

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 POTENTIALLY OPTIMAL JOINT ACTIONS RECOGNITION FOR COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Value function factorization is widely used in cooperative multi-agent reinforcement learning (MARL). Existing approaches often impose monotonicity constraints between the joint action value and individual action values to enable decentralized execution. However, such constraints limit the expressiveness of value factorization, restricting the range of joint action values that can be represented and hindering the learning of optimal policies. To address this, we propose Potentially Optimal Joint Actions Weighting (POW), a method that ensures optimal policy recovery where existing approximate weighting strategies may fail. POW iteratively identifies potentially optimal joint actions and assigns them higher training weights through a theoretically grounded iterative weighted training process. We prove that this mechanism guarantees recovery of the true optimal policy, overcoming the limitations of prior heuristic weighting strategies. POW is architecture-agnostic and can be seamlessly integrated into existing value factorization algorithms. Extensive experiments on matrix games, difficulty-enhanced predator-prey tasks, SMAC, SMACv2, and a highway-env intersection scenario show that POW substantially improves stability and consistently surpasses state-of-the-art value-based MARL methods.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) holds great potential for solving cooperative tasks in domains such as swarm robotics (Huang et al., 2020), autonomous driving (Schmidt et al., 2022), and multi-agent games (Terry et al., 2021). Yet, simultaneous policy learning for multiple agents remains challenging due to non-stationarity and the exponential growth of the joint action space. The centralized training with decentralized execution (CTDE) paradigm has become the standard framework for addressing these challenges, inspiring a wide range of policy-based methods (e.g., MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018), FOP (Zhang et al., 2021)) and value-based methods (e.g., VDN (Sunehag et al., 2017), QMIX (Rashid et al., 2020a), QPLEX (Wang et al., 2020)).

Among these, QMIX has achieved strong results on benchmarks such as the StarCraft II Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019). QMIX factorizes the joint action-value into individual action-values using a monotonic mixing function, thereby ensuring decentralized execution. However, the monotonicity constraint reduces the expressiveness of the value function, limiting its ability to represent many joint action values and often hindering optimal policy recovery.

To address this, WQMIX (Rashid et al., 2020b) proposed weighting joint actions during training, ideally emphasizing optimal ones so that the overall joint action-value function (Q_{tot}) would approximate the optimal target (Q^*). However, identifying the truly optimal joint actions requires traversing the entire joint action space, which is intractable in realistic settings. Practical variants such as CW-QMIX and OW-QMIX replace this exhaustive search with heuristic approximations. Specifically, CW-QMIX anchors its weighting on the $\arg \max Q_{tot}$ rather than the $\arg \max Q^*$, thereby avoiding enumeration of the full action space but introducing inaccuracies. OW-QMIX goes further by directly using Q_{tot} values in an optimistic manner, which amplifies errors when judging whether an action is truly optimal. As a result, both methods misalign the assigned weights with the

054 actual optimal set: suboptimal actions may still receive large weights, while genuinely optimal ones
 055 can be under-emphasized. This creates a persistent gap between WQMIX’s theoretical promise and
 056 its practical realizations.

057 We propose the **Potentially Optimal Joint Actions Weighting (POW)** method, which bridges this
 058 gap by introducing a recognition-based weighting scheme with provable convergence guarantees.
 059 POW employs a recognition module Q_r that explicitly conditions on both state and joint actions,
 060 enabling it to identify a set of *potentially optimal joint actions* \mathbf{A}_r . Training weights are then as-
 061 signed adaptively, with higher weights for actions in \mathbf{A}_r . Through iterative updates, we prove that
 062 \mathbf{A}_r converges to include the true optimal joint actions, ensuring that Q_{tot} aligns its action pref-
 063 erences with those of Q^* without requiring exhaustive search or heuristic approximations. This
 064 establishes, for the first time, a consistent link between the theoretical guarantees of weighted value
 065 decomposition and its practical implementation.

066 To validate POW, we instantiate it on top of QMIX (yielding POW-QMIX) and evaluate across
 067 diverse benchmarks: matrix games, predator-prey, highway-env, SMAC, and SMACv2. Results
 068 show that POW-QMIX outperforms state-of-the-art baselines, particularly in environments with
 069 non-monotonic reward structures where existing factorization methods struggle. We further demon-
 070 strate that POW can be seamlessly integrated into other value decomposition frameworks, such as
 071 VDN and QPLEX, consistently improving their performance. These results highlight both the ver-
 072 satility and scalability of our approach.

073 In summary, our contributions are:

- 075 • We propose POW, a recognition-based joint action weighting framework that provably
 076 bridges the gap between the theoretical guarantees of WQMIX and its practical realiza-
 077 tions.
- 078 • We provide rigorous theoretical analysis, proving that the recognition module ensures con-
 079 vergence of the candidate set \mathbf{A}_r toward the true optimal joint actions, thereby enabling
 080 optimal policy recovery.
- 081 • We conduct extensive experiments across five benchmark families, demonstrating that
 082 POW achieves superior performance over strong baselines and generalizes across multi-
 083 ple value factorization architectures.

084 2 PRELIMINARIES

085 We consider the standard decentralized partially observable Markov decision process (Dec-POMDP)
 086 (Oliehoek et al., 2016), defined by a tuple $(\mathcal{S}, \mathcal{A}, P, r, \mathcal{O}, O, n, \gamma)$, where \mathcal{S} is the set of global states,
 087 $\mathcal{A} = \times_{i=1}^n \mathcal{A}_i$ the joint action space, $P : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ the transition function, $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$
 088 the reward function, \mathcal{O} the set of individual observations, $O : \mathcal{S} \times \{1, \dots, n\} \rightarrow \mathcal{O}$ the observation
 089 function, n the number of agents, and $\gamma \in (0, 1)$ the discount factor.

090 At each timestep t , the environment is in state $s_t \in \mathcal{S}$, and agent i selects an action $a_i \in \mathcal{A}_i$ based
 091 on its action-observation history $\tau_i \in (\mathcal{O}_i \times \mathcal{A}_i)^*$. The joint action is $\mathbf{a} = (a_1, \dots, a_n)$, leading to
 092 the next state $s_{t+1} \sim P(\cdot | s_t, \mathbf{a})$ and team reward $r(s_t, \mathbf{a})$.

093 A joint policy $\pi = (\pi_1, \dots, \pi_n)$ defines each agent’s policy π_i . The objective is to maximize the
 094 expected discounted return:

$$095 J(\pi) = \mathbb{E}_{s_0 \sim \rho, \mathbf{a}_t \sim \pi, s_{t+1} \sim P} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, \mathbf{a}_t) \right], \quad (1)$$

096 where ρ is the initial state distribution.

097 **Centralized Training with Decentralized Execution (CTDE).** In CTDE, training can leverage
 098 global state information, but execution requires each agent to act only on its local trajectory τ_i . This
 099 motivates value function factorization methods, where the joint action-value function $Q_{tot}(\tau, \mathbf{a})$
 100 is decomposed into individual utilities $Q_i(\tau_i, a_i)$. A common factorization principle is *individ-
 101 ual-global-max (IGM)* (Sunehag et al., 2017):

$$102 \arg \max_{\mathbf{a}} Q_{tot}(\tau, \mathbf{a}) = \left[\arg \max_{a_i} Q_i(\tau_i, a_i) \right]_{i=1}^n. \quad (2)$$

108 QMIX (Rashid et al., 2020a) enforces IGM by using a monotonic mixing function:
 109

$$110 \quad \frac{\partial Q_{tot}}{\partial Q_i} \geq 0, i = 1, \dots, n \quad (3)$$

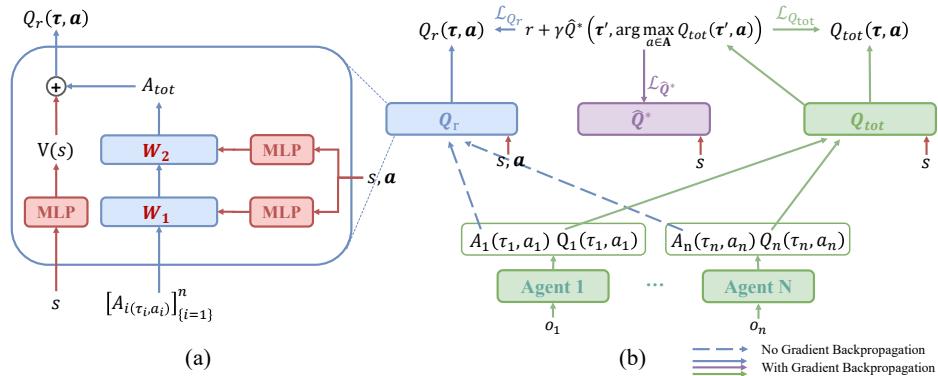
$$111$$

112 Subsequent works such as QPLEX (Wang et al., 2020) and QTRAN (Son et al., 2019) relax or
 113 generalize the decomposition principle, while others (e.g., WQMIX (Rashid et al., 2020b), CW-QMIX,
 114 OW-QMIX) assign weights to different joint actions during training. Despite progress, existing ap-
 115 proaches either suffer from limited expressiveness (e.g., strict monotonicity) or rely on heuristic
 116 weighting schemes that may introduce approximation errors. This motivates our proposed POW
 117 framework.

119 3 METHOD

121 Value decomposition methods under CTDE must factorize the joint action-value function into per-
 122 agent utilities. However, with monotonic mixing (e.g., QMIX), an agent may still receive an in-
 123 correct penalty if other agents act suboptimally, making it difficult to assign credit to the optimal
 124 joint actions. This motivates weighting schemes such as WQMIX (Rashid et al., 2020b), which ide-
 125 ally give higher training weights to optimal joint actions. Yet in practice, variants like CW-QMIX
 126 and OW-QMIX must approximate these weights without knowing the true optimal set, introduc-
 127 ing errors. POW addresses this challenge by learning a recognition-guided weighting scheme that
 128 provably converges toward the optimal set.

129 3.1 ARCHITECTURE OVERVIEW



144 Figure 1: (a) The Q_r Network structure. (b) The overall architecture of POW method. Q_{tot} can be
 145 any value function factorization network satisfying IGM.
 146

147 Fig. 1 illustrates the POW framework.

149 Key components are: (1) \hat{Q}^* , an unrestricted joint action value estimator that approximates the
 150 true optimal action value function Q^* without factorization or monotonic constraints. It provides
 151 the bootstrap target shared by all networks during training. (2) Q_{tot} , a monotonic mixing network
 152 enabling decentralized execution. Its optimality depends on correct weighting of optimal vs.
 153 suboptimal joint actions during learning. It can be any value factorization network satisfying IGM
 154 (e.g., QMIX, VDN, QPLEX); (3) the potentially optimal joint actions recognition module Q_r . It is
 155 used to identify a set of potentially optimal joint actions \mathcal{A}_r . Q_r is trained to approximate \hat{Q}^* (or
 156 Q^* in theoretical analysis), and its output determines the adaptive training weights applied to each
 157 joint action. It takes the joint action as input and provides an expressive joint action value model
 158 unconstrained by monotonicity but conforming to IGM.

159 The architecture of Q_r is shown in Fig. 1 a). The inputs of Q_r include: the global state s , the
 160 one-hot encoding of joint action, a and the fixed values of individual advantage functions A_i . This
 161 joint-action conditioning is crucial for distinguishing candidate actions, whereas in QPLEX it pri-
 162 marily increases expressiveness of Q_{tot} . By contrast, in POW this design is tied directly to the

162 recognition-weighting mechanism and its convergence properties (see Sec. 3.2). A_{tot} refers to the
 163 mixing of the individual agent advantage functions as in QPLEX. The advantage function is defined
 164 by $A_i(\tau_i, a_i) = Q_i(\tau_i, a_i) - \max_{a_i \in A_i} Q_i(\tau_i, a_i)$.

165 \hat{Q}^* , Q_{tot} and Q_r (detailed in Sec. 3.2 and Sec. 3.3) share the same Q-learning target:

$$\mathcal{L}_{\hat{Q}^*} = \mathbb{E}[(\hat{Q}^*(\tau, \mathbf{a}) - y)^2] \quad (4a)$$

$$\mathcal{L}_{Q_{tot}} = \mathbb{E}[w(s, \mathbf{a})(Q_{tot}(\tau, \mathbf{a}) - y)^2] \quad (4b)$$

$$\mathcal{L}_{Q_r} = \mathbb{E}[(Q_r(\tau, \mathbf{a}) - y)^2] \quad (4c)$$

171 where

$$y = r + \hat{Q}^*(\tau', \arg \max_{\mathbf{a} \in \mathcal{A}} Q_{tot}(\tau', \mathbf{a})) \quad (5)$$

172 Together, \hat{Q}^* , Q_{tot} , and Q_r form a mutually reinforcing system: Q_r proposes potentially optimal
 173 actions, the weighting guided by \mathcal{A}_r shapes the update of Q_{tot} , and \hat{Q}^* ensures consistent bootstrapping.
 174 We later show that this interaction guarantees the convergence of \mathcal{A}_r toward the true optimal
 175 action set.

181 3.2 RECOGNITION OF POTENTIALLY OPTIMAL JOINT ACTIONS

182 We define the recognition module Q_r that explicitly takes as input the global state s , individual
 183 action-values $Q_i(\tau_i, a_i)$, and the joint action \mathbf{a} . Here, conditioning on \mathbf{a} allows Q_r to assess the
 184 value of specific joint actions, enabling recognition of a candidate set \mathcal{A}_r of potentially optimal joint
 185 actions. Formally, the recognition module is defined as:

$$Q_r(\tau, \mathbf{a}) = \sum_{i=1}^n \lambda_i(s, \mathbf{a}) \left(Q_i(\tau_i, a_i) - \max_{a_i \in A_i} Q_i(\tau_i, a_i) \right) + V(s), \quad (6)$$

186 where $\lambda_i(s, \mathbf{a}) \geq 0$ are scaling factors. The subtraction term centers each agent’s action-value by its
 187 best individual choice, while $V(s)$ captures state-dependent value shared across agents. Intuitively,
 188 this form highlights whether a joint action sacrifices individual agent optimality, while allowing Q_r
 189 to adaptively weight such trade-offs.

190 Importantly, this construction also guarantees the IGM property. Since the contribution of each
 191 agent i is maximized exactly when a_i is its individually optimal action (the centered term becomes
 192 zero and all other actions are negative), maximizing $Q_r(\tau, \mathbf{a})$ over \mathbf{a} is achieved by maximizing
 193 each $Q_i(\tau_i, a_i)$ independently. Thus ensuring IGM without enforcing any monotonicity constraint
 194 on the underlying Q_i .

195 The training objective of Q_r is to approximate the optimal joint action value function Q^* in theory:

$$\mathcal{L}_{Q_r} = \mathbb{E}[(Q_r(\tau, \mathbf{a}) - Q^*(\tau, \mathbf{a}))^2], \quad (7)$$

200 During training, updates are applied to the parameters of the mixing function, leaving the parameters
 201 of the individual action value functions unchanged. The scales $\lambda_i(s, \mathbf{a})$ are computed by a hypernet-
 202 work, where the global state s and the joint action \mathbf{a} are used as inputs to obtain the neural network
 203 weights W_1 and W_2 . We take the absolute values of W_1 and W_2 to ensure that $\lambda_i(s, \mathbf{a}) \geq 0$.

204 **Definition 1** (Potentially optimal joint action set \mathcal{A}_r). We define $\mathcal{A}_{igm} := \{\mathbf{a} \in \mathcal{A} \mid \forall i : a_i \in \arg \max_{a_i \in \mathcal{A}_i} Q_i(\tau_i, a_i)\}$ be the set of joint action obtained by greedy individual choices. Let $\hat{\mathbf{a}} \in \mathcal{A}_{igm}$,
 205 then the potentially optimal joint action set is:

$$\mathcal{A}_r := \{\mathbf{a} \in \mathcal{A} \mid Q_r(s, \mathbf{a}) \geq Q_r(s, \hat{\mathbf{a}}) - C\}, \quad (8)$$

206 where $C \geq 0$ is a small tolerance constant for stability.

207 This definition ensures \mathcal{A}_r always contains at least the joint greedy action and potentially other
 208 promising joint actions.

216 **Theorem 1** (Containment of optimal joint actions). *Let $\mathcal{A}_{tgm} := \{\mathbf{a} \in \mathcal{A} \mid \mathbf{a} =$
 217 $\arg \max_{\mathbf{a} \in \mathcal{A}} Q^*(s, \mathbf{a})\}$ denote the set of truly optimal joint actions. If Q_r converges to Q^* , then
 218 $\mathcal{A}_{tgm} \subseteq A_r$.*

219
 220 Thus A_r is guaranteed not to exclude optimal actions, which is critical for policy improvement.
 221 Proofs are given in Appendix B.

223 3.3 RECOGNITION-GUIDED WEIGHTING FUNCTION

225 We now define the POW weighting function:

$$227 \quad 228 \quad w(s, \mathbf{a}) = \begin{cases} 1, & \mathbf{a} \in A_r, \\ \alpha, & \mathbf{a} \notin A_r, \alpha \in [0, 1), \end{cases} \quad (9)$$

229 where α down-weights actions outside A_r . In all our experiments, we set $\alpha = 0$, so only actions
 230 in A_r contribute to updates, aligning theory with practice. The training objective for the factorized
 231 value network Q_{tot} is then:

$$233 \quad \mathcal{L}_{Q_{tot}} = \mathbb{E}[w(s, \mathbf{a})(Q_{tot}(s, \mathbf{a}) - y)^2], \quad (10)$$

234 with target

$$236 \quad 237 \quad y = r + \gamma \hat{Q}^*(s', \arg \max_{\mathbf{a} \in \mathcal{A}} Q_{tot}(s', \mathbf{a})), \quad (11)$$

238 where \hat{Q}^* is an unrestricted joint value estimator used to approximate Q^* .

239 **Theorem 2** (Convergence of weighted training). *Under the weighting scheme in Eqn. 9, if A_r con-
 240 verges to contain only optimal joint actions, then Q_{tot} recovers the optimal policy.*

242 If Q_{tot} can recover the joint action with the maximal value of \hat{Q}^* , that is, when
 243 $\arg \max_{\mathbf{a} \in \mathcal{A}} Q_{tot}(\mathbf{r}', \mathbf{a}) = \arg \max_{\mathbf{a} \in \mathcal{A}} \hat{Q}^*(\mathbf{r}', \mathbf{a})$, \hat{Q}^* becomes the optimal joint action value function
 244 Q^* according to the Bellman equations indicated by Eqn. 4 and Eqn. 11. Thus Q_{tot} can learn the
 245 optimal policy.

247 Detailed proofs are given in Appendix B.

249 3.4 ITERATIVE WEIGHTED TRAINING

251 POW proceeds iteratively: (1) update Q_r toward approximating \hat{Q}^* using supervised targets, (2)
 252 update Q_{tot} using the weighting $w(s, \mathbf{a})$ defined by the current A_r , and (3) update \hat{Q}^* based on
 253 the updated Q_{tot} . This recognition-weighting loop continues throughout training. Unlike heuristic
 254 approximations in CW-QMIX or OW-QMIX, this iterative scheme ensures that A_r progressively
 255 contracts toward the true optimal set, closing the gap between theoretical guarantees and practical
 256 implementation. The pseudocode is provided in Alg. 1.

257 4 EXPERIMENTS

260 In this section, we instantiate our framework with QMIX and propose the POW-QMIX algorithm.
 261 We first evaluate on matrix games and a difficulty-enhanced predator-prey task, both of which ex-
 262 hibit strong non-monotonicity that challenges monotonic value factorization. We then test on the
 263 SMAC, a widely used but relatively monotonic benchmark. Finally, we extend the evaluation to
 264 SMACv2 and a highway-env intersection scenario.

265 We also conduct ablations to examine (i) the applicability of POW to other value decomposition
 266 methods, and (ii) the effect of increased network size. All experiments are implemented using
 267 PyMARL2 (Hu et al., 2021). Hyperparameters such as optimizer type and replay buffer size are
 268 tuned for each method. Further details are provided in Appendix F. All results are averaged over
 269 five independent runs with different random seeds and are reported with means and 95% confidence
 intervals.

270 **Algorithm 1** POW Training Procedure

271 **Require:** Replay buffer \mathcal{D} ; value networks $Q_{\text{tot}}, Q_r, \hat{Q}^*$; tolerance C

272 1: Initialize all network parameters

273 2: **for** each training iteration **do**

274 3: Sample a batch of episodes $\mathcal{B} = \{(\mathbf{o}_{1:T}, \mathbf{a}_{1:T}, r_{1:T})'\}$ from \mathcal{D}

275 4: Input observations into agent networks to generate histories:

276 5: $\mathcal{H} = \{(\boldsymbol{\tau}_1, \mathbf{a}_1, r_1, \boldsymbol{\tau}'_1; \dots; \boldsymbol{\tau}_T, \mathbf{a}_T, r_T, \boldsymbol{\tau}'_T)\}$ where $\boldsymbol{\tau}'_t = \boldsymbol{\tau}_{t+1}$

277 6: **for** each time step t and episode in batch **do**

278 7: Compute greedy next action under factorized critic by $\arg \max_{\mathbf{a}} Q_{\text{tot}}(\boldsymbol{\tau}', \mathbf{a})$.

279 8: Compute TD target y shared by all critics by Eqn. 11.

280 9: Update recognition network Q_r by minimizing Eqn. 4c.

281 10: Determine greedy action for recognition module under IGM: $\arg \max_{\mathbf{a}} Q_r(\boldsymbol{\tau}, \mathbf{a})$

282 11: Compute training weight w based on Eqn. 8 and Eqn. 9.

283 12: Update factorized critic Q_{tot} by Eqn. 10.

284 13: Update unconstrained value estimator \hat{Q}^* by Eqn. 4a.

285 14: **end for**

286 15: **end for**

287 16: **return** Q_{tot}

$A_2 \setminus A_1$	A	B	C
A	8	-12	-12
B	-12	0	0
C	-12	0	7.9

(a) Payoff Matrix

$Q_2 \setminus Q_1$	Q ₁	0.060(A)	-0.160(B)	-0.045(C)
Q ₂	0.041(A)	8.00	7.95	7.97
Q ₂	-0.150(B)	7.95	7.90	7.93
Q ₂	0.051(C)	7.98	7.92	7.95

(b) POW-QMIX: Q_1, Q_2, Q_{tot}

$Q_2 \setminus Q_1$	Q ₁	0.060(A)	-0.160(B)	-0.045(C)
Q ₂	0.041(A)	8.00	-12.00	-12.00
Q ₂	-0.150(B)	-12.00	0.00	0.00
Q ₂	0.051(C)	-12.00	0.00	7.90

(c) POW-QMIX: Q_1, Q_2, Q_r

$Q_2 \setminus Q_1$	-22.90(A)	-0.132(B)	0.092(C)
Q ₂	-23.23(A)	-8.11	-8.11
Q ₂	-0.141(B)	-8.10	-0.33
Q ₂	0.091(C)	-8.10	0.16

(d) QMIX: Q_1, Q_2, Q_{tot}

$Q_2 \setminus Q_1$	Q ₁	0.814(A)	0.133(B)	0.912(C)
Q ₂	0.835(A)	16.27	12.67	16.70
Q ₂	0.120(B)	13.21	9.62	13.63
Q ₂	0.906(C)	16.37	12.77	16.79

(e) OW-QMIX: Q_1, Q_2, Q_{tot}

$Q_2 \setminus Q_1$	Q ₁	0.060(A)	-0.160(B)	-0.045(C)
Q ₂	0.041(A)	8.00	7.95	7.97
Q ₂	-0.150(B)	7.95	7.90	7.93
Q ₂	0.051(C)	7.98	7.92	7.95

(f) CW-QMIX: Q_1, Q_2, Q_{tot}

$Q_2 \setminus Q_1$	Q ₁	-0.319(A)	-1.205(B)	0.004(C)
Q ₂	-0.314(A)	9.68	-12.77	-14.52
Q ₂	-1.100(B)	-12.04	-0.32	-0.08
Q ₂	-0.006(C)	-10.64	-0.38	9.69

(g) QPLEX: Q_1, Q_2, Q_{tot}

$Q_2 \setminus Q_1$	Q ₁	0.159(A)	-0.367(B)	0.143(C)
Q ₂	0.155(A)	8.04	6.89	8.01
Q ₂	-0.332(B)	6.72	5.87	6.71
Q ₂	0.150(C)	7.99	6.86	7.97

(h) ResQ: Q_1, Q_2, Q_{tot}

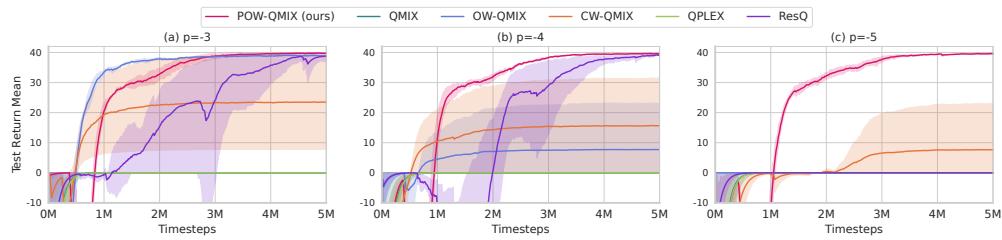
$Q_2 \setminus Q_1$	Q ₁	0.159(A)	-0.367(B)	0.143(C)
Q ₂	0.155(A)	8.04	-11.53	-11.42
Q ₂	-0.332(B)	-11.03	0.14	0.20
Q ₂	0.150(C)	-11.12	0.23	7.94

(i) ResQ: Q_1, Q_2, Q_{jt} 308 Figure 2: Payoff matrix of a one-step matrix game and reconstructed joint and individual values.
309 Boldface indicates greedy actions. Blue denotes the true optimal joint action, red denotes suboptimal
310 joint actions.

313 4.1 MATRIX GAME

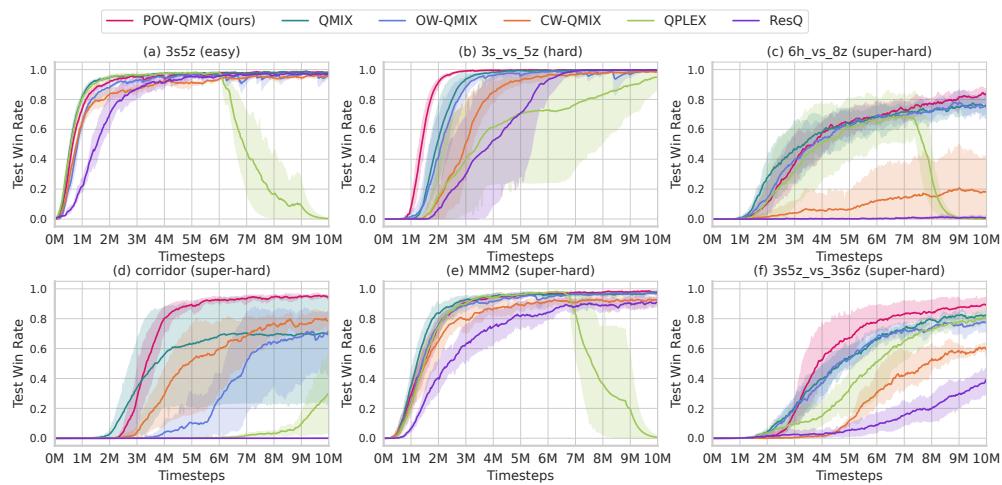
314 We begin with a coordination matrix game exhibiting strong non-monotonicity, following the setting
315 of ResQ. To remove effects of exploration randomness, we use $\epsilon = 1$ in ϵ -greedy, producing a
316 uniform data distribution. After convergence, we record the learned joint and individual values
317 (including Q_r for POW-QMIX and Q_{jt} for ResQ), shown in Fig. 2.

318 POW-QMIX, CW-QMIX, and ResQ successfully recover the optimal policy. In POW-QMIX, the
319 Q_r module precisely estimates the values of all joint actions, enabling accurate recognition of the
320 optimal set A_r for weighting. In contrast, QMIX converges to a locally optimal solution due to
321 monotonicity. OW-QMIX also fails, reflecting its approximation limitations. QPLEX shows partial
322 overestimation of the optimal joint action while remaining accurate elsewhere—an observation that
323 inspired our Q_r design.

324 4.2 PREDATOR–PREY
325334
335 Figure 3: Test return in Predator–Prey with three different mis-capture penalties.
336

337 In this task, predators must cooperate to capture prey. If an agent attempts *capture* without coordi-
338 nation, all agents receive a penalty p . Higher $|p|$ increases non-monotonicity and encourages passive
339 strategies.

340 Fig. 3 shows test returns under three penalties. POW-QMIX is the only method that consistently
341 learns the optimal cooperative strategy across all settings. This highlights its ability to resolve non-
342 monotonic structures where baselines fail.

343 4.3 SMAC
344362 Figure 4: Test win rate on SMAC maps.
363

364 We evaluate on six SMAC maps: one easy, one hard, and four super-hard. Fig. 4 shows that POW-
365 QMIX achieves strong performance across maps. Although SMAC is mostly monotonic (Hu et al.,
366 2021), POW-QMIX still matches or outperforms baselines. CW-QMIX, while successful in matrix
367 games, struggles to scale here. QPLEX exhibits instability due to its dueling architecture. OW-
368 QMIX performs well in SMAC but lacks theoretical guarantees, as shown in Fig. 2.

370 4.4 EVALUATION ON HIGHWAY-ENV INTERSECTION AND SMACv2
371

372 We include experiments on the highway-env intersection task (Leurent, 2018) and on SMACv2
373 (Ellis et al., 2023). These benchmarks introduce safety-critical decision making and generalization
374 challenges, complementing the main results.

375 As shown in Fig. 5, POW-QMIX achieves the best overall performance, successfully balancing
376 safety and efficiency. In comparison, CW-QMIX converges to overly conservative policies, QPLEX
377 suffers from training instability, and QMIX learns much more slowly. These results highlight POW-
378 QMIX’s superior ability to handle strongly non-monotonic environments.

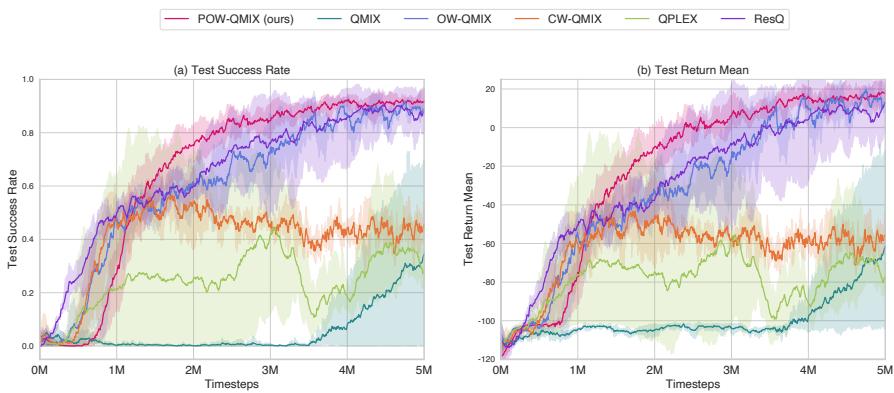


Figure 5: Test return in the highway-env intersection scenario.

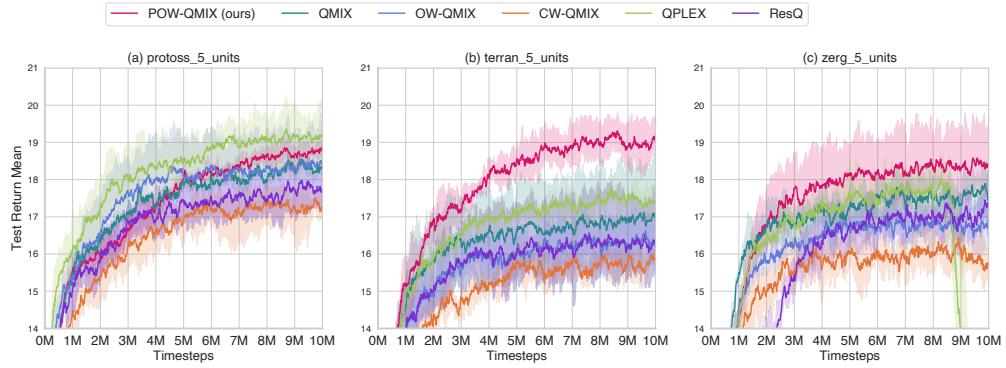


Figure 6: Test return in the SMACv2 benchmarks.

SMACv2 presents more subtle challenges: as win rates of different algorithms often saturate and appear indistinguishable, we adopt average test return as the evaluation metric. Fig. 6 shows that POW-QMIX consistently achieves strong performance across most tasks. While QPLEX outperforms POW-QMIX in the protoss scenario, it collapses in the zerg scenario. Notably, the ablation results in Sec. 4.5.1 show that POW-QPLEX successfully stabilizes QPLEX, confirming that POW’s benefits extend beyond QMIX.

4.5 ABLATION STUDIES

4.5.1 APPLYING POW TO VDN AND QPLEX

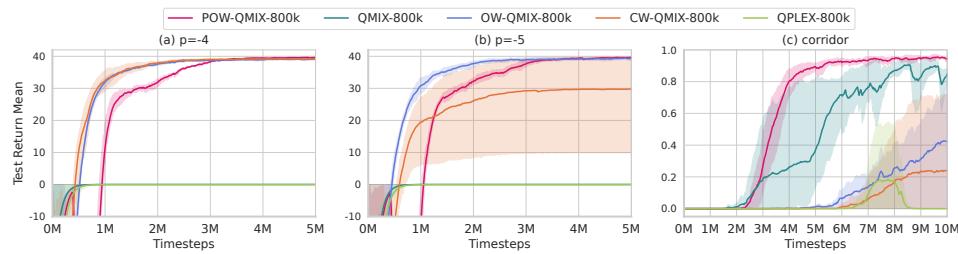
We integrate POW into VDN and QPLEX, producing POW-VDN and POW-QPLEX. Tab. 1 summarizes results across all environments, with detailed learning curves in Appendix E. In predator-prey, baseline networks fail to learn, but their POW variants converge quickly to optimal policies. In the highway-env crossroad task, POW greatly improves stability and success rates. On SMAC, POW reduces QPLEX instability, while in SMACv2, all POW variants consistently improve average returns.

4.5.2 ENLARGING THE NETWORK SIZE

To test whether performance gains come simply from added capacity, we enlarge baseline networks to match POW’s parameter count. Fig. 7 shows that larger networks improve some baselines (CW-QMIX, OW-QMIX) in predator-prey but hurt in SMAC. Enhanced QMIX improves in SMAC but still fails under non-monotonicity. QPLEX performs poorly regardless of size. Thus, gains of POW stem from its recognition-weighting design, not from parameter count. While Q_r adds moderate complexity (roughly 15–20% training time overhead), POW achieves stronger performance across

432
433
434
435Table 1: Performance comparison across environments. Crossroads and SMAC values are win rates; Predator–Prey and SMACv2 values are returns. \uparrow indicates improvement over the baseline. Bold indicates best performance.

Algorithm	Predator-Prey		Crossroads	SMAC			SMACv2		
	$p = -4$	$p = -5$		3s_vs_5z	corridor	MMM2	protoss	terran	zerg
QMIX	0	0	0.28	1.00	0.69	0.98	18.3	17.1	17.6
VDN	0	0	0.73	0.97	0.87	0.81	17.5	17.0	15.5
QPLEX	0	0	0.26	0.96	0.30	0.00	19.2	17.3	0
ResQ	40	0	0.88	1.00	0.00	0.90	17.7	16.3	17.5
CW-QMIX	16	8	0.43	0.99	0.79	0.92	17.2	16.0	15.7
OW-QMIX	8	0	0.88	1.00	0.70	0.98	18.4	16.3	16.9
POW-QMIX	40 \uparrow	40 \uparrow	0.92 \uparrow	1.00	0.95 \uparrow	0.98	18.8 \uparrow	19.0 \uparrow	18.4 \uparrow
POW-VDN	40 \uparrow	40 \uparrow	0.81 \uparrow	0.96	0.87	0.90 \uparrow	17.9 \uparrow	17.0	16.8 \uparrow
POW-QPLEX	40 \uparrow	40 \uparrow	0.93 \uparrow	1.00 \uparrow	0.94 \uparrow	0.93 \uparrow	19.9 \uparrow	19.4 \uparrow	18.1 \uparrow

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455Figure 7: Ablation: effect of network size. (a,b) Predator–Prey with $p = -4, -5$. (c) SMAC map.456
457
458

all tasks. We therefore describe POW as an effective trade-off between computational cost and policy quality.

462
463

5 RELATED WORK

464
465
466
467
468

Value decomposition in MARL. Value decomposition is the predominant paradigm under CTDE. VDN (Sunehag et al., 2017) assumes additivity, whereas QMIX (Rashid et al., 2020a) introduces a monotonic mixing network. QPLEX (Wang et al., 2020) improves expressiveness via a dueling structure and advantage-based mixing.

469
470
471
472
473
474
475
476
477
478

WQMIX (Rashid et al., 2020b) reveals the limitation of uniform weighting and proposes an idealized optimal-action–weighted objective. However, practical variants (CW-QMIX, OW-QMIX) must approximate the optimal action set and therefore cannot guarantee correctness of the assigned weights. Our method is most closely related to WQMIX but differs in two key respects: (1) POW replaces heuristic weighting with a recognition–weighting mechanism that provably converges toward the optimal joint action set; (2) our recognition module Q_r explicitly conditions on the joint action a , enabling reliable discrimination among actions, unlike QPLEX where joint-action inputs primarily serve to enhance representational capacity. Thus, POW resolves the gap between theoretical guarantees and practical realizations that neither WQMIX nor QPLEX addresses. More detailed comparisons are provided in Appendix A.

479
480
481
482
483
484
485

Beyond these classic methods, CIA (Liu et al., 2023) introduces contrastive identity-aware representation learning to improve credit assignment, and VDT (Zhao et al., 2025) leverages transformers to exploit temporal structure in multi-agent trajectories. Although effective, these methods are orthogonal to our focus: they enhance representation quality or temporal modeling rather than addressing the theoretical–practical mismatch in weighted value decomposition. Therefore, they do not directly evaluate the specific problem POW aims to solve.

Approaches such as REMIX (Mei et al., 2023) and concaveQ (Li et al., 2023) introduce alternative structural assumptions (e.g., concavity or regularization). Our method differs by maintaining gener-

486 ability and instead rethinking how potentially optimal joint actions can be recognized and up-weighted
 487 during training.
 488

489 **Approximation error in value-based MARL.** Several works highlight approximation error as a
 490 central challenge. ResQ (Shen et al., 2022) mitigates representational bias by injecting joint-action
 491 terms, while CW-QMIX and OW-QMIX approximate weighted learning heuristically and lack opti-
 492 mality guarantees. POW shares the motivation of reducing approximation error but introduces a
 493 new mechanism—joint-action conditioning via Q_r and iterative recognition-guided weighting—that
 494 ensures optimal actions are retained without requiring exhaustive search.
 495

496 **Beyond value decomposition.** Actor-critic MARL methods such as MADDPG (Lowe et al.,
 497 2017) and MAPPO (Yu et al., 2022) do not rely on value factorization but instead employ joint crit-
 498 ics or attention-based critics to stabilize training. These methods differ fundamentally from value
 499 decomposition and excel in continuous-action or competitive settings. Our focus is on cooperative
 500 discrete-action tasks, where value decomposition remains the most effective and widely used ap-
 501 proach. Nevertheless, POW can be viewed as complementary to actor-critic MARL, as both aim to
 502 identify joint action structures that improve stability and performance.
 503

504 6 CONCLUSIONS AND LIMITATIONS

505 We introduced Potentially Optimal Joint Actions Weighting (POW), an iterative weighted train-
 506 ing framework for cooperative multi-agent reinforcement learning. POW leverages a recognition
 507 module Q_r to identify potentially optimal joint actions and guides training by adaptively weighting
 508 them. We formally proved that under this scheme, the recognized set converges to the true optimal
 509 joint actions, ensuring that Q_{tot} recovers the optimal policy. Extensive experiments across matrix
 510 games, predator-prey, SMAC, SMACv2, and highway-env confirm that POW not only matches its
 511 theoretical guarantees but also achieves superior empirical performance over strong baselines.
 512

513 Despite these advantages, POW introduces additional modules to address non-monotonicity, which
 514 increase training complexity in large-scale environments. Moreover, our current study is limited to
 515 cooperative settings with discrete action spaces under CTDE. Extending POW to policy-gradient or
 516 actor-critic frameworks (e.g., MAPPO) would broaden its applicability to continuous control and
 517 mixed cooperative-competitive domains.
 518

519 REFERENCES

520 Yixin Huang, Shufan Wu, Zhongcheng Mu, Xiangyu Long, Sunhao Chu, and Guohong Zhao. A
 521 multi-agent reinforcement learning method for swarm robots in space collaborative exploration.
 522 In *2020 6th international conference on control, automation and robotics (ICCAR)*, pages 139–
 523 144. IEEE, 2020.

525 Lukas M Schmidt, Johanna Brosig, Axel Plinge, Bjoern M Eskofier, and Christopher Mutschler. An
 526 introduction to multi-agent reinforcement learning and review of its application to autonomous
 527 mobility. In *2022 IEEE 25th International Conference on Intelligent Transportation Systems*
 528 (*ITSC*), pages 1342–1349. IEEE, 2022.

530 J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S
 531 Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo: Gym
 532 for multi-agent reinforcement learning. *Advances in Neural Information Processing Systems*, 34:
 533 15032–15043, 2021.

534 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
 535 agent actor-critic for mixed cooperative-competitive environments. *Advances in neural informa-
 536 tion processing systems*, 30, 2017.

538 Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
 539 Counterfactual multi-agent policy gradients. In *Proceedings of the AAAI conference on artificial
 intelligence*, volume 32, 2018.

540 Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
 541 optimal joint policy of maximum-entropy multi-agent reinforcement learning. In *International*
 542 *Conference on Machine Learning*, pages 12491–12500. PMLR, 2021.

543

544 Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
 545 Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
 546 networks for cooperative multi-agent learning. *arXiv preprint arXiv:1706.05296*, 2017.

547

548 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
 549 and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
 550 learning. *The Journal of Machine Learning Research*, 21(1):7234–7284, 2020a.

551

552 Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
 553 multi-agent q-learning. *arXiv preprint arXiv:2008.01062*, 2020.

554

555 Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
 556 Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
 557 The starcraft multi-agent challenge. *arXiv preprint arXiv:1902.04043*, 2019.

558

559 Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
 560 monotonic value function factorisation for deep multi-agent reinforcement learning. *Advances in*
 561 *neural information processing systems*, 33:10199–10210, 2020b.

562

563 Frans A Oliehoek, Christopher Amato, et al. *A concise introduction to decentralized POMDPs*,
 564 volume 1. Springer, 2016.

565

566 Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
 567 to factorize with transformation for cooperative multi-agent reinforcement learning. In *International*
 568 *conference on machine learning*, pages 5887–5896. PMLR, 2019.

569

570 Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih-wei Liao. Rethinking the imple-
 571 mentation tricks and monotonicity constraint in cooperative multi-agent reinforcement learning.
 572 *arXiv preprint arXiv:2102.03479*, 2021.

573

574 Edouard Leurent. An environment for autonomous driving decision-making. <https://github.com/eleurent/highway-env>, 2018.

575

576 Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
 577 Jakob Nicolaus Foerster, and Shimon Whiteson. SMACv2: An improved benchmark for coop-
 578 erative multi-agent reinforcement learning. In *Thirty-seventh Conference on Neural Information
 579 Processing Systems Datasets and Benchmarks Track*, 2023.

580

581 Shunyu Liu, Yihe Zhou, Jie Song, Tongya Zheng, Kaixuan Chen, Tongtian Zhu, Zunlei Feng, and
 582 Mingli Song. Contrastive identity-aware learning for multi-agent value decomposition. *Pro-
 583 ceedings of the AAAI Conference on Artificial Intelligence*, 37(10):11595–11603, Jun. 2023.
 584 doi: 10.1609/aaai.v37i10.26370. URL <https://ojs.aaai.org/index.php/AAAI/article/view/26370>.

585

586 Zhitong Zhao, Ya Zhang, Wenyu Chen, Fan Zhang, Siying Wang, and Yang Zhou. Sequence
 587 value decomposition transformer for cooperative multi-agent reinforcement learning. *Infor-
 588 mation Sciences*, 720:122514, 2025. ISSN 0020-0255. doi: <https://doi.org/10.1016/j.ins.2025.122514>. URL <https://www.sciencedirect.com/science/article/pii/S0020025525006462>.

589

590 Yongsheng Mei, Hanhan Zhou, and Tian Lan. Remix: Regret minimization for monotonic value
 591 function factorization in multiagent reinforcement learning. *arXiv preprint arXiv:2302.05593*,
 592 2023.

593

594 Huiqun Li, Hanhan Zhou, Yifei Zou, Dongxiao Yu, and Tian Lan. ConcaveQ: Non-Monotonic
 595 Value Function Factorization via Concave Representations in Deep Multi-Agent Reinforcement
 596 Learning, December 2023.

594 Siqi Shen, Mengwei Qiu, Jun Liu, Weiquan Liu, Yongquan Fu, Xinwang Liu, and Cheng Wang.
595 Resq: A residual q function-based approach for multi-agent reinforcement learning value factor-
596 ization. *Advances in Neural Information Processing Systems*, 35:5471–5483, 2022.
597

598 Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The Surprising
599 Effectiveness of PPO in Cooperative, Multi-Agent Games, 2022. URL <http://arxiv.org/abs/2103.01955>.
600

601 Chang Huang, Junqiao Zhao, Hongtu Zhou, Hai Zhang, Xiao Zhang, and Chen Ye. Multi-agent
602 decision-making at unsignalized intersections with reinforcement learning from demonstrations.
603 In *2023 IEEE Intelligent Vehicles Symposium (IV)*, pages 1–6, 2023. doi: 10.1109/IV55152.2023.
604 10186792.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 A RELATIONSHIP TO RELATED WORKS
649650 This section clarifies the relationship of POW to prior value decomposition MARL methods. Al-
651 though POW draws inspiration from both WQMIX and QPLEX, its design addresses their key lim-
652 itations and provides distinct contributions.
653654 **POW vs. WQMIX.** WQMIX (Rashid et al., 2020b) proposes an idealized scheme in which op-
655 timal joint actions are assigned higher training weights. In principle, this enables recovery of the
656 optimal value function. However, its practical implementations (CW-QMIX, OW-QMIX) must ap-
657 proximate the optimal actions using heuristic strategies, which introduces unavoidable approxima-
658 tion error and prevents strong guarantees. POW differs fundamentally: we introduce a recognition
659 module Q_r that explicitly incorporates joint actions \mathbf{a} as inputs and adaptively identifies a set of po-
660 tentially optimal joint actions \mathbf{A}_r . The weighting function then prioritizes actions in \mathbf{A}_r . We provide
661 theoretical analysis (Theorem 1 and 2) showing that \mathbf{A}_r converges toward containing only optimal
662 actions, thereby eliminating the approximation gap present in WQMIX. Thus, POW achieves the
663 theoretical guarantee envisioned by WQMIX without resorting to exhaustive search or heuristic ap-
664 proximations.
665666 **POW vs. QPLEX.** QPLEX (Wang et al., 2020) enhances representational capacity through a
667 dueling-based decomposition that incorporates joint-action-dependent advantage terms. Although
668 this also conditions on joint actions, the primary goal is to increase expressiveness of the value
669 function rather than to guide training dynamics. By contrast, POW leverages joint action inputs
670 within Q_r for a fundamentally different purpose: recognizing potentially optimal joint actions and
671 using them to drive a principled weighting scheme. Ablation results (Tab. 1 and Appendix E) confirm
672 that POW’s performance gains cannot be explained merely by including joint action information.
673 Instead, they arise from the recognition-weighting mechanism, which explicitly aligns the training
674 process with the optimal joint value function and provides theoretical guarantees absent in QPLEX.
675676 **POW vs. ResQ.** ResQ (Shen et al., 2022) introduces an auxiliary joint-action value term to reduce
677 representational bias. However, its objective remains to approximate Q_{tot} without targeted weight-
678 ing of potentially optimal joint actions. POW differs by explicitly reweighting the learning process
679 toward recognized optimal actions, offering a more direct mechanism to recover optimal policies.
680 As shown in our experiments (Fig. 2, Tab. 1), POW outperforms ResQ in environments with strong
681 non-monotonicity.
682683 B PROOF OF THEOREMS
684685 In this section we provide detailed proofs of the main theoretical results. Compared with the original
686 WQMIX analysis, our derivations clarify why the proposed recognition module Q_r avoids approx-
687 imation errors, and how the recognition-weighting mechanism guarantees recovery of the optimal
688 policy. We explicitly restate all assumptions to avoid ambiguity.
689690 C PROOF OF THEOREMS
691692 C.1 LEMMA 1
693694 For any τ and joint action $\mathbf{a} \notin \mathbf{A}_{igm}$, if Q_r has converged, it holds that
695

696
$$Q_r(\tau, \mathbf{a}) = \min(Q_r(\tau, \hat{\mathbf{a}}), Q^*(\tau, \mathbf{a})).$$

697

698 *Proof.* By the definition of Q_r , for any $\mathbf{a} \notin \mathbf{A}_{igm}$ we have
699

700
$$Q_r(\tau, \mathbf{a}) \leq Q_r(\tau, \hat{\mathbf{a}}).$$

701

702 The local loss for each joint action is
703

704
$$\mathcal{L}_{Q_r}(\tau, \mathbf{a}) = (Q_r(\tau, \mathbf{a}) - Q^*(\tau, \mathbf{a}))^2.$$

705

706 Consider two cases:
707

702 • If $Q^*(\tau, a) \geq Q_r(\tau, \hat{a})$, then
 703

$$(Q_r(\tau, a) - Q^*(\tau, a))^2 \geq (Q_r(\tau, \hat{a}) - Q^*(\tau, a))^2.$$

704 Minimizing $\mathcal{L}_{Q_r}(\tau, a)$ requires $Q_r(\tau, a)$ to be as large as possible under the constraint
 705 $Q_r(\tau, a) \leq Q_r(\tau, \hat{a})$, yielding
 706

$$Q_r(\tau, a) = Q_r(\tau, \hat{a}) = \min(Q_r(\tau, \hat{a}), Q^*(\tau, a)).$$

707 • If $Q^*(\tau, a) < Q_r(\tau, \hat{a})$, the loss is minimized when
 708

$$Q_r(\tau, a) = Q^*(\tau, a) = \min(Q_r(\tau, \hat{a}), Q^*(\tau, a)).$$

709 Combining both cases completes the proof.
 710

711 C.2 LEMMA 2

712 Let Q_r have converged. Then it holds that
 713

$$Q_r(\tau, \hat{a}) \leq Q^*(\tau, a^*),$$

714 where $a^* \in \mathbf{A}_{tgm}$ is any truly optimal joint action.
 715

716 *Proof.* Suppose, for contradiction, that
 717

$$Q_r(\tau, \hat{a}) > Q^*(\tau, a^*).$$

718 From Lemma 1, for any $a \notin \mathbf{A}_{igm}$ we have
 719

$$Q_r(\tau, a) = \min(Q_r(\tau, \hat{a}), Q^*(\tau, a)) = Q^*(\tau, a).$$

720 Construct a new function Q'_r based on Q_r :
 721

$$Q'_r(\tau, a) = \begin{cases} Q^*(\tau, a^*), & a \in \mathbf{A}_{igm}, \\ Q_r(\tau, a), & a \notin \mathbf{A}_{igm}. \end{cases}$$

722 The corresponding loss for Q'_r is
 723

$$\begin{aligned} \mathcal{L}_{Q'_r} &= \sum_{a \in \mathbf{A}_{igm}} (Q'_r(\tau, a) - Q^*(\tau, a))^2 + \sum_{a \notin \mathbf{A}_{igm}} (Q_r(\tau, a) - Q^*(\tau, a))^2 \\ &= \sum_{a \in \mathbf{A}_{igm} \cap \mathbf{A}_r} (Q'_r(\tau, a) - Q^*(\tau, a))^2 + \sum_{a \in \mathbf{A}_{igm} \setminus \mathbf{A}_r} (Q_r(\tau, a) - Q^*(\tau, a))^2 \\ &< \sum_{a \in \mathbf{A}_{igm} \cap \mathbf{A}_r} (Q_r(\tau, \hat{a}) - Q^*(\tau, a))^2 + \sum_{a \in \mathbf{A}_{igm} \setminus \mathbf{A}_r} (Q_r(\tau, a) - Q^*(\tau, a))^2 \\ &= \mathcal{L}_{Q_r}. \end{aligned}$$

724 Since Q_r is assumed to have fully converged, the loss cannot be decreased further. But $\mathcal{L}_{Q'_r} < \mathcal{L}_{Q_r}$
 725 under the assumption $Q_r(\tau, \hat{a}) > Q^*(\tau, a^*)$, which is a contradiction.
 726

727 Hence, we must have
 728

$$Q_r(\tau, \hat{a}) \leq Q^*(\tau, a^*),$$

729 and Lemma 2 holds.
 730

731 C.3 THEOREM 1 CONTAINMENT OF OPTIMAL JOINT ACTIONS

732 For any τ and joint action a , let Q_r have converged. Then we have
 733

$$\mathbf{A}_{tgm} \subseteq \mathbf{A}_r,$$

734 i.e., all truly optimal joint actions are contained in the potentially optimal set A_r .
 735

736 *Proof.* Consider any $a^* \in \mathbf{A}_{tgm}$.
 737

756 • If $\mathbf{a}^* \in \mathbf{A}_{igm}$, then by definition $\mathbf{A}_{igm} \subseteq \mathbf{A}_r$, and thus $\mathbf{a}^* \in \mathbf{A}_r$.
 757 • If $\mathbf{a}^* \notin \mathbf{A}_{igm}$, from Lemma 1 we have

$$759 \quad Q_r(\boldsymbol{\tau}, \mathbf{a}^*) = \min(Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}), Q^*(\boldsymbol{\tau}, \mathbf{a}^*)) = Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}).$$

760 By Lemma 2, $Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}) \leq Q^*(\boldsymbol{\tau}, \mathbf{a}^*)$, so

$$762 \quad Q_r(\boldsymbol{\tau}, \mathbf{a}^*) \geq Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}) - C,$$

763 and therefore $\mathbf{a}^* \in \mathbf{A}_r$.

765 Since every $\mathbf{a}^* \in \mathbf{A}_{tgm}$ is included in \mathbf{A}_r , we conclude that

$$767 \quad \mathbf{A}_{tgm} \subseteq \mathbf{A}_r.$$

769 This completes the proof.

770 C.4 LEMMA 3

772 When Q_r has converged:

774 • If $\mathbf{A}_{igm} \subseteq \mathbf{A}_{tgm}$, then

$$776 \quad Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}) = Q^*(\boldsymbol{\tau}, \mathbf{a}^*).$$

778 • If $\mathbf{A}_{igm} \not\subseteq \mathbf{A}_{tgm}$, then

$$779 \quad \min_{\mathbf{a} \in \mathbf{A}_{igm}} Q^*(\boldsymbol{\tau}, \mathbf{a}) < Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}) < Q^*(\boldsymbol{\tau}, \mathbf{a}^*).$$

781 *Proof.*

783 • If $\mathbf{A}_{igm} \subseteq \mathbf{A}_{tgm}$, then setting $Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}) = Q^*(\boldsymbol{\tau}, \mathbf{a}^*)$ achieves $\mathcal{L}_{Q_r} = 0$. Any other value
 784 leads to $\mathcal{L}_{Q_r} > 0$, so the minimum is achieved exactly when $Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}) = Q^*(\boldsymbol{\tau}, \mathbf{a}^*)$.
 785 • If $\mathbf{A}_{igm} \not\subseteq \mathbf{A}_{tgm}$, split the loss \mathcal{L}_{Q_r} into

$$787 \quad \mathcal{L}_1 = \sum_{\mathbf{a} \in \mathbf{A}_{igm} \cup \mathbf{A}_{tgm}} (Q_r(\boldsymbol{\tau}, \mathbf{a}) - Q^*(\boldsymbol{\tau}, \mathbf{a}))^2,$$

$$790 \quad \mathcal{L}_2 = \sum_{\mathbf{a} \notin \mathbf{A}_{igm} \cup \mathbf{A}_{tgm}} (Q_r(\boldsymbol{\tau}, \mathbf{a}) - Q^*(\boldsymbol{\tau}, \mathbf{a}))^2.$$

793 By Lemmas 1 and 2, for $\mathbf{a} \in \mathbf{A}_{igm} \cup \mathbf{A}_{tgm}$, $Q_r(\boldsymbol{\tau}, \mathbf{a}) = Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}})$, so

$$794 \quad \mathcal{L}_1 = \sum_{\mathbf{a} \in \mathbf{A}_{igm} \cup \mathbf{A}_{tgm}} (Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}) - Q^*(\boldsymbol{\tau}, \mathbf{a}))^2.$$

797 Consider \mathcal{L}_1 as a quadratic function of $Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}})$. Its minimum m satisfies

$$799 \quad \min_{\mathbf{a} \in \mathbf{A}_{igm}} Q^*(\boldsymbol{\tau}, \mathbf{a}) < m < Q^*(\boldsymbol{\tau}, \mathbf{a}^*).$$

801 For \mathcal{L}_2 , since $Q_r(\boldsymbol{\tau}, \mathbf{a}) \leq Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}})$ by Lemma 1, it is monotonically decreasing
 802 for $Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}) < \max_{\mathbf{a} \notin \mathbf{A}_{igm} \cup \mathbf{A}_{tgm}} Q^*(\boldsymbol{\tau}, \mathbf{a})$, and constant for $Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}) \geq$
 803 $\max_{\mathbf{a} \notin \mathbf{A}_{igm} \cup \mathbf{A}_{tgm}} Q^*(\boldsymbol{\tau}, \mathbf{a})$.

804 Combining \mathcal{L}_1 and \mathcal{L}_2 , the global minimum of $\mathcal{L}_{Q_r} = \mathcal{L}_1 + \mathcal{L}_2$ occurs at a value

$$806 \quad \min_{\mathbf{a} \in \mathbf{A}_{igm}} Q^*(\boldsymbol{\tau}, \mathbf{a}) < Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}) < Q^*(\boldsymbol{\tau}, \mathbf{a}^*),$$

808 establishing the second case.

809 This completes the proof.

810 C.5 THEOREM 2 (CONVERGENCE OF WEIGHTED TRAINING)
811812 Assuming Q_{tot} satisfies IGM and has a unique maximal joint action $\hat{\mathbf{a}}$, there exists $\alpha = 0$ such that
813 Q_{tot} converges with $\hat{\mathbf{a}} \in \mathbf{A}_{tgm}$ and $\mathbf{A}_r = \mathbf{A}_{tgm}$.814 *Proof.*
815816 We consider the weighted loss for Q_{tot} :

817
$$\mathcal{L}_{Q_{tot}} = \sum_{\mathbf{a}} w(s, \mathbf{a}) (Q_{tot}(\boldsymbol{\tau}, \mathbf{a}) - Q^*(\boldsymbol{\tau}, \mathbf{a}))^2.$$

818
819

820 Partition joint actions as in the method section:

821

- $\mathbf{a} = \hat{\mathbf{a}}$,
- $\mathbf{a} \in \mathbf{A}_r, \mathbf{a} \neq \hat{\mathbf{a}}, Q^*(\boldsymbol{\tau}, \mathbf{a}) \geq Q_{tot}(\boldsymbol{\tau}, \hat{\mathbf{a}})$,
- $\mathbf{a} \in \mathbf{A}_r, \mathbf{a} \neq \hat{\mathbf{a}}, Q^*(\boldsymbol{\tau}, \mathbf{a}) < Q_{tot}(\boldsymbol{\tau}, \hat{\mathbf{a}})$,
- $\mathbf{a} \notin \mathbf{A}_r$ (weighted by α).

822823 When $\alpha = 0$, the last term is zero. Then we exclude the third term and get a lower bound:
824

825
$$\mathcal{L}_{Q_{tot}} \geq (Q_{tot}(\boldsymbol{\tau}, \hat{\mathbf{a}}) - Q^*(\boldsymbol{\tau}, \hat{\mathbf{a}}))^2 + \sum_{\substack{\mathbf{a} \in \mathbf{A}_r, \mathbf{a} \neq \hat{\mathbf{a}} \\ Q^*(\boldsymbol{\tau}, \mathbf{a}) \geq Q_{tot}(\boldsymbol{\tau}, \hat{\mathbf{a}})}} (Q_{tot}(\boldsymbol{\tau}, \mathbf{a}) - Q^*(\boldsymbol{\tau}, \mathbf{a}))^2.$$

826
827

828 Similarly, after Q_r converges, its loss takes the same form:
829

830
$$\mathcal{L}_{Q_r} = (Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}) - Q^*(\boldsymbol{\tau}, \hat{\mathbf{a}}))^2 + \sum_{\substack{\mathbf{a} \in \mathbf{A}_r, \mathbf{a} \neq \hat{\mathbf{a}} \\ Q^*(\boldsymbol{\tau}, \mathbf{a}) \geq Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}})}} (Q_r(\boldsymbol{\tau}, \mathbf{a}) - Q^*(\boldsymbol{\tau}, \mathbf{a}))^2.$$

831
832

833 Define $Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}) = m$ at the minimum of \mathcal{L}_{Q_r} . And for joint actions that satisfy $\mathbf{a} \in \mathbf{A}_r, \mathbf{a} \neq \hat{\mathbf{a}}, Q^*(\boldsymbol{\tau}, \mathbf{a}) \geq Q_{tot}(\boldsymbol{\tau}, \hat{\mathbf{a}})$, $Q_{tot}(\boldsymbol{\tau}, \mathbf{a}) \leq Q_{tot}(\boldsymbol{\tau}, \hat{\mathbf{a}})$, $Q_{tot}(\boldsymbol{\tau}, \mathbf{a})$ should be as large as possible and finally equal to $Q_{tot}(\boldsymbol{\tau}, \hat{\mathbf{a}})$. Therefore, the minimum values of $\mathcal{L}_{Q_{tot}}$ and \mathcal{L}_{Q_r} are actually the same.
834 We can then construct a valid Q_{tot} satisfying all consumptions:
835

836
$$Q_{tot}(\boldsymbol{\tau}, \mathbf{a}) = \begin{cases} m + \epsilon, & \mathbf{a} = \hat{\mathbf{a}}, \\ m, & \mathbf{a} \neq \hat{\mathbf{a}}, \end{cases}$$

837

838 where ϵ ensures a unique maximal joint action.
839840 Two cases arise:
841842

- If $\hat{\mathbf{a}} \in \mathbf{A}_{tgm}$, then $Q_{tot}(\boldsymbol{\tau}, \hat{\mathbf{a}}) = Q_r(\boldsymbol{\tau}, \hat{\mathbf{a}}) = Q^*(\boldsymbol{\tau}, \mathbf{a}^*)$, and Q_{tot} has converged.
- If $\hat{\mathbf{a}} \notin \mathbf{A}_{tgm}$, Lemma 3 gives $Q^*(\boldsymbol{\tau}, \hat{\mathbf{a}}) < m < Q^*(\boldsymbol{\tau}, \mathbf{a}^*)$.

843 Construct

844
$$Q'_{tot}(\boldsymbol{\tau}, \mathbf{a}) = \begin{cases} Q^*(\boldsymbol{\tau}, \mathbf{a}^*), & \mathbf{a} = \mathbf{a}^*, \\ m, & \mathbf{a} \neq \mathbf{a}^*, \end{cases}$$

845

846 which satisfies $\mathcal{L}_{Q'_{tot}} < \mathcal{L}_{Q_{tot}}$, ensuring iterative training that moves $\hat{\mathbf{a}}$ toward \mathbf{A}_{tgm} .
847848 Thus, with iterative training and $\alpha = 0$, Q_{tot} converges such that $\hat{\mathbf{a}} \in \mathbf{A}_{tgm}$ and $\mathbf{A}_r = \mathbf{A}_{tgm}$. The
849 result also holds for Q_{tot} satisfying IGM without strict monotonicity, e.g., QPLEX.
850851 C.6 REMARK ON THE UNIQUE MAXIMAL JOINT ACTION ASSUMPTION
852853 In Theorem 2, we assume that Q_{tot} has a unique maximal joint action $\hat{\mathbf{a}}$ for simplicity of analysis.
854 In practice, this assumption can be relaxed:
855856

- Even if multiple joint actions achieve the same maximal value, the weighted training procedure
857 will assign higher emphasis to those in \mathbf{A}_{tgm} , guiding the learning dynamics toward
858 the set of potentially optimal joint actions.

864 • The uniqueness can also be enforced with an arbitrarily small perturbation ϵ added to break
 865 ties, which does not affect policy performance but ensures theoretical convergence of the
 866 proof.
 867 • Empirically, in stochastic environments or with function approximation, exact ties are rare,
 868 so this assumption is reasonable for most practical multi-agent RL tasks.
 869

870 Thus, the assumption mainly simplifies the theoretical exposition without restricting the practical
 871 applicability of the method.
 872

873 D DISCUSSION 874

875 This section provides an accessible discussion of the motivation and design rationale behind POW,
 876 clarifying the innovations and avoiding potential confusion with existing value factorization meth-
 877 ods.
 878

879 D.1 CORE INNOVATIONS 880

881 The novelty of POW is reflected in two key aspects: (1) It eliminates the need to traverse the entire
 882 exponentially large joint action space when recognizing optimal joint actions; (2) It provides a theo-
 883 retical guarantee of convergence to the global optimum, without introducing approximation error in
 884 practice.
 885

886 These advantages directly address the limitations of prior approaches such as WQMIX and QPLEX.
 887

888 D.2 PROBLEM CONTEXT 889

890 Within the CTDE framework, the IGM condition requires training on a centralized Q_{tot} function.
 891 Due to the monotonicity constraints imposed by mixing networks (e.g., QMIX), a joint action may
 892 be incorrectly undervalued when some agents take suboptimal actions. This prevents accurate esti-
 893 mation of globally optimal joint actions.
 894

895 WQMIX mitigates this by reweighting potentially optimal joint actions more heavily during training
 896 (Rashid et al., 2020b). However, identifying these actions requires an unrestricted value function
 897 over the full joint action space. Since the joint action space grows exponentially with the number
 898 of agents, WQMIX resorts to approximations that inevitably introduce error, limiting its practical
 899 applicability.
 900

901 D.3 DESIGN RATIONALE OF Q_r 902

903 POW avoids the drawbacks of WQMIX by introducing a recognition module, Q_r , that directly iden-
 904 tifies a superset of potentially optimal joint actions, denoted \mathbf{A}_r . Instead of exhaustively searching
 905 over all joint actions, POW uses $\hat{\mathbf{a}} = \arg \max_{\mathbf{a}} Q_r(\tau, \mathbf{a})$ as a reference and recognizes \mathbf{A}_r without
 906 approximation. This set is then weighted more strongly during training of Q_{tot} , ensuring accurate
 907 estimation of globally optimal policies.
 908

909 To achieve this, Q_r is designed with three essential properties:
 910

911 **1. Independence of joint action values.** Q_r explicitly takes the joint action \mathbf{a} as input, ensuring
 912 that $Q_r(\tau, \mathbf{a})$ is independently parameterized for each action. This avoids the monotonic coupling
 913 between joint actions present in QMIX’s mixing structure, enabling Q_r to recover the true $Q^*(\tau, \mathbf{a})$
 914 values without interference.
 915

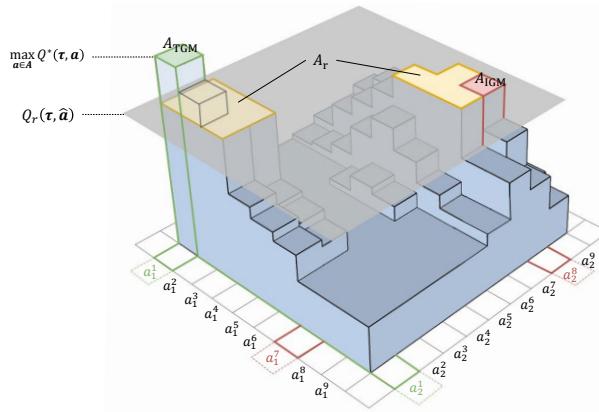
916 **2. Satisfaction of IGM.** Although free from monotonicity, Q_r still satisfies the IGM condition,
 917 i.e., $\arg \max_{\mathbf{a}} Q_r(\tau, \mathbf{a}) = \hat{\mathbf{a}}$. This allows $\hat{\mathbf{a}}$ to serve as a baseline for identifying all potentially
 918 optimal joint actions in \mathbf{A}_r .
 919

920 **3. Accurate recovery of Q^* .** Q_r is trained against the true joint action values Q^* , rather than
 921 surrogate targets. Thanks to its independence property, Q_r can precisely match $Q^*(\tau, \mathbf{a})$ for each
 922 action, ensuring that \mathbf{A}_r can be recognized by simple comparison with $Q_r(\tau, \hat{\mathbf{a}})$.
 923

918 D.4 HOW Q_r ENABLES POW
919

920 These three properties guarantee that Q_r recovers the set A_r without approximation, and that A_r
921 gradually contracts to A_{tgm} as training proceeds. This mechanism enables POW to retain the
922 strengths of WQIMIX (emphasizing potentially optimal joint actions) while avoiding its reliance
923 on approximations. Unlike QPLEX, which assigns equal weight to all joint actions and often suffers
924 from instability, POW selectively emphasizes A_r , ensuring both stability and convergence guaran-
925 tees.

926 Fig. 8 provides an intuitive visualization: Q_r establishes a baseline plane at $Q_r(\tau, \hat{a})$, above which
927 potentially optimal actions are recognized. As training proceeds, this plane rises until it aligns with
928 the true global optimum, at which point $A_r = A_{tgm}$ and the optimal policy is recovered.
929



944 Figure 8: This figure illustrates the Q^* -value landscape, where the height of each column represents
945 the Q^* -value associated with a particular joint action. (The exact heights are not critical for the
946 concepts discussed herein.) The current convergence state of the Q_r network resembles Stage 2 in
947 Fig. 9. The red area represents \hat{a} . The yellow area highlights A_r , which is determined via \hat{a} and
948 represents the subset of actions on which POW focuses its weighted training efforts. The green area
949 denotes the global optimal joint actions. For Q_r , the Q-values beneath the conceptual plane are
950 already learned, while the Q-values within A_r are set at the plane's level. As the training progresses,
951 the plane is expected to rise incrementally, identifying increasingly higher Q^* -values.
952

953 D.5 ILLUSTRATIVE EXAMPLE
954

Stage I				Stage II				Stage III			
$A_1 \setminus A_2$	A	B	C	$A_1 \setminus A_2$	A	B	C	$A_1 \setminus A_2$	A	B	C
A	2.78	2.81	3.11	A	3.97	3.88	4.46	A	8.41	6.89	7.18
B	2.78	2.81	3.11	B	3.93	3.83	4.42	B	7.70	6.19	6.48
C	2.78	2.91	3.21	C	4.13	4.03	4.62	C	7.87	6.36	6.65

Q_{tot}				Q_{tot}				Q_{tot}			
$A_1 \setminus A_2$	A	B	C	$A_1 \setminus A_2$	A	B	C	$A_1 \setminus A_2$	A	B	C
A	3.63	-12.34	-12.63	A	7.90	-12.24	-11.95	A	8.00	-12.12	-12.06
B	-11.8	-0.11	-0.03	B	-12.06	0.05	0.04	B	-12.06	-0.03	-0.05
C	-11.94	0.12	3.65	C	-11.99	0.12	7.90	C	-11.96	-0.02	7.90

Q_r				Q_r				Q_r			
Q_i	A	B	C	Q_i	A	B	C	Q_i	A	B	C
Q_1	-0.16	-0.20	0.31	Q_1	-0.06	-0.21	0.43	Q_1	0.57	-0.09	0.18
Q_2	-0.17	-0.18	0.31	Q_2	-0.07	-0.19	0.44	Q_2	0.68	-0.05	0.16

955 Figure 9: Three stages of the matrix game. The potentially optimal joint action is highlighted with
956 a yellow border.
957

To provide intuition for how POW-QMIX overcomes non-monotonicity, we illustrate its behavior in a one-step matrix game. The joint action space is $\{A, B, C\}$. In such settings, Q^* and \hat{Q}^* are equivalent to the ground-truth reward function, allowing us to directly track the evolution of joint action values during training.

The training process can be divided into three stages (I–III) as depicted in Fig. 9.

Stage I–II. At the beginning of training, based on the values estimated by the Q_r module, we can identify (A, A) and (C, C) as potentially optimal joint actions, with weights set to 1, while all other joint actions receive zero weight. During Stage II, the Q_{tot} value for (C, C) already matches Q^* , so its gradient vanishes. In contrast, for (A, A) , $Q_{tot} < Q^*$, meaning the gradient update increases Q_{tot} and propagates improvements to the corresponding individual utilities $Q_1(\tau_1, A)$ and $Q_2(\tau_2, A)$.

Stage III. As training proceeds, (A, A) becomes the only remaining potentially optimal joint action. This action coincides with the true global optimum, enabling POW-QMIX to escape the local optimum (with value 7.9) and converge to the correct solution.

E ADDITIONAL RESULTS OF ABLATION STUDIES

We test the generality of POW by applying it to two other value decomposition baselines, yielding POW-VDN and POW-QPLEX. These experiments demonstrate that POW is not tied to a specific base algorithm but provides a general mechanism for improving non-monotonicity handling.

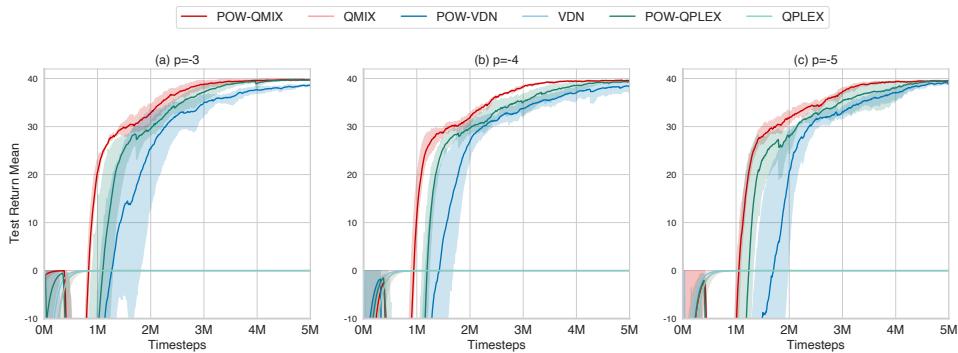


Figure 10: Application of POW to Predator-Prey with three levels of mis-capture penalty.

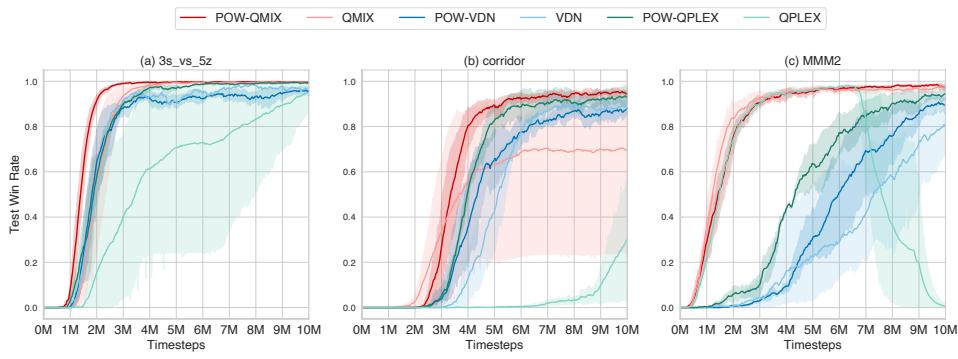


Figure 11: Application of POW to SMAC benchmarks.

The results across Predator-Prey (Fig. 10), SMAC (Fig. 11), highway-env intersection (Fig. 12), and SMACv2 (Fig. 13) consistently show that adding POW substantially improves performance and stability. Importantly, POW-QPLEX alleviates the instability issues commonly observed in QPLEX, and POW-VDN provides noticeable gains despite VDN’s limited expressiveness. These findings support the general applicability of POW as a plug-in improvement to value decomposition methods.

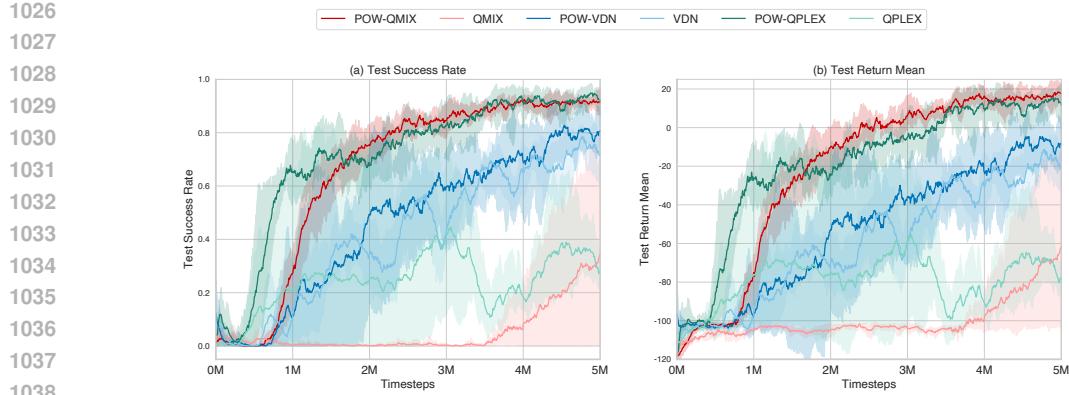


Figure 12: Application of POW to the highway-env intersection scenario.

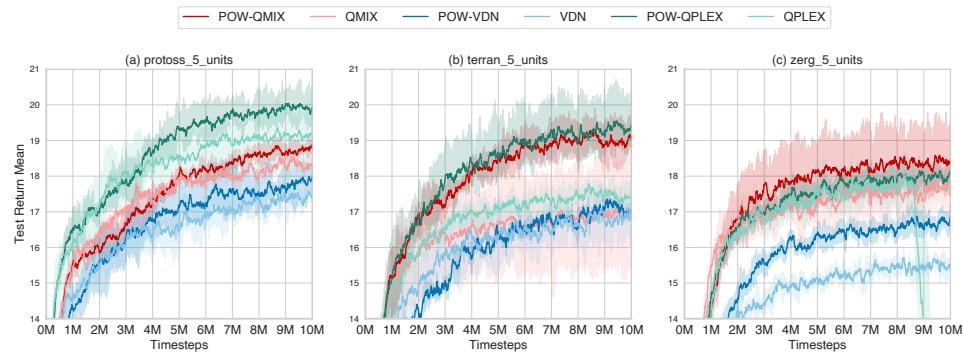


Figure 13: Application of POW to SMACv2 benchmarks.

F EXPERIMENTAL SETUP

Note: In Sec. 4, we set the weight for potentially optimal joint actions to 1 and for all other joint actions to $\alpha \in [0, 1]$, following the weighting function in Equation (10) of the WQMIX paper, which is commonly used in the WQMIX methodology.

We emphasize that Theorem 2 holds strictly when $\alpha = 0$. As stated after the definition, both our theoretical analysis and experimental implementation consistently adopt $\alpha = 0$ to ensure alignment between theory and practice. In practice, setting $\alpha = 0$ avoids introducing approximation errors from down-weighting suboptimal actions, ensuring that only the recognized potentially optimal set contributes to training.

F.1 PARAMETER SETTINGS FOR BASELINE ALGORITHMS

We conducted all experiments using the PyMARL2 framework, an enhanced version of the original PyMARL, specifically optimized for the StarCraft Multi-Agent Challenge (SMAC). PyMARL2 incorporates several implementation refinements and hyperparameter adjustments to improve performance across various scenarios. There are many code-level tricks in PyMARL2, such as the use of the Adam optimizer, the batch size, the replay buffer size, the rollout processes, the ϵ -greedy exploration strategy, and the $TD(\lambda)$ parameter. These hyperparameters are set to the same values across all algorithms, including ours, to ensure a fair comparison.

The hyperparameters are listed in Tab. 2, Tab. 3, Tab. 4, Tab. 5, and Tab. 6.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Table 2: Common Hyperparameters in Pymarl2

HYPERPARAMETER	VALUE
TRAINING MODE	PARALLEL
ROLLOUT PROCESSES	8
REPLAY BUFFER SIZE	5000
BATCH SIZE (TRAINING)	128
ACTION SELECTION	ϵ -GREEDY
ϵ START	1.0
ϵ FINISH	0.05
ϵ ANNEAL STEPS	500K
OPTIMIZER	ADAM
LEARNING RATE	0.001
TARGET NETWORK UPDATE INTERVAL	200
$TD(\lambda)$	0.6
LAYER NORMALIZATION	FALSE
ORTHOGONAL INITIALIZATION	FALSE
ORTHOGONAL GAIN	0.01
PRIORITY EXPERIENCE REPLAY (PER)	FALSE
PER α	0.6
PER β	0.4
RETURN-BASED PRIORITY	FALSE
MIXING EMBEDDING DIMENSION	32
HYPERNETWORK EMBEDDING	64
HYPERNETWORK LAYERS	2

Table 3: QMIX-Specific Hyperparameters

HYPERPARAMETER	VALUE
AGENT ARCHITECTURE	RNN
QMIX LOSS WEIGHT	1.0

Table 4: W-QMIX-Specific Hyperparameters

HYPERPARAMETER	VALUE
WEIGHTS FOR OPTIMAL JOINT ACTIONS	1
WEIGHTS FOR OTHER JOINT ACTIONS	0.1

Table 5: QPLEX-Specific Hyperparameters

HYPERPARAMETER	VALUE
DOUBLE Q-LEARNING	TRUE
ADVANTAGE HYPERNETWORK LAYERS	2
ADVANTAGE HYPERNETWORK EMBEDDING	64
NUMBER OF KERNELS	4
MINUS-ONE TRANSFORMATION	TRUE
WEIGHTED HEAD	TRUE
ADVANTAGE ATTENTION	TRUE
GRADIENT STOP MECHANISM	TRUE

F.2 MATRIX GAME

In a matrix game environment, two agents independently select actions, forming a joint action to receive an immediate reward. This reward directly reflects the true value of the joint action. This type of environment is characterized by a simple and unique state space, eliminating the need to consider complex state transitions. Simultaneously, the reward is directly equivalent to the true value, requiring no additional modeling. Furthermore, the reward structure can be flexibly designed,

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

Table 6: ResQ-Specific Hyperparameters

HYPERPARAMETER	VALUE
LEARNER	RESQ CENTRAL LEARNER
DOUBLE Q-LEARNING	TRUE
MIXING NETWORK	QMIX
HYSTERETIC QMIX (CW/OW-QMIX)	FALSE
CENTRAL MIXING EMBEDDING	128
CENTRAL ACTION EMBEDDING	1
CENTRAL MAC	BASIC CENTRAL MAC
CENTRAL AGENT	CENTRAL RNN
CENTRAL RNN HIDDEN DIMENSION	64
CENTRAL MIXER	FEEDFORWARD
RESQ VERSION	V3
CENTRAL LOSS WEIGHT	1.0
NO-OPT LOSS WEIGHT	1.0
QMIX LOSS WEIGHT	1.0
CONSTRAINT LOSS TYPE	MSE
CONSTRAINT LOSS DELTA	0.001
MAX SECOND GAP	0
CONSTRAINT METHOD	MAX ACTION
RESIDUAL Q-VALUE ABSOLUTE	TRUE

facilitating the construction of test scenarios with different characteristics. Lastly, the results are intuitive and easy to analyze and visualize. It is precisely because of these characteristics that matrix games have become an ideal testbed for studying the theoretical performance of value decomposition algorithms.

We set $\epsilon = 1$ throughout the experiments on matrix game to achieve uniform data distribution and set ideal weights for the purpose of theoretical analysis. The weights for potentially optimal joint actions and other joint actions in POW-QMIX are 1 and 0. The weights for optimal joint actions and other joint actions in CW-QMIX and OW-QMIX are 1 and 0. The constant C used in Eqn. 9 is set to 0.05.

F.3 PREDATOR-PREY

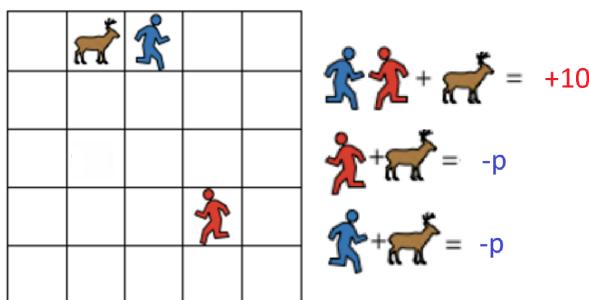


Figure 14: Stag Hunt Game

The "Stag Hunt" game in game theory is a classic scenario that profoundly reveals the inherent conflict between individual rationality and collective rationality, as well as potential coordination mechanisms, while also highlighting the crucial role of trust in fostering cooperation. This tension between individual and collective rationality precisely constitutes the core of the non-monotonicity problem explored in this paper. In the Stag Hunt scenario, agents face two strategic choices: one is a high-risk cooperative strategy, which yields the highest payoff when all participants choose this strategy, but if only a single agent attempts to cooperate while other agents choose not to, that agent will suffer severe losses or even penalties; the other is a low-risk safe strategy, where an agent

1188 adopting this strategy can obtain a stable but relatively low payoff, regardless of the choices of other
 1189 agents.
 1190

1191
1192 Table 7: Predator-Prey Experiment Payoff Matrix

$A_1 \setminus A_2$	Move Up	Move Down	Move Left	Move Right	Stay Still	Capture
Move Up	0	0	0	0	0	$-p$
Move Down	0	0	0	0	0	$-p$
Move Left	0	0	0	0	0	$-p$
Move Right	0	0	0	0	0	$-p$
Stay Still	0	0	0	0	0	$-p$
Capture	$-p$	$-p$	$-p$	$-p$	$-p$	10

1200
 1201 The predator-prey environment adopted in this paper is an extension of the Stag Hunt concept within
 1202 a complex Markov Decision Process. This environment retains the core characteristics of the Stag
 1203 Hunt game while introducing a richer strategy space and dynamic interactions. In this environment,
 1204 multiple agents acting as predators need to effectively cooperate to successfully capture the prey.
 1205 All units (including agents and prey) move and interact in a discrete grid world.
 1206

1207 The detailed settings of this environment are as follows: We construct a 10×10 grid world as the
 1208 state space, where each grid cell can contain: empty space, an agent, or the prey. Considering the
 1209 limitations of real-world perception, we limit the observation range of an agent to a 3×3 grid area
 1210 centered on itself, allowing it to only perceive the types of units within this range, thus forming a
 1211 Partially Observable Markov Decision Process (POMDP). The action space of an agent includes six
 1212 discrete choices: moving in the four cardinal directions (up, down, left, right), staying in place, and
 1213 performing a capture action.
 1214

1215 The reward mechanism is designed to reflect the necessity of cooperation: Only when at least two
 1216 agents simultaneously perform a capture action in positions adjacent to the prey can the capture be
 1217 successful, whereupon all agents receive a positive reward of +10. Conversely, if only one agent
 1218 attempts to perform a capture action in isolation, not only will the capture action fail, but that agent
 1219 will also incur a penalty of $-p$. This design directly maps to the risk-reward trade-off in the Stag
 1220 Hunt game.
 1221

1222 As the absolute value of the mis-capture penalty parameter p increases, the non-monotonic charac-
 1223 teristics of the environment become more prominent. A stricter penalty mechanism reinforces the
 1224 non-monotonicity of the reward structure, prompting agents to be more inclined to adopt conser-
 1225 vative strategies—completely avoiding the risk of performing a capture action—thereby potentially
 1226 missing out on high-payoff cooperative opportunities. This phenomenon provides an ideal test sce-
 1227 nario for our research on how algorithms can overcome non-monotonicity limitations.
 1228

1229 The default experimental settings are consistent with those in the PyMARL2 framework. The con-
 1230 stant C used in Eqn. 8 is set to 1.
 1231

1232
1233 F.4 SMAC

1234 In the PyMARL2 framework, certain parameters such as hidden size and $TD(\lambda)$ have been specifi-
 1235 cally fine-tuned for the 6h_vs_8z and 3s5z_vs_3s6z maps. However, for the sake of a fair comparison,
 1236 we set all algorithms to use default parameters across all maps. The constant C used in Eqn. 8 is set
 1237 to 0.05.
 1238

1239 F.5 SMACv2

1240 The default experimental settings are consistent with those in the PyMARL3 framework. The con-
 1241 stant C used in Eqn. 8 is set to 0.05.
 1242

1243 F.6 INTERSECTION SCENARIO IN HIGHWAY-ENV

1244 Highway-env Leurent (2018) is a collection of environments specifically designed for autonomous
 1245 driving decision-making tasks. Its intersection scenario simulates a complex traffic environment, an
 1246

example of which is shown in Fig. 15, providing an ideal platform for us to evaluate the performance of algorithms on non-monotonicity problems.

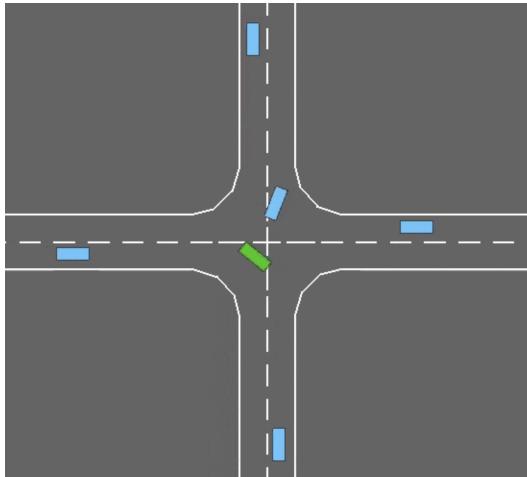


Figure 15: Example of the intersection scenario environment.

In this scenario, multiple vehicles approach an unsignalized intersection from different directions, with each vehicle controlled by an independent agent policy. These vehicles follow pre-planned routes, and the primary task of the agents is to control their vehicle’s speed to ensure safe and efficient passage through the intersection. The reward mechanism is intricately designed: a positive reward is given only when all vehicles safely pass through the intersection and reach their respective destinations; conversely, if any collision occurs, all agents not only receive a severe negative penalty, but the current episode also terminates immediately.

This design leads to the environment exhibiting strong non-monotonic characteristics. Due to the significant penalty associated with collisions, agents can easily learn extremely conservative strategies—such as stopping completely and waiting outside the intersection to avoid any potential collision risk. However, while such conservative strategies can avoid penalties, they fail to achieve the positive reward for successfully navigating the intersection, leading to poor overall performance. Therefore, agents need to learn to find a balance between safety and efficiency, making this an ideal scenario for testing an algorithm’s ability to handle non-monotonic challenges.

We adopted the same scenario and reward settings as in Huang et al. (2023). The ϵ value is set to 0.1 to ensure the same data distribution for all algorithms. The constant C used in Eqn. 8 is set to 0.1.

THE USE OF LLMs

We thank ChatGPT-5 for its assistance in polishing the writing and proofreading of this paper. The authors are responsible for the content and presentation.

1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295