all models, r was set to 32, alpha to 64, with a learning rate of le-4,
batch size of 16, and training spanned 5 epochs.

A.3 Preliminaries

The hyperparameter settings for Section[2] were consistent with those outlined for instruction tuning.

B Compute Resources

Our experiments were conducted on a server equipped with 512GB of memory and 4 Nvidia A100
40G GPUs.

C Broader Impacts

Our approach can bring about positive social impacts. Specifically, our method allows for the reuse
of the fine-tuning outcomes from one model to another. This attribute of supporting repeated use can
reduce the cost of model training and decrease carbon emissions. Simultaneously, our method does
not present any negative social impacts.

D Quantitative Analysis of the Fine-tuning Effect

By calculating the difference between the logits after and before fine-tuning, we obtain the fine-tuning
effects, and we evaluated their similarity by measuring the distance between them, which is assessed
using Sinhorn divergence.

Distance = Sinkhorn Divergence(T a1, Tam,)/ |Vl ©)

12

https://openreview.net/forum?id=gEZrGCozdqR

Table 5: Average Distance between logits shifts. Smaller distances mean more similarities

Modell Model2 \ Average Distance Between Logits Shifts
‘ Both train on GPT4-Alpaca Modell train on GPT4-Alpaca and Model2 train on GSM8k
LLAMA2-13B LLAMA2-7B 0.658 3.522
MISTRAL-7B LLAMA2-7B 1.046 4.760
MISTRAL-7B LLAMA2-13B 0.754 3.382

We fine-tuned them individually on the GPT4-Alpaca dataset. Additionally, to contrast the fine-tuning
effects with other task, we also fine-tuned them on the GSM8k dataset (Cobbe et al., [2021). We
selected the first 50 data from AlpacaEval as inputs, and used the output of M¢ as the response to
form input-response pairs. We chose the average Sinkhorn divergence as the indicator. The result
is shown in Table[5] We observed that despite the models having different parameter scales and
vocabularies, training on the same dataset still resulted in similar logits shifts. Conversely, significant
differences were observed when training on different datasets.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The key claims we make in the abstract and introduction accurately reflect the
contribution and scope of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We analyze the limitations in Section [6]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: In Section 2] we provide proofs that logits shifts are similar.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide our code, the models and hyperparameters we use, and clearly
state our approach, and the results in our paper are reproducible.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]
Justification: We provide our code, as well as links to public datasets and models.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide experimental details in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Because the evaluation with AlpacaEval requires the very expensive GPT-4
API, we did not conduct multiple experiments to provide error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computational resources required for the experiments in
Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Yes, the research conducted in the paper fully conforms to the Neur[PS Code
of Ethics in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss social impacts in Appendix [C|
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper has no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, the paper properly credits the creators or original owners of assets and
respects the license and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

	Introduction
	Preliminaries
	Cross Model Control
	Training the portable delta model to alter the output of LLM
	Sharing the portable delta model with other LLMs
	Token Mapping Strategy PM-MinED

	Experiment
	Experiment on Instruction Tuning
	Experiment on Unlearning
	Impact of Parameter Size of Delta Model on Performance
	Impact of Strength Coefficient on Performance
	Ablation Study

	Related Work
	Conclusion and Limitation Discussion
	Hyperparameters and experimental details
	Instruction Tuning
	Unlearning
	Preliminaries

	Compute Resources
	Broader Impacts
	Quantitative Analysis of the Fine-tuning Effect

