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ABSTRACT

Quantum optimal control is concerned with the realisation of desired dynamics in
quantum systems, serving as a linchpin for advancing quantum technologies and
fundamental research. Analytic approaches and standard optimisation algorithms
do not yield satisfactory solutions for large quantum systems, and especially not
for real world quantum systems which are open and noisy. We devise a physics-
informed Reinforcement Learning (RL) algorithm that restricts the space of possi-
ble solutions. We incorporate priors about the desired time scales of the quantum
state dynamics – as well as realistic control signal limitations – as constraints to
the RL algorithm. These physics-informed constraints additionally improve com-
putational scalability by facilitating parallel optimisation. We evaluate our method
on three broadly relevant quantum systems (multi-level Λ system, Rydberg atom
and superconducting transmon) and incorporate real-world complications, aris-
ing from dissipation and control signal perturbations. We achieve both higher
fidelities – which exceed 0.999 across all systems – and better robustness to time-
dependent perturbations and experimental imperfections than previous methods.
Lastly, we demonstrate that incorporating multi-step feedback can yield solutions
robust even to strong perturbations.

1 INTRODUCTION

The optimal control of quantum systems is important for enabling the development of quantum
technologies such as computing, sensing or communication, and similarly plays an important role for
quantum chemistry (Brif et al., 2010) and solid state physics (Glaser et al., 2015). Quantum optimal
control is concerned with the implementation of optimal external signals, applied to a quantum
system, to realise desired dynamics (Glaser et al., 2015; Koch, 2016; Koch et al., 2022; Mahesh
et al., 2022). Examples of such tasks include system initialisation, (quantum) state preparation, gate
operation/state population transfer or state measurement. Quantum control enables performing such
tasks with low error rates, which is particularly important for the realisation of fault tolerant quantum
computing (Terhal, 2015). Isolated quantum systems exhibit unitary dynamics (i.e. reversible)
which are comparatively easy to model for modest system sizes. Yet all real quantum systems
are open, subject to some interaction with the environment and require the addition of non-unitary
dynamics (i.e. irreversible) to realistically capture their evolution (Breuer & Petruccione, 2002).

Motivated by such real-world experimental setups, we address physically realistic open and dissi-
pative quantum systems. Typically, the combination of unitary and non-unitary quantum system
evolution is modelled with a controlled Gorini-Kossakowski-Sudarshan-Lindblad equation (Davies,
1974; Dirr et al., 2009) (GKSL), which is a first order linear ODE. It is also sometimes known as as
the master equation, quantum Liouvillian, or Lindbladian. Solving the GKSL master equation and
controlling large quantum systems is extremely computationally expensive, growing quadratically
with the quantum system size, limiting the use of standard optimisation methods. Experimental im-
perfections and noise – arising from, e.g., signal distortion or attenuation in optical and electronic
setups, or due to inherent system imperfections (Burkard, 2009) – pose additional challenges which
existing approaches fail to address. In this work, we present a novel approach for controlling real-
world, open quantum systems, posing quantum control as a Reinforcement Learning (RL) problem
subject to physical constraints. Specifically, we learn a control policy that maximises the fidelity of
the quantum control task, while removing control signals which result in overly fast quantum state
dynamics from the space of possible solutions. A majority of quantum control tasks, including those
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Figure 1: Infidelity for maximum fidelity across hyperparameter combinations 1 − Fmax (left y-
axis, solid red line) and normalised GPU time per RL update (right y-axis, dotted blue line, with one
standard deviation shaded) as a function of the number of permissible quantum solver steps Nmax.
We observe that limiting Nmax – which can be understood as placing an upper bound on the rate of
change of the quantum system evolution induced by the control signal – improves solution quality
(lower infidelity) while also increasing computational efficiency (lower normalised time).

considered in this work, are concerned with adiabatically transferring population between quantum
states (Král et al., 2007), such that the time evolution of the system is slow compared to the inverse
energy gap of the states (E = ℏω) which facilitate the transfer. Quantum state dynamics which are
fast can induce leakage errors (decay outside of the desired quantum state space). Furthermore, fast
oscillations in the state populations severely limit the robustness of control solutions to any time-
dependent noise in real world experiments. In addition to the hard constraint applied to the space of
possible solutions, we introduce a soft constraint that facilitates smooth pulses and fixed amplitude
endpoints with finite rise-time. Both characteristics are typically required for real-world implemen-
tation of quantum control signals. Lastly, we investigate using multi-step RL to address larger levels
of system noise.

Incorporating physics-based constraints into the RL problem not only enhances solution quality
but also significantly improves computational scalability. In general, control signals that induce
fast quantum state dynamics require complex simulations and thereby longer computation times.
Excluding these signals enables fast parallel optimisation of multiple hyperparameter configurations,
as control signals that would otherwise slow down the process are removed by the constraints.

We validate our approach on three quantum control problems. We begin with a generalised electronic
Λ system, common in quantum dots, atoms, colour centres, circuit quantum electro-dynamics and
molecules, revisiting a well known approach (Vitanov et al., 2017) used for coherent population
transfer between ground states. Our implementation successfully learns realistic control signals that
outperform existing methods in terms of both fidelity > 0.999, and resilience to time-dependent
noise. We then explore the more complex Rydberg gate (Lukin et al., 2001), crucial for realising
atomic quantum computers. Here, we demonstrate robust control signals, even in the face of noise,
unlike previous approaches, and achieve higher fidelities at lower pulse energy than previous works.
Lastly, we consider a superconducting transmon (Egger et al., 2018b) for qubit reset, for which we
discover a novel, physically-feasible reset waveform which achieves an order of magnitude higher
reset fidelity than any previous work.

In conclusion, our work makes the following contributions:

1. We devise a highly scalable RL implementation that directly incorporates physical feasibility
constraints to enable discovery of experimentally realistic control signals.

2. Fig. 1 demonstrates that our constraint on the maximum number of simulation steps significantly
improves computational scalability while simultaneously improving solution quality.

3. Across three quantum systems, we outperform prior methods by achieving higher fidelities,
lower pulse energies, and greater robustness to time-dependent noise.
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Model Free RL (e.g. PPO) Direct Differentiation (e.g. GRAPE)
Method Rewards are estimated for a stochastic policy and maximised Gradients are exactly evaluated and optimised

Flexibility Easily handles stochasticity & multi-objective optimisation Requires complete knowledge of time evolution of system
Efficiency Computationally more expensive due to exploration and sampling Faster for well-posed, deterministic problems

Robustness Adapts to noise, parameter changes or constraints dynamically Not robust to noise, highly sensitive to initial seed and less stable solutions

Table 1: Comparison between Model Free RL and Direct Differentiation for optimising parameters
for quantum control.

2 RELATED WORK

Several algorithms exist for devising optimal time-dependent control signals for quantum systems.
Analytic methods like Lyapunov (Hou et al., 2012) are effective for small isolated systems but
difficult to generalise to complex environments. Gradient-based methods such as GRAPE 1 (Khaneja
et al., 2005) or variations of Optimal Control are efficient on smooth cost landscapes but struggle
with noise and local minima for complex environments. Direct methods like CRAB 2 (Caneva et al.,
2011) (sensitive to basis choice (Pagano et al., 2024)), or evolutionary algorithms (Brown et al.,
2023) lack computational scalability for larger systems or multiple objectives like signal smoothness
and fidelity.

Machine learning has numerous applications in quantum science (Krenn et al., 2023). We review
prior work on quantum dynamic control, distinguishing between real device sampling and numeri-
cal simulations. Baum et al. (2021) devised an optimal gate set on a superconducting IBM quantum
device. Reuer et al. (2023) and Porotti et al. (2022) use measurements and feedback to prepare quan-
tum states, but generalisation is difficult. A model-based Hamiltonian learning approach was applied
in Khalid et al. (2023), which does not succeed at learning time-dependent parameters and robust
solutions. We show that a model-free approach with realistic noise models effectively determines
interpretable, optimal signals suitable for experiments.

Several studies simulate quantum systems and apply reinforcement learning (RL) for control. RL
has been applied to discrete action space control (Paparelle et al., 2020; An et al., 2021; Zhang
et al., 2019), but these methods don’t translate well to real-world settings with analog signals with
finite response time 3 and more complex systems. We extend prior work on controlling many-body
systems (Bukov et al., 2018; Metz & Bukov, 2023; Schäfer et al., 2020) to experimentally realistic
systems, incorporating control signal noise into training as suggested by Schäfer et al. (2020). While
Niu et al. (2019) find time-optimal gate sequences for superconducting qubits using trust region
policy-gradient methods (Schulman et al., 2018), we advance this by considering experimentally
realistic signals and complex noise models beyond quasi-static Gaussian errors. Our control pulses
for a typical Λ system go beyond existing work Giannelli et al. (2022a); Norambuena et al. (2023) by
incorporating realistic noise models and simultaneous amplitude and frequency control to learn more
optimal and realistic policies. We contrast the strengths of an RL approach compared to previous
works in Tab. 1.

3 BACKGROUND

3.1 QUANTUM CONTROL

Quantum dynamics describes the time evolution of quantum systems. A system’s state is represented
by a quantum state, a vector in a complex Hilbert space H. The most common representation is the
state vector |ψ⟩ ∈ H. A pure quantum state is described by a normalised vector (Nielsen & Chuang,
2010) |ψ⟩ = (ψ1, ψ2, · · · ψn)

⊤
, where ⟨ψ|ψ⟩ = 1. A more general representation is the

density matrix ρ, which for a pure state is ρ = |ψ⟩ ⟨ψ| , (Nielsen & Chuang, 2010), and extends to
classical mixtures of pure quantum states. The quantum state populations are defined as |ψi|2 (i.e.
the diagonal terms of ρ). Operators in quantum mechanics are unitary, making dynamics reversible.
The unitary time evolution of |ψ(t)⟩ is governed by the time-dependent Schrödinger equation:

1This stands for Gradient Ascent Pulse Engineering.
2This stands for Chopped Random Adiabatic Basis.
3A particular limitation is that of a finite rise (fall) time of an electronic or optical signal which describes

the time which is required to go from zero to maximum amplitude ≥ O(ns)

3
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iℏ
∂

∂t
|ψ(t)⟩ = Ĥ |ψ(t)⟩ , (1)

where ℏ is the reduced Planck constant, and Ĥ is the Hamiltonian operator representing the sys-
tem’s total energy. Quantum control manipulates systems to achieve desired dynamics using time-
dependent control fields, represented by the control Hamiltonian. The total Hamiltonian Ĥ(t) of a
controlled system is (Giannelli et al., 2022b):

Ĥ(t) = Ĥ0 +
∑
i

ai(t)Ĥi, (2)

where Ĥ0 is the drift Hamiltonian, ai(t) are time-dependent control actions, and Ĥi are control
Hamiltonians. In open quantum systems, environmental interactions lead to non-unitary evolution,
also sometimes described as non-coherent which makes unitary evolution coherent. The controlled
Gorini-Kossakowski-Sudarshan-Lindblad equation (Davies, 1974; Dirr et al., 2009) describes this
as:

∂ρ(t)

∂t
= − i

ℏ
[Ĥ, ρ(t)] + L(ρ(t)), (3)

where [Ĥ, ρ(t)] denotes matrix commutation, and L(ρ) describes non-unitary evolution (e.g. sponta-
neous emission, dephasing, cavity decay, etc.). Fidelity is a common measure of similarity between
quantum states. For arbitrary density matrices ρ and σ, the fidelity (Jozsa, 1994) reads:

F(ρ, σ) =

(
Tr
√√

ρσ
√
ρ

)2

, (4)

where Tr is the trace. In this paper, we evaluate the fidelity between a target state ρdes and the final
evolved state ρ(tf ) to assess the effectiveness of the applied controls ai(t).

3.2 REINFORCEMENT LEARNING FOR QUANTUM CONTROL

Reinforcement Learning (RL) is a framework where an agent learns to make decisions by interacting
with an environment to achieve a specific goal (Sutton & Barto, 1999). In quantum control, RL can
be used to find the control actions ai(t) that steer a quantum system toward a target state ρdes. The
key components in this RL setup are the state (st), which is given as the density matrix ρfin(t) of
the quantum system at the final time-step of the simulation, the control action action (at) applied to
the system, a scalar reward (rt) derived from the fidelity, indicating how close the system is to the
target state, and the policy (π) that maps states to actions. The objective is to learn a policy π∗ that
maximises the expected cumulative reward over time, i.e. π∗ ∈ maxπ E

[∑T
t=0 rt

]
.

Bandit Setting. In the bandit setting, the RL problem is reduced to a single time step with no state
transitions. The agent selects one action ai in a continuous space [−1, 1], aiming to maximise the
immediate reward based on the fidelity with the target state. Specifically, the optimal action a∗ is
given as a∗ ∈ argmaxai E [r(ai)], where r(ai) is the reward obtained by applying action ai.

3.2.1 QUANTUM DYNAMICS SIMULATION

Simulating the fidelity resulting from a given control signal and initial state requires numerically
solving the GKSL equation (cf. equation 3) for ρ(t). This is typically done using adaptive step-size
solvers that implement higher-order Runge-Kutta methods (Hairer et al., 1993), which dynamically
adjust their internal time steps based on local error estimates. If the error exceeds the numerical
tolerance, the solver reduces its internal time step; if the error is sufficiently small, the time step
is increased to enhance computational efficiency. Therefore, control signals that lead to slower
quantum state dynamics allow the adaptive solver to use larger time steps. Hence, they require
fewer solver steps and less computation time.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 METHODS

4.1 PHYSICS-INFORMED CONSTRAINED REINFORCEMENT LEARNING

In practice, applying reinforcement learning (RL) to find high-fidelity quantum control signals
hinges on two critical aspects. First, computing the reward for the RL agent at every timestep
requires simulating the quantum system (see Sec. 3.2.1). For complex quantum systems and sub-
optimal actions this simulation can require an extremely large number of solver steps, which in
consequence can be extremely time consuming. We remark that the compute time needed to update
the RL agents can be orders of magnitude smaller than the time needed for the quantum system
simulation. Second, RL optimisation algorithms are often sensitive to the choice of hyperparam-
eters (Henderson et al., 2018), necessitating an extensive search over the hyperparameter space to
find policies that achieve high or maximum fidelity.

We address the latter challenge by synchronously optimising control policies for array of up to 1024
RL agents in parallel on a single GPU device. We achieve this by implementing both the quantum
solver and the RL algorithm using JAX (Bradbury et al., 2018), which features just-in-time com-
pilation and automatic differentiation and thereby allows to compile the parallelised training and
simulation loop end-to-end. However, in this parallel synchronised setup, the quantum simulation
time needed per array update step is governed by the maximum quantum simulation time across
all hyperparameter configurations. In other words, the slowest simulation among all learned poli-
cies determines the speed of the entire array. We mitigate this bottleneck with a physics-informed
constrained RL algorithm that solves the quantum control problem subject to the condition that the
required number of quantum simulation steps does not exceed a chosen threshold Nmax. Effectively,
we constrain the solution space to control signals for which the quantum simulation can be executed
in less then Nmax steps. We formally define the constrained reinforcement learning problem as:

π∗ ∈ max
π

E

[
T∑

t=0

rt

]
, s.t. for a ∈ π NSim(a) < Nmax

Sim , (5)

where π is the policy, rt is the reward at time t, and NSim(a) is the number of solver steps required
for conducting the quantum simulation for an action a sampled from policy π. Implementing this
constrained RL algorithm prevents bottlenecks as it ensures that all simulations within the paral-
lelised array are completed within a fixed time frame. This approach allows us to efficiently search
the hyperparameter space while maintaining computational feasibility. Although this constraint may
seem restrictive, it is physically justified because we are focusing on adiabatically transferring popu-
lation between quantum states (Král et al., 2007). In adiabatic processes, the system evolves slowly
compared to the inverse energy gap between the states involved, which means relatively fewer solver
steps are needed. The maximal effective Rabi frequency, defined as Ωeff = Ω

2

∆
, gives a lower bound

for the required Nmax, as a perfectly adiabatic evolution requires that according to the adiabatic-
ity condition (Král et al., 2007) Ωeff · δt ≫ 1. In practice, we increment Nmax until a significant
decrease in infidelity is observed (see Fig. 1 for infidelities at different maximum solver steps for
different quantum systems).

In conclusion, the constrained RL approach not only improves computational efficiency but also
promotes the selection of more physically realistic control signals. Such solutions lead to more
interpretable quantum state dynamics, enhance the selection of solutions which are adiabatic in the
quantum dynamics they induce and suppress spurious oscillations, thereby also promoting more
experimentally realistic and robust solutions.

4.2 REWARD SHAPING

We parameterise the control signal(s) as a combination of time-dependent amplitudes Ωi and time-
dependent frequencies ∆i and introduce smoothness constraints that facilitate efficient learning and
further improve computational efficiency. Smoother waveforms are easier to implement experimen-
tally, offer clearer interpretation of the optimal quantum state evolution, and significantly speed up
simulation times by reducing the number of required solver steps. To facilitate smooth signal dis-
covery, we apply a Gaussian convolution filter to our control signal with a standard deviation tσ (cf.
App. equation 20) before simulating the quantum state dynamics which improves learning dynam-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.10.010.0010

w∆ = wΩ

1

2

3

4

5

t σ

Λ-System

0.10.010.0010

w∆ = wΩ

2

3

4

5

t σ

Two Photon Rydberg

0.10.010.0010

w∆ = wΩ

1

2

3

4

5

t σ

Transmon

10−4

10−3

10−2

10−1

100

1
−
F

10−4

10−3

10−2

10−1

100

1
−
F

10−4

10−3

10−2

10−1

100

1
−
F

Figure 2: Ablation over smoothness penalty coefficients w∆ = wΩ and filter standard deviation tσ
for three different environments. Choice of smoothing parameters is important for learning policies
with low mean infidelity 1 − F (averaged over 64 parallel environments). For some systems, like
the Λ system higher filter s.d. leads to lower infidelity, whilst for other like the Transmon higher
smoothing penalties lead to lower infidelities. All systems exhibit low infidelities for higher tσ
which is important for experimental feasibility with limited bandwidth electronics.

ics by favouring slower solution dynamics (an ablation over this is found in Fig. 2). The reward
function contains additional smoothing penalties and is defined as follows:

L = wF · log
(

1

1−F(ρfin, ρdes)

)
− wΩ · ReLU

(∑
S(Ωi)∑
Sbase

− 1

)
− w∆ · ReLU

(∑
S(∆i)∑
Sbase

− 1

)
− wA ·

∑
A(Ωi)

Abase

(6)

The first and most important reward-function term incentives high fidelity F with respect to the
desired final state ρdes. This fidelity reward is proportional to log (1/(1−F)). Next we define
smoothness penalties, ReLu(x) defines the ReLu function: ReLu(x) = 0 if x < 0 || ReLu(x) =
x if x >= 0. S compares the smoothness of the given signal to that of a reference signal Sbase

(cf. App. Sec.E.2 Fig. 13 for a definition of and ablation over different smoothing functions). We
introduce a smoothness penalty weighted by w∆, wΩ, to balance fidelity, interpretability, and com-
putational efficiency. Fig. 2 shows an ablation over various smoothing penalties. Contrary to the
Λ system and Rydberg atom, the Transmon favours stronger smoothing penalties showing that our
approach is adaptable to a wide variety of physical problem settings. Larger tσ and w∆, wΩ also
reduces the maximum required solver steps and thereby further enhances computational scaleability.
The ability to achieve high-fidelity solutions across all environments at larger filter standard devi-
ations (tσ) also demonstrates that we can find optimal signals compatible with realistic electronic
control systems with limited instantaneous bandwidth.

The final reward term penalises solutions with large pulse area (cf. App. Sec. B Fig. 7 for an ablation
over different area penalties for the Λ system), we set wA = 0 for the Rydberg and Transmon
problem settings. We introduce additional physics-informed constraints which are problem specific
and defined in App. Sec. B and App. Sec. C.

5 EXPERIMENTS

Overview. Our experiments largely focus on the bandit RL setting in a continuous action space,
and are supplemented by experimentally verifying that multi-step RL is superior to the bandit setting
in the presence of strong perturbations. We conducted experiments on three critical quantum control
tasks relevant to quantum information processing. First, we addressed coherent quantum popula-
tion transfer in multi-level Λ systems, describing a variety of quantum systems and of relevance to
quantum chemistry and solid state physics, where we achieve high-fidelity population transfer in
spite of dissipation and cross-talk. Second, we optimise Rydberg gates in neutral atom quantum de-
vices, focusing on enhancing gate fidelities and robustness to time-dependent noise, which is crucial
for scalable quantum computing. Third, we developed efficient reset protocols for superconduct-
ing transmon qubits under realistic experimental constraints like bandwidth limitations, essential for
fast quantum circuit execution. Here, we discover a novel, physically-feasible reset waveform which
achieves an order of magnitude higher reset fidelity than any previous work. Fig. 1 demonstrates the
efficacy of our proposed method in finding higher-fidelity solutions while reducing computational
demand.
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Method Fπ Exp. Feasible
Optimal Control (Giannelli et al., 2022b)4 0.890± 0.064 No
Analytic (Vasilev et al., 2009) 0.901 Yes
RL (Giannelli et al., 2022a) 0.930± 0.034 No
RL (Norambuena et al., 2023)5 0.83 Yes
RL (this work) 0.999± 0.0003 Yes

Table 2: We benchmark different methods for optimising coherent quantum population transfer
in a multilevel Λ systems by optimising Fπ for a complete ground state rotation. Averaged over
32 random seeds, our method achieves significantly higher fidelity than prior work with reduced
sensitivity to the initial seed, while yielding experimentally feasible control signals.

5.0.1 EXPERIMENTAL IMPLEMENTATION

Constrained RL Implementation. To enforce the constraint NSim(a) < Nmax
Sim on actions a sam-

pled by optimal policies π in the bandit setting, we modify the reward function by assigning a penalty
reward rpenalty. In the bandit setting, rpenalty is assigned to any policy where NSim(a) >= Nmax

Sim , and
the value is chosen to be lower than any other possible reward in the environment, ensuring that the
optimal policy cannot include states violating the constraint (Altman, 2021). This approach can be
easily extended to multi-step settings when the bounds of the reward function are known, which is
the case here (Altman, 2021). The final reward function is then defined as

L =

{
rpenalty if NSim(a) >= Nmax

Sim
L1 else

(7)

where L1 is defined in equation 6.

Additional Implementation Details. We leverage the Qiskit-Dynamics Solver interface (Puzzuoli
et al., 2023) for constructing both Hamiltonians and collapse operators, enabling the simulation of
open quantum systems through the dissipative Gorini-Kossakowski-Sudarshan-Lindblad equations.
We employ the Diffrax ODE solver (Kidger, 2022) for quantum system simulation, which utilise
adaptive step-sizing techniques to efficiently integrate the first-order linear differential equations
and PureJAXRL for implementing PPO algorithms (Lu et al., 2022).

5.1 COHERENT QUANTUM POPULATION TRANSFER IN MULTI-LEVEL ELECTRONIC SYSTEMS

Controlling the quantum dynamics of multilevel systems is ubiquitous for quantum information pro-
cessing and is also relevant for solid state physics and chemistry (Bergmann et al., 2019; Vitanov
et al., 2017). We focus on a common experimental setup (Vitanov et al., 2017), also known as a Λ
system, where two time-dependent control signals with amplitudes ΩS , ΩP couple two electronic
states with relative time-dependent frequency detunings ∆P and ∆δ (cf. App. Sec. B for more
details). These four parameters consist the control fields defined in equation 2. Many analytically
optimal pulses exist for idealised and isolated three level systems (Kuklinski et al., 1989; Vasilev
et al., 2009). We include dissipation, parametrised by rate Γ, as well as an additional excited state
detuned positively ∆X from the excited state addressed with ΩS/P to which cross talk must be sup-
pressed (cf. App. Sec. B for details). This represents a common physical configuration describing,
for instance, nitrogen vacancy centres (Balasubramanian et al., 2009), quantum dots (Economou
et al., 2012), circuit-QED systems (Novikov et al., 2015), or single atoms (Ernst et al., 2023). We
present and benchmark results on optimising population transfer from one ground state |g1⟩ to an-
other |g2⟩. We fix Γ = 1, Ωmax = 30 and ∆X = 100.

We observe in Tab. 2 that the fidelities Fπ achieved in a 4-level Λ system are significantly higher
than state of the art and also more robust across different random starting points, highlighting the
superiority of RL over methods which directly differentiate the control action with respect to the
fidelity. We further find that the learned pulses are physically viable, while prior work (Giannelli
et al., 2022b;a) found infeasible solutions, which exhibit non-zero amplitudes at the start or end
or have instantaneous parameter changes which cannot be realised on bandwidth limited hardware.

4Direct Differentiation of Signal with BFGS (Fletcher, 1987) with max iterations of 10000.
5No code or further data were available to benchmark this in our environment.
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Figure 3: Shown are example control signals generated for different pulse area penalties. For
wA = 0 (left), the agent seeks to maximise Ω at all times after a fast rise and compensates cross-talk
with frequency chirping. For wA = 1 (right), we plot only the time interval [0.7, 1], as the pulse
amplitudes are zero otherwise and show that the agent discovers pulses which reminisce of two in-
terleaved Gaussians, but exhibit non zero two-photon detuning ∆δ = 0 to cancel cross-talk (cf. App.
Sec. B), which differs from the original proposal for coherently transferring population between two
groundstates (Kuklinski et al., 1989).

Sweeping wA cf. equation 7 we find particular signals which have pulse areas which approach those
quoted in (Norambuena et al., 2023) (cf. Fig. 7 in the App.). Example signals differ significantly
for different pulse area penalties which is shown in Fig. 3.

Random fluctuations or noise of either signal ΩS/P or ∆δ/P are not as detrimental to the overall
fidelity. We implement an Ornstein–Uhlenbeck noise process for both ∆δ/P and ΩS/P , a Markovian
noise model which creates continuous noise νt in time with mean µ and standard deviation σ (for
details cf. App. Sec. E.3). Such noise typically arises from a variety of imperfections in the signal
chain, as well as quantum system level noise, such as magnetic field fluctation or motion. Using
unbiased (µ = 0) noise with various standard deviations exemplifies good robustness to low noise
levels as shown in Fig 8 (cf. App. Sec. B) where we attain> 0.99 mean fidelity for σΩ = σ∆ = 0.1.
Further increasing σ leads to significantly reduced population transfer fidelities which we address
with multi-step RL in Sec. 5.4. Solutions for a larger variety of system parameters and an extension
to partial state transfer are shown in App. Sec. B.

5.2 RYDBERG GATES

Neutral atom quantum devices have shown promise for realising scalable, logical quantum comput-
ing (Bluvstein et al., 2023). The realisation of quantum computing requires a two-qubit gate (Nielsen
& Chuang, 2010) which relies on the interaction of multiple atomic qubits which are brought in rel-
ative proximity (a detailed description of the Hamiltonian is provided in App. Sec. C) and addressed
with laser beams. We consider an optimisation of the Rydberg gate (Lukin et al., 2001) under real-
istic experimental conditions. We include finite Blockade strength, as well as signal perturbations in
amplitude and frequency.

We consider the most widespread implementation of a Rydberg C-Z gate (a single photon Ryd-
berg gate (Levine et al., 2019a; Jandura & Pupillo, 2022)) with a single pulse of amplitude ΩP and
time-dependent frequency ∆P which has known solutions. This is compared to the two-photon Ry-
dberg C-Z gate which uses two time-dependent signals with amplitudes ΩP ,ΩS and frequencies
∆P ,∆S (akin to the Λ system). The single photon Rydberg gate is extremely vulnerable to time-
dependent noise as shown in App. Fig. 11. This motivates the determination of an optimal pulse
sequence for the two-photon Rydberg gate which exhibits superior robustness by an order of mag-
nitude. Finding optimal protocols which simultaneously optimise both amplitude and frequency of
Pump and Stokes beams is extremely challenging since the Hilbert space is over 10- dimensional.
Compared to Saffman et al. (2020) we find a solution (cf. App. Fig. 10) which is higher fidelity
F = 0.9993 than their analytic solution F = 0.99, as well as their numerical solution F = 0.997
and faster 0.25µs compared to their 1µs numerical solution. Compared to Sun (2023) we achieve
similar fidelities but with an order of magnitude lower peak Rabi frequencies which implies lower
laser power requirements. Moreover, we implement a direct C-Z gate which does not require any ad-
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Figure 4: Optimal Waveform for Transmon Reset (left) discovered by RL and corresponding state
evolution (right). The RL waveform (solid lines) amplitude evolution reminisces of a square-top
Gaussian, with a smooth Heaviside-detuning that accounts for time dependent frequency shifts.
Equivalent reset performance is found by fitting a Heaviside-detuning reset and a Gaussian square
amplitude waveform (dashed lines), simplifying experimental calibration. Our approach shows reset
errors of 0.03% matching the performance under an experimentally unrealistic ideal square pulse,
and showing an order of magnitude improvement over a smoothed square pulse.

ditional ground state rotations. We directly differentiated the input action with respect to the fidelity
with a BFGS (Fletcher, 1987) method over 1000 iterations and for 32 random seeds and achieved a
mean fidelity of 0.914 ± 0.0742 (one s.d.) showing the superiority of RL in achieving robust, high
fidelity solutions as alluded to in Tab. 1. The enhanced computational scaleability offered by our
implementation could be used to optimise higher order gates like a Ck-Z which are also robust.

5.3 TRANSMON RESET

Superconducting quantum bits (qubits) have played a central role in quantum computing break-
throughs, including the demonstration of quantum supremacy (Arute et al., 2019) as well as the
suppression of errors with the surface code (Acharya et al., 2023). The transmon Koch et al. (2007),
a widely used superconducting qubit, operates within its two lowest energy levels to form a qubit
subspace. Recent advances have extended transmon lifetimes beyond 0.5 ms (Wang et al., 2022),
enabling longer quantum circuits and the implementation of error correction codes. To maximise
circuit operations within the qubit’s lifetime, transmons must be reset efficiently with high fidelity.

Two main reset techniques exist: conditional reset (Ristè et al., 2012), which follows state mea-
surement, and unconditional reset (Magnard et al., 2018), which is faster and more robust. We
focus on optimising waveforms for unconditional reset (cf. App. Sec. D). The reset rate is propor-
tional to drive strength, theoretically favouring high-amplitude square pulses for maximum fidelity.
However, a drive-induced Stark shift alters the transmon’s resonance frequencies Zeytinoğlu et al.
(2015). In ideal conditions, a square pulse with a calibrated frequency can counter this shift. IBM
demonstrated this approach experimentally, achieving 0.983 fidelity, while simulations under ideal
conditions reached 0.996 fidelity (Egger et al., 2018a). This mismatch could be explained by ex-
perimentally realistic bandwidth constraints as square pulses have a finite rise and fall time, which
induces a time dependent frequency shift. While optimal control Gautier et al. (2024) has been ap-
plied to the task of reset pulse optimisation, minimal bandwidth constraints implied that no novel
waveforms were found for improving the reset transition in realistic experiments. Using BFGS with
direct differentiation of the input signal failed to optimise multi-objective reward functions or satisfy
realistic signal constraints. When optimising solely for fidelity, it remained slow and prone to local
minima due to the large search space of non-smooth actions.

We apply scaleable RL to optimise the transmon reset waveform under bandwidth constraints im-
posed by Gaussian-smoothing (for further details cf. App. Sec. E.2). Considering state of the art
parameters, as given in the IBMQ experiment – a qubit lifetime T1 of 500µs – we find that our RL
approach achieves 0.9997 fidelity under realistic bandwidth constraints shown in Fig. 4 (cf. App. D
for further implementation details). This is compared with a perfect square pulse - which is not ex-
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perimentally realistic - without any smoothing, and a calibrated square pulse with smoothing - which
represents prior work (Egger et al., 2018a). The RL waveform matches the theoretical optimal fi-
delity of the perfect square pulse and improves the fidelity of waveform used in prior work Egger
et al. (2018a) by an order of magnitude. In App. Sec. D we explicitly compare the results with the
parameters used in (Egger et al., 2018a), and find that the RL discovered reset waveform achieves the
fidelity 0.997 of the ideal square pulse compared to the measured fidelity of 0.983. A fitted Heav-
iside detuning function from the RL-discovered waveform corrects the drive-induced Stark shift,
simplifying experimental calibration, which we dub Heaviside-Corrected Gaussian Square (HCGS)
and explain further in App. Sec. D.1. Further results and extensions are provided in App. Sec. D.

5.4 MULTI-STEP REINFORCEMENT LEARNING

We study the effectiveness of multi-step reinforcement learning (RL) strategies in achieving high
fidelity control solutions under adverse noise conditions. Feedback on nanosecond timescales has
been demonstrated experimentally (Álvarez et al., 2022; Koch et al., 2010), supporting this approach.
This feedback can be realised by measuring classical signal noise without affecting quantum coher-
ence. For example, in atomic quantum systems, laser intensity I can be measured at an arm separate
from the quantum system, as Ω ∝ I . Changes in I directly modulate ΩS/P and thereby provide
feedback for multi-step learning.

In multi-step RL, the agent aims to maximise cumulative rewards over multiple steps, unlike the
bandit setting where actions are independent. In our setup, at the start of each episode, a parameter
µ is sampled uniformly from [−σmax, σmax] to initialise an Ornstein–Uhlenbeck noise process (see
App. Sec. E.3 equation 25). The agent’s control signal at = Ωi(t) (amplitudes only) is affected
by this noise, resulting in Ω′

i = Ωi + νt. In bandit RL, the agent does not observe the noise νt
and selects the action in one step. Conversely, in multi-step RL, each episode is divided into four
sections of 8 action samples corresponding to 0.25µs each. The agent initially observes Ot = 0
but receives the value of µ at times t = 0.25, 0.5, and 0.75µs (further implementation details are
given in App. Sec. A.2. App. Fig. 9 illustrates that multi-step RL outperforms the bandit approach,
especially as µ increases beyond 10.

6 CONCLUSION

In this work, we introduced a novel reinforcement learning implementation for controlling open
quantum systems by formulating quantum control as a constrained RL problem. By integrating
physics-based constraints that exclude control signals inducing overly fast quantum dynamics and
enforcing smooth pulses with finite rise-time, we enhanced both the quality of control solutions and
computational scalability. Our approach outperformed existing methods on three key quantum con-
trol tasks, achieving higher fidelities and increased robustness to time-dependent noise. We wish
to highlight here, that especially for the Transmon qubit we find novel waveforms that can be de-
scribed with smooth functional parametrisation and realised with off the standard hardware. We
are actively working on verifying the quality of our found solutions on physical devices. For future
work, we envision extending our implementation to more complex quantum systems, this includes
multi-qubit systems and higher-dimensional state spaces. Additionally, future work would extend
this to quantum control tasks which require multiple sequential quantum gates or other concatenated
control operations. Exploring adaptive constraint mechanisms that adjust during the learning pro-
cess could further improve performance. Additionally, incorporating more advanced and physically
relevant noise models and collaborating with experimental physicists to validate our control policies
on actual quantum hardware would accelerate the practical development of quantum technologies.

Limitations. While our physics-informed constrained RL implementation enhances computa-
tional efficiency and solution quality, it may limit the exploration of control strategies that involve
very fast and non-adiabatic quantum dynamics. The method’s effectiveness also relies on accurate
modelling of quantum systems, so models would first have to be established for black box systems
or more complicated real world devices. Although we address certain types of noise and perturba-
tions, fully accounting for all experimental imperfections is an area for future work and we could
consider sampling from real devices.
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Gullans, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. Logical quantum processor based
on reconfigurable atom arrays. Nature, 626(7997):58–65, December 2023. ISSN 1476-4687. doi:
10.1038/s41586-023-06927-3. URL http://dx.doi.org/10.1038/s41586-023-06927-3.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George
Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable trans-
formations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

Heinz-Peter Breuer and Francesco Petruccione. The theory of open quantum systems. Oxford University Press,
London, England, June 2002.

Constantin Brif, Raj Chakrabarti, and Herschel Rabitz. Control of quantum phenomena: past, present and
future. New Journal of Physics, 12(7):075008, July 2010. ISSN 1367-2630. doi: 10.1088/1367-2630/12/7/
075008. URL http://dx.doi.org/10.1088/1367-2630/12/7/075008.

Jonathon Brown, Mauro Paternostro, and Alessandro Ferraro. Optimal quantum control via genetic algo-
rithms for quantum state engineering in driven-resonator mediated networks. Quantum Science and Tech-
nology, 8(2):025004, April 2023. ISSN 2058-9565. doi: 10.1088/2058-9565/acb2f2. URL https:
//iopscience.iop.org/article/10.1088/2058-9565/acb2f2.

Marin Bukov, Alexandre G.R. Day, Dries Sels, Phillip Weinberg, Anatoli Polkovnikov, and Pankaj Mehta.
Reinforcement Learning in Different Phases of Quantum Control. Physical Review X, 8(3), September 2018.
ISSN 21603308. doi: 10.1103/PhysRevX.8.031086. arXiv: 1705.00565 Publisher: American Physical
Society.

Guido Burkard. Non-markovian qubit dynamics in the presence of 1/f noise. Phys. Rev. B, 79:125317,
Mar 2009. doi: 10.1103/PhysRevB.79.125317. URL https://link.aps.org/doi/10.1103/
PhysRevB.79.125317.

11

http://dx.doi.org/10.1038/s41586-022-05434-1
http://dx.doi.org/10.1038/s41586-022-05434-1
https://link.aps.org/doi/10.1103/PhysRevA.103.012404
https://doi.org/10.1038/nmat2420
https://doi.org/10.1038/nmat2420
http://dx.doi.org/10.1088/1361-6455/ab3995
http://dx.doi.org/10.1088/1361-6455/ab3995
http://dx.doi.org/10.1038/s41586-023-06927-3
http://github.com/google/jax
http://dx.doi.org/10.1088/1367-2630/12/7/075008
https://iopscience.iop.org/article/10.1088/2058-9565/acb2f2
https://iopscience.iop.org/article/10.1088/2058-9565/acb2f2
https://link.aps.org/doi/10.1103/PhysRevB.79.125317
https://link.aps.org/doi/10.1103/PhysRevB.79.125317


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stephen Butterworth. On the theory of filter amplifiers. Experimental Wireless and the Wireless Engineer, 7:
536–541, 1930.

Tommaso Caneva, Tommaso Calarco, and Simone Montangero. Chopped random-basis quantum optimization.
Phys. Rev. A, 84:022326, Aug 2011. doi: 10.1103/PhysRevA.84.022326. URL https://link.aps.
org/doi/10.1103/PhysRevA.84.022326.

E. B. Davies. Markovian master equations. Communications in Mathematical Physics, 39(2):91–110, 1974.
doi: 10.1007/BF01608389. URL https://doi.org/10.1007/BF01608389.

G. Dirr, U. Helmke, I. Kurniawan, and T. Schulte-Herbrüggen. Lie-semigroup structures for reachability and
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SUPPLEMENTARY MATERIAL

Here we present detailed explanations of the extended RL background, quantum dynamical systems
simulated in the main paper, show auxiliary results and explain our implementation in greater detail.

A RL BACKGROUND

A.1 BANDIT SETTING IN REINFORCEMENT LEARNING

In the bandit setting, the RL problem is simplified as there is no state transition, only actions and
rewards. Each action a ∈ A, which are time dependent quantum control signals ∆i,Ωi yields a
reward from a stationary probability distribution. The objective is to maximise the expected reward
over a sequence of actions.

Formally, given a set of actions A, each action a ∈ A has an unknown reward distribution with
expected reward R(a). The goal is to find the action a∗ that maximises the expected reward:

a∗ = argmax
a∈A

E [R(a)] (8)

This setting forms the basis for more complex RL problems.

A.2 EXTENDED TIME HORIZON IN MULTI-STEP RL

For multi-step RL, we consider an extended time horizon. In contrast to the bandit setting, each
episode is divided into four sections, each of length 8 action samples. The agent does not observe
any information about the noise at time step t = 0, with the observation Ot = 0. However, at time
steps t = 0.25, 0.5, and 0.75, the agent receives the value of mean noise µ sampled at the beginning
of the episode. Formally, the observation function Ot is defined as:

Ot =

{
0 if t = 0

µ if t = 0.25k for k = 1, 2, 3
(9)

The agent’s policy π then uses this observation to decide the action at each time step, where S̃t is
the union of the state in the bandit setting st = ρt and the observation Ot which defines an action
at through a conditional probability distribution P:

π(s̃t, at) = P[at|s̃t, θ] (10)

In general extended time horizon RL, the agent must consider the long-term consequences of its
actions. This is formalised through the discount factor γ, which ensures that future rewards are
appropriately weighted. Given that we have a fixed number of four steps we set the discount factor
to zero.

A.3 PROXIMAL POLICY OPTIMISATION (PPO)

Proximal Policy Optimisation (PPO) is a popular algorithm in modern RL, combining the benefits of
policy gradient methods with stability improvements. PPO aims to optimise the policy by ensuring
that updates do not deviate too much from the previous policy. This is achieved using a clipped
objective function.

The objective function in PPO is defined as:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(11)

where:

• rt(θ) =
πθ(at|st)
πθold (at|st) is the probability ratio under the new and old policies.

• Ât is an estimate of the advantage function at timestep t.
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|e1⟩

|e2⟩

|g1⟩ |g2⟩

|gΓ⟩

ΩP
ΩS

∆X

∆δ

∆P

Figure 5: Energy level diagram for four level Λ system with state |e2⟩, detuned positively by ∆X

from |e1⟩, to which cross talk is supressed. There is an additional state |gΓ⟩ which does not partake
in the unitary dynamics, but to which the excited states decay (cf. red dotted lines). This gives rise to
a lower bound in attained population transfer fidelities. The laser couplings from Stokes and Pump
laser are shown in blue.

• ϵ is a hyperparameter that controls the clipping range.

The clipping mechanism in the objective function ensures that the new policy does not deviate sig-
nificantly from the old policy, thereby improving training stability and preventing large, destabilising
updates.

PPO also incorporates an entropy bonus to encourage exploration and prevent premature conver-
gence to suboptimal policies. The overall objective with the entropy bonus can be written as:

L(θ) = Et

[
LCLIP(θ) + c1Ât + c2E[πθ](st)

]
(12)

where c1 and c2 are coefficients, and E[πθ](st) denotes the entropy of the policy at state st.

In summary, PPO effectively balances exploration and exploitation while ensuring stable policy
updates, making it a robust choice for RL in quantum control tasks.

B ELECTRONIC Λ SYSTEMS

A very common system configuration in quantum information contains two ground-states |g1⟩ , |g2⟩,
coupled by a common excited state |e1⟩, as is required for the implementation of many quantum
population transfer protocols, such as Stimulated Raman Adiabatic Passage (STIRAP) (Vitanov
et al., 2017). We also include an additional excited state |e2⟩, detuned positively by an amount
∆X from |e1⟩ to show the effect of crosstalk due to a coupling to an undesired transition. This
configuration is ubiquitous and arises naturally in colour centres, quantum dots or other electronic
quantum systems. An explicit energy level diagram is provided in Fig. 5. ΩP/S denote the Rabi
frequencies of the Pump and Stokes pulses respectively and ∆P/δ are the detuning of the Pump
pulse from resonance as well as the two photon detuning respectively. The Hamiltonian HΛ used to
model the unitary dynamics, defined in the basis (|g1⟩ , |g2⟩ , |e1⟩ , |e2⟩), after an application of the
rotating wave approximation reads:

HΛ/ℏ =


0 0 ΩP

2
ΩP

2

0 ∆P −∆δ
ΩS

2 −ΩS

2
ΩP

2
ΩS

2 ∆P 0
ΩP

2 −ΩS

2 0 ∆P +∆X

 (13)

All Rabi frequencies ΩP/S are real. Additionally we include a sink state to which spontaneous
emission occurs which couples equally to both excited state with rate Γ/

√
2, this is realistic insofar

as spontaneous emission can always occur to states outside the manifold of interest, but as we do
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Figure 6: We show pulse area versus the fidelity for a partial state rotation Fπ/2 and sweep wA, the
pulse area penalty weight defined in equation 7 (cf. App. Sec. E.2 for more details) over a range of
values [0, 0.1, 0.25, 1, 2] and approach minimal pulse area with respect to Ref. (Norambuena et al.,
2023) whilst achieving significantly higher fidelities > 0.975. There is a clear trade off and lower
pulse areas generally adversely affect fidelities.
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Figure 7: We sweep wA, the pulse area penalty weight (cf. equation 7) over a range of values
[0, 0.1, 0.25, 1, 2] and approach minimal pulse area with respect to Norambuena et al. (2023) (green
dotted line) whilst achieving significantly higher fidelities Fπ > 0.83 (cf. Norambuena et al. (2023)).
There is a clear trade off and lower pulse areas generally adversely affect fidelities.

not consider spontaneous emission to g1 or g2 we obtain lower bounds on any population transfer
fidelities F . The Lindbladian operator reads; Γ/

√
2 |gΛ⟩ ⟨ei|. In the main text, the initial state is

always fixed as |g1⟩, but the desired final states are |g2⟩, as well as |+⟩ = 1/
√
2(|g1⟩ + |g2⟩), such

that we have two fidelity measures, Fπ and Fπ/2 where the subscript denotes the rotation angle in the
ground state basis. Generally, the protocol can be extended to arbitrary angles θ, but we focus on two
without loss of generality. θ = π is an extremely common scenario which is described extensively
in the literature (Vitanov et al., 2017) and θ = π/2 is also common and has been described in Ref.
(Vitanov et al., 1999).

For the Λ system we introduce an additional reward term which reads −wx · (⟨e1⟩ + ⟨e2⟩). This
assigns lower rewards to non-coherent dynamics, since we seek coherent population transfer and
speeds up the learning dynamics.

We showcase two particular reference pulses for different pulse areas in Fig. 3. Trade-offs between
pulse areas and population transfer fidelity are shown in Figs. 6 and 7 for θ = π/2, π respectively
and we show that we approach the lower pulse area limit described in Ref. Norambuena et al. (2023).
We also show robustness to time dependent noise in Fig. 8.
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Figure 8: Robustness of protocol to randomly generated noise with µΩ = 0.1 MHz (left) and
µΩ = 1 MHz (right) plotted on a logarithmic scale and averaged over multiple seeds. The solid
lines show the average fidelity, while the shaded regions indicated min/max fidelity over all parallel
environments. For small noise levels F > 0.99 as shown in the left plot for µ∆ = 0.1 MHz, but as it
increases fidelities drop to just below 0.97. Nmax is chosen such that even with noise all parallelised
runs can be solved for ρ(t).

(a) Mean fidelity with µΩ = 9 (b) Mean fidelity with µΩ = 15

Figure 9: Comparison of mean infidelity for different values of µΩ for bandit RL and multi-step RL.
We observed several percent reduction in infidelity for larger noise bias µσ by using multi-step RL
over the bandit setting.

C RYDBERG GATES

We first consider a Rydberg gate based on a single laser excitation which is near resonant with the
ground-state qubit |1⟩ and Rydberg level |r⟩ transitions. Following the implementation experimen-
tally shown in (Levine et al., 2019b) and the Hamiltonian definition given in (Pagano et al., 2022)
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Figure 10: We show optimal signals for a two photon Rydberg gate directly realising a C-Z gate, with
amplitudes (i.e. Rabi frequencies) for Stokes and Pump pulses in MHz shown in the top column.
The effective maximum Rabi frequency of the pump pulse (Ω2

P /2 ∗ ∆P ) is ≈ 20 to match that of
the Stokes pulse. Detunings of the Stokes and Pump pulse are shown in the bottom row. Note the
symmetry of the Stokes detuning in time which shows a semblance of a reflection symmetry about
its centre which ensures that a relative π phase is acquired between the basis states (cf. equation 17)
and their populations largely return to their initial values. This pulse yields a fidelity of 0.9987 for a
0.5µs duration and can be shortened to 0.25µs with all signals re-scaled by 2 which yields a fidelity
of 0.9993 since we are mainly Rydberg level lifetime limited, with a finite blockade strength of
500MHz. This pulse is also shown to exhibit very little variation across different blockade strengths.

the Hamiltonian for the one-photon Rydberg gate Hr1 = H0 +Hint reads:

H0

ℏ
=

2∑
i

[
Ω(t)

2
(|r⟩ ⟨1|i + |1⟩ ⟨r|i)−∆(t) |r⟩ ⟨r|i

]
Hint

ℏ
= B |r, r⟩ ⟨r, r|

(14)

Here Ω(t) and ∆(t) are real amplitudes and detunings of a Rydberg laser andB describes the dipole
blockade strength. The Linbladian terms are described by the addition of a sink state gΓ which
imposes a lower bound on fidelity since any population which spontaneously decays leaves the
computational subspace, as for the Λ system. They read;

∑
i Γr(|gΓ⟩ (⟨r, i|+⟨i, r|)+Γr(|gΓ⟩ ⟨r, r|),

where Γr describes the decay rate of the Rydberg level. Many optimisation protocols consider
B → ∞, since the Rydberg gate operates in the regime Ω << B which precludes coupling of
both qubits to |r⟩, however we fix B to a finite but realistic value in the range of hundreds of MHz
(Pagano et al., 2022; Pelegrı́ et al., 2022; Sun, 2023).

One of the drawbacks of this implementation, as described in the main test however, is that it is
not particularly robust in the face of signal imperfections and noise. Using the physics of a two
photon process (similar to the Λ system dynamics) we follow the Hamiltonian definition Hr2 =
H0,2+Hint,2 for a two-photon Rydberg gate given in (Sun, 2023) (where H.C. denotes the hermitian
conjugate):

H0,2

ℏ
=

ΩP (t)

2
|10⟩ ⟨e0|+ ΩS(t)

2
|e0⟩ |r0⟩+ H.C. +∆P (t) |e0⟩ ⟨e0|+∆S(t) |r0⟩ ⟨r0| , (15)
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with time-dependent Rabi frequencies ΩP (t),ΩS(t), and values for the one photon detuning ∆P

and two-photon detuning ∆S . The Hamiltonian terms for |01⟩ follow analogously from symmetry
considerations by swapping all qubits in their respective state in H0,2.

The interaction HamiltonianHint,2 for the state |1, 1⟩ consists of the atom light interaction as well as
the dipole-dipole interaction akin to equation 14. A basis transformation simplifies the Hamiltonian,
the new basis states read |ẽ⟩ = (|e1⟩ + |1e⟩)/

√
2, |r̃⟩ = (|r1⟩ + |1r⟩)/

√
2 and |R̃⟩ = (|re⟩ +

|er⟩)/
√
2, after the rotating wave approximation, and effectively neglecting |ee⟩, as we are in the

regime where ∆P >> ∆S , Hint,2/ℏ can be expressed as:

Hint,2

ℏ
=

√
2ΩP (t)

2
|11⟩ ⟨ẽ|+ ΩS(t)

2
|ẽ⟩ ⟨r̃|+ ΩP (t)

2
|r̃⟩ ⟨R̃|+

√
2ΩS(t)

2
|R̃⟩ ⟨rr|+ H.C.

+∆P (t) |ẽ⟩ ⟨ẽ|+∆S(t) |r̃⟩ ⟨r̃|+ (∆P (t) + ∆S(t)) |R̃⟩ ⟨R̃|+ 2∆P (t) |rr⟩ ⟨rr|
+B |rr⟩ ⟨rr|

(16)

Parameters ΩS/P ,∆S/P , B are defined as in equation 14. The Linbladian decay terms for the
two photon Rydberg gate are described similarly as for the one photon Rydberg gate. They read;∑

i Γr(|gΓ⟩)(⟨r, i|+ ⟨i, r|) + Γr(|gΓ⟩ ⟨r, r|) +
∑

i Γe(|gΓ⟩ (⟨e, i|+ ⟨i, e|) + Γe(|gΓ⟩ ⟨e, e|), where
Γr describes the decay rate of the Rydberg level and Γe the decay of the excited level |e⟩ where for
typical atoms Γe >> Γr.

Akin to the Λ system we introduce an additional reward term which reads −wx · (⟨rr⟩ + ⟨ẽẽ⟩ +
⟨r̃r̃⟩+ ⟨rr⟩+ ⟨R̃R̃⟩). This assigns lower rewards to non-coherent dynamics, since we seek coherent
population transfer and speeds up the learning dynamics.

The fidelity FR is defined by the Bell state fidelity as is common in optimisation protocols of the
Rydberg gate (Jandura et al., 2023):

FR =
1

16
|1 +

∑
10,01,11

e−iθq ⟨q⟩ψ0
q |2, (17)

without loss of generality, we focus on the C-Z gate where θq = 0, except θ1,1 = π, this is particu-
larly useful insofar as it does not require additional single qubit rotations (in comparison to a general
C(θ) gate) and does not introduce any further time overhead associated with additional rotations.

As described in the main text, we focus on the implementation of a two-photon Rydberg gate. For
this, we fix the detuning of the pump pulse to a constant value, since a time-dependent frequency
chirp offers no advantages in terms of achievable maximum fidelities, so we merely optimise its con-
stant value. We fix ΩS to a maximum value of 40 and Ω2

P /(2∆P ) (the effective Rabi frequency) to a
maximum value of 56.6 with a pump detuning of 2.5 GHz and obtain an optimal control signal which
is shown in Fig. 10. It shall be noted note that the signals are different from results in the literature
since we impose the realistic constraint of amplitudes to start and end at zero amplitude compared
to (Sun, 2023). The optimal time-dependent control signals for a direct realisation of a C-Z gate are
shown in Fig. 10. Following remarks made in Ref. (Sun, 2023) we show increased resilience to
noise and achieve fidelities in excess of 0.99 even with significant levels of time-dependent noise,
spontaneous emission (using realistic parameters for a 87Rb (Sun, 2023) atom) and a finite blockade
strength of 500 MHz as shown in Fig. 11.

D TRANSMON QUBIT RESET

Methods for unconditional transmon qubit reset with fixed-frequency devices involve using the cou-
pling of a transmon to a low lifetime resonator through which excitations decay quickly. One par-
ticular hardware efficient protocol is based on a cavity-assisted raman transition utilising the drive-
induced coupling between |f0⟩ and |g1⟩, where |sn⟩ denotes the tensor product of a transmon in
|s⟩ and a readout resonator mode in the fock state |n⟩. By driving the transmon simultaneously at
the |e0⟩ ↔ |f0⟩ transition and the |f0⟩ ↔ |g1⟩ transition, we can form a Λ system in the Jaynes-
Cummings ladder which can be used to reset the transmon through fast single photon emission. The
transmon reset Hamiltonian is given by
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Figure 11: We explicitly compare the training of a single photon Rydberg gate (yellow and red) for
moderate levels of amplitude and frequency noise σ∆ = σΩ = 0.1 MHz (left) and σ∆ = σΩ = 1
MHz, σ∆ = σΩ = 1 MHz to a two photon Rydberg gate (blue and green) and show significantly
superior resilience to time-dependent noise. The solid lines denote mean fidelity over 512 different
random noise levels and the shaded lines denote the min/max noise levels. In the same number of
RL updates, mean infidelity is about two orders of magnitudes lower for the single photon Rydberg
gate which is the standard implementation of two qubit gates for Rydberg atoms. Nmax is chosen
such that even with noise all parallelised runs can be solved for ρ(t).

H

ℏ
= χa†aq†q +

gα√
2δ(δ + α)

Ω(t)(q†q†a+ a†qq) + (∆(t) + δS(t))q
†q (18)

where a(a†) is the resonator lowering (raising) operator, q(q†) the transmon lowering (raising) op-
erator, χ the transmon-resonator dispersive shift, α the transmon anharmonicity, g the transmon-
resonator coupling rate, δ the difference in the transmon and resonator resonant frequencies, Ω(t)
the transmon drive amplitude, ∆(t) the transmon drive detuning, and δS(t) the drive-induced stark
shift. As determined in Zeytinoğlu et al. (2015), this stark shift is to first order quadratic in the drive
amplitude, δS(t) = kΩ2(t). For the transmon mode we consider three levels |g, e, f⟩ coupled with
a two level resonator. We neglect self-Kerr terms in the resonator mode as we target single photon
populations where such non-linearities are not significant.

The Lindbladian for the transmon reset simulation is given by

ρ̇ = −i [HS , ρ] + κD[ρ] + ΓD[ρ] (19)

with κ describing the resonator decay rate, and Γ the transmon decay rate.

We construct the transmon reset environment to match the physical parameters in Egger et al.
(2018a), with maximum drive amplitudes of 330 MHz, however with an additional small detun-
ing control of up to ±100 kHz for frequency corrections. To represent bandwidth constraints, we
add a Gaussian convolution of duration 14ns to the amplitude and detuning defined in equation 20.
We use the same reward function as in previous environments with a calibrated max-steps limit of
900, and we neglect the pulse area penalty.

We first optimise the reset for a higher qubit lifetime of T1 = 500 us, representing the transmon
lifetimes currently attainable in experiment. Optimal waveforms and corresponding transmon pop-
ulations are shown in Fig. 4, where the RL Pulse can achieve fidelities of 0.9997 even with realistic
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bandwidth constraints. Notably, we find the RL agent consistently produces Gaussian-square like
waveform for the drive amplitude, satisfying the high amplitude reset rate and optimising its smooth-
ing. Novelty is observed in the time dependent detuning, which first stays at a constant frequency
throughout the drive until at reset a quick shift is observed from negative to positive. This results
in the overall waveform correcting dynamic stark-shifts induced by the drive amplitude fall time,
allowing for near ideal reset fidelities.

When reducing the transmon lifetime to T1 = 48µs as used in prior experimental work, the RL
agent produces a similar waveform that achieves 0.997 fidelity matching the ideal calibrated square
evolution, and achieving higher results than a calibrated square pulse which gets 0.992 and the
experimental results in Egger et al. (2018a) which achieved 0.983. The success in optimising over
a range of transmon T1 lifetimes demonstrates that high fidelity unconditional reset can be achieved
on current Noisy Intermediate Scale Quantum devices with advanced pulse control.

We further verify the RL solution quality in the context of a more significant Gaussian-smoothing
kernel of 25ns and a qubit T1 = 500µs, and find that it achieves high fidelities of 0.9995 while a
standard square calibrated waveform deteriorates further to 0.9944 as errors arising from the uncor-
rected stark shifts become more significant.

D.1 HEAVISIDE CORRECTED GAUSSIAN SQUARE

For the |f0⟩ ↔ |g1⟩ transition in the reset process, the RL agent consistently finds a Gaussian
Square pulse for the drive amplitude which reminisces of prior works, however with an additional
Heaviside detuning profile as seen in Figure 4 which applies a frequency shift during the ring-down
of the amplitude pulse.

This pulse, which we dub Heaviside-Corrected Gaussian Square (HCGS), directly corrects for a
Hamiltonian which includes a drive-dependent stark-shift. Due to the finite ring-up time required for
the amplitude, a negative frequency is applied to correct the positive amplitude-induced stark-shift.
The negative frequency is applied throughout the reset until the ring-down. Before the ring-down
of the square pulse, the Heaviside profile produces a positive detuning to correct for the negative
amplitude-induced stark shift.

We note that this profile behaves quite similarly to past protocols such as DRAG where an additional
phase component can be added to correct for unwanted Hamiltonian terms in the system. To further
account for frequency bandwidth limitations, i.e. finite rise times for the phase control, the Gaussian
Square duration t0 and the Heaviside switch time t1 can be at different points, with the Heaviside
typically occurring a few nanoseconds earlier to account for the amplitude-driven stark shift.

Overall the HCGS reset pulse only requires 4 parameters, the amplitude Ω0 and duration t0 of the
Gaussian Square, along with the detuning magnitude ∆0 and the Heaviside switch time t1. Since
the calibration of the Gaussian square pulse parameters has already been described in various past
works (Magnard et al., 2018; Egger et al., 2018a), to calibrate the HCGS reset only a further sweep
of the detuning magnitude and switch time would be required to reach real world performance of
RL-optimised waveforms.

E IMPLEMENTATION DETAILS

E.1 BENCHMARKING OF SIMULATION SPEED

Benchmarking absolute compute times across different hardware platforms, such as CPUs and
GPUs, are challenging due to both systematic and random variations, even within the same ar-
chitecture. Factors like GPU load balancing, data transfer overhead between the CPU and GPU,
and kernel optimisations all influence performance, resulting in runtime fluctuations. Nonetheless,
the speedups demonstrated in Fig. 12 highlight the advantages of GPU parallelisation for quantum
simulations. We observe up to a two-order-of-magnitude improvement in speed per environment
step, showcasing the significant performance benefits of running parallelised quantum simulations
on GPUs, despite potential variability in the absolute timings.
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Figure 12: We compare the time per environment step for Qiskit Dynamics simulation across mul-
tiple environments (Λ system, two photon Rydberg gate and Transmon) under noise-free and OU
noise conditions. The left panel shows the Λ system simulation timings, while the right panel illus-
trates the Rydberg two-photon simulation timings on a V-100 Nvidia GPU where we parallelise the
simulation of several environments with different random actions and a fixed number of ODE solver
steps= 4096. The solid lines represent the simulation times obtained with a GPU, while the dashed
and dotted horizontal lines indicate the corresponding CPU timings (Apple Silicon M1) for Qiskit
(noise-free and OU noise, respectively). Simulation time per environment is plotted on a logarithmic
scale and in the best case we get up to about two orders of magnitude improvement in simulation
time per environment in a larger batch by moving to a GPU.

E.2 SIGNAL PROCESSING & ANALYSIS

The RL agent samples actions from the interval [−1, 1], for Rabi frequencies ΩP/S , we rescale this
on the output range [0, 1] such that all amplitudes ΩP/S are always positive and real, since phase
changes are already considered by the optimisation of ∆P/δ . No analogous rescaling is performed
for detunings ∆i. Thereafter,we rescale any action (in what follows any action, either amplitude
Ωi or detuning ∆i is defined as ai) by the maximum Rabi frequency Ωmax or maximum detuning
∆max.

We apply additional smoothing and rescaling operations to ensure the agent discovers experimen-
tally realistic pulses. The time-scale of the dynamics simulation of fixed to some finite value, namely
1µs for the Λ system, 0.5µs the Rydberg atom and 0.2µs for the transmon. In turn all control signals
are defined in units of MHz, both ∆P/δ and ΩP/S are divided into 50 timesteps for the Λ system
and Rydberg atom and 100 timesteps for the transmon. This gave a good tradeoff between signal
expressiveness and speed.

The actions ai are smoothed with a Gaussian convolution (a ∗ G)(t) =
∫∞
−∞ A(τ)G(t − τ) dτ ,

where the Gaussian function G(t) is defined as:

G(t) = N(tσ) exp

(
− t2

2 · t2σ

)
, (20)

where tσ defines the standard deviation and its value corresponds to the strength of the convolution
filter. An ablation over this is provided in Fig. 2. This ensures that the generated time-dependent
control signals are smooth and give rise to dynamics which can be solved in fixed number of time-
steps, particularly at the beginning of the learning process when signals are randomly initialised.
Pulse amplitude ends are always fixed at zero to ensure experimental viability with finite rise time
effects, as signals cannot instantaneously start at non-zero amplitudes. Additionally, we use cubic
spline interpolation (or linear interpolation for the transmon) between action samples which is effi-
cient for use with adaptive step size solver used for solving the GKSL master equation in different
environments.

The pulse smoothness is defined in terms of different pulse smoothness functions. The first smooth-
ing function is constructed by calculating the second derivative of A(t):

Sder(a(t)) =

∫ 1

0

(
d2A
dt2

)2

dt. (21)
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An alternative smoothing function is defined in terms of the difference in output to that generated by
a low pass Butterworth filter (Butterworth, 1930). This requires an expression of the filtered action
which is the convolution of A(t) with the impulse response h(t) of the Butterworth filter:

afiltered(t) = (h ∗A)(t) =
∫ 1

0

h(t− τ)A(τ) dτ (22)

Calculating the difference with respect to the unfiltered signal, we get an expression for the low-pass
smoothness with respect to a cutoff frequency ωmax and the filter order norder:

Slp(a(t), norder, ωmax) =

∫ 1

0

[∫ 1

0

h(t− τ)a(τ) dτ − a(t)

]
dt. (23)

It shall be noted that since all signals are discretised, the integrals decompose into discrete sums.
The reference smoothness for an action is given by S(B(t)), where B(t) is the Blackman window
comprised of n samples where n also defines the number of signal samples corresponding to Ωi /
∆i, which reads:

B[n] =

{
0.42− 0.5 cos

(
2πn
N−1

)
+ 0.08 cos

(
4πn
N−1

)
, 0 ≤ n ≤ N − 1

0. otherwise
(24)

This choice is made as it is designed to have minimal spectral leakage, which means it suppresses
high-frequency components effectively and mimics the smoothness of the signals that we are looking
for. Penalising pulse smoothness is required because even after applying a convolution filter, we do
not attain signals which exhibit low enough smoothness. The importance of generating ”smooth”
functions is three-fold: firstly smoother waveforms are easier to experimentally implement with
electronics with limited instantaneous bandwidth, as well as finite modulator rise times, and they are
less vulnerable to signal chain delay or timing issues. Secondly, they are more interpretable in terms
of the time evolution of the different quantum states. Thirdly, increased smoothness significantly
speeds up the adaptive step size solver time which is particularly advantageous when working with
limited computational resources or larger quantum systems.

Choosing the right smoothness penalty in the construction of the reward function is important as
it can determine the learning speed and the extent to which realistic and interpretable controls are
generated. We find, that a low-pass filter approach with the right cutoff frequency generally works
well and provides the fastest learning of ”smooth signals” as shown in Fig. 13. Other simpler
smoothness functions such as the L1 or L2 norm are not considered because they were less well
adapted for finding smooth signals that solved the quantum dynamics problems with a finite number
of maximal adaptive solver steps.

Picking the right hyperparameters for the Gaussian convolution filter standard deviation tσ defined
in equation 20, as well as the right smoothing penalties w∆ and wΩ (cf. equation 7) is crucial
to ensure the optimal trade-off between smooth signal discovery to facilitate parallel optimisation,
improved interpretability and discovery of high fidelity solutions. Overly strong signal smoothing
or smoothing penalties result in the optimiser focussing largely on signal smoothness over fidelity
of the quantum control task which is the primary objective. This is shown clearly in Fig. 2, where
the Λ system benefits from higher strict smoothing in form of a larger Gaussian kernel and higher
weak smoothing in form of a larger pulse smoothness penalty, compared to the two photon Rydberg
gate.

A final objective which competes with the fidelity, are the pulse areasA(Ωi) and implicitly the pulse
duration. Ωmax is limited physically by laser, RF or microwave power. Additionally, minimising
pulse area is important for reducing the pulse energy and in turn the amount of heat introduced into
the system, particularly for those quantum systems operating at cryogenic temperatures. Generally
faster pulse sequences increase the clock cycles of a particular quantum operation which is desirable,
but secondary to their fidelity, so implementing optimal control for some maximal amplitude Ωmax

but with a minimal pulse area is considered in the example of a Λ system. The baseline pulse area
(cf. equation 7), which is particularly relevant for the results shown in Fig. 7 and Fig. 3 is computed
by comparing the generated pulse area A =

∫ t=1

t=0
Ω(t)dt to the area of a Blackman window AB

defined over the same timescale.
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Figure 13: Comparison of different smoothing functions for mean infidelity (1- F) across 32 parallel
environments with different seeds plotted against the number of RL Updates for multi-level Lambda
system. The legend corresponds to the type of smoothness penalty used where the ordering of the
labels describes the amplitude and detuning smoothness functions respectively. One can observe
that particularly for the amplitudes Ωi, using a low pass filter (LPass cf. equation 23) instead of a
second derivative penalty (SDer cf. equation 21) allows for significantly sped up learning and also
higher mean fidelity. For this ablation, the smoothness penalties wΩ = w∆ are fixed to 0.001.
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E.3 NOISE MODEL

We use an Ornstein-Uhlenbeck noise model defined with standard deviation σ and mean µ which
defines time-dependent noise in time t:

νt = νt−1(1− α2) +
√
2σX(t)α+ σ2µ, (25)

where α defines the characteristic time scale of the noise fluctuations andX(t) is a random Gaussian
noise at time t with a standard deviation of 1 and a mean of 0.
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