
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POTENTIALLY OPTIMAL JOINT ACTIONS RECOGNI-
TION FOR COOPERATIVE MULTI-AGENT REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Value function factorization is widely used in cooperative multi-agent reinforce-
ment learning (MARL). Existing approaches often impose monotonicity con-
straints between the joint action value and individual action values to enable de-
centralized execution. However, such constraints limit the expressiveness of value
factorization, restricting the range of joint action values that can be represented
and hindering the learning of optimal policies. To address this, we propose Po-
tentially Optimal Joint Actions Weighting (POW), a method that ensures optimal
policy recovery where existing approximate weighting strategies may fail. POW
iteratively identifies potentially optimal joint actions and assigns them higher
training weights through a theoretically grounded iterative weighted training pro-
cess. We prove that this mechanism guarantees recovery of the true optimal pol-
icy, overcoming the limitations of prior heuristic weighting strategies. POW is
architecture-agnostic and can be seamlessly integrated into existing value factor-
ization algorithms. Extensive experiments on matrix games, difficulty-enhanced
predator-prey tasks, SMAC, SMACv2, and a highway-env intersection scenario
show that POW substantially improves stability and consistently surpasses state-
of-the-art value-based MARL methods.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) holds great potential for solving cooperative tasks in
domains such as swarm robotics (Huang et al., 2020), autonomous driving (Schmidt et al., 2022),
and multi-agent games (Terry et al., 2021). Yet, simultaneous policy learning for multiple agents
remains challenging due to non-stationarity and the exponential growth of the joint action space.
The centralized training with decentralized execution (CTDE) paradigm has become the standard
framework for addressing these challenges, inspiring a wide range of policy-based methods (e.g.,
MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018), FOP (Zhang et al., 2021)) and value-
based methods (e.g., VDN (Sunehag et al., 2017), QMIX (Rashid et al., 2020a), QPLEX (Wang
et al., 2020)).

Among these, QMIX has achieved strong results on benchmarks such as the StarCraft II Multi-Agent
Challenge (SMAC) (Samvelyan et al., 2019). QMIX factorizes the joint action-value into individual
action-values using a monotonic mixing function, thereby ensuring decentralized execution. How-
ever, the monotonicity constraint reduces the expressiveness of the value function, limiting its ability
to represent many joint action values and often hindering optimal policy recovery.

To address this, WQMIX (Rashid et al., 2020b) proposed weighting joint actions during training,
ideally emphasizing optimal ones so that the overall joint action-value function (Qtot) would ap-
proximate the optimal target (Q∗). However, identifying the truly optimal joint actions requires
traversing the entire joint action space, which is intractable in realistic settings. Practical variants
such as CW-QMIX and OW-QMIX replace this exhaustive search with heuristic approximations.
Specifically, CW-QMIX anchors its weighting on the argmaxQtot rather than the argmaxQ∗,
thereby avoiding enumeration of the full action space but introducing inaccuracies. OW-QMIX goes
further by directly using Qtot values in an optimistic manner, which amplifies errors when judging
whether an action is truly optimal. As a result, both methods misalign the assigned weights with the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

actual optimal set: suboptimal actions may still receive large weights, while genuinely optimal ones
can be under-emphasized. This creates a persistent gap between WQMIX’s theoretical promise and
its practical realizations.

We propose the Potentially Optimal Joint Actions Weighting (POW) method, which bridges this
gap by introducing a recognition-based weighting scheme with provable convergence guarantees.
POW employs a recognition module Qr that explicitly conditions on both state and joint actions,
enabling it to identify a set of potentially optimal joint actions Ar. Training weights are then as-
signed adaptively, with higher weights for actions in Ar. Through iterative updates, we prove that
Ar converges to include the true optimal joint actions, ensuring that Qtot aligns its action pref-
erences with those of Q∗ without requiring exhaustive search or heuristic approximations. This
establishes, for the first time, a consistent link between the theoretical guarantees of weighted value
decomposition and its practical implementation.

To validate POW, we instantiate it on top of QMIX (yielding POW-QMIX) and evaluate across
diverse benchmarks: matrix games, predator–prey, highway-env, SMAC, and SMACv2. Results
show that POW-QMIX outperforms state-of-the-art baselines, particularly in environments with
non-monotonic reward structures where existing factorization methods struggle. We further demon-
strate that POW can be seamlessly integrated into other value decomposition frameworks, such as
VDN and QPLEX, consistently improving their performance. These results highlight both the ver-
satility and scalability of our approach.

In summary, our contributions are:

• We propose POW, a recognition-based joint action weighting framework that provably
bridges the gap between the theoretical guarantees of WQMIX and its practical realiza-
tions.

• We provide rigorous theoretical analysis, proving that the recognition module ensures con-
vergence of the candidate set Ar toward the true optimal joint actions, thereby enabling
optimal policy recovery.

• We conduct extensive experiments across five benchmark families, demonstrating that
POW achieves superior performance over strong baselines and generalizes across multi-
ple value factorization architectures.

2 PRELIMINARIES

We consider the standard decentralized partially observable Markov decision process (Dec-POMDP)
(Oliehoek et al., 2016), defined by a tuple (S,A, P, r,O, O, n, γ), where S is the set of global states,
A = ×n

i=1Ai the joint action space, P : S × A → ∆(S) the transition function, r : S × A → R
the reward function, O the set of individual observations, O : S × {1, . . . , n} → O the observation
function, n the number of agents, and γ ∈ (0, 1) the discount factor.

At each timestep t, the environment is in state st ∈ S, and agent i selects an action ai ∈ Ai based
on its action-observation history τi ∈ (Oi ×Ai)

∗. The joint action is a = (a1, . . . , an), leading to
the next state st+1 ∼ P (·|st,a) and team reward r(st,a).

A joint policy π = (π1, . . . , πn) defines each agent’s policy πi. The objective is to maximize the
expected discounted return:

J(π) = Es0∼ρ,at∼π, st+1∼P

[∞∑
t=0

γtr(st,at)

]
, (1)

where ρ is the initial state distribution.

Centralized Training with Decentralized Execution (CTDE). In CTDE, training can leverage
global state information, but execution requires each agent to act only on its local trajectory τi. This
motivates value function factorization methods, where the joint action-value function Qtot(τ,a)
is decomposed into individual utilities Qi(τi, ai). A common factorization principle is individ-
ual–global–max (IGM) (Sunehag et al., 2017):

argmax
a

Qtot(τ,a) =
[
argmax

ai

Qi(τi, ai)
]n
i=1

. (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

QMIX (Rashid et al., 2020a) enforces IGM by using a monotonic mixing function:

∂Qtot

∂Qi
≥ 0, i = 1, ..., n (3)

Subsequent works such as QPLEX (Wang et al., 2020) and QTRAN (Son et al., 2019) relax or gen-
eralize the decomposition principle, while others (e.g., WQMIX (Rashid et al., 2020b), CW-QMIX,
OW-QMIX) assign weights to different joint actions during training. Despite progress, existing ap-
proaches either suffer from limited expressiveness (e.g., strict monotonicity) or rely on heuristic
weighting schemes that may introduce approximation errors. This motivates our proposed POW
framework.

3 METHOD

Value decomposition methods under CTDE must factorize the joint action-value function into per-
agent utilities. However, with monotonic mixing (e.g., QMIX), an agent may still receive an in-
correct penalty if other agents act suboptimally, making it difficult to assign credit to the optimal
joint actions. This motivates weighting schemes such as WQMIX (Rashid et al., 2020b), which ide-
ally give higher training weights to optimal joint actions. Yet in practice, variants like CW-QMIX
and OW-QMIX must approximate these weights without knowing the true optimal set, introduc-
ing errors. POW addresses this challenge by learning a recognition-guided weighting scheme that
provably converges toward the optimal set.

3.1 ARCHITECTURE OVERVIEW

Agent 1 Agent N…

𝑸𝑸r

𝑾𝑾𝟏𝟏

𝑾𝑾𝟐𝟐

𝐴𝐴𝑖𝑖 𝜏𝜏𝑖𝑖,𝑎𝑎𝑖𝑖 𝑖𝑖=1
𝑛𝑛

𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡

MLP

MLP

𝑠𝑠,𝒂𝒂

+

MLP

V(𝑠𝑠)

𝑄𝑄𝑟𝑟 𝝉𝝉,𝒂𝒂

𝑠𝑠

�𝑸𝑸∗ 𝑸𝑸𝒕𝒕𝒕𝒕𝒕𝒕

𝐴𝐴1 𝜏𝜏1,𝑎𝑎1 𝐴𝐴n 𝜏𝜏𝑛𝑛,𝑎𝑎𝑛𝑛Q1 𝜏𝜏1,𝑎𝑎1 𝑄𝑄𝑛𝑛 𝜏𝜏𝑛𝑛,𝑎𝑎𝑛𝑛

𝑟𝑟 + 𝛾𝛾 �𝑄𝑄∗ 𝝉𝝉′, arg max
𝑎𝑎∈𝐀𝐀

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 𝝉𝝉′,𝒂𝒂 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 𝝉𝝉,𝒂𝒂𝑄𝑄𝑟𝑟 𝝉𝝉,𝒂𝒂
ℒ𝑄𝑄𝑟𝑟 ℒ𝑄𝑄tot

ℒ�𝑸𝑸∗

𝑜𝑜1 𝑜𝑜𝑛𝑛

𝑠𝑠,𝒂𝒂 𝑠𝑠

(a) (b)

𝑠𝑠

No Gradient Backpropagation
With Gradient Backpropagation

Figure 1: (a) The Qr Network structure. (b) The overall architecture of POW method. Qtot can be
any value function factorization network satisfying IGM.

Fig. 1 illustrates the POW framework.

Key components are: (1) Q̂∗, an unrestricted joint action value estimator that approximates the
true optimal action value function Q∗ without factorization or monotonic constraints. It provides
the bootstrap target shared by all networks during training. (2) Qtot, a monotonic mixing network
enabling decentralized execution. Its optimality depends on correct weighting of optimal vs. sub-
optimal joint actions during learning. It can be any value factorization network satisfying IGM
(e.g., QMIX, VDN, QPLEX); (3) the potentially optimal joint actions recognition module Qr. It is
used to identify a set of potentially optimal joint actions Ar. Qr is trained to approximate Q̂∗ (or
Q∗ in theoretical analysis), and its output determines the adaptive training weights applied to each
joint action. It takes the joint action as input and provides an expressive joint action value model
unconstrained by monotonicity but conforming to IGM.

The architecture of Qr is shown in Fig. 1 a). The inputs of Qr include: the global state s, the
one-hot encoding of joint action, a and the fixed values of individual advantage functions Ai. This
joint-action conditioning is crucial for distinguishing candidate actions, whereas in QPLEX it pri-
marily increases expressiveness of Qtot. By contrast, in POW this design is tied directly to the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

recognition-weighting mechanism and its convergence properties (see Sec. 3.2). Atot refers to the
mixing of the individual agent advantage functions as in QPLEX. The advantage function is defined
by Ai(τi, ai) = Qi(τi, ai)−maxai∈Ai

Qi(τi, ai).

Q̂∗, Qtot and Qr (detailed in Sec. 3.2 and Sec. 3.3) share the same Q-learning target:

LQ̂∗ = E[(Q̂∗(τ ,a)− y)2] (4a)

LQtot
= E[w(s,a)(Qtot(τ ,a)− y)2] (4b)

LQr = E[(Qr(τ ,a)− y)2] (4c)

where

y = r + Q̂∗(τ ′, argmax
a∈A

Qtot(τ
′,a)) (5)

Together, Q̂∗, Qtot, and Qr form a mutually reinforcing system: Qr proposes potentially optimal
actions, the weighting guided by Ar shapes the update of Qtot, and Q̂∗ ensures consistent bootstrap-
ping. We later show that this interaction guarantees the convergence of Ar toward the true optimal
action set.

3.2 RECOGNITION OF POTENTIALLY OPTIMAL JOINT ACTIONS

We define the recognition module Qr that explicitly takes as input the global state s, individual
action-values Qi(τi, ai), and the joint action a. Here, conditioning on a allows Qr to assess the
value of specific joint actions, enabling recognition of a candidate set Ar of potentially optimal joint
actions. Formally, the recognition module is defined as:

Qr(τ,a) =

n∑
i=1

λi(s,a)
(
Qi(τi, ai)− max

ai∈Ai

Qi(τi, ai)
)
+ V (s), (6)

where λi(s,a) ≥ 0 are scaling factors. The subtraction term centers each agent’s action-value by its
best individual choice, while V (s) captures state-dependent value shared across agents. Intuitively,
this form highlights whether a joint action sacrifices individual agent optimality, while allowing Qr

to adaptively weight such trade-offs.

Importantly, this construction also guarantees the IGM property. Since the contribution of each
agent i is maximized exactly when ai is its individually optimal action (the centered term becomes
zero and all other actions are negative), maximizing Qr(τ,a) over a is achieved by maximizing
each Qi(τi, ai) independently. Thus ensuring IGM without enforcing any monotonicity constraint
on the underlying Qi.

The training objective of Qr is to approximate the optimal joint action value function Q∗ in theory:

LQr
= E

[
(Qr(τ,a)−Q∗(τ,a))2

]
, (7)

During training, updates are applied to the parameters of the mixing function, leaving the parameters
of the individual action value functions unchanged. The scales λi(s,a) are computed by a hypernet-
work, where the global state s and the joint action a are used as inputs to obtain the neural network
weights W1 and W2. We take the absolute values of W1 and W2 to ensure that λi(s,a) ≥ 0.

Definition 1 (Potentially optimal joint action set Ar). We define Aigm :=
{
a ∈ A

∣∣ ∀i : ai ∈
arg max

ai∈Ai

Qi(τi, ai)
}

be the set of joint action obtained by greedy individual choices. Let â ∈ Aigm,

then the potentially optimal joint action set is:

Ar := {a ∈ A | Qr(s,a) ≥ Qr(s, â)− C}, (8)

where C ≥ 0 is a small tolerance constant for stability.

This definition ensures Ar always contains at least the joint greedy action and potentially other
promising joint actions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 1 (Containment of optimal joint actions). Let Atgm :=
{
a ∈ A

∣∣ a =

argmax
a∈A

Q∗(s,a)
}

denote the set of truly optimal joint actions. If Qr converges to Q∗, then

Atgm ⊆ Ar.

Thus Ar is guaranteed not to exclude optimal actions, which is critical for policy improvement.
Proofs are given in Appendix B.

3.3 RECOGNITION-GUIDED WEIGHTING FUNCTION

We now define the POW weighting function:

w(s,a) =

{
1, a ∈ Ar,

α, a /∈ Ar, α ∈ [0, 1),
(9)

where α down-weights actions outside Ar. In all our experiments, we set α = 0, so only actions
in Ar contribute to updates, aligning theory with practice. The training objective for the factorized
value network Qtot is then:

LQtot = E
[
w(s,a)(Qtot(s,a)− y)2

]
, (10)

with target

y = r + γQ̂∗(s′, argmax
a∈A

Qtot(s
′,a)), (11)

where Q̂∗ is an unrestricted joint value estimator used to approximate Q∗.
Theorem 2 (Convergence of weighted training). Under the weighting scheme in Eqn. 9, if Ar con-
verges to contain only optimal joint actions, then Qtot recovers the optimal policy.

If Qtot can recover the joint action with the maximal value of Q̂∗, that is, when
argmax

a∈A
Qtot(τ

′,a) = argmax
a∈A

Q̂∗(τ ′,a), Q̂∗ becomes the optimal joint action value function

Q∗ according to the Bellman equations indicated by Eqn. 4 and Eqn. 11. Thus Qtot can learn the
optimal policy.

Detailed proofs are given in Appendix B.

3.4 ITERATIVE WEIGHTED TRAINING

POW proceeds iteratively: (1) update Qr toward approximating Q̂∗ using supervised targets, (2)
update Qtot using the weighting w(s,a) defined by the current Ar, and (3) update Q̂∗ based on
the updated Qtot. This recognition–weighting loop continues throughout training. Unlike heuristic
approximations in CW-QMIX or OW-QMIX, this iterative scheme ensures that Ar progressively
contracts toward the true optimal set, closing the gap between theoretical guarantees and practical
implementation. The pseudocode is provided in Alg. 1.

4 EXPERIMENTS

In this section, we instantiate our framework with QMIX and propose the POW-QMIX algorithm.
We first evaluate on matrix games and a difficulty-enhanced predator–prey task, both of which ex-
hibit strong non-monotonicity that challenges monotonic value factorization. We then test on the
SMAC, a widely used but relatively monotonic benchmark. Finally, we extend the evaluation to
SMACv2 and a highway-env intersection scenario.

We also conduct ablations to examine (i) the applicability of POW to other value decomposition
methods, and (ii) the effect of increased network size. All experiments are implemented using
PyMARL2 (Hu et al., 2021). Hyperparameters such as optimizer type and replay buffer size are
tuned for each method. Further details are provided in Appendix F. All results are averaged over
five independent runs with different random seeds and are reported with means and 95% confidence
intervals.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 POW Training Procedure

Require: Replay buffer D; value networks Qtot, Qr, Q̂
∗; tolerance C

1: Initialize all network parameters
2: for each training iteration do
3: Sample a batch of episodes B = {(o1:T ,a1:T , r1:T)

′} from D
4: Input observations into agent networks to generate histories:
5: H = {(τ1,a1, r1, τ ′

1; . . . ; τT ,aT , rT , τ
′
T)} where τ ′

t = τt+1

6: for each time step t and episode in batch do
7: Compute greedy next action under factorized critic by argmaxa Qtot(τ

′,a).
8: Compute TD target y shared by all critics by Eqn. 11.
9: Update recognition network Qr by minimizing Eqn. 4c.

10: Determine greedy action for recognition module under IGM: argmaxa Qr(τ ,a)
11: Compute training weight w based on Eqn. 8 and Eqn. 9.
12: Update factorized critic Qtot by Eqn. 10.
13: Update unconstrained value estimator Q̂∗ by Eqn. 4a.
14: end for
15: end for
16: return Qtot

A B C

A 8 -12 -12

B -12 0 0

C -12 0 7.9

(a) Payoff	Matrix

A!A" 0.060(A) -0.160(B) -0.045(C)

0.041(A) 8.00 7.95 7.97

-0.150(B) 7.95 7.90 7.93

0.051(C) 7.98 7.92 7.95

(b) POW-QMIX:	Q!,	Q",	Q#$#

Q!Q" 0.060(A) -0.160(B) -0.045(C)

0.041(A) 8.00 -12.00 -12.00

-0.150(B) -12.00 0.00 0.00

0.051(C) -12.00 0.00 7.90

(c) POW-QMIX:	Q!,	Q",	Q%

Q!Q"

-22.90(A) -0.132(B) 0.092(C)

-23.23(A) -8.11 -8.10 -8.11

-0.141(B) -8.10 -0.33 0.15

0.091(C) -8.10 0.16 7.90

(d) QMIX:	Q!,	Q",	Q#$#

Q!
Q" 0.814(A) 0.133(B) 0.912(C)

0.835(A) 16.27 12.67 16.70

0.120(B) 13.21 9.62 13.63

0.906(C) 16.37 12.77 16.79

(e) OW-QMIX:	Q!,	Q",	Q#$#

Q!
Q" 0.060(A) -0.160(B) -0.045(C)

0.041(A) 8.00 7.95 7.97

-0.150(B) 7.95 7.90 7.93

-0.051(C) 7.98 7.92 7.95

(f) CW-QMIX:	Q!,	Q",	Q#$#

Q!
Q"

-0.319(A) -1.205(B) 0.004(C)

-0.314(A) 9.68 -12.77 -14.52

-1.100(B) -12.04 -0.32 -0.08

-0.006(C) -10.64 -0.38 9.69

(g) QPLEX:	Q!,	Q",	Q#$#

Q!Q" 0.159(A) -0.367(B) 0.143(C)

0.155(A) 8.04 6.89 8.01

6.72 5.87 6.71-0.332(B)

0.150(C) 7.99 6.86 7.97

(h) ResQ:	Q!,	Q",	Q#$#

Q!Q" 0.159(A) -0.367(B) 0.143(C)

8.04 -11.53 -11.42

-11.03 0.14 0.20-0.332(B)

0.150(C) -11.12 0.23 7.94

(i) ResQ:	Q!,	Q",	Q&#

Q!Q"

0.155(A)

Figure 2: Payoff matrix of a one-step matrix game and reconstructed joint and individual values.
Boldface indicates greedy actions. Blue denotes the true optimal joint action, red denotes suboptimal
joint actions.

4.1 MATRIX GAME

We begin with a coordination matrix game exhibiting strong non-monotonicity, following the setting
of ResQ. To remove effects of exploration randomness, we use ϵ = 1 in ϵ-greedy, producing a
uniform data distribution. After convergence, we record the learned joint and individual values
(including Qr for POW-QMIX and Qjt for ResQ), shown in Fig. 2.

POW-QMIX, CW-QMIX, and ResQ successfully recover the optimal policy. In POW-QMIX, the
Qr module precisely estimates the values of all joint actions, enabling accurate recognition of the
optimal set Ar for weighting. In contrast, QMIX converges to a locally optimal solution due to
monotonicity. OW-QMIX also fails, reflecting its approximation limitations. QPLEX shows partial
overestimation of the optimal joint action while remaining accurate elsewhere—an observation that
inspired our Qr design.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 PREDATOR–PREY

0M 1M 2M 3M 4M 5M
Timesteps

-10

0

10

20

30

40
Te

st
 R

et
ur

n
M

ea
n

(a) p=-3

0M 1M 2M 3M 4M 5M
Timesteps

-10

0

10

20

30

40
(b) p=-4

0M 1M 2M 3M 4M 5M
Timesteps

-10

0

10

20

30

40
(c) p=-5

POW-QMIX (ours) QMIX OW-QMIX CW-QMIX QPLEX ResQ

Figure 3: Test return in Predator–Prey with three different mis-capture penalties.

In this task, predators must cooperate to capture prey. If an agent attempts capture without coordi-
nation, all agents receive a penalty p. Higher |p| increases non-monotonicity and encourages passive
strategies.

Fig. 3 shows test returns under three penalties. POW-QMIX is the only method that consistently
learns the optimal cooperative strategy across all settings. This highlights its ability to resolve non-
monotonic structures where baselines fail.

4.3 SMAC

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

(a) 3s5z (easy)

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

(b) 3s_vs_5z (hard)

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 W

in
 R

at
e

(c) 6h_vs_8z (super-hard)

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

(d) corridor (super-hard)

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

(e) MMM2 (super-hard)

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

e

(f) 3s5z_vs_3s6z (super-hard)

POW-QMIX (ours) QMIX OW-QMIX CW-QMIX QPLEX ResQ

Figure 4: Test win rate on SMAC maps.

We evaluate on six SMAC maps: one easy, one hard, and four super-hard. Fig. 4 shows that POW-
QMIX achieves strong performance across maps. Although SMAC is mostly monotonic (Hu et al.,
2021), POW-QMIX still matches or outperforms baselines. CW-QMIX, while successful in matrix
games, struggles to scale here. QPLEX exhibits instability due to its dueling architecture. OW-
QMIX performs well in SMAC but lacks theoretical guarantees, as shown in Fig. 2.

4.4 EVALUATION ON HIGHWAY-ENV INTERSECTION AND SMACV2

We include experiments on the highway-env intersection task (Leurent, 2018) and on SMACv2
(Ellis et al., 2023). These benchmarks introduce safety-critical decision making and generalization
challenges, complementing the main results.

As shown in Fig. 5, POW-QMIX achieves the best overall performance, successfully balancing
safety and efficiency. In comparison, CW-QMIX converges to overly conservative policies, QPLEX
suffers from training instability, and QMIX learns much more slowly. These results highlight POW-
QMIX’s superior ability to handle strongly non-monotonic environments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0M 1M 2M 3M 4M 5M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

Su
cc

es
s R

at
e

(a) Test Success Rate

0M 1M 2M 3M 4M 5M
Timesteps

-120

-100

-80

-60

-40

-20

0

20

Te
st

Re
tu

rn
 M

ea
n

(b) Test Return Mean

POW-QMIX (ours) QMIX OW-QMIX CW-QMIX QPLEX ResQ

Figure 5: Test return in the highway-env intersection scenario.

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

14

15

16

17

18

19

20

21

Te
st

Re
tu

rn
 M

ea
n

(a) protoss_5_units

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

14

15

16

17

18

19

20

21
(b) terran_5_units

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

14

15

16

17

18

19

20

21
(c) zerg_5_units

POW-QMIX (ours) QMIX OW-QMIX CW-QMIX QPLEX ResQ

Figure 6: Test return in the SMACv2 benchmarks.

SMACv2 presents more subtle challenges: as win rates of different algorithms often saturate and
appear indistinguishable, we adopt average test return as the evaluation metric. Fig. 6 shows that
POW-QMIX consistently achieves strong performance across most tasks. While QPLEX outper-
forms POW-QMIX in the protoss scenario, it collapses in the zerg scenario. Notably, the ablation
results in Sec. 4.5.1 show that POW-QPLEX successfully stabilizes QPLEX, confirming that POW’s
benefits extend beyond QMIX.

4.5 ABLATION STUDIES

4.5.1 APPLYING POW TO VDN AND QPLEX

We integrate POW into VDN and QPLEX, producing POW-VDN and POW-QPLEX. Tab. 1 summa-
rizes results across all environments, with detailed learning curves in Appendix E. In predator–prey,
baseline networks fail to learn, but their POW variants converge quickly to optimal policies. In the
highway-env crossroad task, POW greatly improves stability and success rates. On SMAC, POW
reduces QPLEX instability, while in SMACv2, all POW variants consistently improve average re-
turns.

4.5.2 ENLARGING THE NETWORK SIZE

To test whether performance gains come simply from added capacity, we enlarge baseline networks
to match POW’s parameter count. Fig. 7 shows that larger networks improve some baselines (CW-
QMIX, OW-QMIX) in predator–prey but hurt in SMAC. Enhanced QMIX improves in SMAC but
still fails under non-monotonicity. QPLEX performs poorly regardless of size. Thus, gains of POW
stem from its recognition–weighting design, not from parameter count. While Qr adds moderate
complexity (roughly 15–20% training time overhead), POW achieves stronger performance across

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across environments. Crossroads and SMAC values are win rates;
Predator–Prey and SMACv2 values are returns. ↑ indicates improvement over the baseline. Bold
indicates best performance.

Algorithm Predator-Prey Crossroads SMAC SMACv2

p = −4 p = −5 3s vs 5z corridor MMM2 protoss terran zerg

QMIX 0 0 0.28 1.00 0.69 0.98 18.3 17.1 17.6
VDN 0 0 0.73 0.97 0.87 0.81 17.5 17.0 15.5
QPLEX 0 0 0.26 0.96 0.30 0.00 19.2 17.3 0
ResQ 40 0 0.88 1.00 0.00 0.90 17.7 16.3 17.5
CW-QMIX 16 8 0.43 0.99 0.79 0.92 17.2 16.0 15.7
OW-QMIX 8 0 0.88 1.00 0.70 0.98 18.4 16.3 16.9

POW-QMIX 40 ↑ 40 ↑ 0.92 ↑ 1.00 0.95 ↑ 0.98 18.8 ↑ 19.0 ↑ 18.4 ↑
POW-VDN 40 ↑ 40 ↑ 0.81 ↑ 0.96 0.87 0.90 ↑ 17.9 ↑ 17.0 16.8 ↑
POW-QPLEX 40 ↑ 40 ↑ 0.93 ↑ 1.00 ↑ 0.94 ↑ 0.93 ↑ 19.9 ↑ 19.4 ↑ 18.1 ↑

0M 1M 2M 3M 4M 5M
Timesteps

-10

0

10

20

30

40

Te
st

 R
et

ur
n

M
ea

n

(a) p=-4

0M 1M 2M 3M 4M 5M
Timesteps

-10

0

10

20

30

40
(b) p=-5

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0
(c) corridor

POW-QMIX-800k QMIX-800k OW-QMIX-800k CW-QMIX-800k QPLEX-800k

Figure 7: Ablation: effect of network size. (a,b) Predator–Prey with p = −4,−5. (c) SMAC map.

all tasks. We therefore describe POW as an effective trade-off between computational cost and
policy quality.

5 RELATED WORK

Value decomposition in MARL. Value decomposition is the predominant paradigm under CTDE.
VDN (Sunehag et al., 2017) assumes additivity, whereas QMIX (Rashid et al., 2020a) introduces a
monotonic mixing network. QPLEX (Wang et al., 2020) improves expressiveness via a dueling
structure and advantage-based mixing.

WQMIX (Rashid et al., 2020b) reveals the limitation of uniform weighting and proposes an ide-
alized optimal-action–weighted objective. However, practical variants (CW-QMIX, OW-QMIX)
must approximate the optimal action set and therefore cannot guarantee correctness of the assigned
weights. Our method is most closely related to WQMIX but differs in two key respects: (1) POW
replaces heuristic weighting with a recognition–weighting mechanism that provably converges to-
ward the optimal joint action set; (2) our recognition module Qr explicitly conditions on the joint
action a, enabling reliable discrimination among actions, unlike QPLEX where joint-action inputs
primarily serve to enhance representational capacity. Thus, POW resolves the gap between theoreti-
cal guarantees and practical realizations that neither WQMIX nor QPLEX addresses. More detailed
comparisons are provided in Appendix A.

Beyond these classic methods, CIA (Liu et al., 2023) introduces contrastive identity-aware represen-
tation learning to improve credit assignment, and VDT (Zhao et al., 2025) leverages transformers to
exploit temporal structure in multi-agent trajectories. Although effective, these methods are orthog-
onal to our focus: they enhance representation quality or temporal modeling rather than addressing
the theoretical–practical mismatch in weighted value decomposition. Therefore, they do not directly
evaluate the specific problem POW aims to solve.

Approaches such as REMIX (Mei et al., 2023) and concaveQ (Li et al., 2023) introduce alternative
structural assumptions (e.g., concavity or regularization). Our method differs by maintaining gener-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ality and instead rethinking how potentially optimal joint actions can be recognized and up-weighted
during training.

Approximation error in value-based MARL. Several works highlight approximation error as a
central challenge. ResQ (Shen et al., 2022) mitigates representational bias by injecting joint-action
terms, while CW-QMIX and OW-QMIX approximate weighted learning heuristically and lack op-
timality guarantees. POW shares the motivation of reducing approximation error but introduces a
new mechanism—joint-action conditioning via Qr and iterative recognition-guided weighting—that
ensures optimal actions are retained without requiring exhaustive search.

Beyond value decomposition. Actor–critic MARL methods such as MADDPG (Lowe et al.,
2017) and MAPPO (Yu et al., 2022) do not rely on value factorization but instead employ joint crit-
ics or attention-based critics to stabilize training. These methods differ fundamentally from value
decomposition and excel in continuous-action or competitive settings. Our focus is on cooperative
discrete-action tasks, where value decomposition remains the most effective and widely used ap-
proach. Nevertheless, POW can be viewed as complementary to actor–critic MARL, as both aim to
identify joint action structures that improve stability and performance.

6 CONCLUSIONS AND LIMITATIONS

We introduced Potentially Optimal Joint Actions Weighting (POW), an iterative weighted train-
ing framework for cooperative multi-agent reinforcement learning. POW leverages a recognition
module Qr to identify potentially optimal joint actions and guides training by adaptively weighting
them. We formally proved that under this scheme, the recognized set converges to the true optimal
joint actions, ensuring that Qtot recovers the optimal policy. Extensive experiments across matrix
games, predator–prey, SMAC, SMACv2, and highway-env confirm that POW not only matches its
theoretical guarantees but also achieves superior empirical performance over strong baselines.

Despite these advantages, POW introduces additional modules to address non-monotonicity, which
increase training complexity in large-scale environments. Moreover, our current study is limited to
cooperative settings with discrete action spaces under CTDE. Extending POW to policy-gradient or
actor–critic frameworks (e.g., MAPPO) would broaden its applicability to continuous control and
mixed cooperative–competitive domains.

REFERENCES

Yixin Huang, Shufan Wu, Zhongcheng Mu, Xiangyu Long, Sunhao Chu, and Guohong Zhao. A
multi-agent reinforcement learning method for swarm robots in space collaborative exploration.
In 2020 6th international conference on control, automation and robotics (ICCAR), pages 139–
144. IEEE, 2020.

Lukas M Schmidt, Johanna Brosig, Axel Plinge, Bjoern M Eskofier, and Christopher Mutschler. An
introduction to multi-agent reinforcement learning and review of its application to autonomous
mobility. In 2022 IEEE 25th International Conference on Intelligent Transportation Systems
(ITSC), pages 1342–1349. IEEE, 2022.

J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S
Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo: Gym
for multi-agent reinforcement learning. Advances in Neural Information Processing Systems, 34:
15032–15043, 2021.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
Conference on Machine Learning, pages 12491–12500. PMLR, 2021.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020a.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances in
neural information processing systems, 33:10199–10210, 2020b.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In Interna-
tional conference on machine learning, pages 5887–5896. PMLR, 2019.

Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih-wei Liao. Rethinking the imple-
mentation tricks and monotonicity constraint in cooperative multi-agent reinforcement learning.
arXiv preprint arXiv:2102.03479, 2021.

Edouard Leurent. An environment for autonomous driving decision-making. https://github.
com/eleurent/highway-env, 2018.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Nicolaus Foerster, and Shimon Whiteson. SMACv2: An improved benchmark for coop-
erative multi-agent reinforcement learning. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2023.

Shunyu Liu, Yihe Zhou, Jie Song, Tongya Zheng, Kaixuan Chen, Tongtian Zhu, Zunlei Feng, and
Mingli Song. Contrastive identity-aware learning for multi-agent value decomposition. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 37(10):11595–11603, Jun. 2023.
doi: 10.1609/aaai.v37i10.26370. URL https://ojs.aaai.org/index.php/AAAI/
article/view/26370.

Zhitong Zhao, Ya Zhang, Wenyu Chen, Fan Zhang, Siying Wang, and Yang Zhou. Sequence
value decomposition transformer for cooperative multi-agent reinforcement learning. Infor-
mation Sciences, 720:122514, 2025. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.
2025.122514. URL https://www.sciencedirect.com/science/article/pii/
S0020025525006462.

Yongsheng Mei, Hanhan Zhou, and Tian Lan. Remix: Regret minimization for monotonic value
function factorization in multiagent reinforcement learning. arXiv preprint arXiv:2302.05593,
2023.

Huiqun Li, Hanhan Zhou, Yifei Zou, Dongxiao Yu, and Tian Lan. ConcaveQ: Non-Monotonic
Value Function Factorization via Concave Representations in Deep Multi-Agent Reinforcement
Learning, December 2023.

11

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
https://ojs.aaai.org/index.php/AAAI/article/view/26370
https://ojs.aaai.org/index.php/AAAI/article/view/26370
https://www.sciencedirect.com/science/article/pii/S0020025525006462
https://www.sciencedirect.com/science/article/pii/S0020025525006462

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Siqi Shen, Mengwei Qiu, Jun Liu, Weiquan Liu, Yongquan Fu, Xinwang Liu, and Cheng Wang.
Resq: A residual q function-based approach for multi-agent reinforcement learning value factor-
ization. Advances in Neural Information Processing Systems, 35:5471–5483, 2022.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The Surprising
Effectiveness of PPO in Cooperative, Multi-Agent Games, 2022. URL http://arxiv.org/
abs/2103.01955.

Chang Huang, Junqiao Zhao, Hongtu Zhou, Hai Zhang, Xiao Zhang, and Chen Ye. Multi-agent
decision-making at unsignalized intersections with reinforcement learning from demonstrations.
In 2023 IEEE Intelligent Vehicles Symposium (IV), pages 1–6, 2023. doi: 10.1109/IV55152.2023.
10186792.

12

http://arxiv.org/abs/2103.01955
http://arxiv.org/abs/2103.01955

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RELATIONSHIP TO RELATED WORKS

This section clarifies the relationship of POW to prior value decomposition MARL methods. Al-
though POW draws inspiration from both WQMIX and QPLEX, its design addresses their key lim-
itations and provides distinct contributions.

POW vs. WQMIX. WQMIX (Rashid et al., 2020b) proposes an idealized scheme in which op-
timal joint actions are assigned higher training weights. In principle, this enables recovery of the
optimal value function. However, its practical implementations (CW-QMIX, OW-QMIX) must ap-
proximate the optimal actions using heuristic strategies, which introduces unavoidable approxima-
tion error and prevents strong guarantees. POW differs fundamentally: we introduce a recognition
module Qr that explicitly incorporates joint actions a as inputs and adaptively identifies a set of po-
tentially optimal joint actions Ar. The weighting function then prioritizes actions in Ar. We provide
theoretical analysis (Theorem 1 and 2) showing that Ar converges toward containing only optimal
actions, thereby eliminating the approximation gap present in WQMIX. Thus, POW achieves the
theoretical guarantee envisioned by WQMIX without resorting to exhaustive search or heuristic ap-
proximations.

POW vs. QPLEX. QPLEX (Wang et al., 2020) enhances representational capacity through a
dueling-based decomposition that incorporates joint-action–dependent advantage terms. Although
this also conditions on joint actions, the primary goal is to increase expressiveness of the value
function rather than to guide training dynamics. By contrast, POW leverages joint action inputs
within Qr for a fundamentally different purpose: recognizing potentially optimal joint actions and
using them to drive a principled weighting scheme. Ablation results (Tab. 1 and Appendix E) confirm
that POW’s performance gains cannot be explained merely by including joint action information.
Instead, they arise from the recognition–weighting mechanism, which explicitly aligns the training
process with the optimal joint value function and provides theoretical guarantees absent in QPLEX.

POW vs. ResQ. ResQ (Shen et al., 2022) introduces an auxiliary joint-action value term to reduce
representational bias. However, its objective remains to approximate Qtot without targeted weight-
ing of potentially optimal joint actions. POW differs by explicitly reweighting the learning process
toward recognized optimal actions, offering a more direct mechanism to recover optimal policies.
As shown in our experiments (Fig. 2, Tab. 1), POW outperforms ResQ in environments with strong
non-monotonicity.

B PROOF OF THEOREMS

In this section we provide detailed proofs of the main theoretical results. Compared with the original
WQMIX analysis, our derivations clarify why the proposed recognition module Qr avoids approx-
imation errors, and how the recognition–weighting mechanism guarantees recovery of the optimal
policy. We explicitly restate all assumptions to avoid ambiguity.

C PROOF OF THEOREMS

C.1 LEMMA 1

For any τ and joint action a /∈ Aigm, if Qr has converged, it holds that

Qr(τ ,a) = min(Qr(τ , â), Q
∗(τ ,a)).

Proof. By the definition of Qr, for any a /∈ Aigm we have

Qr(τ ,a) ≤ Qr(τ , â).

The local loss for each joint action is

LQr
(τ ,a) =

(
Qr(τ ,a)−Q∗(τ ,a)

)2
.

Consider two cases:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• If Q∗(τ ,a) ≥ Qr(τ , â), then

(Qr(τ ,a)−Q∗(τ ,a))2 ≥ (Qr(τ , â)−Q∗(τ ,a))2.

Minimizing LQr
(τ ,a) requires Qr(τ ,a) to be as large as possible under the constraint

Qr(τ ,a) ≤ Qr(τ , â), yielding

Qr(τ ,a) = Qr(τ , â) = min(Qr(τ , â), Q
∗(τ ,a)).

• If Q∗(τ ,a) < Qr(τ , â), the loss is minimized when

Qr(τ ,a) = Q∗(τ ,a) = min(Qr(τ , â), Q
∗(τ ,a)).

Combining both cases completes the proof.

C.2 LEMMA 2

Let Qr have converged. Then it holds that

Qr(τ , â) ≤ Q∗(τ ,a∗),

where a∗ ∈ Atgm is any truly optimal joint action.

Proof. Suppose, for contradiction, that

Qr(τ , â) > Q∗(τ ,a∗).

From Lemma 1, for any a /∈ Aigm we have

Qr(τ ,a) = min
(
Qr(τ , â), Q

∗(τ ,a)
)
= Q∗(τ ,a).

Construct a new function Q′
r based on Qr:

Q′
r(τ ,a) =

{
Q∗(τ ,a∗), a ∈ Aigm,

Qr(τ ,a), a /∈ Aigm.

The corresponding loss for Q′
r is

LQ′
r
=

∑
a∈Aigm

(
Q′

r(τ ,a)−Q∗(τ ,a)
)2

+
∑

a/∈Aigm

(
Qr(τ ,a)−Q∗(τ ,a)

)2
=

∑
a∈Aigm∩Ar

(
Q′

r(τ ,a)−Q∗(τ ,a)
)2

+
∑

a∈Aigm\Ar

(
Qr(τ ,a)−Q∗(τ ,a)

)2
<

∑
a∈Aigm∩Ar

(
Qr(τ , â)−Q∗(τ ,a)

)2
+

∑
a∈Aigm\Ar

(
Qr(τ ,a)−Q∗(τ ,a)

)2
= LQr .

Since Qr is assumed to have fully converged, the loss cannot be decreased further. But LQ′
r
< LQr

under the assumption Qr(τ , â) > Q∗(τ ,a∗), which is a contradiction.

Hence, we must have

Qr(τ , â) ≤ Q∗(τ ,a∗),

and Lemma 2 holds.

C.3 THEOREM 1 CONTAINMENT OF OPTIMAL JOINT ACTIONS

For any τ and joint action a, let Qr have converged. Then we have

Atgm ⊆ Ar,

i.e., all truly optimal joint actions are contained in the potentially optimal set Ar.

Proof. Consider any a∗ ∈ Atgm.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• If a∗ ∈ Aigm, then by definition Aigm ⊆ Ar, and thus a∗ ∈ Ar.

• If a∗ /∈ Aigm, from Lemma 1 we have

Qr(τ ,a
∗) = min(Qr(τ , â), Q

∗(τ ,a∗)) = Qr(τ , â).

By Lemma 2, Qr(τ , â) ≤ Q∗(τ ,a∗), so

Qr(τ ,a
∗) ≥ Qr(τ , â)− C,

and therefore a∗ ∈ Ar.

Since every a∗ ∈ Atgm is included in Ar, we conclude that

Atgm ⊆ Ar.

This completes the proof.

C.4 LEMMA 3

When Qr has converged:

• If Aigm ⊆ Atgm, then

Qr(τ , â) = Q∗(τ ,a∗).

• If Aigm ⊈ Atgm, then

min
a∈Aigm

Q∗(τ ,a) < Qr(τ , â) < Q∗(τ ,a∗).

Proof.

• If Aigm ⊆ Atgm, then setting Qr(τ , â) = Q∗(τ ,a∗) achieves LQr
= 0. Any other value

leads to LQr
> 0, so the minimum is achieved exactly when Qr(τ , â) = Q∗(τ ,a∗).

• If Aigm ⊈ Atgm, split the loss LQr
into

L1 =
∑

a∈Aigm∪Atgm

(
Qr(τ ,a)−Q∗(τ ,a)

)2
,

L2 =
∑

a/∈Aigm∪Atgm

(
Qr(τ ,a)−Q∗(τ ,a)

)2
.

By Lemmas 1 and 2, for a ∈ Aigm ∪Atgm, Qr(τ ,a) = Qr(τ , â), so

L1 =
∑

a∈Aigm∪Atgm

(
Qr(τ , â)−Q∗(τ ,a)

)2
.

Consider L1 as a quadratic function of Qr(τ , â). Its minimum m satisfies

min
a∈Aigm

Q∗(τ ,a) < m < Q∗(τ ,a∗).

For L2, since Qr(τ ,a) ≤ Qr(τ , â) by Lemma 1, it is monotonically decreas-
ing for Qr(τ , â) < maxa/∈Aigm∪Atgm

Q∗(τ ,a), and constant for Qr(τ , â) ≥
maxa/∈Aigm∪Atgm

Q∗(τ ,a).
Combining L1 and L2, the global minimum of LQr

= L1 + L2 occurs at a value

min
a∈Aigm

Q∗(τ ,a) < Qr(τ , â) < Q∗(τ ,a∗),

establishing the second case.

This completes the proof.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.5 THEOREM 2 (CONVERGENCE OF WEIGHTED TRAINING)

Assuming Qtot satisfies IGM and has a unique maximal joint action â, there exists α = 0 such that
Qtot converges with â ∈ Atgm and Ar = Atgm.

Proof.

We consider the weighted loss for Qtot:

LQtot
=

∑
a

w(s,a)
(
Qtot(τ ,a)−Q∗(τ ,a)

)2
.

Partition joint actions as in the method section:

• a = â,
• a ∈ Ar,a ̸= â, Q∗(τ ,a) ≥ Qtot(τ , â),
• a ∈ Ar,a ̸= â, Q∗(τ ,a) < Qtot(τ , â),
• a /∈ Ar (weighted by α).

When α = 0, the last term is zero. Then we exclude the third term and get a lower bound:

LQtot ≥ (Qtot(τ , â)−Q∗(τ , â))2 +
∑

a∈Ar,a̸=â
Q∗(τ ,a)≥Qtot(τ ,â)

(
Qtot(τ ,a)−Q∗(τ ,a)

)2
.

Similarly, after Qr converges, its loss takes the same form:

LQr
= (Qr(τ , â)−Q∗(τ , â))2 +

∑
a∈Ar,a̸=â

Q∗(τ ,a)≥Qr(τ ,â)

(
Qr(τ ,a)−Q∗(τ ,a)

)2
.

Define Qr(τ , â) = m at the minimum of LQr
. And for joint actions that satisfy a ∈ Ar,a ̸=

â, Q∗(τ ,a) ≥ Qtot(τ , â), Qtot(τ ,a) ≤ Qtot(τ , â), Qtot(τ ,a) should be as large as possible and
finaly equal to Qtot(τ ,a). Therefore, the minimum values of LQtot

and LQr
are actually the same.

We can then construct a valid Qtot satisfying all consumptions:

Qtot(τ ,a) =

{
m+ ϵ, a = â,

m, a ̸= â,

where ϵ ensures a unique maximal joint action.

Two cases arise:

• If â ∈ Atgm, then Qtot(τ , â) = Qr(τ , â) = Q∗(τ ,a∗), and Qtot has converged.
• If â /∈ Atgm, Lemma 3 gives Q∗(τ , â) < m < Q∗(τ ,a∗).

Construct

Q′
tot(τ ,a) =

{
Q∗(τ ,a∗), a = a∗,

m, a ̸= a∗,

which satisfies LQ′
tot

< LQtot
, ensuring iterative training that moves â toward Atgm.

Thus, with iterative training and α = 0, Qtot converges such that â ∈ Atgm and Ar = Atgm. The
result also holds for Qtot satisfying IGM without strict monotonicity, e.g., QPLEX.

C.6 REMARK ON THE UNIQUE MAXIMAL JOINT ACTION ASSUMPTION

In Theorem 2, we assume that Qtot has a unique maximal joint action â for simplicity of analysis.
In practice, this assumption can be relaxed:

• Even if multiple joint actions achieve the same maximal value, the weighted training proce-
dure will assign higher emphasis to those in Atgm, guiding the learning dynamics toward
the set of potentially optimal joint actions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• The uniqueness can also be enforced with an arbitrarily small perturbation ϵ added to break
ties, which does not affect policy performance but ensures theoretical convergence of the
proof.

• Empirically, in stochastic environments or with function approximation, exact ties are rare,
so this assumption is reasonable for most practical multi-agent RL tasks.

Thus, the assumption mainly simplifies the theoretical exposition without restricting the practical
applicability of the method.

D DISCUSSION

This section provides an accessible discussion of the motivation and design rationale behind POW,
clarifying the innovations and avoiding potential confusion with existing value factorization meth-
ods.

D.1 CORE INNOVATIONS

The novelty of POW is reflected in two key aspects: (1) It eliminates the need to traverse the entire
exponentially large joint action space when recognizing optimal joint actions; (2) It provides a theo-
retical guarantee of convergence to the global optimum, without introducing approximation error in
practice.

These advantages directly address the limitations of prior approaches such as WQMIX and QPLEX.

D.2 PROBLEM CONTEXT

Within the CTDE framework, the IGM condition requires training on a centralized Qtot function.
Due to the monotonicity constraints imposed by mixing networks (e.g., QMIX), a joint action may
be incorrectly undervalued when some agents take suboptimal actions. This prevents accurate esti-
mation of globally optimal joint actions.

WQMIX mitigates this by reweighting potentially optimal joint actions more heavily during training
(Rashid et al., 2020b). However, identifying these actions requires an unrestricted value function
over the full joint action space. Since the joint action space grows exponentially with the number
of agents, WQMIX resorts to approximations that inevitably introduce error, limiting its practical
applicability.

D.3 DESIGN RATIONALE OF Qr

POW avoids the drawbacks of WQMIX by introducing a recognition module, Qr, that directly iden-
tifies a superset of potentially optimal joint actions, denoted Ar. Instead of exhaustively searching
over all joint actions, POW uses â = argmaxa Qr(τ ,a) as a reference and recognizes Ar without
approximation. This set is then weighted more strongly during training of Qtot, ensuring accurate
estimation of globally optimal policies.

To achieve this, Qr is designed with three essential properties:

1. Independence of joint action values. Qr explicitly takes the joint action a as input, ensuring
that Qr(τ ,a) is independently parameterized for each action. This avoids the monotonic coupling
between joint actions present in QMIX’s mixing structure, enabling Qr to recover the true Q∗(τ ,a)
values without interference.

2. Satisfaction of IGM. Although free from monotonicity, Qr still satisfies the IGM condition,
i.e., argmaxa Qr(τ ,a) = â. This allows â to serve as a baseline for identifying all potentially
optimal joint actions in Ar.

3. Accurate recovery of Q∗. Qr is trained against the true joint action values Q∗, rather than
surrogate targets. Thanks to its independence property, Qr can precisely match Q∗(τ ,a) for each
action, ensuring that Ar can be recognized by simple comparison with Qr(τ , â).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.4 HOW Qr ENABLES POW

These three properties guarantee that Qr recovers the set Ar without approximation, and that Ar

gradually contracts to Atgm as training proceeds. This mechanism enables POW to retain the
strengths of WQMIX (emphasizing potentially optimal joint actions) while avoiding its reliance
on approximations. Unlike QPLEX, which assigns equal weight to all joint actions and often suffers
from instability, POW selectively emphasizes Ar, ensuring both stability and convergence guaran-
tees.

Fig. 8 provides an intuitive visualization: Qr establishes a baseline plane at Qr(τ , â), above which
potentially optimal actions are recognized. As training proceeds, this plane rises until it aligns with
the true global optimum, at which point Ar = Atgm and the optimal policy is recovered.

𝑎𝑎11
𝑎𝑎12

𝑎𝑎13
𝑎𝑎14

𝑎𝑎15
𝑎𝑎16

𝑎𝑎17
𝑎𝑎18

𝑎𝑎19 𝑎𝑎21
𝑎𝑎22

𝑎𝑎23
𝑎𝑎24

𝑎𝑎25
𝑎𝑎26

𝑎𝑎27
𝑎𝑎28

𝑎𝑎29

𝐴𝐴TGM

𝐴𝐴IGM
𝐴𝐴r

𝑄𝑄𝑟𝑟 𝝉𝝉, �𝒂𝒂

max
𝒂𝒂∈𝑨𝑨

𝑄𝑄∗ 𝝉𝝉,𝒂𝒂

Figure 8: This figure illustrates the Q∗-value landscape, where the height of each column represents
the Q∗-value associated with a particular joint action. (The exact heights are not critical for the
concepts discussed herein.) The current convergence state of the Qr network resembles Stage 2 in
Fig. 9. The red area represents â. The yellow area highlights Ar, which is determined via â and
represents the subset of actions on which POW focuses its weighted training efforts. The green area
denotes the global optimal joint actions. For Qr, the Q-values beneath the conceptual plane are
already learned, while the Q-values within Ar are set at the plane’s level. As the training progresses,
the plane is expected to rise incrementally, identifying increasingly higher Q∗-values.

D.5 ILLUSTRATIVE EXAMPLE

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡

𝑄𝑄i 𝑄𝑄i 𝑄𝑄i

𝑄𝑄r 𝑄𝑄r 𝑄𝑄r

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡

Stage I Stage II Stage III

Figure 9: Three stages of the matrix game. The potentially optimal joint action is highlighted with
a yellow border.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

To provide intuition for how POW-QMIX overcomes non-monotonicity, we illustrate its behavior
in a one-step matrix game. The joint action space is {A,B,C}. In such settings, Q∗ and Q̂∗ are
equivalent to the ground-truth reward function, allowing us to directly track the evolution of joint
action values during training.

The training process can be divided into three stages (I–III) as depicted in Fig. 9.

Stage I–II. At the beginning of training, based on the values estimated by the Qr module, we can
identify (A,A) and (C,C) as potentially optimal joint actions, with weights set to 1, while all other
joint actions receive zero weight. During Stage II, the Qtot value for (C,C) already matches Q∗, so
its gradient vanishes. In contrast, for (A,A), Qtot < Q∗, meaning the gradient update increases Qtot

and propagates improvements to the corresponding individual utilities Q1(τ1, A) and Q2(τ2, A).

Stage III. As training proceeds, (A,A) becomes the only remaining potentially optimal joint ac-
tion. This action coincides with the true global optimum, enabling POW-QMIX to escape the local
optimum (with value 7.9) and converge to the correct solution.

E ADDITIONAL RESULTS OF ABLATION STUDIES

We test the generality of POW by applying it to two other value decomposition baselines, yielding
POW-VDN and POW-QPLEX. These experiments demonstrate that POW is not tied to a specific
base algorithm but provides a general mechanism for improving non-monotonicity handling.

0M 1M 2M 3M 4M 5M
Timesteps

-10

0

10

20

30

40

Te
st

Re
tu

rn
 M

ea
n

(a) p=-3

0M 1M 2M 3M 4M 5M
Timesteps

-10

0

10

20

30

40

(b) p=-4

0M 1M 2M 3M 4M 5M
Timesteps

-10

0

10

20

30

40

(c) p=-5

POW-QMIX QMIX POW-VDN VDN POW-QPLEX QPLEX

Figure 10: Application of POW to Predator-Prey with three levels of mis-capture penalty.

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

W
in

Ra
te

(a) 3s_vs_5z

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

(b) corridor

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

(c) MMM2

POW-QMIX QMIX POW-VDN VDN POW-QPLEX QPLEX

Figure 11: Application of POW to SMAC benchmarks.

The results across Predator-Prey (Fig. 10), SMAC (Fig. 11), highway-env intersection (Fig. 12),
and SMACv2 (Fig. 13) consistently show that adding POW substantially improves performance
and stability. Importantly, POW-QPLEX alleviates the instability issues commonly observed in
QPLEX, and POW-VDN provides noticeable gains despite VDN’s limited expressiveness. These
findings support the general applicability of POW as a plug-in improvement to value decomposition
methods.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0M 1M 2M 3M 4M 5M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

Su
cc

es
s R

at
e

(a) Test Success Rate

0M 1M 2M 3M 4M 5M
Timesteps

-120

-100

-80

-60

-40

-20

0

20

Te
st

Re
tu

rn
 M

ea
n

(b) Test Return Mean

POW-QMIX QMIX POW-VDN VDN POW-QPLEX QPLEX

Figure 12: Application of POW to the highway-env intersection scenario.

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

14

15

16

17

18

19

20

21

Te
st

Re
tu

rn
 M

ea
n

(a) protoss_5_units

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

14

15

16

17

18

19

20

21
(b) terran_5_units

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

14

15

16

17

18

19

20

21
(c) zerg_5_units

POW-QMIX QMIX POW-VDN VDN POW-QPLEX QPLEX

Figure 13: Application of POW to SMACv2 benchmarks.

F EXPERIMENTAL SETUP

Note: In Sec. 4, we set the weight for potentially optimal joint actions to 1 and for all other joint
actions to α ∈ [0, 1), following the weighting function in Equation (10) of the WQMIX paper, which
is commonly used in the WQMIX methodology.

We emphasize that Theorem 2 holds strictly when α = 0. As stated after the definition, both our
theoretical analysis and experimental implementation consistently adopt α = 0 to ensure alignment
between theory and practice. In practice, setting α = 0 avoids introducing approximation errors
from down-weighting suboptimal actions, ensuring that only the recognized potentially optimal set
contributes to training.

F.1 PARAMETER SETTINGS FOR BASELINE ALGORITHMS

We conducted all experiments using the PyMARL2 framework, an enhanced version of the origi-
nal PyMARL, specifically optimized for the StarCraft Multi-Agent Challenge (SMAC). PyMARL2
incorporates several implementation refinements and hyperparameter adjustments to improve per-
formance across various scenarios. There are many code-level tricks in PyMARL2, such as the use
of the Adam optimizer, the batch size, the replay buffer size, the rollout processes, the ϵ-greedy
exploration strategy, and the TD(λ) parameter. These hyperparameters are set to the same values
across all algorithms, including ours, to ensure a fair comparison.

The hyperparameters are listed in Tab. 2, Tab. 3, Tab. 4, Tab. 5, and Tab. 6.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 2: Common Hyperparameters in Pymarl2

HYPERPARAMETER VALUE

TRAINING MODE PARALLEL
ROLLOUT PROCESSES 8
REPLAY BUFFER SIZE 5000
BATCH SIZE (TRAINING) 128
ACTION SELECTION ϵ-GREEDY
ϵ START 1.0
ϵ FINISH 0.05
ϵ ANNEAL STEPS 500K
OPTIMIZER ADAM
LEARNING RATE 0.001
TARGET NETWORK UPDATE INTERVAL 200
TD(λ) 0.6
LAYER NORMALIZATION FALSE
ORTHOGONAL INITIALIZATION FALSE
ORTHOGONAL GAIN 0.01
PRIORITY EXPERIENCE REPLAY (PER) FALSE
PER α 0.6
PER β 0.4
RETURN-BASED PRIORITY FALSE
MIXING EMBEDDING DIMENSION 32
HYPERNETWORK EMBEDDING 64
HYPERNETWORK LAYERS 2

Table 3: QMIX-Specific Hyperparameters

HYPERPARAMETER VALUE

AGENT ARCHITECTURE RNN
QMIX LOSS WEIGHT 1.0

Table 4: W-QMIX-Specific Hyperparameters

HYPERPARAMETER VALUE

WEIGHTS FOR OPTIMAL JOINT ACTIONS 1
WEIGHTS FOR OTHER JOINT ACTIONS 0.1

Table 5: QPLEX-Specific Hyperparameters

HYPERPARAMETER VALUE

DOUBLE Q-LEARNING TRUE
ADVANTAGE HYPERNETWORK LAYERS 2
ADVANTAGE HYPERNETWORK EMBEDDING 64
NUMBER OF KERNELS 4
MINUS-ONE TRANSFORMATION TRUE
WEIGHTED HEAD TRUE
ADVANTAGE ATTENTION TRUE
GRADIENT STOP MECHANISM TRUE

F.2 MATRIX GAME

In a matrix game environment, two agents independently select actions, forming a joint action to
receive an immediate reward. This reward directly reflects the true value of the joint action. This
type of environment is characterized by a simple and unique state space, eliminating the need to
consider complex state transitions. Simultaneously, the reward is directly equivalent to the true
value, requiring no additional modeling. Furthermore, the reward structure can be flexibly designed,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: ResQ-Specific Hyperparameters

HYPERPARAMETER VALUE

LEARNER RESQ CENTRAL LEARNER
DOUBLE Q-LEARNING TRUE
MIXING NETWORK QMIX
HYSTERETIC QMIX (CW/OW-QMIX) FALSE
CENTRAL MIXING EMBEDDING 128
CENTRAL ACTION EMBEDDING 1
CENTRAL MAC BASIC CENTRAL MAC
CENTRAL AGENT CENTRAL RNN
CENTRAL RNN HIDDEN DIMENSION 64
CENTRAL MIXER FEEDFORWARD
RESQ VERSION V3
CENTRAL LOSS WEIGHT 1.0
NO-OPT LOSS WEIGHT 1.0
QMIX LOSS WEIGHT 1.0
CONSTRAINT LOSS TYPE MSE
CONSTRAINT LOSS DELTA 0.001
MAX SECOND GAP 0
CONSTRAINT METHOD MAX ACTION
RESIDUAL Q-VALUE ABSOLUTE TRUE

facilitating the construction of test scenarios with different characteristics. Lastly, the results are
intuitive and easy to analyze and visualize. It is precisely because of these characteristics that matrix
games have become an ideal testbed for studying the theoretical performance of value decomposition
algorithms.

We set ϵ = 1 throughout the experiments on matrix game to achieve uniform data distribution and
set ideal weights for the purpose of theoretical analysis. The weights for potentially optimal joint
actions and other joint actions in POW-QMIX are 1 and 0. The weights for optimal joint actions and
other joint actions in CW-QMIX and OW-QMIX are 1 and 0. The constant C used in Eqn. 9 is set
to 0.05.

F.3 PREDATOR-PREY

Figure 14: Stag Hunt Game

The ”Stag Hunt” game in game theory is a classic scenario that profoundly reveals the inherent
conflict between individual rationality and collective rationality, as well as potential coordination
mechanisms, while also highlighting the crucial role of trust in fostering cooperation. This tension
between individual and collective rationality precisely constitutes the core of the non-monotonicity
problem explored in this paper. In the Stag Hunt scenario, agents face two strategic choices: one
is a high-risk cooperative strategy, which yields the highest payoff when all participants choose
this strategy, but if only a single agent attempts to cooperate while other agents choose not to, that
agent will suffer severe losses or even penalties; the other is a low-risk safe strategy, where an agent

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

adopting this strategy can obtain a stable but relatively low payoff, regardless of the choices of other
agents.

Table 7: Predator-Prey Experiment Payoff Matrix
A1 \A2 Move Up Move Down Move Left Move Right Stay Still Capture

Move Up 0 0 0 0 0 −p
Move Down 0 0 0 0 0 −p
Move Left 0 0 0 0 0 −p
Move Right 0 0 0 0 0 −p
Stay Still 0 0 0 0 0 −p
Capture −p −p −p −p −p 10

The predator-prey environment adopted in this paper is an extension of the Stag Hunt concept within
a complex Markov Decision Process. This environment retains the core characteristics of the Stag
Hunt game while introducing a richer strategy space and dynamic interactions. In this environment,
multiple agents acting as predators need to effectively cooperate to successfully capture the prey.
All units (including agents and prey) move and interact in a discrete grid world.

The detailed settings of this environment are as follows: We construct a 10 × 10 grid world as the
state space, where each grid cell can contain: empty space, an agent, or the prey. Considering the
limitations of real-world perception, we limit the observation range of an agent to a 3× 3 grid area
centered on itself, allowing it to only perceive the types of units within this range, thus forming a
Partially Observable Markov Decision Process (POMDP). The action space of an agent includes six
discrete choices: moving in the four cardinal directions (up, down, left, right), staying in place, and
performing a capture action.

The reward mechanism is designed to reflect the necessity of cooperation: Only when at least two
agents simultaneously perform a capture action in positions adjacent to the prey can the capture be
successful, whereupon all agents receive a positive reward of +10. Conversely, if only one agent
attempts to perform a capture action in isolation, not only will the capture action fail, but that agent
will also incur a penalty of −p. This design directly maps to the risk-reward trade-off in the Stag
Hunt game.

As the absolute value of the mis-capture penalty parameter p increases, the non-monotonic charac-
teristics of the environment become more prominent. A stricter penalty mechanism reinforces the
non-monotonicity of the reward structure, prompting agents to be more inclined to adopt conser-
vative strategies—completely avoiding the risk of performing a capture action—thereby potentially
missing out on high-payoff cooperative opportunities. This phenomenon provides an ideal test sce-
nario for our research on how algorithms can overcome non-monotonicity limitations.

The default experimental settings are consistent with those in the PyMARL2 framework. The con-
stant C used in Eqn. 8 is set to 1.

F.4 SMAC

In the PyMARL2 framework, certain parameters such as hidden size and TD(λ) have been specifi-
cally fine-tuned for the 6h vs 8z and 3s5z vs 3s6z maps. However, for the sake of a fair comparison,
we set all algorithms to use default parameters across all maps. The constant C used in Eqn. 8 is set
to 0.05.

F.5 SMACV2

The default experimental settings are consistent with those in the PyMARL3 framework. The con-
stant C used in Eqn. 8 is set to 0.05.

F.6 INTERSECTION SCENARIO IN HIGHWAY-ENV

Highway-env Leurent (2018) is a collection of environments specifically designed for autonomous
driving decision-making tasks. Its intersection scenario simulates a complex traffic environment, an

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

example of which is shown in Fig. 15, providing an ideal platform for us to evaluate the performance
of algorithms on non-monotonicity problems.

Figure 15: Example of the intersection scenario environment.

In this scenario, multiple vehicles approach an unsignalized intersection from different directions,
with each vehicle controlled by an independent agent policy. These vehicles follow pre-planned
routes, and the primary task of the agents is to control their vehicle’s speed to ensure safe and
efficient passage through the intersection. The reward mechanism is intricately designed: a positive
reward is given only when all vehicles safely pass through the intersection and reach their respective
destinations; conversely, if any collision occurs, all agents not only receive a severe negative penalty,
but the current episode also terminates immediately.

This design leads to the environment exhibiting strong non-monotonic characteristics. Due to the
significant penalty associated with collisions, agents can easily learn extremely conservative strate-
gies—such as stopping completely and waiting outside the intersection to avoid any potential colli-
sion risk. However, while such conservative strategies can avoid penalties, they fail to achieve the
positive reward for successfully navigating the intersection, leading to poor overall performance.
Therefore, agents need to learn to find a balance between safety and efficiency, making this an ideal
scenario for testing an algorithm’s ability to handle non-monotonic challenges.

We adopted the same scenario and reward settings as in Huang et al. (2023). The ϵ value is set to 0.1
to ensure the same data distribution for all algorithms. The constant C used in Eqn. 8 is set to 0.1.

THE USE OF LLMS

We thank ChatGPT-5 for its assistance in polishing the writing and proofreading of this paper. The
authors are responsible for the content and presentation.

24

	Introduction
	Preliminaries
	Method
	Architecture Overview
	Recognition of Potentially Optimal Joint Actions
	Recognition-Guided Weighting Function
	Iterative Weighted Training

	Experiments
	Matrix Game
	Predator–Prey
	SMAC
	Evaluation on Highway-Env Intersection and SMACv2
	Ablation Studies
	Applying POW to VDN and QPLEX
	Enlarging the Network Size

	Related Work
	Conclusions and Limitations
	Relationship to Related Works
	Proof of Theorems
	Proof of Theorems
	Lemma 1
	Lemma 2
	Theorem 1 Containment of optimal joint actions
	Lemma 3
	Theorem 2 (Convergence of weighted training)
	Remark on the Unique Maximal Joint Action Assumption

	Discussion
	Core Innovations
	Problem Context
	Design Rationale of Qr
	How Qr Enables POW
	Illustrative Example

	Additional results of Ablation Studies
	Experimental Setup
	Parameter Settings for Baseline Algorithms
	Matrix Game
	Predator-Prey
	SMAC
	SMACv2
	Intersection Scenario in Highway-env

