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ABSTRACT

Value function factorization is widely used in cooperative multi-agent reinforce-
ment learning (MARL). Existing approaches often impose monotonicity con-
straints between the joint action value and individual action values to enable de-
centralized execution. However, such constraints limit the expressiveness of value
factorization, restricting the range of joint action values that can be represented
and hindering the learning of optimal policies. To address this, we propose Po-
tentially Optimal Joint Actions Weighting (POW), a method that ensures optimal
policy recovery where existing approximate weighting strategies may fail. POW
iteratively identifies potentially optimal joint actions and assigns them higher
training weights through a theoretically grounded iterative weighted training pro-
cess. We prove that this mechanism guarantees recovery of the true optimal pol-
icy, overcoming the limitations of prior heuristic weighting strategies. POW is
architecture-agnostic and can be seamlessly integrated into existing value factor-
ization algorithms. Extensive experiments on matrix games, difficulty-enhanced
predator-prey tasks, SMAC, SMACv2, and a highway-env intersection scenario
show that POW substantially improves stability and consistently surpasses state-
of-the-art value-based MARL methods.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) holds great potential for solving cooperative tasks in
domains such as swarm robotics (Huang et al., 2020), autonomous driving (Schmidt et al., 2022),
and multi-agent games (Terry et al., 2021). Yet, simultaneous policy learning for multiple agents
remains challenging due to non-stationarity and the exponential growth of the joint action space.
The centralized training with decentralized execution (CTDE) paradigm has become the standard
framework for addressing these challenges, inspiring a wide range of policy-based methods (e.g.,
MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018), FOP (Zhang et al., 2021)) and value-
based methods (e.g., VDN (Sunehag et al., 2017), QMIX (Rashid et al., 2020a), QPLEX (Wang
et al., 2020)).

Among these, QMIX has achieved strong results on benchmarks such as the StarCraft II Multi-Agent
Challenge (SMAC) (Samvelyan et al., 2019). QMIX factorizes the joint action-value into individual
action-values using a monotonic mixing function, thereby ensuring decentralized execution. How-
ever, the monotonicity constraint reduces the expressiveness of the value function, limiting its ability
to represent many joint action values and often hindering optimal policy recovery.

To address this, WQMIX (Rashid et al., 2020b) proposed weighting joint actions during training,
ideally emphasizing optimal ones so that the overall joint action-value function (Qtot) would ap-
proximate the optimal target (Q∗). However, identifying the truly optimal joint actions requires
traversing the entire joint action space, which is intractable in realistic settings. Practical variants
such as CW-QMIX and OW-QMIX replace this exhaustive search with heuristic approximations.
Specifically, CW-QMIX anchors its weighting on the argmaxQtot rather than the argmaxQ∗,
thereby avoiding enumeration of the full action space but introducing inaccuracies. OW-QMIX goes
further by directly using Qtot values in an optimistic manner, which amplifies errors when judging
whether an action is truly optimal. As a result, both methods misalign the assigned weights with the
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actual optimal set: suboptimal actions may still receive large weights, while genuinely optimal ones
can be under-emphasized. This creates a persistent gap between WQMIX’s theoretical promise and
its practical realizations.

We propose the Potentially Optimal Joint Actions Weighting (POW) method, which bridges this
gap by introducing a recognition-based weighting scheme with provable convergence guarantees.
POW employs a recognition module Qr that explicitly conditions on both state and joint actions,
enabling it to identify a set of potentially optimal joint actions Ar. Training weights are then as-
signed adaptively, with higher weights for actions in Ar. Through iterative updates, we prove that
Ar converges to include the true optimal joint actions, ensuring that Qtot aligns its action pref-
erences with those of Q∗ without requiring exhaustive search or heuristic approximations. This
establishes, for the first time, a consistent link between the theoretical guarantees of weighted value
decomposition and its practical implementation.

To validate POW, we instantiate it on top of QMIX (yielding POW-QMIX) and evaluate across
diverse benchmarks: matrix games, predator–prey, highway-env, SMAC, and SMACv2. Results
show that POW-QMIX outperforms state-of-the-art baselines, particularly in environments with
non-monotonic reward structures where existing factorization methods struggle. We further demon-
strate that POW can be seamlessly integrated into other value decomposition frameworks, such as
VDN and QPLEX, consistently improving their performance. These results highlight both the ver-
satility and scalability of our approach.

In summary, our contributions are:

• We propose POW, a recognition-based joint action weighting framework that provably
bridges the gap between the theoretical guarantees of WQMIX and its practical realiza-
tions.

• We provide rigorous theoretical analysis, proving that the recognition module ensures con-
vergence of the candidate set Ar toward the true optimal joint actions, thereby enabling
optimal policy recovery.

• We conduct extensive experiments across five benchmark families, demonstrating that
POW achieves superior performance over strong baselines and generalizes across multi-
ple value factorization architectures.

2 PRELIMINARIES

We consider the standard decentralized partially observable Markov decision process (Dec-POMDP)
(Oliehoek et al., 2016), defined by a tuple (S,A, P, r,O, O, n, γ), where S is the set of global states,
A = ×n

i=1Ai the joint action space, P : S × A → ∆(S) the transition function, r : S × A → R
the reward function, O the set of individual observations, O : S × {1, . . . , n} → O the observation
function, n the number of agents, and γ ∈ (0, 1) the discount factor.

At each timestep t, the environment is in state st ∈ S, and agent i selects an action ai ∈ Ai based
on its action-observation history τi ∈ (Oi ×Ai)

∗. The joint action is a = (a1, . . . , an), leading to
the next state st+1 ∼ P (·|st,a) and team reward r(st,a).

A joint policy π = (π1, . . . , πn) defines each agent’s policy πi. The objective is to maximize the
expected discounted return:

J(π) = Es0∼ρ,at∼π, st+1∼P

[ ∞∑
t=0

γtr(st,at)

]
, (1)

where ρ is the initial state distribution.

Centralized Training with Decentralized Execution (CTDE). In CTDE, training can leverage
global state information, but execution requires each agent to act only on its local trajectory τi. This
motivates value function factorization methods, where the joint action-value function Qtot(τ,a)
is decomposed into individual utilities Qi(τi, ai). A common factorization principle is individ-
ual–global–max (IGM) (Sunehag et al., 2017):

argmax
a

Qtot(τ,a) =
[
argmax

ai

Qi(τi, ai)
]n
i=1

. (2)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

QMIX (Rashid et al., 2020a) enforces IGM by using a monotonic mixing function:

∂Qtot

∂Qi
≥ 0, i = 1, ..., n (3)

Subsequent works such as QPLEX (Wang et al., 2020) and QTRAN (Son et al., 2019) relax or gen-
eralize the decomposition principle, while others (e.g., WQMIX (Rashid et al., 2020b), CW-QMIX,
OW-QMIX) assign weights to different joint actions during training. Despite progress, existing ap-
proaches either suffer from limited expressiveness (e.g., strict monotonicity) or rely on heuristic
weighting schemes that may introduce approximation errors. This motivates our proposed POW
framework.

3 METHOD

Value decomposition methods under CTDE must factorize the joint action-value function into per-
agent utilities. However, with monotonic mixing (e.g., QMIX), an agent may still receive an in-
correct penalty if other agents act suboptimally, making it difficult to assign credit to the optimal
joint actions. This motivates weighting schemes such as WQMIX (Rashid et al., 2020b), which ide-
ally give higher training weights to optimal joint actions. Yet in practice, variants like CW-QMIX
and OW-QMIX must approximate these weights without knowing the true optimal set, introduc-
ing errors. POW addresses this challenge by learning a recognition-guided weighting scheme that
provably converges toward the optimal set.

3.1 ARCHITECTURE OVERVIEW

Agent 1 Agent N…

𝑸𝑸r

𝑾𝑾𝟏𝟏
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𝑟𝑟 + 𝛾𝛾 �𝑄𝑄∗ 𝝉𝝉′, arg max
𝑎𝑎∈𝐀𝐀

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 𝝉𝝉′,𝒂𝒂 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 𝝉𝝉,𝒂𝒂𝑄𝑄𝑟𝑟 𝝉𝝉,𝒂𝒂
ℒ𝑄𝑄𝑟𝑟 ℒ𝑄𝑄tot
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No Gradient Backpropagation
With Gradient Backpropagation

Figure 1: (a) The Qr Network structure. (b) The overall architecture of POW method. Qtot can be
any value function factorization network satisfying IGM.

Fig. 1 illustrates the POW framework.

Key components are: (1) Q̂∗, an unrestricted joint action value estimator that approximates the
true optimal action value function Q∗ without factorization or monotonic constraints. It provides
the bootstrap target shared by all networks during training. (2) Qtot, a monotonic mixing network
enabling decentralized execution. Its optimality depends on correct weighting of optimal vs. sub-
optimal joint actions during learning. It can be any value factorization network satisfying IGM
(e.g., QMIX, VDN, QPLEX); (3) the potentially optimal joint actions recognition module Qr. It is
used to identify a set of potentially optimal joint actions Ar. Qr is trained to approximate Q̂∗ (or
Q∗ in theoretical analysis), and its output determines the adaptive training weights applied to each
joint action. It takes the joint action as input and provides an expressive joint action value model
unconstrained by monotonicity but conforming to IGM.

The architecture of Qr is shown in Fig. 1 a). The inputs of Qr include: the global state s, the
one-hot encoding of joint action, a and the fixed values of individual advantage functions Ai. This
joint-action conditioning is crucial for distinguishing candidate actions, whereas in QPLEX it pri-
marily increases expressiveness of Qtot. By contrast, in POW this design is tied directly to the
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recognition-weighting mechanism and its convergence properties (see Sec. 3.2). Atot refers to the
mixing of the individual agent advantage functions as in QPLEX. The advantage function is defined
by Ai(τi, ai) = Qi(τi, ai)−maxai∈Ai

Qi(τi, ai).

Q̂∗, Qtot and Qr (detailed in Sec. 3.2 and Sec. 3.3) share the same Q-learning target:

LQ̂∗ = E[(Q̂∗(τ ,a)− y)2] (4a)

LQtot
= E[w(s,a)(Qtot(τ ,a)− y)2] (4b)

LQr = E[(Qr(τ ,a)− y)2] (4c)

where

y = r + Q̂∗(τ ′, argmax
a∈A

Qtot(τ
′,a)) (5)

Together, Q̂∗, Qtot, and Qr form a mutually reinforcing system: Qr proposes potentially optimal
actions, the weighting guided by Ar shapes the update of Qtot, and Q̂∗ ensures consistent bootstrap-
ping. We later show that this interaction guarantees the convergence of Ar toward the true optimal
action set.

3.2 RECOGNITION OF POTENTIALLY OPTIMAL JOINT ACTIONS

We define the recognition module Qr that explicitly takes as input the global state s, individual
action-values Qi(τi, ai), and the joint action a. Here, conditioning on a allows Qr to assess the
value of specific joint actions, enabling recognition of a candidate set Ar of potentially optimal joint
actions. Formally, the recognition module is defined as:

Qr(τ,a) =

n∑
i=1

λi(s,a)
(
Qi(τi, ai)− max

ai∈Ai

Qi(τi, ai)
)
+ V (s), (6)

where λi(s,a) ≥ 0 are scaling factors. The subtraction term centers each agent’s action-value by its
best individual choice, while V (s) captures state-dependent value shared across agents. Intuitively,
this form highlights whether a joint action sacrifices individual agent optimality, while allowing Qr

to adaptively weight such trade-offs.

Importantly, this construction also guarantees the IGM property. Since the contribution of each
agent i is maximized exactly when ai is its individually optimal action (the centered term becomes
zero and all other actions are negative), maximizing Qr(τ,a) over a is achieved by maximizing
each Qi(τi, ai) independently. Thus ensuring IGM without enforcing any monotonicity constraint
on the underlying Qi.

The training objective of Qr is to approximate the optimal joint action value function Q∗ in theory:

LQr
= E

[
(Qr(τ,a)−Q∗(τ,a))2

]
, (7)

During training, updates are applied to the parameters of the mixing function, leaving the parameters
of the individual action value functions unchanged. The scales λi(s,a) are computed by a hypernet-
work, where the global state s and the joint action a are used as inputs to obtain the neural network
weights W1 and W2. We take the absolute values of W1 and W2 to ensure that λi(s,a) ≥ 0.

Definition 1 (Potentially optimal joint action set Ar). We define Aigm :=
{
a ∈ A

∣∣ ∀i : ai ∈
arg max

ai∈Ai

Qi(τi, ai)
}

be the set of joint action obtained by greedy individual choices. Let â ∈ Aigm,

then the potentially optimal joint action set is:

Ar := {a ∈ A | Qr(s,a) ≥ Qr(s, â)− C}, (8)

where C ≥ 0 is a small tolerance constant for stability.

This definition ensures Ar always contains at least the joint greedy action and potentially other
promising joint actions.
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Theorem 1 (Containment of optimal joint actions). Let Atgm :=
{
a ∈ A

∣∣ a =

argmax
a∈A

Q∗(s,a)
}

denote the set of truly optimal joint actions. If Qr converges to Q∗, then

Atgm ⊆ Ar.

Thus Ar is guaranteed not to exclude optimal actions, which is critical for policy improvement.
Proofs are given in Appendix B.

3.3 RECOGNITION-GUIDED WEIGHTING FUNCTION

We now define the POW weighting function:

w(s,a) =

{
1, a ∈ Ar,

α, a /∈ Ar, α ∈ [0, 1),
(9)

where α down-weights actions outside Ar. In all our experiments, we set α = 0, so only actions
in Ar contribute to updates, aligning theory with practice. The training objective for the factorized
value network Qtot is then:

LQtot = E
[
w(s,a)(Qtot(s,a)− y)2

]
, (10)

with target

y = r + γQ̂∗(s′, argmax
a∈A

Qtot(s
′,a)), (11)

where Q̂∗ is an unrestricted joint value estimator used to approximate Q∗.
Theorem 2 (Convergence of weighted training). Under the weighting scheme in Eqn. 9, if Ar con-
verges to contain only optimal joint actions, then Qtot recovers the optimal policy.

If Qtot can recover the joint action with the maximal value of Q̂∗, that is, when
argmax

a∈A
Qtot(τ

′,a) = argmax
a∈A

Q̂∗(τ ′,a), Q̂∗ becomes the optimal joint action value function

Q∗ according to the Bellman equations indicated by Eqn. 4 and Eqn. 11. Thus Qtot can learn the
optimal policy.

Detailed proofs are given in Appendix B.

3.4 ITERATIVE WEIGHTED TRAINING

POW proceeds iteratively: (1) update Qr toward approximating Q̂∗ using supervised targets, (2)
update Qtot using the weighting w(s,a) defined by the current Ar, and (3) update Q̂∗ based on
the updated Qtot. This recognition–weighting loop continues throughout training. Unlike heuristic
approximations in CW-QMIX or OW-QMIX, this iterative scheme ensures that Ar progressively
contracts toward the true optimal set, closing the gap between theoretical guarantees and practical
implementation. The pseudocode is provided in Alg. 1.

4 EXPERIMENTS

In this section, we instantiate our framework with QMIX and propose the POW-QMIX algorithm.
We first evaluate on matrix games and a difficulty-enhanced predator–prey task, both of which ex-
hibit strong non-monotonicity that challenges monotonic value factorization. We then test on the
SMAC, a widely used but relatively monotonic benchmark. Finally, we extend the evaluation to
SMACv2 and a highway-env intersection scenario.

We also conduct ablations to examine (i) the applicability of POW to other value decomposition
methods, and (ii) the effect of increased network size. All experiments are implemented using
PyMARL2 (Hu et al., 2021). Hyperparameters such as optimizer type and replay buffer size are
tuned for each method. Further details are provided in Appendix F. All results are averaged over
five independent runs with different random seeds and are reported with means and 95% confidence
intervals.
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Algorithm 1 POW Training Procedure

Require: Replay buffer D; value networks Qtot, Qr, Q̂
∗; tolerance C

1: Initialize all network parameters
2: for each training iteration do
3: Sample a batch of episodes B = {(o1:T ,a1:T , r1:T )

′} from D
4: Input observations into agent networks to generate histories:
5: H = {(τ1,a1, r1, τ ′

1; . . . ; τT ,aT , rT , τ
′
T )} where τ ′

t = τt+1

6: for each time step t and episode in batch do
7: Compute greedy next action under factorized critic by argmaxa Qtot(τ

′,a).
8: Compute TD target y shared by all critics by Eqn. 11.
9: Update recognition network Qr by minimizing Eqn. 4c.

10: Determine greedy action for recognition module under IGM: argmaxa Qr(τ ,a)
11: Compute training weight w based on Eqn. 8 and Eqn. 9.
12: Update factorized critic Qtot by Eqn. 10.
13: Update unconstrained value estimator Q̂∗ by Eqn. 4a.
14: end for
15: end for
16: return Qtot

A B C

A 8 -12 -12

B -12 0 0

C -12 0 7.9

(a) Payoff	Matrix

A!A" 0.060(A) -0.160(B) -0.045(C)

0.041(A) 8.00 7.95 7.97

-0.150(B) 7.95 7.90 7.93

0.051(C) 7.98 7.92 7.95

(b) POW-QMIX:	Q!,	Q",	Q#$#

Q!Q" 0.060(A) -0.160(B) -0.045(C)

0.041(A) 8.00 -12.00 -12.00

-0.150(B) -12.00 0.00 0.00

0.051(C) -12.00 0.00 7.90

(c) POW-QMIX:	Q!,	Q",	Q%

Q!Q"

-22.90(A) -0.132(B) 0.092(C)

-23.23(A) -8.11 -8.10 -8.11

-0.141(B) -8.10 -0.33 0.15

0.091(C) -8.10 0.16 7.90

(d) QMIX:	Q!,	Q",	Q#$#

Q!
Q" 0.814(A) 0.133(B) 0.912(C)

0.835(A) 16.27 12.67 16.70

0.120(B) 13.21 9.62 13.63

0.906(C) 16.37 12.77 16.79

(e) OW-QMIX:	Q!,	Q",	Q#$#

Q!
Q" 0.060(A) -0.160(B) -0.045(C)

0.041(A) 8.00 7.95 7.97

-0.150(B) 7.95 7.90 7.93

-0.051(C) 7.98 7.92 7.95

(f) CW-QMIX:	Q!,	Q",	Q#$#

Q!
Q"

-0.319(A) -1.205(B) 0.004(C)

-0.314(A) 9.68 -12.77 -14.52

-1.100(B) -12.04 -0.32 -0.08

-0.006(C) -10.64 -0.38 9.69

(g) QPLEX:	Q!,	Q",	Q#$#

Q!Q" 0.159(A) -0.367(B) 0.143(C)

0.155(A) 8.04 6.89 8.01

6.72 5.87 6.71-0.332(B) 

0.150(C) 7.99 6.86 7.97

(h) ResQ:	Q!,	Q",	Q#$#

Q!Q" 0.159(A) -0.367(B) 0.143(C)

8.04 -11.53 -11.42

-11.03 0.14 0.20-0.332(B) 

0.150(C) -11.12 0.23 7.94

(i) ResQ:	Q!,	Q",	Q&#

Q!Q"

0.155(A)

Figure 2: Payoff matrix of a one-step matrix game and reconstructed joint and individual values.
Boldface indicates greedy actions. Blue denotes the true optimal joint action, red denotes suboptimal
joint actions.

4.1 MATRIX GAME

We begin with a coordination matrix game exhibiting strong non-monotonicity, following the setting
of ResQ. To remove effects of exploration randomness, we use ϵ = 1 in ϵ-greedy, producing a
uniform data distribution. After convergence, we record the learned joint and individual values
(including Qr for POW-QMIX and Qjt for ResQ), shown in Fig. 2.

POW-QMIX, CW-QMIX, and ResQ successfully recover the optimal policy. In POW-QMIX, the
Qr module precisely estimates the values of all joint actions, enabling accurate recognition of the
optimal set Ar for weighting. In contrast, QMIX converges to a locally optimal solution due to
monotonicity. OW-QMIX also fails, reflecting its approximation limitations. QPLEX shows partial
overestimation of the optimal joint action while remaining accurate elsewhere—an observation that
inspired our Qr design.
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4.2 PREDATOR–PREY
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POW-QMIX (ours) QMIX OW-QMIX CW-QMIX QPLEX ResQ

Figure 3: Test return in Predator–Prey with three different mis-capture penalties.

In this task, predators must cooperate to capture prey. If an agent attempts capture without coordi-
nation, all agents receive a penalty p. Higher |p| increases non-monotonicity and encourages passive
strategies.

Fig. 3 shows test returns under three penalties. POW-QMIX is the only method that consistently
learns the optimal cooperative strategy across all settings. This highlights its ability to resolve non-
monotonic structures where baselines fail.

4.3 SMAC
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(a) 3s5z (easy)
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(b) 3s_vs_5z (hard)
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(c) 6h_vs_8z (super-hard)
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(d) corridor (super-hard)
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Figure 4: Test win rate on SMAC maps.

We evaluate on six SMAC maps: one easy, one hard, and four super-hard. Fig. 4 shows that POW-
QMIX achieves strong performance across maps. Although SMAC is mostly monotonic (Hu et al.,
2021), POW-QMIX still matches or outperforms baselines. CW-QMIX, while successful in matrix
games, struggles to scale here. QPLEX exhibits instability due to its dueling architecture. OW-
QMIX performs well in SMAC but lacks theoretical guarantees, as shown in Fig. 2.

4.4 EVALUATION ON HIGHWAY-ENV INTERSECTION AND SMACV2

We include experiments on the highway-env intersection task (Leurent, 2018) and on SMACv2
(Ellis et al., 2023). These benchmarks introduce safety-critical decision making and generalization
challenges, complementing the main results.

As shown in Fig. 5, POW-QMIX achieves the best overall performance, successfully balancing
safety and efficiency. In comparison, CW-QMIX converges to overly conservative policies, QPLEX
suffers from training instability, and QMIX learns much more slowly. These results highlight POW-
QMIX’s superior ability to handle strongly non-monotonic environments.
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Figure 5: Test return in the highway-env intersection scenario.

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

14

15

16

17

18

19

20

21

Te
st 

Re
tu

rn
 M

ea
n

(a) protoss_5_units

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

14

15

16

17

18

19

20

21
(b) terran_5_units

0M 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
Timesteps

14

15

16

17

18

19

20

21
(c) zerg_5_units

POW-QMIX (ours) QMIX OW-QMIX CW-QMIX QPLEX ResQ

Figure 6: Test return in the SMACv2 benchmarks.

SMACv2 presents more subtle challenges: as win rates of different algorithms often saturate and
appear indistinguishable, we adopt average test return as the evaluation metric. Fig. 6 shows that
POW-QMIX consistently achieves strong performance across most tasks. While QPLEX outper-
forms POW-QMIX in the protoss scenario, it collapses in the zerg scenario. Notably, the ablation
results in Sec. 4.5.1 show that POW-QPLEX successfully stabilizes QPLEX, confirming that POW’s
benefits extend beyond QMIX.

4.5 ABLATION STUDIES

4.5.1 APPLYING POW TO VDN AND QPLEX

We integrate POW into VDN and QPLEX, producing POW-VDN and POW-QPLEX. Tab. 1 summa-
rizes results across all environments, with detailed learning curves in Appendix E. In predator–prey,
baseline networks fail to learn, but their POW variants converge quickly to optimal policies. In the
highway-env crossroad task, POW greatly improves stability and success rates. On SMAC, POW
reduces QPLEX instability, while in SMACv2, all POW variants consistently improve average re-
turns.

4.5.2 ENLARGING THE NETWORK SIZE

To test whether performance gains come simply from added capacity, we enlarge baseline networks
to match POW’s parameter count. Fig. 7 shows that larger networks improve some baselines (CW-
QMIX, OW-QMIX) in predator–prey but hurt in SMAC. Enhanced QMIX improves in SMAC but
still fails under non-monotonicity. QPLEX performs poorly regardless of size. Thus, gains of POW
stem from its recognition–weighting design, not from parameter count. While Qr adds moderate
complexity (roughly 15–20% training time overhead), POW achieves stronger performance across
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Table 1: Performance comparison across environments. Crossroads and SMAC values are win rates;
Predator–Prey and SMACv2 values are returns. ↑ indicates improvement over the baseline. Bold
indicates best performance.

Algorithm Predator-Prey Crossroads SMAC SMACv2

p = −4 p = −5 3s vs 5z corridor MMM2 protoss terran zerg

QMIX 0 0 0.28 1.00 0.69 0.98 18.3 17.1 17.6
VDN 0 0 0.73 0.97 0.87 0.81 17.5 17.0 15.5
QPLEX 0 0 0.26 0.96 0.30 0.00 19.2 17.3 0
ResQ 40 0 0.88 1.00 0.00 0.90 17.7 16.3 17.5
CW-QMIX 16 8 0.43 0.99 0.79 0.92 17.2 16.0 15.7
OW-QMIX 8 0 0.88 1.00 0.70 0.98 18.4 16.3 16.9

POW-QMIX 40 ↑ 40 ↑ 0.92 ↑ 1.00 0.95 ↑ 0.98 18.8 ↑ 19.0 ↑ 18.4 ↑
POW-VDN 40 ↑ 40 ↑ 0.81 ↑ 0.96 0.87 0.90 ↑ 17.9 ↑ 17.0 16.8 ↑
POW-QPLEX 40 ↑ 40 ↑ 0.93 ↑ 1.00 ↑ 0.94 ↑ 0.93 ↑ 19.9 ↑ 19.4 ↑ 18.1 ↑
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Figure 7: Ablation: effect of network size. (a,b) Predator–Prey with p = −4,−5. (c) SMAC map.

all tasks. We therefore describe POW as an effective trade-off between computational cost and
policy quality.

5 RELATED WORK

Value decomposition in MARL. Value decomposition is the predominant paradigm under CTDE.
VDN (Sunehag et al., 2017) assumes additivity, whereas QMIX (Rashid et al., 2020a) introduces a
monotonic mixing network. QPLEX (Wang et al., 2020) improves expressiveness via a dueling
structure and advantage-based mixing.

WQMIX (Rashid et al., 2020b) reveals the limitation of uniform weighting and proposes an ide-
alized optimal-action–weighted objective. However, practical variants (CW-QMIX, OW-QMIX)
must approximate the optimal action set and therefore cannot guarantee correctness of the assigned
weights. Our method is most closely related to WQMIX but differs in two key respects: (1) POW
replaces heuristic weighting with a recognition–weighting mechanism that provably converges to-
ward the optimal joint action set; (2) our recognition module Qr explicitly conditions on the joint
action a, enabling reliable discrimination among actions, unlike QPLEX where joint-action inputs
primarily serve to enhance representational capacity. Thus, POW resolves the gap between theoreti-
cal guarantees and practical realizations that neither WQMIX nor QPLEX addresses. More detailed
comparisons are provided in Appendix A.

Beyond these classic methods, CIA (Liu et al., 2023) introduces contrastive identity-aware represen-
tation learning to improve credit assignment, and VDT (Zhao et al., 2025) leverages transformers to
exploit temporal structure in multi-agent trajectories. Although effective, these methods are orthog-
onal to our focus: they enhance representation quality or temporal modeling rather than addressing
the theoretical–practical mismatch in weighted value decomposition. Therefore, they do not directly
evaluate the specific problem POW aims to solve.

Approaches such as REMIX (Mei et al., 2023) and concaveQ (Li et al., 2023) introduce alternative
structural assumptions (e.g., concavity or regularization). Our method differs by maintaining gener-
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ality and instead rethinking how potentially optimal joint actions can be recognized and up-weighted
during training.

Approximation error in value-based MARL. Several works highlight approximation error as a
central challenge. ResQ (Shen et al., 2022) mitigates representational bias by injecting joint-action
terms, while CW-QMIX and OW-QMIX approximate weighted learning heuristically and lack op-
timality guarantees. POW shares the motivation of reducing approximation error but introduces a
new mechanism—joint-action conditioning via Qr and iterative recognition-guided weighting—that
ensures optimal actions are retained without requiring exhaustive search.

Beyond value decomposition. Actor–critic MARL methods such as MADDPG (Lowe et al.,
2017) and MAPPO (Yu et al., 2022) do not rely on value factorization but instead employ joint crit-
ics or attention-based critics to stabilize training. These methods differ fundamentally from value
decomposition and excel in continuous-action or competitive settings. Our focus is on cooperative
discrete-action tasks, where value decomposition remains the most effective and widely used ap-
proach. Nevertheless, POW can be viewed as complementary to actor–critic MARL, as both aim to
identify joint action structures that improve stability and performance.

6 CONCLUSIONS AND LIMITATIONS

We introduced Potentially Optimal Joint Actions Weighting (POW), an iterative weighted train-
ing framework for cooperative multi-agent reinforcement learning. POW leverages a recognition
module Qr to identify potentially optimal joint actions and guides training by adaptively weighting
them. We formally proved that under this scheme, the recognized set converges to the true optimal
joint actions, ensuring that Qtot recovers the optimal policy. Extensive experiments across matrix
games, predator–prey, SMAC, SMACv2, and highway-env confirm that POW not only matches its
theoretical guarantees but also achieves superior empirical performance over strong baselines.

Despite these advantages, POW introduces additional modules to address non-monotonicity, which
increase training complexity in large-scale environments. Moreover, our current study is limited to
cooperative settings with discrete action spaces under CTDE. Extending POW to policy-gradient or
actor–critic frameworks (e.g., MAPPO) would broaden its applicability to continuous control and
mixed cooperative–competitive domains.
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A RELATIONSHIP TO RELATED WORKS

This section clarifies the relationship of POW to prior value decomposition MARL methods. Al-
though POW draws inspiration from both WQMIX and QPLEX, its design addresses their key lim-
itations and provides distinct contributions.

POW vs. WQMIX. WQMIX (Rashid et al., 2020b) proposes an idealized scheme in which op-
timal joint actions are assigned higher training weights. In principle, this enables recovery of the
optimal value function. However, its practical implementations (CW-QMIX, OW-QMIX) must ap-
proximate the optimal actions using heuristic strategies, which introduces unavoidable approxima-
tion error and prevents strong guarantees. POW differs fundamentally: we introduce a recognition
module Qr that explicitly incorporates joint actions a as inputs and adaptively identifies a set of po-
tentially optimal joint actions Ar. The weighting function then prioritizes actions in Ar. We provide
theoretical analysis (Theorem 1 and 2) showing that Ar converges toward containing only optimal
actions, thereby eliminating the approximation gap present in WQMIX. Thus, POW achieves the
theoretical guarantee envisioned by WQMIX without resorting to exhaustive search or heuristic ap-
proximations.

POW vs. QPLEX. QPLEX (Wang et al., 2020) enhances representational capacity through a
dueling-based decomposition that incorporates joint-action–dependent advantage terms. Although
this also conditions on joint actions, the primary goal is to increase expressiveness of the value
function rather than to guide training dynamics. By contrast, POW leverages joint action inputs
within Qr for a fundamentally different purpose: recognizing potentially optimal joint actions and
using them to drive a principled weighting scheme. Ablation results (Tab. 1 and Appendix E) confirm
that POW’s performance gains cannot be explained merely by including joint action information.
Instead, they arise from the recognition–weighting mechanism, which explicitly aligns the training
process with the optimal joint value function and provides theoretical guarantees absent in QPLEX.

POW vs. ResQ. ResQ (Shen et al., 2022) introduces an auxiliary joint-action value term to reduce
representational bias. However, its objective remains to approximate Qtot without targeted weight-
ing of potentially optimal joint actions. POW differs by explicitly reweighting the learning process
toward recognized optimal actions, offering a more direct mechanism to recover optimal policies.
As shown in our experiments (Fig. 2, Tab. 1), POW outperforms ResQ in environments with strong
non-monotonicity.

B PROOF OF THEOREMS

In this section we provide detailed proofs of the main theoretical results. Compared with the original
WQMIX analysis, our derivations clarify why the proposed recognition module Qr avoids approx-
imation errors, and how the recognition–weighting mechanism guarantees recovery of the optimal
policy. We explicitly restate all assumptions to avoid ambiguity.

C PROOF OF THEOREMS

C.1 LEMMA 1

For any τ and joint action a /∈ Aigm, if Qr has converged, it holds that

Qr(τ ,a) = min(Qr(τ , â), Q
∗(τ ,a)).

Proof. By the definition of Qr, for any a /∈ Aigm we have

Qr(τ ,a) ≤ Qr(τ , â).

The local loss for each joint action is

LQr
(τ ,a) =

(
Qr(τ ,a)−Q∗(τ ,a)

)2
.

Consider two cases:
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• If Q∗(τ ,a) ≥ Qr(τ , â), then

(Qr(τ ,a)−Q∗(τ ,a))2 ≥ (Qr(τ , â)−Q∗(τ ,a))2.

Minimizing LQr
(τ ,a) requires Qr(τ ,a) to be as large as possible under the constraint

Qr(τ ,a) ≤ Qr(τ , â), yielding

Qr(τ ,a) = Qr(τ , â) = min(Qr(τ , â), Q
∗(τ ,a)).

• If Q∗(τ ,a) < Qr(τ , â), the loss is minimized when

Qr(τ ,a) = Q∗(τ ,a) = min(Qr(τ , â), Q
∗(τ ,a)).

Combining both cases completes the proof.

C.2 LEMMA 2

Let Qr have converged. Then it holds that

Qr(τ , â) ≤ Q∗(τ ,a∗),

where a∗ ∈ Atgm is any truly optimal joint action.

Proof. Suppose, for contradiction, that

Qr(τ , â) > Q∗(τ ,a∗).

From Lemma 1, for any a /∈ Aigm we have

Qr(τ ,a) = min
(
Qr(τ , â), Q

∗(τ ,a)
)
= Q∗(τ ,a).

Construct a new function Q′
r based on Qr:

Q′
r(τ ,a) =

{
Q∗(τ ,a∗), a ∈ Aigm,

Qr(τ ,a), a /∈ Aigm.

The corresponding loss for Q′
r is

LQ′
r
=

∑
a∈Aigm

(
Q′

r(τ ,a)−Q∗(τ ,a)
)2

+
∑

a/∈Aigm

(
Qr(τ ,a)−Q∗(τ ,a)

)2
=

∑
a∈Aigm∩Ar

(
Q′

r(τ ,a)−Q∗(τ ,a)
)2

+
∑

a∈Aigm\Ar

(
Qr(τ ,a)−Q∗(τ ,a)

)2
<

∑
a∈Aigm∩Ar

(
Qr(τ , â)−Q∗(τ ,a)

)2
+

∑
a∈Aigm\Ar

(
Qr(τ ,a)−Q∗(τ ,a)

)2
= LQr .

Since Qr is assumed to have fully converged, the loss cannot be decreased further. But LQ′
r
< LQr

under the assumption Qr(τ , â) > Q∗(τ ,a∗), which is a contradiction.

Hence, we must have

Qr(τ , â) ≤ Q∗(τ ,a∗),

and Lemma 2 holds.

C.3 THEOREM 1 CONTAINMENT OF OPTIMAL JOINT ACTIONS

For any τ and joint action a, let Qr have converged. Then we have

Atgm ⊆ Ar,

i.e., all truly optimal joint actions are contained in the potentially optimal set Ar.

Proof. Consider any a∗ ∈ Atgm.
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• If a∗ ∈ Aigm, then by definition Aigm ⊆ Ar, and thus a∗ ∈ Ar.

• If a∗ /∈ Aigm, from Lemma 1 we have

Qr(τ ,a
∗) = min(Qr(τ , â), Q

∗(τ ,a∗)) = Qr(τ , â).

By Lemma 2, Qr(τ , â) ≤ Q∗(τ ,a∗), so

Qr(τ ,a
∗) ≥ Qr(τ , â)− C,

and therefore a∗ ∈ Ar.

Since every a∗ ∈ Atgm is included in Ar, we conclude that

Atgm ⊆ Ar.

This completes the proof.

C.4 LEMMA 3

When Qr has converged:

• If Aigm ⊆ Atgm, then

Qr(τ , â) = Q∗(τ ,a∗).

• If Aigm ⊈ Atgm, then

min
a∈Aigm

Q∗(τ ,a) < Qr(τ , â) < Q∗(τ ,a∗).

Proof.

• If Aigm ⊆ Atgm, then setting Qr(τ , â) = Q∗(τ ,a∗) achieves LQr
= 0. Any other value

leads to LQr
> 0, so the minimum is achieved exactly when Qr(τ , â) = Q∗(τ ,a∗).

• If Aigm ⊈ Atgm, split the loss LQr
into

L1 =
∑

a∈Aigm∪Atgm

(
Qr(τ ,a)−Q∗(τ ,a)

)2
,

L2 =
∑

a/∈Aigm∪Atgm

(
Qr(τ ,a)−Q∗(τ ,a)

)2
.

By Lemmas 1 and 2, for a ∈ Aigm ∪Atgm, Qr(τ ,a) = Qr(τ , â), so

L1 =
∑

a∈Aigm∪Atgm

(
Qr(τ , â)−Q∗(τ ,a)

)2
.

Consider L1 as a quadratic function of Qr(τ , â). Its minimum m satisfies

min
a∈Aigm

Q∗(τ ,a) < m < Q∗(τ ,a∗).

For L2, since Qr(τ ,a) ≤ Qr(τ , â) by Lemma 1, it is monotonically decreas-
ing for Qr(τ , â) < maxa/∈Aigm∪Atgm

Q∗(τ ,a), and constant for Qr(τ , â) ≥
maxa/∈Aigm∪Atgm

Q∗(τ ,a).
Combining L1 and L2, the global minimum of LQr

= L1 + L2 occurs at a value

min
a∈Aigm

Q∗(τ ,a) < Qr(τ , â) < Q∗(τ ,a∗),

establishing the second case.

This completes the proof.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.5 THEOREM 2 (CONVERGENCE OF WEIGHTED TRAINING)

Assuming Qtot satisfies IGM and has a unique maximal joint action â, there exists α = 0 such that
Qtot converges with â ∈ Atgm and Ar = Atgm.

Proof.

We consider the weighted loss for Qtot:

LQtot
=

∑
a

w(s,a)
(
Qtot(τ ,a)−Q∗(τ ,a)

)2
.

Partition joint actions as in the method section:

• a = â,
• a ∈ Ar,a ̸= â, Q∗(τ ,a) ≥ Qtot(τ , â),
• a ∈ Ar,a ̸= â, Q∗(τ ,a) < Qtot(τ , â),
• a /∈ Ar (weighted by α).

When α = 0, the last term is zero. Then we exclude the third term and get a lower bound:

LQtot ≥ (Qtot(τ , â)−Q∗(τ , â))2 +
∑

a∈Ar,a̸=â
Q∗(τ ,a)≥Qtot(τ ,â)

(
Qtot(τ ,a)−Q∗(τ ,a)

)2
.

Similarly, after Qr converges, its loss takes the same form:

LQr
= (Qr(τ , â)−Q∗(τ , â))2 +

∑
a∈Ar,a̸=â

Q∗(τ ,a)≥Qr(τ ,â)

(
Qr(τ ,a)−Q∗(τ ,a)

)2
.

Define Qr(τ , â) = m at the minimum of LQr
. And for joint actions that satisfy a ∈ Ar,a ̸=

â, Q∗(τ ,a) ≥ Qtot(τ , â), Qtot(τ ,a) ≤ Qtot(τ , â), Qtot(τ ,a) should be as large as possible and
finaly equal to Qtot(τ ,a). Therefore, the minimum values of LQtot

and LQr
are actually the same.

We can then construct a valid Qtot satisfying all consumptions:

Qtot(τ ,a) =

{
m+ ϵ, a = â,

m, a ̸= â,

where ϵ ensures a unique maximal joint action.

Two cases arise:

• If â ∈ Atgm, then Qtot(τ , â) = Qr(τ , â) = Q∗(τ ,a∗), and Qtot has converged.
• If â /∈ Atgm, Lemma 3 gives Q∗(τ , â) < m < Q∗(τ ,a∗).

Construct

Q′
tot(τ ,a) =

{
Q∗(τ ,a∗), a = a∗,

m, a ̸= a∗,

which satisfies LQ′
tot

< LQtot
, ensuring iterative training that moves â toward Atgm.

Thus, with iterative training and α = 0, Qtot converges such that â ∈ Atgm and Ar = Atgm. The
result also holds for Qtot satisfying IGM without strict monotonicity, e.g., QPLEX.

C.6 REMARK ON THE UNIQUE MAXIMAL JOINT ACTION ASSUMPTION

In Theorem 2, we assume that Qtot has a unique maximal joint action â for simplicity of analysis.
In practice, this assumption can be relaxed:

• Even if multiple joint actions achieve the same maximal value, the weighted training proce-
dure will assign higher emphasis to those in Atgm, guiding the learning dynamics toward
the set of potentially optimal joint actions.
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• The uniqueness can also be enforced with an arbitrarily small perturbation ϵ added to break
ties, which does not affect policy performance but ensures theoretical convergence of the
proof.

• Empirically, in stochastic environments or with function approximation, exact ties are rare,
so this assumption is reasonable for most practical multi-agent RL tasks.

Thus, the assumption mainly simplifies the theoretical exposition without restricting the practical
applicability of the method.

D DISCUSSION

This section provides an accessible discussion of the motivation and design rationale behind POW,
clarifying the innovations and avoiding potential confusion with existing value factorization meth-
ods.

D.1 CORE INNOVATIONS

The novelty of POW is reflected in two key aspects: (1) It eliminates the need to traverse the entire
exponentially large joint action space when recognizing optimal joint actions; (2) It provides a theo-
retical guarantee of convergence to the global optimum, without introducing approximation error in
practice.

These advantages directly address the limitations of prior approaches such as WQMIX and QPLEX.

D.2 PROBLEM CONTEXT

Within the CTDE framework, the IGM condition requires training on a centralized Qtot function.
Due to the monotonicity constraints imposed by mixing networks (e.g., QMIX), a joint action may
be incorrectly undervalued when some agents take suboptimal actions. This prevents accurate esti-
mation of globally optimal joint actions.

WQMIX mitigates this by reweighting potentially optimal joint actions more heavily during training
(Rashid et al., 2020b). However, identifying these actions requires an unrestricted value function
over the full joint action space. Since the joint action space grows exponentially with the number
of agents, WQMIX resorts to approximations that inevitably introduce error, limiting its practical
applicability.

D.3 DESIGN RATIONALE OF Qr

POW avoids the drawbacks of WQMIX by introducing a recognition module, Qr, that directly iden-
tifies a superset of potentially optimal joint actions, denoted Ar. Instead of exhaustively searching
over all joint actions, POW uses â = argmaxa Qr(τ ,a) as a reference and recognizes Ar without
approximation. This set is then weighted more strongly during training of Qtot, ensuring accurate
estimation of globally optimal policies.

To achieve this, Qr is designed with three essential properties:

1. Independence of joint action values. Qr explicitly takes the joint action a as input, ensuring
that Qr(τ ,a) is independently parameterized for each action. This avoids the monotonic coupling
between joint actions present in QMIX’s mixing structure, enabling Qr to recover the true Q∗(τ ,a)
values without interference.

2. Satisfaction of IGM. Although free from monotonicity, Qr still satisfies the IGM condition,
i.e., argmaxa Qr(τ ,a) = â. This allows â to serve as a baseline for identifying all potentially
optimal joint actions in Ar.

3. Accurate recovery of Q∗. Qr is trained against the true joint action values Q∗, rather than
surrogate targets. Thanks to its independence property, Qr can precisely match Q∗(τ ,a) for each
action, ensuring that Ar can be recognized by simple comparison with Qr(τ , â).
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D.4 HOW Qr ENABLES POW

These three properties guarantee that Qr recovers the set Ar without approximation, and that Ar

gradually contracts to Atgm as training proceeds. This mechanism enables POW to retain the
strengths of WQMIX (emphasizing potentially optimal joint actions) while avoiding its reliance
on approximations. Unlike QPLEX, which assigns equal weight to all joint actions and often suffers
from instability, POW selectively emphasizes Ar, ensuring both stability and convergence guaran-
tees.

Fig. 8 provides an intuitive visualization: Qr establishes a baseline plane at Qr(τ , â), above which
potentially optimal actions are recognized. As training proceeds, this plane rises until it aligns with
the true global optimum, at which point Ar = Atgm and the optimal policy is recovered.
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𝒂𝒂∈𝑨𝑨

𝑄𝑄∗ 𝝉𝝉,𝒂𝒂

Figure 8: This figure illustrates the Q∗-value landscape, where the height of each column represents
the Q∗-value associated with a particular joint action. (The exact heights are not critical for the
concepts discussed herein.) The current convergence state of the Qr network resembles Stage 2 in
Fig. 9. The red area represents â. The yellow area highlights Ar, which is determined via â and
represents the subset of actions on which POW focuses its weighted training efforts. The green area
denotes the global optimal joint actions. For Qr, the Q-values beneath the conceptual plane are
already learned, while the Q-values within Ar are set at the plane’s level. As the training progresses,
the plane is expected to rise incrementally, identifying increasingly higher Q∗-values.

D.5 ILLUSTRATIVE EXAMPLE

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡
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Stage I Stage II Stage III

Figure 9: Three stages of the matrix game. The potentially optimal joint action is highlighted with
a yellow border.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

To provide intuition for how POW-QMIX overcomes non-monotonicity, we illustrate its behavior
in a one-step matrix game. The joint action space is {A,B,C}. In such settings, Q∗ and Q̂∗ are
equivalent to the ground-truth reward function, allowing us to directly track the evolution of joint
action values during training.

The training process can be divided into three stages (I–III) as depicted in Fig. 9.

Stage I–II. At the beginning of training, based on the values estimated by the Qr module, we can
identify (A,A) and (C,C) as potentially optimal joint actions, with weights set to 1, while all other
joint actions receive zero weight. During Stage II, the Qtot value for (C,C) already matches Q∗, so
its gradient vanishes. In contrast, for (A,A), Qtot < Q∗, meaning the gradient update increases Qtot

and propagates improvements to the corresponding individual utilities Q1(τ1, A) and Q2(τ2, A).

Stage III. As training proceeds, (A,A) becomes the only remaining potentially optimal joint ac-
tion. This action coincides with the true global optimum, enabling POW-QMIX to escape the local
optimum (with value 7.9) and converge to the correct solution.

E ADDITIONAL RESULTS OF ABLATION STUDIES

We test the generality of POW by applying it to two other value decomposition baselines, yielding
POW-VDN and POW-QPLEX. These experiments demonstrate that POW is not tied to a specific
base algorithm but provides a general mechanism for improving non-monotonicity handling.
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Figure 10: Application of POW to Predator-Prey with three levels of mis-capture penalty.
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Figure 11: Application of POW to SMAC benchmarks.

The results across Predator-Prey (Fig. 10), SMAC (Fig. 11), highway-env intersection (Fig. 12),
and SMACv2 (Fig. 13) consistently show that adding POW substantially improves performance
and stability. Importantly, POW-QPLEX alleviates the instability issues commonly observed in
QPLEX, and POW-VDN provides noticeable gains despite VDN’s limited expressiveness. These
findings support the general applicability of POW as a plug-in improvement to value decomposition
methods.
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Figure 12: Application of POW to the highway-env intersection scenario.
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Figure 13: Application of POW to SMACv2 benchmarks.

F EXPERIMENTAL SETUP

Note: In Sec. 4, we set the weight for potentially optimal joint actions to 1 and for all other joint
actions to α ∈ [0, 1), following the weighting function in Equation (10) of the WQMIX paper, which
is commonly used in the WQMIX methodology.

We emphasize that Theorem 2 holds strictly when α = 0. As stated after the definition, both our
theoretical analysis and experimental implementation consistently adopt α = 0 to ensure alignment
between theory and practice. In practice, setting α = 0 avoids introducing approximation errors
from down-weighting suboptimal actions, ensuring that only the recognized potentially optimal set
contributes to training.

F.1 PARAMETER SETTINGS FOR BASELINE ALGORITHMS

We conducted all experiments using the PyMARL2 framework, an enhanced version of the origi-
nal PyMARL, specifically optimized for the StarCraft Multi-Agent Challenge (SMAC). PyMARL2
incorporates several implementation refinements and hyperparameter adjustments to improve per-
formance across various scenarios. There are many code-level tricks in PyMARL2, such as the use
of the Adam optimizer, the batch size, the replay buffer size, the rollout processes, the ϵ-greedy
exploration strategy, and the TD(λ) parameter. These hyperparameters are set to the same values
across all algorithms, including ours, to ensure a fair comparison.

The hyperparameters are listed in Tab. 2, Tab. 3, Tab. 4, Tab. 5, and Tab. 6.
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Table 2: Common Hyperparameters in Pymarl2

HYPERPARAMETER VALUE

TRAINING MODE PARALLEL
ROLLOUT PROCESSES 8
REPLAY BUFFER SIZE 5000
BATCH SIZE (TRAINING) 128
ACTION SELECTION ϵ-GREEDY
ϵ START 1.0
ϵ FINISH 0.05
ϵ ANNEAL STEPS 500K
OPTIMIZER ADAM
LEARNING RATE 0.001
TARGET NETWORK UPDATE INTERVAL 200
TD(λ) 0.6
LAYER NORMALIZATION FALSE
ORTHOGONAL INITIALIZATION FALSE
ORTHOGONAL GAIN 0.01
PRIORITY EXPERIENCE REPLAY (PER) FALSE
PER α 0.6
PER β 0.4
RETURN-BASED PRIORITY FALSE
MIXING EMBEDDING DIMENSION 32
HYPERNETWORK EMBEDDING 64
HYPERNETWORK LAYERS 2

Table 3: QMIX-Specific Hyperparameters

HYPERPARAMETER VALUE

AGENT ARCHITECTURE RNN
QMIX LOSS WEIGHT 1.0

Table 4: W-QMIX-Specific Hyperparameters

HYPERPARAMETER VALUE

WEIGHTS FOR OPTIMAL JOINT ACTIONS 1
WEIGHTS FOR OTHER JOINT ACTIONS 0.1

Table 5: QPLEX-Specific Hyperparameters

HYPERPARAMETER VALUE

DOUBLE Q-LEARNING TRUE
ADVANTAGE HYPERNETWORK LAYERS 2
ADVANTAGE HYPERNETWORK EMBEDDING 64
NUMBER OF KERNELS 4
MINUS-ONE TRANSFORMATION TRUE
WEIGHTED HEAD TRUE
ADVANTAGE ATTENTION TRUE
GRADIENT STOP MECHANISM TRUE

F.2 MATRIX GAME

In a matrix game environment, two agents independently select actions, forming a joint action to
receive an immediate reward. This reward directly reflects the true value of the joint action. This
type of environment is characterized by a simple and unique state space, eliminating the need to
consider complex state transitions. Simultaneously, the reward is directly equivalent to the true
value, requiring no additional modeling. Furthermore, the reward structure can be flexibly designed,
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Table 6: ResQ-Specific Hyperparameters

HYPERPARAMETER VALUE

LEARNER RESQ CENTRAL LEARNER
DOUBLE Q-LEARNING TRUE
MIXING NETWORK QMIX
HYSTERETIC QMIX (CW/OW-QMIX) FALSE
CENTRAL MIXING EMBEDDING 128
CENTRAL ACTION EMBEDDING 1
CENTRAL MAC BASIC CENTRAL MAC
CENTRAL AGENT CENTRAL RNN
CENTRAL RNN HIDDEN DIMENSION 64
CENTRAL MIXER FEEDFORWARD
RESQ VERSION V3
CENTRAL LOSS WEIGHT 1.0
NO-OPT LOSS WEIGHT 1.0
QMIX LOSS WEIGHT 1.0
CONSTRAINT LOSS TYPE MSE
CONSTRAINT LOSS DELTA 0.001
MAX SECOND GAP 0
CONSTRAINT METHOD MAX ACTION
RESIDUAL Q-VALUE ABSOLUTE TRUE

facilitating the construction of test scenarios with different characteristics. Lastly, the results are
intuitive and easy to analyze and visualize. It is precisely because of these characteristics that matrix
games have become an ideal testbed for studying the theoretical performance of value decomposition
algorithms.

We set ϵ = 1 throughout the experiments on matrix game to achieve uniform data distribution and
set ideal weights for the purpose of theoretical analysis. The weights for potentially optimal joint
actions and other joint actions in POW-QMIX are 1 and 0. The weights for optimal joint actions and
other joint actions in CW-QMIX and OW-QMIX are 1 and 0. The constant C used in Eqn. 9 is set
to 0.05.

F.3 PREDATOR-PREY

Figure 14: Stag Hunt Game

The ”Stag Hunt” game in game theory is a classic scenario that profoundly reveals the inherent
conflict between individual rationality and collective rationality, as well as potential coordination
mechanisms, while also highlighting the crucial role of trust in fostering cooperation. This tension
between individual and collective rationality precisely constitutes the core of the non-monotonicity
problem explored in this paper. In the Stag Hunt scenario, agents face two strategic choices: one
is a high-risk cooperative strategy, which yields the highest payoff when all participants choose
this strategy, but if only a single agent attempts to cooperate while other agents choose not to, that
agent will suffer severe losses or even penalties; the other is a low-risk safe strategy, where an agent
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adopting this strategy can obtain a stable but relatively low payoff, regardless of the choices of other
agents.

Table 7: Predator-Prey Experiment Payoff Matrix
A1 \A2 Move Up Move Down Move Left Move Right Stay Still Capture

Move Up 0 0 0 0 0 −p
Move Down 0 0 0 0 0 −p
Move Left 0 0 0 0 0 −p
Move Right 0 0 0 0 0 −p
Stay Still 0 0 0 0 0 −p
Capture −p −p −p −p −p 10

The predator-prey environment adopted in this paper is an extension of the Stag Hunt concept within
a complex Markov Decision Process. This environment retains the core characteristics of the Stag
Hunt game while introducing a richer strategy space and dynamic interactions. In this environment,
multiple agents acting as predators need to effectively cooperate to successfully capture the prey.
All units (including agents and prey) move and interact in a discrete grid world.

The detailed settings of this environment are as follows: We construct a 10 × 10 grid world as the
state space, where each grid cell can contain: empty space, an agent, or the prey. Considering the
limitations of real-world perception, we limit the observation range of an agent to a 3× 3 grid area
centered on itself, allowing it to only perceive the types of units within this range, thus forming a
Partially Observable Markov Decision Process (POMDP). The action space of an agent includes six
discrete choices: moving in the four cardinal directions (up, down, left, right), staying in place, and
performing a capture action.

The reward mechanism is designed to reflect the necessity of cooperation: Only when at least two
agents simultaneously perform a capture action in positions adjacent to the prey can the capture be
successful, whereupon all agents receive a positive reward of +10. Conversely, if only one agent
attempts to perform a capture action in isolation, not only will the capture action fail, but that agent
will also incur a penalty of −p. This design directly maps to the risk-reward trade-off in the Stag
Hunt game.

As the absolute value of the mis-capture penalty parameter p increases, the non-monotonic charac-
teristics of the environment become more prominent. A stricter penalty mechanism reinforces the
non-monotonicity of the reward structure, prompting agents to be more inclined to adopt conser-
vative strategies—completely avoiding the risk of performing a capture action—thereby potentially
missing out on high-payoff cooperative opportunities. This phenomenon provides an ideal test sce-
nario for our research on how algorithms can overcome non-monotonicity limitations.

The default experimental settings are consistent with those in the PyMARL2 framework. The con-
stant C used in Eqn. 8 is set to 1.

F.4 SMAC

In the PyMARL2 framework, certain parameters such as hidden size and TD(λ) have been specifi-
cally fine-tuned for the 6h vs 8z and 3s5z vs 3s6z maps. However, for the sake of a fair comparison,
we set all algorithms to use default parameters across all maps. The constant C used in Eqn. 8 is set
to 0.05.

F.5 SMACV2

The default experimental settings are consistent with those in the PyMARL3 framework. The con-
stant C used in Eqn. 8 is set to 0.05.

F.6 INTERSECTION SCENARIO IN HIGHWAY-ENV

Highway-env Leurent (2018) is a collection of environments specifically designed for autonomous
driving decision-making tasks. Its intersection scenario simulates a complex traffic environment, an
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example of which is shown in Fig. 15, providing an ideal platform for us to evaluate the performance
of algorithms on non-monotonicity problems.

Figure 15: Example of the intersection scenario environment.

In this scenario, multiple vehicles approach an unsignalized intersection from different directions,
with each vehicle controlled by an independent agent policy. These vehicles follow pre-planned
routes, and the primary task of the agents is to control their vehicle’s speed to ensure safe and
efficient passage through the intersection. The reward mechanism is intricately designed: a positive
reward is given only when all vehicles safely pass through the intersection and reach their respective
destinations; conversely, if any collision occurs, all agents not only receive a severe negative penalty,
but the current episode also terminates immediately.

This design leads to the environment exhibiting strong non-monotonic characteristics. Due to the
significant penalty associated with collisions, agents can easily learn extremely conservative strate-
gies—such as stopping completely and waiting outside the intersection to avoid any potential colli-
sion risk. However, while such conservative strategies can avoid penalties, they fail to achieve the
positive reward for successfully navigating the intersection, leading to poor overall performance.
Therefore, agents need to learn to find a balance between safety and efficiency, making this an ideal
scenario for testing an algorithm’s ability to handle non-monotonic challenges.

We adopted the same scenario and reward settings as in Huang et al. (2023). The ϵ value is set to 0.1
to ensure the same data distribution for all algorithms. The constant C used in Eqn. 8 is set to 0.1.

THE USE OF LLMS

We thank ChatGPT-5 for its assistance in polishing the writing and proofreading of this paper. The
authors are responsible for the content and presentation.
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