
Maximizing Parallelism in Distributed Training for
Huge Neural Networks

Zhengda Bian∗

National University of Singapore
Singapore

zbian@comp.nus.edu.sg

Qifan Xu∗

University of California, Los Angeles
Los Angeles, California, USA
QifanXu@mednet.ucla.edu

Boxiang Wang
National University of Singapore

Singapore
boxiangwang059@gmail.com

Yang You
National University of Singapore

Singapore
youy@comp.nus.edu.sg

Abstract

The recent Natural Language Processing techniques have been refreshing the state-
of-the-art performance at an incredible speed. Training huge language models is
therefore an imperative demand in both industry and academy. However, the huge
models impose challenges to both hardware and software. Graphical processing
units (GPUs) are iterated frequently to meet the exploding demand, and a variety
of ASICs like TPUs are spawned. However, there is still a tension between the fast
growth of the extremely huge models and fact that Moore’s law is approaching the
end. To this end, many model parallelism techniques are proposed to distribute
the model parameters to multiple devices, so as to alleviate the tension on both
memory and computation. Our work is the first to introduce a 3-dimensional
model parallelism for expediting huge language models. By reaching a perfect
load balance, our approach presents smaller memory and communication cost than
existing state-of-the-art 1-D and 2-D model parallelism. Our experiments on 64
TACC’s V100 GPUs show that our 3-D parallelism outperforms the 1-D and 2-D
parallelism with 2.32X and 1.57X speedup, respectively.

1 Introduction

To deal with the growing amount of data, nowadays people are squeezing the computation from
GPUs or FPGAs to get larger and more powerful neural networks. Consequently, records are being
broken in a variety of Natural Language Processing (NLP) tasks ranging from classification, question
answering to translation as the language models are becoming much deeper. In the meantime, starting
from the emergence of Transformer models [20] like BERT [4], the trend to increase model sizes
becomes even more radical. Since then, the Moore’s Law can never reach the growth of language
models. Past several years have witnessed the creation of gigantic models, like GPT-2 [13] and
GPT-3 [2], which are able to compose texts and synthesize images. The amazing performance is also
attracting attention from industry. Google recently announced its Multitask Unified Model (MUM)
for language understanding, LaMDA for conversation, and TPUv4 chips for model training.

The surging model size brings challenges in terms of both memory and computation. Apart from
developing chips such as GPU and TPU with higher computation capability and memory limit,
activation checkpointing techniques are developed to squeeze a large model into a single device

∗These authors have equal contributions.

Technical Report of NUS HPC-AI Lab (https://ai.comp.nus.edu.sg)

ar
X

iv
:2

10
5.

14
45

0v
1

 [
cs

.D
C

]
 3

0
M

ay
 2

02
1

https://ai.comp.nus.edu.sg

that would otherwise not be able to host such a big model. Moreover, ZeRO-infinity techniques
[14, 14, 15] are proposed to utilize the memory of CPU or other memory device external to GPU
without sacrificing the data transmission time. Data parallelism is a dominant practice to fully utilize
available HPC resources. It distributes a large minibatch to multiple devices, where each device
holds an identical model replica, and finally gathers the gradients for synchronous parameter update.
With recent optimization techniques [6, 22, 23, 24], it is now able to train very large minibatches on
thousands of GPU devices.

Another branch is model parallelism, the main idea of which is to divide both computation and
memory of a single neural network to multiple devices. Pipelined parallelism [7, 9] is proposed
to split the whole model by layer, which will be executed in a pipeline fashion. Mixed precision
training is utilized to reduce both memory and computation cost. Megatron-LM [17] integrates both
model parallelism and data parallelism by splitting the parameter tensor among model parallel groups,
achieving the state-of-the-art language model. Recently, a 2-dimensional matrix-matrix multiplication
algorithm has been introduced into language model training [21], thus bridging the gap between
traditional high-performance computing and machine learning. In this work, we stride a step forward
and propose a 3-D model parallelism technique to further harness the capability of GPU clusters. We
list our main contributions as follows.

• We propose a 3-D model parallelism algorithm for linear operations, which can reach a
perfect load balance, so as to provide the optimal efficiency;

• We use our 3-D model parallelism to implement an efficient Transformer model based on
the existing PyTorch Transformer implementation and distributed communication package;

• We demonstrate the effectiveness of our 3-D model parallelism on 64 GPUs by comparing it
with the existing 1-D and 2-D approaches. The results present the superiority of our 3-D
parallelism with 2.32X and 1.57X speedup, respectively.

2 Background

2.1 Transformer Language Models

There has been a recent trend to use pretrained language models to help people train specific natural
language processing (NLP) tasks, as pretrained models leverage the understanding of very large
corpus (e.g. Wikipedia) to alleviate the efforts of training entire language models. Transformer is
one of the current dominant choices of pretraining language models, achieving the state-of-the-art
compute efficiency and prediction accuracy. The Transformer language model uses deep attention
modules to transform a given sequential input into another sequential output. Like LSTM, a complete
Transformer model includes two parts, an Encoder and a Decoder, but each consists of attention
layers rather than recurrent layers. However, recent state-of-the-art Transformer applications, such
as BERT [4], GPT-2 [13], and GPT-3 [2], adopt more concise structures that only use necessary
Encoders or Decoders on demand.

Nevertheless, training Transformer language models can be extremely computational expensive. The
recent language models advance their accuracy with a rising number of parameters (e.g. OpenAI
GPT: 110M [12]; BERT: 340M [4]; GPT-2: 1.5B [13]; GPT-3: 175B [2]; Switch Transformers: 1.6T
[5]). In the meantime, to deal with huge language corpus, there has been a growing interest in using
large minibatches to reduce training time. Therefore, efficient systems to expedite Transformers
become an urgent demand for training large language models.

2.2 Data and Model Parallelism

Data parallelism is the most common paradigm to parallel the computation of deep neural networks.
This approach distributes the entire minibatch across multiple workers, which execute a single replica
of the model and communicate with each other for synchronization at the end of each training step. It
is easy to use more devices to train larger minibatches. By taking advantage of recent optimization
techniques [18, 22, 23, 24, 11], training speed reaches almost linear scaling with the number of
devices. However, due to the issue of generalization gap [10, 8], using very large minibatches requires
extra efforts to guarantee the convergence performance [6, 22, 23, 24]. Besides, a practical limitation

2

is that large Transformer models that have more than billions of parameters are basically not able to
be accommodated into the memory of a single GPU device.

Model parallelism can successfully remove the above memory limitation. There are two model
parallel paradigms. First, the layer-wise pipelined parallelism splits the entire model by layer, and
execute the layers in the pipeline fashion. Some approaches [7, 9] use their algorithms to tackle the
inconsistency issue among different pipelines, so that the computation and communication time can
be overlapped. However, since each training step requires both forward and backward processing,
there will be an inevitable bubble overhead, so that the compute resources cannot be fully utilized.

The second model parallel paradigm is the intra-layer parallelism, which is orthogonal to the pipelined
parallelism. It distributes the operations in each layer such as matrix multiplications and activations
across multiple workers. For example, Mesh-Tensorflow [16], a framework proposed by Google,
provides a convenient way for users to allocate the partition of tensor dimensions. Then the matrix
multiplications can be automatically partitioned in a single dimension and distributed to workers,
without any user elaboration. Similarly, Megatron-LM [17] adopts a 1-D matrix partition strategy
to implement the Transformer model. It splits matrices along rows or columns, and gathers results
with the all-reduce operation. Moreover, Optimus uses the Scalable Universal Matrix Multiplication
Algorithm (SUMMA) [19], a 2-D parallel strategy for matrix multiplications, which helps to reduce
memory and communication costs required for executing the Transfer model. Our approach aims to
take a step further and use the 3-D parallelism to improve the performance by optimally balancing
the computation, memory and communication load.

2.3 3-D Parallel Matrix Multiplication

In this section, we provide an outline of the 3-D parallel matrix multiplication algorithm [1], which is
adopted in our approach.

(i,j,l)

A

C
B

i

j

l x

y

z

Figure 1: The structure of a 3-D processing cube with P = p3 processors. The colored block (i, j, k)
represents an example of a single processor.

This algorithm computes the multiplication between two dense matrices concurrently on P = p3

processors, as illustrated in Figure 1, where P processors can be stacked into a p3 cube. In this
cube, let A,B,C denote the planes, x, y, z denote the directions for the planes, and i, j, l denote the
different indices along the directions. We also use A,B,C to represent the matrices involved in the
multiplication, so that Aij , 0 ≤ i, j < p is supposed to represent a submatrix of A.

For simplicity, we consider an example of the 3-D matrix multiplication C = AB on a 2 × 2 × 2
processing cube. We splitA andB of size (M,N) and (N,K) into 2×2 partitions as follows, so that
the sizes of each partition Ail and Blj is (M/2, N/2) and (N/2,K/2) respectively, for 0 ≤ i, j < 2.

A =

[
A00 A01

A10 A11

]
, B =

[
B00 B01

B10 B11

]
. (1)

3

𝐴𝐴10

𝐴𝐴10

𝐵𝐵01𝐵𝐵01

𝐶𝐶11(a) Broadcast Ail

𝐴𝐴10

𝐴𝐴10

𝐵𝐵01𝐵𝐵01

𝐶𝐶11

(b) Broadcast Blj

𝐴𝐴10

𝐴𝐴10

𝐵𝐵01𝐵𝐵01

𝐶𝐶11

(c) Reduce Cij

Figure 2: An example of the 3-D parallel matrix multiplication of size 2× 2× 2.

Each partition Ail is stored in the processor (i, 0, l), while Blj is stored in (0, j, l). Before multipli-
cation, we first broadcast each Ail from (i, 0, l) along the y direction (Figure 2a), so that we have
Ail on each (i, j, l). Similarly, we broadcast each Blj along the x direction (Figure 2b). Next, we
can compute Cijl = AilBlj on each processor (i, j, l). Then we reduce Cijl to (i, j, 0) along the z
direction to derive Cij =

∑
lAilBlj (Figure 2c). Thus, we finally get C = AB as

C =

[
A00B00 +A01B10 A00B01 +A01B11

A10B00 +A11B10 A10B01 +A11B11

]
. (2)

3 3-D Parallel Transformers

We now describe our main design and implementation of the 3-D parallel Transformer language
model.

3.1 3-D Operations

As demonstrated in Figure 3, the Transformer language model computes its hidden states from top
to bottom, through multiple Transformer blocks. In each block, the major computation in both the
Self-Attention and Multi-Layer Perception (MLP) layer involves linear operations and activations.
While activation operations can be independently executed in parallel, to accelerate linear operations
is the key to reduce execution time of the Transformer model. We firstly tackle the load balancing
issue of the original 3-D matrix multiplication, and then present the designs of both 3-D parallel
matrix-matrix and matrix-vector operations that are used in the Transformer model.

3.1.1 Load Balancing

We consider the matrix multiplication C = AB between the input matrix A of size (M,N) and
the weight matrix B of size (N,K) on P = p3 processors, which requires MNK calculations in
total. An intuitive way to store the matrices is to partition each dimension of the matrices by p, and
hold each partition Ail on the processor (i, 0, l), Blj on (0, j, l), and Cij on (i, j, 0) respectively. In
this way, we will need to broadcast each partition Ail and Blj across at least p processors before
multiplication, and then reduce the partitions Cij after the multiplication, so as to guarantee the
consistency among them. Therefore, an obvious issue is that the storage is imbalanced, so that we
waste a great amount of redundant memory in the processor (i, j, l) if i 6= 0 or j 6= 0 or l 6= 0. In the
meantime, the imbalanced storage will result in imbalanced activation or element-wise operations,
causing the inefficiency that the computation of such operations is not evenly distributed to all
processors.

To eliminate the redundancy caused by the gap between the number of computation and memory
dimensions, our insight is to distribute the matrices evenly to the cube. More specifically, we
define m = M/p2, n = N/p2, k = K/p2. Let each processor (i, j, l) hold the partitions Aijl =
A[imp+ jm : imp+ jm+m− 1, lnp : lnp+ np− 1], Blji = B[lnp : lnp+ np− 1, jkp+ ik :
jkp + ik + k − 1], as shown in Figure 4a. Before the multiplication, instead of the original
broadcast operation, we use an all-gather operation along the y direction to copy Ail = A[imp :
imp+mp− 1, lnp : lnp+ np− 1] across processors (i, j, l) for 0 ≤ j < p (Figure 4b). Similarly,

4

Embeddings

Transformer
Layer

N×

Self-Attention

MLP

Add & Norm

Output
(pooler, heads &

loss)

Add & Norm

Figure 3: Architecture of the Trans-
former model that consists of multiple
Transformer layers.

𝐴𝐴100

𝐴𝐴110

𝐴𝐴10

𝐵𝐵011𝐵𝐵010

𝐶𝐶110

𝐴𝐴10𝐵𝐵01

𝐴𝐴11𝐵𝐵11

𝐵𝐵011

𝐴𝐴110

(a) The input and weight
submatrices on each pro-
cessor.

𝐴𝐴100

𝐴𝐴110

𝐴𝐴10

𝐵𝐵011𝐵𝐵010

𝐶𝐶110

𝐴𝐴10𝐵𝐵01

𝐴𝐴11𝐵𝐵11

𝐵𝐵011

𝐴𝐴110

(b) All-gather Ail in the y
direction.

𝐴𝐴100

𝐴𝐴110

𝐴𝐴10

𝐵𝐵011𝐵𝐵010

𝐶𝐶110

𝐴𝐴10𝐵𝐵01

𝐴𝐴11𝐵𝐵11

𝐵𝐵011

𝐴𝐴110

(c) All-gather Blj in the x
direction.

𝐴𝐴100

𝐴𝐴110

𝐴𝐴10

𝐵𝐵011𝐵𝐵010

𝐶𝐶110

𝐴𝐴10𝐵𝐵01

𝐴𝐴11𝐵𝐵11

𝐵𝐵011

𝐴𝐴110

(d) Compute each Cijl and
reduce-scatter them in the
z direction.

Figure 4: Load-balanced 3-D matrix-matrix multiplication.

we execute an all-gather for Blj = B[lnp : np − 1, jkp : jkp + kp − 1] (Figure 4c). Then we
compute AilBlj on each processor, and use a reduce-scatter operation in the z direction to get
Cij =

∑
lAilBlj across processors (i, j, l) for 0 ≤ l < p. Thus, we will finally get Cilj = Cij [lm :

lm+m− 1, :] = C[imp+ lm : imp+ lm+m− 1, jkp : jkp+ kp− 1] in each processor (i, j, l),
as shown in Figure 4d. In overall, the memory cost per processor of our approach is supposed to be
(M/p2) ∗ (N/p) + (N/p) ∗ (K/p2) + (M/p2) ∗ (K/p) ≈ O(1/p3) = O(1/P).

For vector parameters that are used in matrix-vector operations, we store the vector b of size N
diagonally on the B plane, i.e. only the processors (i, j, l) holds bji = b[jnp+ in : jnp+ in+n−1]
for j = l, 0 ≤ i, j, l < p, as shown by the colored blocks in Figure 5. To execute a matrix-vector
operation, e.g. A + b, we need to broadcast bli in the y direction, and then get bl by all-gathering
them in the x direction. In contrast, to execute C + b, we need to broadcast bji in the z direction
before all-gathering them. Then we can get Ail + bl or Cij + bj on each processor.

A
Broadcast

All-gather

B
C

Figure 5: Balancing vector parameters for matrix-vector operations.

5

We need to notice that the communication directions of the input matrix A and output matrix C
are different. To execute the Transformer model, since the output states of each linear layer are
basically the input states of the next layer, we exchange the communication directions y and z for the
input and output states after the 3-D parallel matrix multiplication, while keep the direction x for the
network weights. The matrix-vector operations are supposed to have no affect on the communication
directions.

3.1.2 Matrix-matrix Operations

In the Transformer model, three forms of matrix-matrix multiplication, including C = AB, C =
ABT and C = ATB, are involved w.r.t the following differentiation formulas.

C = AB, Ȧ = ĊBT , Ḃ = AT Ċ; (3)

C = ABT , Ȧ = ĊB, Ḃ = ĊTA; (4)

C = ATB, Ȧ = BĊT , Ḃ = AĊ, (5)

where Ẋ denotes the gradient of the parameter X . We present the algorithms for the three forms
of multiplication with the optimal 3-D execution and communication efficiency as shown in the
following pseudo-codes (Algorithm 1-6). Note that for each multiplication algorithm, other than the
input matrices, we also need to specify the directions for them as well as the output matrix.

Algorithm 1 Forward C = AB

Input: Aijl, Blji,
directions y, x, z for A,B,C

Output: Cilj

1: All-gather Ail in y
2: All-gather Blj in x
3: Cilj ← AilBlj

4: Reduce-scatter Cilj in z
5: return Cilj

Algorithm 2 Backward C = AB

Input: Ċilj , Aijl, Blji

directions y, x, z for A,B,C
Output: Ȧijl, Ḃlji

1: Ȧijl ← ĊiljB
T
lji in z, x, y

2: Ḃlji ← AT
ijlĊilj in y, z, x

3: return Ȧijl, Ḃlji

Algorithm 3 Forward C = ABT

Input: Aijl, Bjli,
directions y, x, z for A,B,C

Output: Cilj

1: All-gather Ail in y
2: All-gather Bjl in x
3: Cilj ← AilB

T
jl

4: Reduce-scatter Cilj in z
5: return Cilj

Algorithm 4 Backward C = ABT

Input: Ċilj , Aijl, Bjli

directions y, x, z for A,B,C
Output: Ȧijl, Ḃjli

1: Ȧijl ← ĊiljBjli in z, x, y

2: Ḃjli ← ĊT
iljAijl in z, y, x

3: return Ȧijl, Ḃjli

Algorithm 5 Forward C = ATB

Input: Ailj , Bijl,
directions y, x, z for A,B,C

Output: Cjli

1: All-gather Aij in y
2: All-gather Bil in x
3: Cjl ← AT

ijBil

4: Reduce-scatter Cjli in z
5: return Cjli

Algorithm 6 Backward C = ABT

Input: Ċjli, Ailj , Bijl

directions y, x, z for A,B,C
Output: Ȧilj , Ḃijl

1: Ȧilj ← BjliĊ
T
ilj in x, z, y

2: Ḃijl ← AijlĊilj in y, z, x

3: return Ȧilj , Ḃilj

Our 3-D parallel matrix multiplication can evenly distribute the computational cost to all the proces-
sors, where each processor only multiplies the submatrices of size (M/p,N/p) and (N/p,K/p). If
we fix the problem size, the execution cost of our approach is supposed to be (M/p)∗(N/p)∗(K/p) ≈

6

O(1/p3) = O(1/P). Furthermore, compared with 1-D and 2-D approaches, each communication
operation in our 3-D approach moves data across a smaller number of processors. Each forward algo-
rithm uses all-gather and reduce-scatter operations to move (MN +NK+MK)/p3 across p proces-
sors in total. Therefore, the bandwidth cost of our approach is supposed to be O(1/p2) = O(P−2/3),
while the latency cost is supposed to be O(log(p)) = O(log(P 1/3)).

3.1.3 Matrix-vector Operations

The logic to execute matrix-vector operations such C = A+ b and C = A ∗ b is similar. We present
an example of the add operation as shown in Algorithm 7-8.

For the matrix-vector multiplication, the only changes from the above algorithms are to return
Cijl = Aijl ∗bl for the forward pass, as well as to return Ȧijl = Ċijl ∗bijl and ḃijl =

∑
ij Ċijl ∗Aijl

for the backward pass.

Algorithm 7 Forward C = A+ b

Input: Aijl, bijl,
directions y, x, z for A,B,C

Output: Cijl

1: Broadcast bil in y

2: All-gather bl in x

3: Cijl ← Aijl + bl

4: return Cijl

Algorithm 8 Backward C = A+ b

Input: Ċijl,
directions y, x, z for A,B,C

Output: Ȧijl, ḃijl
1: Ȧijl ← Ċijl

2: ḃijl ←
∑

ij Ċijl

3: if j = l then
4: Reduce-scatter ḃijl in x
5: else
6: ḃijl ← null
7: end if
8: return Ȧijl, ḃijl

By taking advantage of balanced parameter storage, we can evenly distribute the computation cost of
not only the matrix-vector operations but also the activations to all the processors. Their computation
cost is supposed to be the same scale as the memory cost O(1/P).

3.2 Parallel Transformer layers

𝑋𝑋
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

3D Linear
[⁄ℎ 𝑝𝑝 ,3ℎ/𝑝𝑝2]

𝑄𝑄
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

𝐾𝐾
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

𝑉𝑉
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

𝑄𝑄𝐾𝐾𝑇𝑇
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

Softmax
&

Dropout 𝑄𝑄𝐾𝐾𝑇𝑇V
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

3D Linear
[⁄ℎ 𝑝𝑝 ,ℎ/𝑝𝑝2]

Dropout 𝑍𝑍
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

𝑋𝑋
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

3D Linear
[⁄ℎ 𝑝𝑝 ,4ℎ/𝑝𝑝2]

𝑌𝑌
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,4ℎ/𝑝𝑝]

3D Linear
[⁄4ℎ 𝑝𝑝 ,ℎ/𝑝𝑝2]

Dropout 𝑍𝑍
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

Activation

(a) The Self-Attention block

𝑋𝑋
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

3D Linear
[⁄ℎ 𝑝𝑝 ,3ℎ/𝑝𝑝2]

𝑄𝑄
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

𝐾𝐾
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

𝑉𝑉
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

𝑄𝑄𝐾𝐾𝑇𝑇
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

Softmax
&

Dropout 𝑄𝑄𝐾𝐾𝑇𝑇V
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

3D Linear
[⁄ℎ 𝑝𝑝 ,ℎ/𝑝𝑝2]

Dropout 𝑍𝑍
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

𝑋𝑋
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

3D Linear
[⁄ℎ 𝑝𝑝 ,4ℎ/𝑝𝑝2]

𝑌𝑌
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,4ℎ/𝑝𝑝]

3D Linear
[⁄4ℎ 𝑝𝑝 ,ℎ/𝑝𝑝2]

Dropout 𝑍𝑍
[𝑏𝑏/𝑝𝑝, 𝑠𝑠/𝑝𝑝,ℎ/𝑝𝑝]

Activation

(b) The Multi-Layer Perception block

Figure 6: Outline of 3-D Parallel Transformer layers. Each m,n, k in [m,n, k] represents the size of
the parameter stored on each processor. The arrows present the order of computation.

In this section, we describe the major implementation details of the Transformer model that uses our
3-D parallel operations.

To leverage 3-D model parallelism, we implement our new linear layer module and layer normalization
module based on the 3-D parallel operations. The 3-D linear layer flattens an input X of size
[b/p, s/p, h/p] into size [b∗s/p2, h/p] first, and then uses Algorithm 1 and 7 to perform Y = XW+b
with parameters W and b. Thus, after a 3-D linear layer, the input and output directions should

7

be exchanged. The 3-D layer normalization will not affect the directions, because it only applies
matrix-vector adds and multiplications with the parameters γ and β.

We define b, s, n, h as the batch size, sequence length, number of attention heads and hidden size
of the Transformer model on a p3 processing cube. For ease of presentation, we do not discuss the
embedding and output layers of the language model, as they usually depend on the downstream tasks.
Then our implementation can basically divided into two modules: Self-Attention blocks and MLP
blocks, as illustrated in Figure 6a and Figure 6b. Both the Self-Attention and MLP block include two
3-D linear layers, so that communication directions of their inputs and outputs are supposed to be
the same. Thus, the input and output of each Transformer layer are also supposed to have the same
communication direction.

Besides, in practice, it is therefore not necessary to track all the directions of 3-D parallel operations
as shown in Algorithm 1-8, because we only need to exchange the input and output direction after the
first linear layer of both Self-Attention and MLP blocks. For generalizability, we index the initial
input, weight and output group as 0, 1, 2. We provide an input group index y for the first linear layer,
so that the output group index is supposed to be z = 1 − y. After the layer, we take z as the new
input group index, and return it to y = 1− z after each Self-Attention or MLP block is completed.

4 Experiments

4.1 Setup

We evaluate our 3-D parallel Transformer model on TACC’s Longhorn supercomputers [3]. Our
testbed cluster consists of up to 16 GPU servers connected by Mellanox EDR Infiniband network.
Each server has 2 20-core IBM Power 9 CPUs, 256GB memory and 4 NVIDIA V100 GPUs, so there
are 64 GPUs in total. We store the training data, model checkpoints in a Hadoop Distributed File
System (HDFS) via 1Gbps Ethernet.

We compare the performance of our approach against the existing state-of-the-art 1-D [17] and 2-D
[21] model parallel approaches. For simplicity, we only evaluate the performance of the Transformer
model itself, i.e. the consecutive Transformer layers, to highlight the efficiency of different parallelism.
We evaluate the 1-D parallelism on 8,16,36 and 64 GPUs, the 2-D parallelism on a subset of 16,36
and 64 GPUs, as well as our 3-D approach on a subset of 8 and 64 GPUs.

4.2 Performance

4.2.1 Weak Scaling

We first evaluate the weak scaling performance, where we fix the network size on each processor,
and scale up the number of processors. Table 1 presents the results of the weak scaling experiments,
including the execution time for both forward and backward pass of the Transformer model. We also
provide the average step time of each sequence, which is computed as

Average step time =
forward time + backward time

batch size
. (6)

We see that the 3-D parallelism has the slowest rising speed in the average step time, reaching the
smallest value at the largest compute scale. The result implies that our approach is efficient to reduce
the overhead of model parallelism, as it reaches the minimum communication cost.

4.2.2 Strong Scaling

Next, we evaluate the strong scaling performance of different model parallelism. This experiment
aims to examine how much speedup each approach can achieve by using an increasing number of
processors to execute the fix-sized problem.

The problem size and execution results are shown in Table 2. We see that our 3-D parallelism
outperforms other approaches by achieving the smallest average step time on 64 GPUs, with 2.32X
and 1.57X speedup over 1-D and 2-D approach, respectively.

8

1-D [17]

GPUs Batch
size

Hidden
size

Forward
time (s)

Backward
time (s)

Average
step time (s)

8 60 2048 4.759 15.676 0.341
16 60 4096 12.488 30.894 0.723
36 40 6120 13.515 31.822 1.133
64 30 8192 13.915 32.890 1.560

2-D [21]

GPUs Batch
size

Hidden
size

Forward
time (s)

Backward
time (s)

Average
step time (s)

16 192 4096 33.860 101.981 0.708
36 288 6120 54.760 165.850 0.766
64 384 8192 99.419 304.707 1.052

3-D
GPUs Batch

size
Hidden

size
Forward
time (s)

Backward
time (s)

Average
step time (s)

8 192 2048 30.096 81.212 0.580
64 384 8192 79.349 125.037 0.672

Table 1: Comparison of weak scaling results. The number of processors increases from 8 to 64, while
the number of parameters is fixed for each approach. For each of presentation, we mainly adjust the
batch size and hidden size based on the number of processors, while fix the sequence length to 512.
The bolded number represents the best result.

1-D [17]

GPUs Batch
size

Hidden
size

Forward
time (s)

Backward
time (s)

Average
step time (s)

8 12 3072 1.470 5.699 0.597
16 12 3072 1.371 5.152 0.544
36 12 3072 1.455 5.414 0.572
64 12 3072 1.433 5.167 0.550

2-D [21]

GPUs Batch
size

Hidden
size

Forward
time (s)

Backward
time (s)

Average
step time (s)

16 24 3072 4.680 13.698 0.766
36 24 3072 3.900 11.433 0.639
64 24 3072 3.007 8.920 0.497

3-D
GPUs Batch

size
Hidden

size
Forward
time (s)

Backward
time (s)

Average
step time (s)

8 24 3072 3.249 9.120 0.515
64 24 3072 2.494 6.129 0.359

Table 2: Comparison of strong scaling results. The problem size is fixed while the number of
processors increases from 8 to 64. The bolded number represents the best result.

5 Conclusion

In this work, we introduce a 3-D intra-layer model parallelism algorithm for training huge neural
models. We propose a load balanced design to store and execute linear layers with minimum memory
and communication cost. By leveraging the 3-D model parallelism, we implement a 3-D parallel
Transformer model and evaluate it on up to 64 GPUs. Compared with the existing 1-D and 2-D
parallelism, our Transformer model achieves a significant speedup. However, it is still interesting
to leverage our approach to train larger models on more processors. We expect to see promising
advances of our work with larger-scale compute resources in the future.

References
[1] Ramesh C Agarwal, Susanne M Balle, Fred G Gustavson, Mahesh Joshi, and Prasad Palkar. A

three-dimensional approach to parallel matrix multiplication. IBM Journal of Research and
Development, 39(5):575–582, 1995.

9

[2] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[3] Texas Advanced Computing Center. LONGHORN - TEXAS ADVANCED COMPUTING
CENTER. https://www.tacc.utexas.edu/systems/longhorn, 2021.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2018.

[5] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

[6] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[7] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur, Greg
Ganger, and Phil Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training, 2018.

[8] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. In Advances in Neural Information
Processing Systems, pages 1731–1741, 2017.

[9] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen,
HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient
training of giant neural networks using pipeline parallelism, 2019.

[10] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
arXiv preprint arXiv:1609.04836, 2016.

[11] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan Wu,
and Chuanxiong Guo. A generic communication scheduler for distributed dnn training ac-
celeration. In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP ’19, page 16–29, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450368735. doi: 10.1145/3341301.3359642. URL https://doi.org/10.1145/
3341301.3359642.

[12] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training.

[13] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[14] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models, 2020.

[15] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-
infinity: Breaking the gpu memory wall for extreme scale deep learning. arXiv preprint
arXiv:2104.07857, 2021.

[16] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanan-
takool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, and
Blake Hechtman. Mesh-tensorflow: Deep learning for supercomputers, 2018.

[17] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism, 2020.

[18] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning
rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[19] Robert A. van de Geijin and Jerrel Watts. Summa: scalable universal matrix multiplication
algorithm. Concurrency and Computation Practice and Experience, 9:255–274, 1998.

10

https://www.tacc.utexas.edu/systems/longhorn
https://doi.org/10.1145/3341301.3359642
https://doi.org/10.1145/3341301.3359642

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[21] Qifan Xu, Shenggui Li, Chaoyu Gong, and Yang You. An efficient 2d method for training
super-large deep learning models, 2021.

[22] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks,
2017.

[23] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. Imagenet training in
minutes, 2018.

[24] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for
deep learning: Training bert in 76 minutes, 2020.

11

	1 Introduction
	2 Background
	2.1 Transformer Language Models
	2.2 Data and Model Parallelism
	2.3 3-D Parallel Matrix Multiplication

	3 3-D Parallel Transformers
	3.1 3-D Operations
	3.1.1 Load Balancing
	3.1.2 Matrix-matrix Operations
	3.1.3 Matrix-vector Operations

	3.2 Parallel Transformer layers

	4 Experiments
	4.1 Setup
	4.2 Performance
	4.2.1 Weak Scaling
	4.2.2 Strong Scaling

	5 Conclusion

