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Abstract

Monte Carlo tree search (MCTS) has been successful in a variety of domains,
but faces challenges with long-horizon exploration when compared to sampling-
based motion planning algorithms like Rapidly-Exploring Random Trees. To
address these limitations of MCTS, we derive a tree search algorithm based on
policy optimization with state occupancy measure regularization, which we call
Volume-MCTS. We show that count-based exploration and sampling-based motion
planning can be derived as approximate solutions to this state occupancy measure
regularized objective. We test our method on several robot navigation problems,
and find that Volume-MCTS outperforms AlphaZero and displays significantly
better long-horizon exploration properties.

1 Introduction

In robotics, sampling-based motion planning (SBMP) algorithms are frequently used instead of
reinforcement learning (RL) based methods such as Monte Carlo tree search (MCTS) for long-
horizon exploration, due to challenges RL methods face in determining what regions may yield high
rewards and how to reach them. While SBMP methods are highly efficient at exploration, they may
be slow to converge to near-optimal paths, and do not provide a canonical way to either train or use
neural networks to guide search McMahon et al. (2022). Additionally, SBMP methods require much
stronger assumptions than MCTS. They solve the problem of finding the shortest path to a goal region
while avoiding obstacles, in a setting with continuous time setting with known and deterministic
dynamics, while RL has been used in domains as wide-ranging as video games, autonomous driving,
theorem proving, penetration testing, and power grid management (Schrittwieser et al., 2020; Osiński
et al., 2021; Lample et al., 2022; Schwartz & Kurniawati, 2019; Zhang et al., 2019). We build on the
recent work by Grill et al. (2020) to reveal a mathematical connection between MCTS, regularized
policy optimization, and SBMP. We then propose a family of MCTS algorithms based on policy
optimization with state occupancy measure regularization, with strong exploration guarantees.

The main contributions of this work are the following: (1) We show that both the Voronoi bias of
SBMP algorithms and the count-based exploration (CBE) method used in reinforcement learning can
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be derived as solutions to a state occupancy measure regularization objective. (2) We prove that in
search trees, for any convex loss function of state occupancy measure, L(dπ), L can be optimized by
independently optimizing the policy at each node. This novel finding makes it possible and efficient
to use MCTS-style algorithms for arbitrary regularization of the state occupancy measure. Notably,
this is true only for trees – general Markov Decision Processes do not have this property Hazan et al.
(2019). (3) We derive Volume-MCTS, a variant of AlphaZero that uses state occupancy regularization
to encourage long-horizon exploration without making the stronger assumptions used in SBMP.
We find that this method outperforms a range of reinforcement learning and planning algorithms,
including AlphaZero and AlphaZero with CBE, on long-horizon exploration problems. (4) We prove
non-asymptotic high-probability bounds on Volume-MCTS’s exploration efficiency. To the best of
our knowledge, this is the first bound of this type to be proven for MCTS-family algorithms.

2 Definitions

Let M be a Markov Decision Process (MDP) with continuous state space S, continuous action space
A, reward functionR : S → R, discount factor γ, and deterministic transition function T : S×A→ S.
We assume S is bounded, measurable, and metrizable. Let T be the set of nodes in a search tree.
Let N be defined as || T ||. For any node n ∈ T , let subtree(n) be the subtree of n. Let λ be a
regularization coefficient that scales as O

(
1√
N

)
.

Node expansion: LetM(n) be the set of tree moves, which are defined as the set of child actions, plus
a “stay” action. Let the tree policy π(n, a) be the probability of taking move a when at node n. Note
that this is a policy over moves we can take in the tree, not just actions. This shift from actions to tree
moves is necessary as we will solve for the optimal probability with which to traverse the search tree,
including stopping to expand a node. This means that we must explicitly include the choice to expand
the current node as part of our policy search. π assigns a probability to taking each child action of the
current node n, as well as the probability of expanding n. Let V (n) be a value estimate for node n.
We leave the precise estimation method for V (n) open-ended. Let Qπ(stay | n) be defined as V (n),
and let Q(a | s) be defined as Q(a | n) = R(n. state, a) + γEa′∼π(·|child(n,a))[Q(a′ | child(n, a))]
for all actions a ∈ A(n).
State Occupancy Measure: The state occupancy measure is the expected amount of time a policy π
will spend in a given state (or equivalently, the probability distribution of a policy’s future states).
We repurpose the term slightly here, to focus on the density of the tree policy future states in space.
To do this, we look at the probability distribution of node expansions the tree policy induces on the
tree. Let P (n | π) be the probability that n is reached when traversing the tree. Let dπ(n′) be the
probability of expanding any given node n′ in the tree. Let dπ(n′ | n) = dπ(n′)

P (n|π) be the probability of
expanding any given node n′ in the tree, assuming we start at n and traverse the tree according to
π. Similarly, let dπ(n′ | n, a) = dπ(n′)

P (n|π)π(a|n) =
dπ(n′)

P (child(n,a)|π) be the probability of expanding any
node n′ if we additionally condition on taking action a in state s. Let ψ(T, dπ) be the state space S
density, the estimated density in the state space of samples drawn from the distribution dπ over nodes
T . We will see later that different density estimation methods will lead to different behavior, but we
will primarily focus on the 1-nearest neighbor density estimator.

Empirical distributions: Let π̂(n, a) be the empirical policy, the fraction of times that each action a
has been selected from node n. d̂π is the empirical state occupancy, defined as 1

N for all nodes. Let ψ̂
be the empirical state space density, the estimated density in the state space of nodes in the search
tree. Additionally, note that because T is a tree, it induces a partial ordering over its nodes. We say
that ni > nj if ni is an ancestor of nj . Similarly, we can say that an action ak > nj if ak is higher
up in the tree than nj . We include this note because we will frequently need to sum over all the nodes
in the subtree of a particular node or action, which we will write as

∑
n<ni

.

3 Background

Our work seeks to bridge a range of approaches to long-horizon exploration. For this reason we begin
with a review of four approaches to exploration that we show are connected: state space regularization,
count-based exploration, SBMP, and Monte Carlo tree search. We build on the work by Grill et al.
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(2020) illuminating the link between MCTS-based algorithms and regularized policy optimization to
formalize these connections.

3.1 State Space Regularization

Hazan et al. (2019) propose exploring by maximizing the entropy of a policy’s state occupancy
measure in the absence of a dense reward signal, and propose an algorithm that is guaranteed to be
efficient in the tabular case. Seo et al. (2021) extend this idea by estimating state space entropy with
random encoders and using this as an intrinsic reward in model-free RL. Yuan et al. (2022) further
extend this method to the general class of Renyi divergences. Although the motivation of state space
entropy maximization is very similar to our motivation of state space f -divergence regularization, the
algorithms described are intended for a model-free setting, and do not apply to the MCTS setting.

3.2 Count-Based Exploration (CBE)

One of the most successful methods in long-horizon exploration has been CBE Tang et al. (2017).
This family of methods gives an intrinsic reward to states, so that infrequently-visited states receive
higher rewards. In this way, it is similar to performing UCB in the state space. Badia et al. (2020b)
develop Never Give Up, an adaptive CBE method for Atari games that projects points into a latent
space before doing the kernel density estimate. Similar to our method, Machado et al. (2019)
propose using the successor representation for CBE and find that this improves exploration in Atari
environments. Agent 57 extends CBE to do long-term exploration for MuZero on Atari games,
beating the human benchmark on all games Badia et al. (2020a). Although CBE is also used in this
method, it is not applied to the tree itself – the reward bonus depends only on the previous trajectory,
and there is no information-sharing between tree nodes. To the best of our knowledge, no examples
exist of MCTS-family algorithms that use CBE to share information about explored regions between
nodes in different branches, and no previous works have developed a connection between CBE and
f -divergence regularization of the state occupancy measure.

3.3 Sampling-based Motion Planning

SBMP algorithms like Rapidly-exploring Random Trees (RRT) are frequently employed in robotics
for their efficient exploration. These methods sample random points in the state space and then
expand the nearest point in the search tree in order to bias search towards unexplored regions LaValle
et al. (1998); Lavalle (2006). Since a node is expanded if and only if a point in its Voronoi region is
sampled, SBMP algorithms are called Voronoi biased, because the probability of expanding a node
is proportional to the volume of its Voronoi region. While SBMP algorithms originally focused on
feasible paths, recent work has focused on near-optimal planning. RRT* is an asymptotically-optimal
variant of RRT for problems where a steering function is available Karaman & Frazzoli (2011). SST
and AO-RRT are variants of RRT that are asymptotically optimal, even in the absence of steering
functions or heuristics Li et al. (2016); Hauser & Zhou (2015). PSST uses an RL-trained policy to
guide the search while retaining SST’s convergence guarantees Schramm & Boularias (2022).

3.4 Monte Carlo Tree Search

MCTS is a tree search strategy based on bandit algorithms Kocsis & Szepesvári (2006). The most
notable extensions to MCTS are the AlphaZero family, which includes AlphaGo, AlphaGo Zero,
AlphaZero, MuZero, and Agent57 Silver et al. (2016, 2017, 2018); Schrittwieser et al. (2020);
Badia et al. (2020a). These algorithms proceed in three main steps: selection, expansion, and
backpropagation. For each iteration, the algorithm first selects the child action of the current node
that maximizes the upper confidence bound. The algorithm selects actions to traverse the tree until
it reaches a leaf node, which it then expands. Lastly, it updates the average value of each ancestor
of the leaf node by backpropagating the new value estimate up the tree. While MCTS uses random
rollouts to get value estimates, AlphaZero instead trains a neural network to estimate the value.
AlphaZero also trains a neural network policy πθ to imitate the empirical policy π̂. It then uses
the policy-weighted upper confidence bound UCB(s, a) = Q(s, a) + cπθ(a | s)

√
N
Na

, where Q is
the value calculated by algorithm, N is s’s visitation count, and Na is a’s visitation count. The
policy focuses the tree towards branches that have been optimal in previous runs, leading to faster
convergence.

3



Standard MCTS only works for MDPs with finite action spaces. AlphaZero-Continuous is a minimal
extension of AlphaZero that uses progressive widening and a continuous policy to extend AlphaZero
to continuous environments Moerland et al. (2018). Progressive widening samples new actions so
that the number of actions at each node grows over time, typically as O(

√
N). This is a standard

approach for MCTS in continuous environments, but lacks the regret bounds of finite-action-space
MCTS. Additionally, progressive widening does not use information from observed rewards to trade
off exploration and exploitation, making it closer to ϵ-greedy exploration than UCB. Furthermore,
common progressive widening schedules lead to very rapid branching, causing the tree to have many
short branches that explore the starting region much more than other regions. For this reason, we
argue that it is better to explicitly consider node expansion in the objective, allowing the tree to grow
as deeply or as broadly as needed. Since standard AlphaZero does not consider continuous state and
action spaces, we will primarily focus on AlphaZero-Continuous as a representative of this family of
methods.

3.5 MCTS as Regularized Policy Optimization:

It has been shown in Grill et al. (2020) that the log(N)√
Na

upper confidence bound in MCTS can be derived
as a solution to a regularized policy objective. Consider the objective L(π) =

∑
aQ(s, a)π(a |

s) − λDf (π || π0). The authors argue that it is possible to either solve this objective directly and
sample from the resulting policy, or to approximate it by taking the action that maximizes the objective
for the empirical policy. We will refer to these methods as the direct and empirical decision rules,
respectively. The authors show that the empirical decision rule, argmaxa

∂
∂π̂(a|s)

∑
aQ(s, a)π̂(a |

s) − λDf (π̂ || π0), yields the log(N)√
Na

upper confidence bound if Df is set to be the Hellinger

divergence, where f(t) = 2(1 −
√
t). If Df is instead selected to be the reverse KL divergence,

f(t) = − ln(t), then AlphaZero’s upper bound of Q(s, a) + cπθ(a | s)
√
N
Na

is recovered instead.

4 RRT and Count-Based Exploration as Regularized Policy Optimization

In this work, we are interested in what the direct and empirical decision rules are if the state space
occupancy is regularized instead of the policy. We find that the direct decision rule yields a search
algorithm that uses the Voronoi bias seen in SBMP algorithms, while the empirical decision rule
results in a CBE reward. Since both of these methods are widely-used tools for learning and planning
in long-horizon exploration problems, we hope that this generalized formalism will yield a family of
algorithms that performs well at long-horizon exploration.

4.1 Connection to RRT

We use the direct decision rule described in the previous section to derive a search algorithm (Volume-
MCTS) from a regularized return objective. Observe that in a search tree in which each node
represents a state and each edge represents an action, each node n is reached by a unique sequence of
states n. traj = (s0, s1, . . . sK), where K is the node’s depth in the search tree and n’s state is sK .
Consider a trajectory that begins with the state sequence n. traj, and then follows the policy πθ after
time K. Observe that the expected return of n’s trajectory is

V(n) = E

[(
K−1∑
i=0

γiR(n. traji) + γKV πθ (n. trajK)

)]
.

We propose maximizing the expected return of nodes in the tree, minus a regularization term that
rewards covering the state space as evenly as possible. Let dπ(n) be the probability of expanding
any node n in the search tree, and let ψ be the estimated density of dπ in the state space. Then we
seek to maximize the objective L(dπ) = En∼dπ [V(n)] − λDf (ψ(T, d

π) || ψ0) where Df is an
f -divergence.

The intuition for this objective is to balance two goals. The first goal is to maximize reward, and the
second is to evenly explore the state space. Since this formulation explicitly considers node expansion
instead of a fixed progressive widening schedule, we choose a formulation of optimal return that
allows us to compare nodes in different parts of the tree, as opposed to simply selecting actions from
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the same node. Observe that in this formulation, nodes along an optimal path should score equally.
Once we solve for the optimal dπ , we can sample nodes from that distribution to expand.

Because f -divergences are convex, L(dπ) has a unique minimizer as long as ψ is linear with respect
to dπ. To solve for this minimizer, we must first choose an f -divergence and a density estimation
method for ψ. For f , we follow Grill et al. (2020) in first examining the reverse KL divergence,
f(t) = − ln (t). For density, we introduce a generalization of the 1-nearest-neighbor estimator,
which we call Partition Density Estimators. We find that this class of estimators allows us to find a
closed-form solution for dπ .

Definition 1. Partition density estimator Let D be a set of m weighted points in S with points
p1 . . . pm and weights w1 . . . wm.

Then ρ(D) is a partition density estimator iff, for each s ∈ S except for a set of measure zero, (1) the
gradient∇wρ(D)(s) is non-zero for exactly one weight wi, and (2) ρ(D)(s) = wig(D, s) for some
function g.

We call this a partition density estimator because it allows us to partition the space into regions
which only depend on one point in the dataset (except for a zero-measure boundary between these
partitions). For instance, consider a weighted variant of the 1-nearest neighbor density estimator,
where the estimated density at a point is proportional to the weight of the nearest neighbor. This
is a partition density estimator because the density at any state s only depends on the location and
weight of s’s nearest neighbor. Observe that any partition density estimator is linear with respect to
the weights. Therefore, convex functions of such density estimators will also be convex with respect
to the weights.

Definition 2. Associated Volume Let D be a set of m weighted points in S with points p1 . . . pm and
weights w1 . . . wm, and let ρ(D) be a partition density estimator. Let µ be a probability measure on
S. Then the associated region Reg(i) is the set of all s ∈ S for which ∇wi

ρ(D)(s) is non-zero. The
associated volume Vol(i) of any point pi is µ(Reg(i)), the measure of i’s associated region.

Suppose that D has uniform weights, and µ is a uniform probability measure. Then observe that the
1-nearest neighbor density estimator is a partition density estimator, and the associated volume of any
point i in the data set is the volume of its Voronoi region.

Proposition 1. Suppose f(t) = − ln t and ψ(T, dπ)(s) is a partition density estimator, where
the associated measure of any node n is Vol(n). Then L has a unique optimizer dπ∗, such that
dπ∗(n) = λ

α−V(n) Vol(n), where α is a constant that makes dπ∗ a proper probability distribution.

Proof: The unique solution to a convex function of a probability distribution can be found by setting
the gradient equal to a constant α and then solving for π, where α normalizes the solution. We find
that the density estimator ψ cancels out, meaning the solution is independent of the choice of ψ.
Details are provided in Appendix C.2.1.

Although α does not have a closed form solution, it is possible to find upper and lower bounds for it.
Since dπ(n) monotonically decreases as α increases, it is simple to calculate α numerically using
Newton’s method. When α is known, we can sample from dπ .

Relation to RRT: Consider the case in which V(n) = 0 for each node n (or equivalently, the limit
in which the regularization coefficient λ is large). Then α = λ, so dπ(n) = Vol(n). If we choose
1-nearest-neighbor as our density estimator, then the probability of expanding any given node n is the
volume of n’s Voronoi region. This is the same probability of node expansion used in RRT LaValle
et al. (1998). Thus we can see that the dπ∗(n) = λ

α−V(n) Vol(n) sampling distribution behaves like
RRT when λ is large, but behaves more greedily and has a lower probability of sampling suboptimal
nodes as λ decreases over time. Unlike RRT, we makes no assumptions about the reward structure,
and can apply this sampling distribution to any continuous state- and action-space RL problem,
whereas RRT is limited to path-planning problems. This connection to RRT and the well-motivated
generalization of the Voronoi bias to RL is the first major contribution of our work.

4.2 Connection to Count-based Exploration

For this approach, we consider the empirical decision rule. We prove the following:
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Proposition 2. SupposeDf is chosen to be the Hellinger distance, f(t) = 2(1−
√
t), and ψ̂ is chosen

to be a kernel density estimator, ψ̂((T, d̂π))(s) =
∑
i∈T d̂

π(i)k(i. state, s). Additionally, suppose

ψ0 is the uniform distribution over the state space. Let RCBE(n) =
√

1∑
i∈T k(i. state,n. state)

, the

CBE reward described in Badia et al. (2020b). Then,

a = argmaxn
∂

∂d̂π(n)
En′∼d̂π [V(N

′)]− λDf (ψ̂ || ψ0)

≈ argmaxaQ(s, a) + cEn′∼subtree(a) [RCBE(n
′)] .

Proof:

This derivative simplifies to:

∂

∂d̂π(n)
L(d̂π) = V(n) + λ

∫
S

k(n. state, s)

√
ψ0(s)∑

i∈T d̂
π(i)k(i. state, s)

ds

We can approximate the integral by taking a linear approximation of
√

ψ0(s)∑
i∈T d̂

π(i)k(i. state,s)
about

the point s = n. state, where k(n. state, s) is largest. This reduces to:

∂

∂d̂π(n)
L(d̂π) ≈ V(n) + c

√
1∑

i∈T k(i. state, n. state)

= V(n) + cRCBE(n
′)

The empirical decision rule is then

argmaxa
∂

∂π(a|n)
L(d̂π) = argmaxaQ(s, a) + cEn′∼subtree(a) [RCBE(n

′)]

The full derivation is in Appendix C.2.3.

Observe that Q(s, a) is the empirical average of future rewards calculated by MCTS, and
En′∼subtree(a) [RCBE(n

′)] is the empirical average of future exploration rewards calculated by
MCTS. In other words, En′∼subtree(a) [RCBE(n

′)] is the value for CBE rewards.

5 Volume-MCTS Algorithm

In section 4.1, we proved dπ∗(n) = λ
α−V(n) Vol(n) is the optimal solution to the objective L(π),

but this does not show how to calculate dπ∗ efficiently. This formulation also does not make the
connection between this algorithm and traditional MCTS obvious. To address this, we first prove that
it is possible to sample from dπ∗ without explicitly solving for it by instead solving for the optimal
tree policy π at each node. This is non-trivial to show, as convex functions of the state occupancy
measure are not necessarily convex with respect to the policy. For instance, Hazan et al. (2019)
show that the entropy of the state occupancy measure is non-convex with respect to the policy, and in
fact has local minima. This means that regularization of the state occupancy measure is difficult to
solve for in general MDPs, and may not work in combination with standard methods such as policy
gradient methods. However, we find that for trees specifically, it is possible to show that solving for
the locally optimal policy at each node is sufficient to find dπ∗:

Theorem 1. For any convex loss function L(dπ), L is convex with respect to π(a | n) for all nodes n
and moves a. Furthermore, L is minimized if and only if for every node n, ∂L

∂π(a|n) is constant for all
moves a.

Proof:
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Recall that a convex function L of a probability distribution P is minimized iff ∂
∂P (n) = α for all n,

where α is a constant. Hence, when L(dπ) is minimized, ∂
∂dπ(n)L(d

π) = α for all n. We find that:

∂

∂π(a | n)
L = P (n)En′∼dπ(·|n,a)

[
∂f

∂dπ(n′)

]
This condition implies that ∂

∂dπ(n)L(d
π) = α for all n iff ∂

∂π(a|n)L is constant for all a at every node
n. Hence, the minimization problem for dπ is solved iff the convex loss with respect to the policy at
each node is minimized.

The full proof is provided in Appendix C.2.2.

This makes it possible to solve for arbitrary convex losses of dπ by solving for the optimal π at each
node n. We use this theorem to derive a closed-form expression for the optimal policy at each node.
Theorem 2. Suppose f(t) = − ln t and ψ(T, dπ)(s) is a partition density estimator. Then L(π) has
a unique optimizer π∗, such that π∗(a | n) = λ SubtreeVol(a)

α−γd(n)P (n reached |π)Qπ∗ (a|n) , where SubtreeVol(a) is
the total associated volume of all nodes in the subtree of a, d(n) is the depth of n in the search tree,
P (n reached | π∗) is the probability that we reach n when traversing the tree according to π∗, and
α is whatever constant normalizes π∗. Additionally, π∗ is the unique distribution that induces dπ∗ as
the state occupancy measure.

Proof: Details in Appendix C.2.2.

We propose to expand the search tree by traversing until we sample an action to expand the current
node. Unlike RRT, we cannot expand the tree by sampling the state space and expanding the nearest
node, because our expansion probability depends on V(n) as well as the density ψ0. Instead, we
explicitly solve for the value of π that optimizes L(π). To do this, we select a density estimator that
makes SubtreeVol(a) simple to calculate. RRT implementations typically use a data structure called
a k-d tree to store their list of visited states and quickly find the approximate nearest neighbor. These
trees effectively act as binary search trees for k-dimensional spaces. Each non-leaf k-d node defines a
hyperplane that splits the space along one dimension. All states to one side of the hyperplane are
stored in the left child node, and all states on the other side are stored in the right child node. Each
child node splits the space again and divides the stored states between its children. This repeats until
we reach a leaf node, which has only one state in its region. We can add nodes to this structure by
traversing the tree until we find a leaf node, dividing its region in two, and giving that node two child
leaf nodes to store its original state and the new state. The region covered by a node is called a k-d
region. Since k-d regions are always rectangular, their volumes are easy to calculate. The k-d region of
a leaf node always contains exactly one state, so the density estimator ρkd(π)(x) =

ψ(x)
kd region volume(x)

is a partition density estimator.

Our algorithm is detailed in Algorithm 1. Starting at the root, we calculate the optimal tree policy
at the current node, and then sample from the policy to walk down the tree until we select a node
n to expand. After we select n, we sample a new action a to add to the tree, execute this action,
and find the next state s′. We then add s′ to both the search tree and the k-d tree, find the volume
of its k-d region, and get a value estimate. We then backpropagate the value estimate up the search
tree. Additionally, at each step in the search tree backpropagation, we backpropagate the value up
the k-d tree. We also make a slight approximation to the solution derived above. While it is possible
to calculate π∗(a | n) = λSubtreeV ol(a)

α−γd(n)P (n reached |π)Qπ∗ (a|n) using only local information, the entire tree
would need to be recalculated every time λ changes, and λ changes every iteration. Instead we use the
k-d tree’s approximation of Q in place of Qπ

∗
, which does not require us to recalculate the tree. This

approximation is preferable to approximating Q using the MCTS method, where Q̂ is the average
of the node evaluations in a’s subtree, because it allows for information sharing between nodes in
different subtrees. This means that Q(s, a) can converge to Qπ

∗
(s, a), even if a is not sampled. For

instance, if a good trajectory beginning at state s is discovered, then all nodes near s will have their
values increase, without needing to be expanded first.

5.1 Guarantees

Volume-MCTS’s state-space exploration allows us to derive stronger exploration guarantees than are
possible for MCTS. Under mild conditions, we provide non-asymptotic, high-probability bounds
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on the number of expansions needed to reach a given region in state space. We begin by defining
δ-controllability, which we use as a weak notion of continuity.

Definition 3. δ-controllable: Let M be an MDP with action space A, bounded and measurable
state space S, deterministic transition function T (si, ai), and discount factor γ. Let dA be the
dimensionality of A. Let τ be a trajectory in M . Let si be the i-th state in τ . Let Bδ(si) be a ball of
radius δ about si.

Then τ is δ-controllable iff there exists a constant σ > 0 such that for each state si in τ , there exists
a region in action space Ai with measure at least σδdA such that if a state s′i ∈ Bδ(si) and a′i ∈ Ai,
then T (s′i, a′i) ∈ Bδ(si+1).

Intuitively, if we have a point close to a state si in the trajectory τ , then we have a lower bounded
chance of sampling an action that stays close to τ at the next state. It is a strictly weaker assumption
than the notion of δ-robustness defined in Li et al. (2016).

Theorem 3. Let τ be a δ-controllable trajectory, with states s0...sL. Let dA be the dimension of the
action space. Let Bδ(τi) be the δ-ball around si, the i-th state in τ .

Then the probability that Bδ(τi) will be reached after N expansions is lower-bounded by 1 −
Γ(i, 12 |B δ

5
|σδdAc(1−γ)(

√
N1−c(1−γ))))

Γ(i) , where Γ is the incomplete Gamma function.

Proof: Details in Appendix C.2.4.

Since this bound takes the form of a Gamma distribution, it is easy to conclude the following corollary.

Corollary 1. With probability > 0.5, Bδ(τi) will be reached after c2(1 − γ)2( 12 i|B δ
5
|σδdA + 1)2

steps.

This means that any region on a δ-controllable trajectory of length t will be reached after O(t2)
steps with probability > 0.5. While several MCTS variants have known regret bounds, to the best
of our knowledge, this is the first high-probability bound on long-horizon exploration speed for an
MCTS-family algorithm, and is a contribution of this work.

Algorithm 1 Volume Monte Carlo Tree Search

1: Have: Regularization coefficient λ, KDTree;
2: Input: Node n with child branches a1, . . . , ak
3: Q(“ stay′′)← KDTree_value(n.state);
4: for ai ∈ {a1, . . . , ak} do
5: Q(ai)← KDTree_value(T (n.state, ai));
6: end for
7: for ai ∈ {a1, . . . , ak} ∪ {“ stay′′} do
8: π(ai | n)← λ 1

α−γdP (n is reached)Q(ai)
Vol(ai);

9: end for
10: Sample next move a ∼ π(.|n);
11: if a = “ stay′′ then
12: value← Expand(n);
13: else
14: value← Search(a);
15: end if
16: value← r + γ × value;
17: n.value_sum← n.value_sum + value;
18: n.visit_count← n.visit_count + 1;
19: KDBackprop(value, n.state);
20: return value;

Our estimator for V (s) is derived from the k-d tree. We search the k-d tree for the node that contains
only the state s, find the node halfway up the tree, and use the average value of all states in that k-d
region as the value estimator. The intuition is that this makes a good bias-variance tradeoff. Nodes
near the root of the k-d tree average the values of many states from a large region. This means they
have low variance, but high bias (because the states impacting the estimate may be far away and
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Geometric Maze with Continuous State and Action Spaces (No Training)
Maze Size 2 3 4 5 6 7 8 9

AlphaZero 36.0 ± 6.0 6.0 ± 4.0 7.0 ± 5.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AlphaZero w/ CBE 37.0 ± 1.0 38.0 ± 3.0 25.0 ± 4.0 16.0 ± 4.0 6.0 ± 3.0 2.0 ± 2.0 0.0 ± 0.0 0.0 ± 0.0
Volume-MCTS 49.0 ± 0.0 46.0 ± 0.0 43.0 ± 1.0 38.0 ± 1.0 33.0 ± 1.0 31.0 ± 1.0 22.0 ± 4.0 7.0 ± 3.0
OL AlphaZero 49.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Geometric Maze with Continuous State and Action Spaces (After Training)
Maze Size 2 3 4 5 6 7 8 9

AlphaZero 45.0 ± 1.0 42.0 ± 1.0 20.0 ± 6.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
AlphaZero w/ CBE 45.0 ± 1.0 41.0 ± 1.0 32.0 ± 4.0 0.0 ± 0.0 1.0 ± 1.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Volume-MCTS 44.0 ± 5.0 47.0 ± 0.0 45.0 ± 1.0 40.0 ± 1.0 38.0 ± 1.0 25.0 ± 4.0 22.0 ± 4.0 26.0 ± 4.0
OL AlphaZero 49.0 ± 0.0 47.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Table 1: Average rewards and standard errors on geometric navigation environments. All methods
use 5000 total rollouts per episode.

have different values). Nodes near the leaves of the k-d tree have few points from a small region,
so the average value of their states is high-variance and low-bias. As more states are explored and
the k-d tree grows deeper, nodes halfway down the k-d tree will have regions with volumes that go
to zero (implying low bias), and contain many states (implying low variance). Based on this, we
conjecture, but do not prove, that this method is a consistent estimator of the true value. We can
make this estimate in O(lnn) time because it only requires one query, as long as we keep track of the
average value of each k-d node in the tree. The KDBackprop function keeps these k-d tree values up
to date after each node expansion. The full KDTree_value and KDBackprop algorithms, as well as
discussion of the challenges to proving consistency, are described in Appendix A.

5.2 Expansion, Value Estimation & K-D Tree Backprop

We sample new actions from a policy πθ, which is represented by a neural network. The value
estimates obtained during expansion also utilize a neural network Vθ. After each episode, we train
the value function and policy. The value function is trained to predict the value given by the k-d
tree. Ideally, we would train the policy to minimize the objective described earlier. However, it is
not trivial to find a closed form representation of the state occupancy divergence from a new policy.
Instead, we use ordinary f−divergence regularization for the policy. This gives us the following loss
function,

L = cV (Vθ − V̂kd)2 + cKLλKL(π0 || πθ)
−cA

∑
a∈actionsA(a)πθ(a),

in which Vθ is the value network, V̂kd is the k-d tree value, πθ is the policy network, π0 is the baseline
policy (for instance, a unit Gaussian), KL is the KL divergence between the two policies, λ is the
regularization coefficient, and A(a) is the advantage of action a. cV , cKL, and cA are hyperparamters.

5.3 Extension to Non-deterministic Environments and Action-dependent Rewards

So far, our approach has made two significant assumptions: we assume that the rewards depend only
on the state and not the action, and that the dynamics are deterministic. Here, we would like to briefly
note that it is possible to remove these assumptions with some small changes. Action-dependent
rewards can be accounted for by regularizing the policy. Stochastic dynamics can be handled using
a technique like Double Progressive Widening (Bertsimas et al., 2014). Details are provided in
Appendix B.

6 Experiments

To assess Volume-MCTS’s performance and the impact of state occupancy measure regularization,
we focus on robot navigation experiments. These are environments with significant practical in-
terest where exploration is a central concern, and MCTS’s exploration has historically been seen
as insufficient by the robotics community. We hypothesize that Volume-MCTS’s state occupancy
regularization term will motivate the planner to evenly explore the state space, resulting in better
exploration. To test this, we conduct two sets of experiments. First, we use a 2D maze environment
to visually compare exploration behavior of AlphaZero and Volume-MCTS. We perform an ablation

9



Maze with Dubins Car Dynamics and Continuous State and Action Spaces (No Training)

Maze Size 2 3 4 5 6

AlphaZero 46.0±2.0 6.0±4.0 0.0±0.0 0.0±0.0 0.0±0.0
AlphaZero+CBE 29.0±3.0 9.0±4.0 1.0±1.0 1.0±1.0 1.0±1.0
Volume MCTS 43.0±5.0 42.0±1.0 40.0±1.0 4.0±3.0 4.0±2.0
OL AlphaZero 49.0±0.0 9.0±6.0 0.0±0.0 0.0±0.0 0.0±0.0

Maze with Dubins Car Dynamics and Continuous State and Action Spaces (After Training)

Maze Size 2 3 4 5 6

AlphaZero 37.0±4.0 8.0±5.0 0.0±0.0 0.0±0.0 0.0±0.0
AlphaZero+CBE 32.0±5.0 30.0±2.0 0.0±0.0 0.0±0.0 0.0±0.0
Volume MCTS 49.0±0.0 46.0±0.0 38.0±1.0 34.0±1.0 26.0±3.0
OL AlphaZero 49.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Table 2: Average rewards and standard errors on Dubins car environments. All methods use 5000 total rollouts
per episode.

Geometric Maze with Continuous State and Action Spaces (No Training)
Maze Size 2 3 4 5 6 7 8 9

Volume-MCTS 49.0 ± 0.0 46.0 ± 0.0 43.0 ± 1.0 38.0 ± 1.0 33.0 ± 1.0 31.0 ± 1.0 22.0 ± 4.0 7.0 ± 3.0
Volume-MCTS with no Re-
wards

47.7 ± 0.3 43.9 ± 0.1 40.0 ± 0.8 33.5 ± 4.4 21.9 ±
15.2

29.5 ± 3.2 16.4 ± 13.4 9.1 ± 7.7

Table 3: Comparison of Volume-MCTS with and without reward guidance. Statistically significant improve-
ments are bolded

study on this environment to test which factors are relevant to the algorithms’ success. We then com-
pare Volume-MCTS to an array of state-of-the-art methods on a challenging quadcopter navigation
problem to test its performance in complex and realistic environments.

6.1 Maze Environments

In these experiments, we hope to see how Volume-MCTS’s Voronoi bias impacts its exploration
behavior, and whether this bias can be matched by other common alterations to the AlphaZero
algorithm. To address these questions, we compare Volume-MCTS’s performance to three variants
of AlphaZero: AlphaZero-Continuous Moerland et al. (2018), an open-loop variant of AlphaZero-
Continuous, and a variant of AlphaZero-Continuous with a CBE reward adapted from Never Give Up
Badia et al. (2020b). We use AlphaZero-Continuous because standard AlphaZero does not work on
environments with continuous action spaces. AlphaZero-Continuous is a minimal extension using
well-established techniques like progressive widening to generalize AlphaZero to the continuous-
action setting. For the sake of brevity, we will refer to AlphaZero-Continuous simply as AlphaZero
for all experiments. All environments use γ = .95 as a discount factor.

The maze environments we test on require long-horizon exploration that makes them inefficient to
solve with standard RL methods, but which is well-suited to our method. Each environment is a maze
with a continuous state and action space, where the agent must find a goal region opposite the starting
location. The maze is N tiles wide and tall, with random walls between these tiles. We test two
different sets of dynamics. The first is geometric dynamics, which are described by the update rule
st+1 = st+at. The second is the Dubins car dynamics, where the agent maneuvers a car with a fixed
turning radius Lavalle (2006). These dynamics can be highly challenging, as complex maneuvers
may be needed to make sharp turns.

First, we visualize the search trees of AlphaZero and Volume-MCTS in space after 1000 expansions
to see how they each perform at reaching novel areas.

As expected, Volume-MCTS rapidly expands to cover the entire state space (Fig. 1b), while AlphaZero
stays very close to the starting location (Fig. 1a). We argue that this is because AlphaZero does
not distinguish states based on novelty. Instead, an n-action sequence that ends next to the starting
location is counted as being just as novel as one that explores far from the start, as long as both
have been expanded the same number of times. Additionally, progressive widening rules cause
the tree to branch early – child nodes will never have more branches than their parent. This gives
progressive-widening-based approaches a high branching factor and short branches, which can make
it difficult to find far-away goals.

We test Volume-MCTS’s exploration performance in comparison to the Continuous versions of
AlphaZero, AlphaZero with CBE, and Open-loop AlphaZero on geometric mazes of increasing size
(Table 1). All methods use 5000 total rollouts for each episode. To evaluate the contributions of
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(a) AlphaZero (b) Volume-MCTS

Figure 1: Comparison of AlphaZero and Volume-MCTS on the geometric maze environment

the planning algorithm separately from that of the neural network, we first test performance before
training the value or policy networks. While the average reward for Open-loop AlphaZero exceeds
AlphaZero, we find that Volume-MCTS does far better, with the gap among the methods dramatically
increasing for large environments with sparse rewards. Second, we compare performance after
training. In general, all methods perform better with training than without As with the ‘before
training’ results, the average reward for the AlphaZero methods falls to zero as maze size increases.
Here, the differential in average reward for Volume-MCTS versus the other methods is far greater.
Instead of falling to zero, the average reward for Volume-MCTS reaches a point where it stops
decreasing altogether as the size of the environment increases. Thus, we find that Volume-MCTS
performs significantly better than AlphaZero methods at maze navigation tasks. Further, it performs
well even where AlphaZero with CBE struggles.

Next, we compare the same methods on a Dubins car maze, an environment with more challenging
dynamics (Table 2). In the ‘before training’ results, the average reward for AlphaZero and Open-loop
AlphaZero drops precipitously even for relatively small mazes. While AlphaZero with CBE does
slightly better, Volume-MCTS results are significantly stronger. However, the differential among
methods is much higher after training for 50,000 iterations. The average reward for the AlphaZero
methods drops to zero for mazes of 4 by 4 tiles and larger 1. In contrast, Volume-MCTS experiences
a far slower decline in average reward as maze size increases.

6.2 Quadcopter Environment

We turn to the question of how Volume-MCTS performs on realistic problems, when compared to
state-of-the-art planning and reinforcement learning methods. To assess this, we test its performance
on a challenging quadcopter navigation task. In addition to AlphaZero Silver et al. (2018), we
compare against POLY-HOOT, a recent theoretically-sound MCTS algorithm for continuous action
spaces Mao et al. (2020), Soft-Actor Critic with Hindsight Experience Replay (HER), a state-of-the-
art model-free RL method for robotic tasks with sparse rewards Andrychowicz et al. (2018), and SST,
a SBMP algorithm for kinodynamic systems Li et al. (2016).

Figure 2b shows that Volume-MCTS significantly outperforms HER and the MCTS algorithms. SST
also performs well, which we find unsurprising due to its track record in robotics. Perhaps surprisingly,
Volume-MCTS performs better than SST when longer search times are used. Additional experiments
(included in Appendix D.8) show that SST and Volume-MCTS found the goal approximately the
same fraction of the time, but that Volume-MCTS returns shorter paths on average. We believe this is
primarily because the RL framing allows us to learn the value function while searching, enabling a
better exploration/exploitation tradeoff.

1In our results, AlphaZero experienced stability issues. We suspect that this is due to bootstrapping problems
common to many reinforcement learning methods. Volume-MCTS proved more stable in this regard because it
develops deeper trees, which have a greater distance between the updated value and the target value.
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(b) Reward as a function of total environmental interactions

6.3 Ablation Study

To test the importance of using value to guide the search, we perform an ablation study. We test
Volume-MCTS on the Maze environment against a variant which treats all rewards as 0. This variant
is equivalent to Kinodynamic-RRT, because the probability of expanding a node depends only on that
nodes’s Voronoi region. Results are shown in Table 3.

We find that Volume-MCTS finds significantly shorter paths than the variant without reward. This
indicates that using reward to guide the search allows us to make better exploration/exploitation
tradeoffs than is possible for SBMP algorithms, which lack a notion of expected reward to guide the
search.

7 Conclusion

We show that two prominent exploration strategies, count-based exploration and Voronoi bias, can
be seen as approximate solutions to a policy optimization objective with state occupancy measure
regularization. Since both of these methods are established tools for long-horizon exploration in their
respective fields, we argue that we can incentivize RL algorithms to explore effectively by minimizing
this objective. While state occupancy objectives are typically non-convex in the policy and frequently
intractable for RL methods, we show that this objective can be made convex and tractable on search
trees. We use this insight to develop Volume-MCTS, a state occupancy-regularized planner that
shows strong long-horizon exploration properties. We test our method on an array of robot navigation
tasks, and find that Volume-MCTS outperforms methods from model-based RL, model-free RL, and
SBMP. While Volume-MCTS is most applicable to deterministic navigation-focused environments,
the connection we demonstrate between count-based exploration, Voronoi bias, and state-occupancy
measure regularization is more general. We hope that additional work into state occupancy measure
regularization will produce a powerful exploration objective that can be used across a wide variety of
domains.

Impact statement This paper presents work whose goal is to advance understanding of exploration
in reinforcement learning. There are many potential societal consequences of our work, none of
which we feel must be specifically highlighted here.
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Mao, W., Zhang, K., Xie, Q., and Başar, T. Poly-hoot: Monte-carlo planning in continuous space
mdps with non-asymptotic analysis. (arXiv:2006.04672), December 2020. doi: 10.48550/arXiv.
2006.04672. URL http://arxiv.org/abs/2006.04672. arXiv:2006.04672 [cs].

McMahon, T., Sivaramakrishnan, A., Granados, E., and Bekris, K. E. A survey on the integra-
tion of machine learning with sampling-based motion planning. Foundations and Trends® in
Robotics, 9(4):266–327, 2022. doi: 10.1561/2300000063. URL https://doi.org/10.1561%
2F2300000063.

13

http://arxiv.org/abs/1707.01495
https://proceedings.mlr.press/v97/hazan19a.html
https://ieeexplore.ieee.org/document/8584061/
http://arxiv.org/abs/1407.2896
http://arxiv.org/abs/1407.2896
http://arxiv.org/abs/2006.04672
https://doi.org/10.1561%2F2300000063
https://doi.org/10.1561%2F2300000063


Moerland, T. M., Broekens, J., Plaat, A., and Jonker, C. M. A0c: Alpha zero in continuous action
space, 2018.
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A Algorithm Details

Here, we present the full pseudocode for the k-d tree algorithms described in the main paper. The
KDTree_value algorithm returns an estimate of the state’s value in a given region by returning the
average value of nodes near that state. KDBackprop updates the average value of nodes in the
KDTree.

Algorithm 2 KDTree_value

Have: KDTree;
Input: state;
KDNode← KDTree.locate(state);
i← KDNode.depth
while KDNode.depth > i / 2 do

KDNode← KDNode.parent;
end while
return KDNode.value_sum / KDNode.visit_count

Algorithm 3 KDBackprop

Have: KDTree;
Input: value, state;
KDTreeNode← KDTree.locate(state);
KDTreeNode.value_sum← KDTreeNode.value_sum + value;
KDTreeNode.visit_count← KDTreeNode.visit_count + 1;
while KDTreeNode.has_parent() do

KDTreeNode← KDTreeNode.parent;
KDTreeNode.value_sum← KDTreeNode.value_sum + value;
KDTreeNode.visit_count← KDTreeNode.visit_count + 1;

end while

Algorithm 4 Expand

Have: policy network πθ, value network Vθ;
Input: node n;
a ∼ πθ(n.state);
s′ ← T (n.state, a);
kd_node← KDTree.add(Vθ(s′))
v̂ ←KDTree_value(s′)
n.children← n.children ∪MCTSNode(a, s′, kd_node, v̂)
return v̂

Earlier, we said that we conjectured that the KDTree value estimate was a consistent estimator. There
are two main challenges to proving this. First, the estimator builds estimates from MCTS node values,
which are not neither stationary nor independent, which makes traditional bias and variance analysis
difficult. Secondly, it is difficult to obtain guarantees on the shape and regularity of the KD regions.
It’s necessary that, with high probability, the diameter of a KD region goes to zero as the volume
does. This is clearly true in practice but tedious to show mathematically. If both of these issues are
dealt with or assumed away, the proof outline in the text can be easily formalized.

B Extension to Non-deterministic Environments and Action-dependent
Rewards

To account for action-based rewards, we regularize the policy in addition to the state-action occupancy
measure, giving use the loss L = En∼dπ [V(n)− λDf (π(n)||π0(n))]− λDf (ϕ(dπ)||ϕ0), where π0
is the uniform distribution over tree moves. Repeating the derivation of Prop 1 and Thm 2 gives us
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the tree policy

π∗(a | n) =
λ(SubtreeV ol(a) + γd(n)P (n reached |π)

1+len(n.children) )

α− γd(n)P (n reached | π)Qπ∗(a | n)
This is effectively the same method, but with an added offset to each action’s volume. We implemented
it and found that this regularization was detrimental to long-horizon exploration, so we did not use it
in our experiments. However, it is easy to implement when rewards are action-dependent.

In principle, Volume-MCTS could also be extended to non-deterministic environments using double-
progressive widening (Bertsimas et al., 2014). In double progressive widening, the tree keeps a list of
sampled "next states" for each action, and expands this list over time using progressive widening. This
allows the tree to estimate the value under stochastic dynamics. It is straightforward to implement
this approach with Volume-MCTS by making two simple changes to the stated algorithm.

1. Vol(a) =
∑
iVol(s

′
i), where s′i ∈ next(a) is the list of next states from a

2. Q(a) =
∑
i

V(s′i)
|next(a)|

For each of these alterations, we chose not to include them in the main algorithm because they
introduce additional complexity to the implementation, and also because they may impact the
exploration efficiency. Analysis of the exploration efficiency of these variants is a promising area for
future work.

C Proofs

C.1 Background review

C.1.1 f -divergences

Definition 4. For any probability distributions p and q on X and function f : R→ R such that f is a
convex function on R and f(1) = 0, the f -divergence Df between p and q is defined as

Df (p || q) =
∫
X
q(x)f

(
p(x)

q(x)

)
dx

C.1.2 Convex functions of probability distributions

Convex optimization on probability distributions may be seen as a constrained optimization problem,
as the probability distribution is constrained to sum to exactly 1. Under the KKT conditions (which the
problems we are considering meet), there is guaranteed to be a unique solution such that ∂L

∂dπ(n) = α

for all n.

C.2 Proofs

C.2.1 Uniqueness of dπ∗

Proposition 1. Let V(n) = E[(
∑T−1
i=0 γiR(n. traji)) + γTV πθ (n. trajT )].

Let L(dπ) = En∼dπ [V(n)]− λDf (ψ(T, d
π) || ψ0)

Suppose f(t) = − ln t and ψ(T, dπ)(s) is a partition density estimator, where the associated measure
of any node n is Vol(n). Then L has a unique optimizer dπ∗, such that dπ∗(n) = λ

α−V(n) Vol(n),
where α is a constant that makes dπ∗ a proper probability distribution.

Proof. Observe that L(dπ) is a convex function. Since dπ is a probability distribution, it is known that
there exists a unique maximizer for L, which occurs when dπ is normalized and ∂

∂dπ(n)L(d
π) = α,

where α is a constant. We solve for this value now.
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α =
∂

∂dπ(n)
L(dπ)

=
∂

∂dπ(n)
En∼dπ [V(n)]− λDf (ψ(T, d

π) || ψ0)

=
∂

∂dπ(n)

∑
n

V(n)dπ(n)− λ
∫
S

ψ0(s)f

(
ψ(T, dπ)(s)

ψ0(s)

)
ds

=V(n)− λ
∫
S

∂

∂dπ(n)
ψ0(s)f

(
ψ(T, dπ)(s)

ψ0(s)

)
ds

=V(n) + λ

∫
S

∂

∂dπ(n)
ψ0(s) log

(
ψ(T, dπ)(s)

ψ0(s)

)
ds

=V(n) + λ

∫
S

ψ0(s)
∂

∂dπ(n)
log

(
ψ(T, dπ)(s)

ψ0(s)

)
ds

=V(n) + λ

∫
S

ψ0(s)
ψ0(s)

ψ(T, dπ)(s)

∂

∂dπ(n)

ψ(T, dπ)(s)

ψ0(s)
ds

=V(n) + λ

∫
S

ψ0(s)

ψ(T, dπ)(s)

∂

∂dπ(n)
ψ(T, dπ)(s)ds.

Observe that by assumption, ψ is a partition density estimator with weights dπ. Therefore,
∂

∂dπ(n)ψ(T, d
π)(s) is ∂

∂dπ(n)d
π(n)g(T, s) = g(T, s) for some function g if s is in n’s associated

region and 0 otherwise. Let 1(n, s) be 1 if s is in n’s associated region R(n), and 0 otherwise. Then,

α =
∂

∂dπ(n)
L(dπ)

=V(n) + λ

∫
S

ψ0(s)

ψ(T, dπ)(s)

∂

∂dπ(n)
ψ(T, dπ)(s)ds

=V(n) + λ

∫
S

ψ0(s)

ψ(T, dπ)(s)
g(T, s)1(n, s)ds

=V(n) + λ

∫
R(n)

ψ0(s)

ψ(T, dπ)(s)
g(T, s)ds

=V(n) + λ

∫
R(n)

ψ0(s)

dπ(n)g(T, s)
g(T, s)ds

=V(n) + λ

∫
R(n)

ψ0(s)

dπ(n)
ds

=V(n) + λ
1

dπ(n)

∫
R(n)

ψ0(s)ds

=V(n) + λ
1

dπ(n)
V ol(n)

α− V(n) =λV ol(n)
dπ(n)

dπ(n) =
λV ol(n)

α− V(n)
.

■

C.2.2 dπ∗ can be found by optimizing π

We begin by proving that on trees, there is a one-to-one correspondence between dπ and π. This is
not true for general MDPs, because actions can be redundant such that multiple actions can lead to
the same state. This one-to-one correspondence will allow us to show that the unique solution to the
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policy optimization problem is also the unique solution to the state-occupancy measure optimization
problem. This will allow us to sample from dπ by calculating π and traversing the tree, which is
more efficient than computing and sampling from dπ directly.

Lemma 1. For any selection of π, π uniquely determines

dπ(n) = π(stay | n)
∏
ai>n

π(ai | ni).

Proof. Suppose the algorithm starts at the root node of the tree and selects moves until it selects a
"stay" move and stops. Observe that there is exactly one sequence of tree moves that leads to the
algorithm stopping at n. When traversing the tree, the algorithm must first select the action that is the
ancestor of n at each step. Then it must choose to stop at n. Since these moves are independent, we
can write the probability of the algorithm stopping at n as

dπ(n) = π(stay | n)
∏
ai>n

π(ai | parent(ai)).

■

Lemma 2. Exactly one policy π produces a given node distribution dπ(n). This policy is

π(a | n) =
∑
ni<a

dπ(ni)∏
ai>n

π(ai | parent(ai))
.

Proof. Consider that the probability of the algorithm reaching a node when traversing the tree
P (n). By the same argument used in the previous lemma, this probability is simply the product
of all ancestor probabilities, P (n) =

∏
ai>n

π(ai | parent(ai)). Also note that some action in
the tree a can be taken only if its parent has been reached. Similarly, if action a is taken, then the
algorithm is guaranteed to reach a’s child. Therefore, P (child(a)) = P (a) = π(a | n)P (n) = π(a |
n)
∏
ai>n

π(ai | parent(ai)).
Observe that once the algorithm enters a subtree, it has no way to return, so it is guaranteed to stop
at one of the nodes in the subtree. Since the algorithm stops in the subtree of n if and only if n is
reached, the sum of the stopping probabilities in a subtree is exactly equal to the probability that n is
reached. Hence, P (n) =

∑
ni<a

dπ(ni). Therefore,

π(a | n) = π(a | n)P (n)
P (n)

=
π(a | n)P (n)

P (n)

=
P (a)

P (n)

=
P (child(a))

P (n)

=

∑
ni<a

dπ(ni)∏
ai>n

π(ai | parent(ai))
.

■

Lemma 2 is important because for non-tree environments, multiple policies can produce the same
state occupancy. As we proceed, we will use tools from convex optimization to find the optimal
policy, which requires us to know that the optimal policy is unique.

Lemma 3.
∂dπ(n′)

∂π(a|n)
= 1(n′ < a)

dπ(n′)

π(a|n)
.
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Proof. Observe that ∂d
π(n′)

∂π(a|n) = 0 if n′ is not a descendent of a, because dπ(n′) does not depend on
π(a | n). If n′ is a descendent of a, then,

∂

∂π(a|n)
dπ(n′) =

∂

∂π(a|n)
(π(stay |n′)

∏
action a′>n′

π(a′|parent(a′))

= (π(stay |n′) ∂

∂π(a|n)
∏

action a′>n′

π(a′|parent(a′))

= π(stay |n′) ∂

∂π(a|n)
pi(a|n)

∏
action a′>n′,a′ ̸=a

π(a′|parent(a′))

= π(stay |n′)
∏

action a′>n′,a′ ̸=a

π(a′|parent(a′))

= π(stay |n′)
∏

action a′>n′ π(a′|parent(a′)
π(a|n)

=
dπ(n′)

π(a|n)
.

■

Lemma 4. For any function f ,

∂f

∂π(a | nt)
= P (nt)En′∼dπ(·|nt,a)

[
∂f

∂dπ(n′)

]
.

Proof.

∂f

∂π(a|nt)
=
∑
n′

∂f

∂dπ(n′)

∂dπ(n′)

∂π(a|nt)

Observe that ∂dπ(n′)
∂π(a|nt)

= 0 if n′ is not a descendant of a.

∂f

∂π(a|nt)
=
∑
n′<a

∂f

∂dπ(n′)

∂dπ(n′)

∂π(a|nt)

=
∑
n′<a

∂f

∂dπ(n′)

dπ(n′)

π(a|nt)

=
1

π(a|nt)
∑
n′<a

∂f

∂dπ(n′)
dπ(n′)

=
P (nt)

π(a|nt)P (nt)
∑
n′<a

∂f

∂dπ(n′)
dπ(n′)
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Observe that π(a|nt)P (nt) = P (nt+1), where nt+1 is the child node of a.

∂f

∂π(a|nt)
=

P (nt)

P (nt+1)

∑
n′<a

∂f

∂dπ(n′)
dπ(n′)

=
P (nt)

P (nt+1)

∑
n′≤nt+1

∂f

∂dπ(n′)
dπ(n′)

= P (nt)
∑

n′≤nt+1

∂f

∂dπ(n′)
dπ(n′)(P (nt+1))

= P (nt)
∑

n′≤nt+1

∂f

∂dπ(n′)
dπ(n′|nt+1)

= P (nt)En′∼dπ(n′|nt+1)

[
∂f

∂dπ(n′)

]
= P (nt)En′∼dπ(n′|nt,a)

[
∂f

∂dπ(n′)

]
.

■

Theorem 1. Let T be a tree. Let π(· | n) be a probability distribution over moves that may be taken
from node n, where n is a node in the tree. Let dπ be the probability of stopping at any given node if
we traverse the tree by sampling moves from π.

Then for any convex loss function L(dπ), L is convex with respect to π(a | n) for all nodes n and
moves a. Furthermore, L is minimized if and only if for every node n, ∂L

∂π(a|n) is constant for all
moves a.

Proof. The first portion of the proof is easy to establish. Suppose L(dπ) is convex. Recall that
dπ(n) = π(stay | n)

∏
ai>n

π(ai | parent(ai)). Observe that dπ(n) is linear with respect to the
probability of each action ai above n in the tree. Since a convex function of a linear function is still
convex, L(π(a | n)) is convex.

However, this alone does not establish that optimizing the policy at each node is sufficient to optimize
the loss. While L is convex in π(a | n) for all a, n, this does not necessarily imply that L is jointly
convex in π(a | n) and π(a′ | n′) for a ̸= a′, n ̸= n′. Hazan et al. (2019) provide a counterexample
to this, where two distinct policies each induce a uniform distribution over a set of states, but a linear
combination of the policies is non-uniform. This implies that the entropy of the state occupancy
measure is not convex with respect to the policy. However, this counterexample relies on a directed
acyclic graph structure. We aim to show that for trees, convex functions of dπ are minimized if
and only if a function is minimized with respect to the policy at every node. While this does not
necessarily imply that the loss is convex in π, it does imply that we can minimize convex functions
by doing convex optimization of the policy at each node. We prove this by contradiction.

Recall that for a convex loss, dπ is a unique global optimum of L(dπ) if and only if ∂L
∂dπ(n) = α

for all n. Suppose this condition holds for our selection of dπ. Then by Lemma 3, ∂L
∂π(a|nt)

=

P (nt)En′∼dπ(·|nt,a)[
∂L

∂dπ(n′) ] = P (nt)En′∼dπ(·|nt,a)[α] = P (nt)α. Observe that ∂L
∂π(a|nt)

does not
depend on a. Therefore ∂L

∂π(a|nt)
is constant for all moves a.

Suppose that for every node n, ∂L
∂π(a|n) is constant for all moves a. We use proof by contradiction.

Let dπ∗ be the optimal value for dπ . Suppose dπ ̸= dπ∗. Then there exists some n where ∂L
∂dπ(n) > α

or ∂L
∂dπ(n) < α. We consider the first case. Observe that since L is strongly convex with respect to dπ ,
∂L

∂dπ(n) is monotonically increasing with dπ(n). Hence, if ∂L
∂dπ(n) > α, dπ(n) > dπ∗(n). Since dπ

sums to 1, there must also be some ñ where dπ(ñ) < dπ∗(ñ).

By Lemma 4, ∂L
∂π(a|n) = P (n)E[ ∂L

∂dπ(n) ] for all n. Since ∂L
∂dπ(n) > α,

∂L
∂π(stay |n)

P (n) =

En′|stay,n[
∂L

∂dπ(n′) ] =
∂L

∂dπ(n) > α. Since we assumed that ∂L
∂π(a|n) was constant for all moves from n,
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∂L
∂π(a|n)

P (n) > α for all moves. Now, consider n’s parent action a1. Since En′∼dπ(·|n)[
∂L

∂dπ(n′) ] > α for

each branch of n, En′∼dπ(·|n)[
∂L

∂dπ(n′) ] > α for the whole subtree of a1. Therefore,
∂L

∂π(a1| parent(a1))

P ( parent(a1))
=

En′∼dπ(·| parent(a1))[
∂L

∂dπ(n′) ] > α. Here, the same reasoning applies as before – the gradient is equal
for all moves, so they must all have a gradient > P ( parent(a1))α. We can repeat this argument with
induction for each node in the tree, showing that each ancestor must have a gradient greater than
alpha, until we reach the root. Therefore, the gradient of all moves at the root is greater than α.

However, recall that there must be a node ñ where dπ(ñ) < dπ∗(ñ). Since ∂L
∂dπ(ñ) is monotonically

increasing with dπ(ñ), ∂L
∂dπ(ñ) < α. We make the same argument as before, showing that

∂L
∂π(ã|ñ)

P (ñ) < α

for all moves from ñ. By a symmetrical argument to the previous paragraph, all of ñ’s ancestors must
have gradients < α. Therefore the gradient at the root is < α.

However, we already showed that the gradient at the root was > α, so this is a contradiction. Therefore
our assumption must be false, and ∂L

∂dπ(n) = α for all nodes. Hence, the induced distribution of π∗ is
dπ∗.

The same contradiction is reached if we assume that there exists some n where ∂L
∂dπ(n) < α. ■

Theorem 2. Suppose f(t) = − ln t and ψ(T, dπ)(s) is a partition density estimator.
Then L(π) has a unique optimizer π∗, such that π∗(a | n) = λ SubtreeVol(a)

α−γd(n)P (n reached|π)Qπ∗ (a|n) , where
– SubtreeVol(a) is the total volume of all nodes in the subtree of a. d(n) is the depth of n in the
search tree. P (n reached | π) is the probability that the algorithm reaches n when traversing the
tree, or equivalently that the algorithm stops at some node in n’s subtree. and α is whatever constant
normalizes π∗.

Additionally, π∗ is the unique distribution that induces dπ∗ as the state occupancy measure.

Proof. As before, L is convex with respect to π(a | n), so it has a unique optimizer when ∂L
∂π(a|n) is

equal to a constant for all a. Recall that by Lemma 4, ∂L
∂π(a|n) = P (n)En′∼dπ(·|n,a)[

∂L
∂dπ(n′) ]. Then

∂L
∂π(a | n)

= P (n)En′∼dπ(·|n,a)

[
∂L

∂dπ(n′)

]
= P (n)En′∼dπ(·|n,a)

[
V(n′) + λ

Vol(n′)

dπ(n′)

]
= P (n)En′∼dπ(·|n,a)[V(n′)] + λP (n)En′∼dπ(·|n,a)

[
Vol(n′)

dπ(n′)

]
= P (n)En′∼dπ(·|n,a)[V(n′)] + λP (n)

∑
n′<a

dπ(n′)

P (n)π(a | n)

[
Vol(n′)

dπ(n′)

]
= P (n)En′∼dπ(·|n,a)[V(n′)] + λ

∑
n′<a

Vol(n′)

π(a | n)

= P (n)

(
γdQπ(n, a) +

d∑
i=0

γiR(ni, ai)

)
+ λ

SubtreeVol(a)

π(a | n)

= P (n)

(
d∑
i=0

γiR(ni, ai)

)
+ P (n)(γdQπ(n, a)) + λ

SubtreeVol(a)

π(a | n)
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Observe that since P (n)(
∑d
i=0 γ

iR(ni, ai)) is constant for all moves, we may absorb it into α

α = P (n)γdQπ(n, a) + λ
SubtreeVol(a)

π(a | n)

α− P (n)γdQπ(n, a) = λ
SubtreeVol(a)

π(a | n)

π(a | n) = λ
SubtreeVol(a)

α− P (n)γdQπ(n, a)

By Theorem 2, π(a | n) = λ SubtreeVol(a)
α−P (n)γdQπ(n,a)

is the unique optimizer of L. ■

C.2.3 Connection to Count-Based Exploration

Proposition 2. SupposeDf is chosen to be the Hellinger distance, f(t) = 2(1−
√
t), and ψ̂ is chosen

to be kernel density estimator, ψ̂((T, d̂π))(s) =
∑
i∈T d̂

π(i)k(i. state, s). Additionally, suppose

ψ0 is the uniform distribution over the state space. Let RCBE(n) =
√

1∑
i∈T k(i. state,n. state)

, the

count-based exploration reward described in Badia et al. (2020b). Then,

a = argmaxn
∂

∂d̂π(n)
En′∼d̂π [V(N

′)]− λDf (ψ0 || ψ̂)

≈ argmaxaQ(s, a) + cEn′∼subtree(a) [RCBE(n
′)]

Proof. We aim to show that applying the empirical decision rule to the policy optimization problem
with Hellinger squared distance regularization over the state spaces yields a count-based exploration
reward. The squared Hellinger distance is an f -divergence, where f(t) = 2(1−

√
t). Observe that

the derivative of f , dfdt , is df
dt (t) = −

1√
t
.

∂

∂d̂π(n)
L(d̂π) = ∂

∂d̂π(n)
En′∼d̂π [V(n

′)]− λDf (ψ0 || ψ̂)

=
∂

∂d̂π(n)

∑
n′

d̂π(n′)V(n′)− λ
∫
S

ψ0(s)f

(
ψ̂(s)

ψ0(s)

)
ds

= V(n)− λ
∫
S

ψ0(s)
∂

∂d̂π(n)
f

(
ψ̂(s)

ψ0(s)

)
ds

= V(n)− λ
∫
S

ψ0(s)
df

dt

(
ψ̂(s)

ψ0(s)

)
∂

∂d̂π(n)

ψ̂(s)

ψ0(s)
ds

= V(n)− λ
∫
S

ψ0(s)
df

dt

(
ψ̂(s)

ψ0(s)

)
∂

∂d̂π(n)

∑
i∈T d̂

π(i)k(i. state, s)

ψ0(s)
ds

= V(n)− λ
∫
S

ψ0(s)
df

dt

(
ψ̂(s)

ψ0(s)

)
k(n. state, s)

ψ0(s)
ds

= V(n)− λ
∫
S

ψ0(s)
df

dt

(∑
i∈T d̂

π(i)k(i. state, s)

ψ0(s)

)
k(n. state, s)

ψ0(s)
ds

= V(n)− λ
∫
S

df

dt

(∑
i∈T d̂

π(i)k(i. state, s)

ψ0(s)

)
k(n. state, s)ds

Recall that f(t) = 2(1−
√
t) and df

dt (t) = −
1√
t
.
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∂

∂d̂π(n)
L(d̂π) = V(n)− λ

∫
S

df

dt

(∑
i∈T d̂

π(i)k(i. state, s)

ψ0(s)

)
k(n. state, s)ds

= V(n) + λ

∫
S

√
ψ0(s)∑

i∈T d̂
π(i)k(i. state, s)

k(n. state, s)ds

Now, we observe two properties of kernels assumed for kernel regression. First, kernels are window
functions: a kernel k(x, y) is maximal when x = y and decreases rapidly as | x − y | becomes
large. Additionally

∫
X k(x, y)dx = 1 for x, y ∈ X . This means that when integrating another

function with the kernel, almost all the contribution comes from near the center. This means that for a
continuous function f , we may approximate the integral

∫
X f(x)k(x, y)dx by linearly approximating

f about x = y where the kernel is maximized. Hence
∫
X f(x)k(x, y)dx ≈

∫
X [f(y) + (x −

y) · ∇f(y)]k(x, y)dx. And second, we assume that the kernel is an even function, so integrating∫
X (x − y)k(x, y)dx = 0. Hence,

∫
X f(y) + (x − y) · ∇f(y)]k(x, y)dx =

∫
X f(y)k(x, y)dx +∫

X (x− y) · ∇f(y)k(x, y)dx = f(y) + 0 = f(y). Applying this to the derivation from above, we
find the following:

∂

∂d̂π(n)
L(d̂π) = V(n) + λ

∫
S

k(n. state, s)

√
ψ0(s)∑

i∈T d̂
π(i)k(i. state, s)

ds

≈ V(n) + λ

√
ψ0(n. state)∑

i∈T d̂
π(i)k(i. state, n. state)

d̂π was defined to be 1
N for all nodes. λ was assumed to be c√

N
for some constant c. Combining

constants and simplifying, this yields

∂

∂d̂π(n)
L(d̂π) ≈ V(n) + λ

√
ψ0(n. state)∑

i∈T d̂
π(i)k(i. state, n. state)

= V(n) + c
1√
N

√
ψ0(n. state)∑

i∈T
1
N k(i. state, n. state)

= V(n) + c

√
ψ0(n. state)∑

i∈T N
1
N k(i. state, n. state)

= V(n) + c

√
ψ0(n. state)∑

i∈T k(i. state, n. state)

Observing that ψ0 is a uniform distribution, we see that ψ0(s) is constant for all s. We can absord
this constant into c, which gives us the expression

∂

∂d̂π(n)
L(d̂π) ≈ V(n) + c

√
1∑

i∈T k(i. state, n. state)

Observe that this is the same exploration reward bonus used in Never Give Up Badia et al. (2020b).

Applying Lemma 4, we can see this expressed in a more traditional reward based form.
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action(n) = argmaxa
∂f

∂π̂(a | nt)

= argmaxa P (n)En′∼d̂π(·|n,a)

[
∂

∂d̂π(n)

]

= argmaxaEn′∼d̂π(·|n,a)

[
V(n) + 1

√
1∑

i∈T k(i. state, n. state)

]

= argmaxaEn′∼d̂π(·|n,a)[V(n)] + En′∼d̂π(·|n,a)

[
c

√
1∑

i∈T k(i. state, n. state)

]

= argmaxaQ
π̂(s, a) + cEn′∼d̂π(·|n,a)

[√
1∑

i∈T k(i. state, n. state)

]

Observe that Qπ̂(s, a) is the empirical average of future rewards – this is exactly the Q value
calculated by traditional MCTS. En′∼d̂π(·|n,a)

[√
1∑

i∈T k(i. state,n. state)

]
is the empirical average of

future values of
√

1∑
i∈T k(i. state,n. state)

. In other words, it is an additional term calculated the same

way the value is calculated, but treating
√

1∑
i∈T k(i. state,n. state)

as a supplemental reward. This

is equivalent to adding
√

1∑
i∈T k(i. state,n. state)

to the reward function, which is what count-based

exploration rewards do. Therefore, this approximation is equivalent to a count-based exploration
reward.

■

C.2.4 Exploration efficiency

Sampling-based motion algorithms frequently come with guarantees of exploration efficiency in
addition to optimality. Reinforcement learning algorithms, on the other hand, rarely enjoy these kinds
of guarantees outside of simple cases such as bandits. This is especially true in continuous domains.
Recent work has established regret bounds for both MCTS and continuous-space generalizations
(Note: early logarithmic regret bounds for MCTS are now thought to be incorrect, as they do not
account for the value distribution being non-stationary). However, even these methods do not show
that they efficiently explore the state space – instead they show a bound on the regret as a function
of γ, with the regret growing asymptotically as γ → 1. We are able to provide polynomial bounds
on the rate at which Volume-MCTS explores the state space, which do not depend on γ. This is a
significant advantage for long-horizon problems where γ may be very close to 1.

As a note, we derive these bounds for the idealized version of Volume-MCTS which uses 1-nearest
neighbor as its density estimator, which we will call Voronoi-Volume-MCTS. This version of the
algorithm is slightly different than the form presented in the main body of the paper, which uses a
KD-tree as its density estimator. We choose to analyze this version instead, because the probability
of expanding a node is proportional to the volume of its Voronoi region, rather than the volume of the
KD-region. While KD-region volumes are much easier to calculate in practice, Voronoi regions are
more mathematically tractable. This is primarily a artifact of the analysis rather than a meaningful
feature of the math. Research in SBMP algorithms nearly always uses Voronoi regions for analysis,
and approximates these regions using KD-trees in implementation. The difference is rarely relevant
in practice.

We will begin by defining the following term

Definition 5. δ-controllable: Let M be an MDP with action space A, bounded state space S, and
deterministic transition function T (si, ai). Let dA be the dimensionality of A. Let τ be a trajectory
in M . Let si be the i-th state in the trajectory τ . Let Bδ(si) be a ball of radius δ about si.
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Then τ is δ-controllable iff there exists a constant σ > 0 such that for each state si in τ , there exists
a region in action space Ai with measure at least σδdA such that if a state s′i ∈ Bδ(si) and a′i ∈ Ai,
then T (s′i, a′i) ∈ Bδ(si+1).

Intuitively, if we have a point close to a trajectory τ , then we have a lower bounded chance of
sampling an action that stays close to τ at the next state. This condition is strictly weaker than the
assumptions used for asymptotically optimal motion planners. Stable Sparse RRT takes a set of
assumptions that together necessitate that every point in the δ-ball of si is reachable from every point
in the δ-ball of si−1. By contrast, we only assume that the is a lower-bounded chance of reaching
somewhere in the δ-ball of si, without specifying where that may be or what shape it may have.

Our strategy for this proof is as follows. First, we lower bound the probability of selecting a point
near a state st in the trajectory. Then, we lower bound the probability of reaching a state near st+1,
given that a state near st was reached. Finally, we sum over these bounds and use them to establish a
bound of reaching an arbitrary region in a given amount of time.

Recall that the probability of expanding a node Voronoi-Volume-MCTS is given by dπ(n) =
λ

α−V(n) Vol(n), where

• V(n) is the value of the node n
• Vol(n) is the measure of n’s Voronoi region
• λ = c√

N

• c is a constant
• N is the current iteration number, and
• α is whatever constant normalizes dπ∗(n), so it sums to 1.

We aim to lower-bound the sum of all dπ(n) near st, assuming that at least one node is near st. We
begin by bounding the sum of their Voronoi regions.
Lemma 5. Let s ∈ S be such that Bδ(s) ⊂ S. Suppose that there exists a tree node n with
n. state ∈ B 2δ

5
(s). Let s′ ∈ S be an arbitrary state in S. Let snear denote the nearest neighbor of s′

among all tree nodes.

Suppose the state space S is bounded. Further suppose, without loss of generality, that the volume of
the full state space S is 1.

Then the union of the Voronoi regions of all nodes in Bδ(s) has a volume of at least |B δ
5
|

Proof. Our proof closely follows the proof given by Kleinbort et al. (2019) for their Lemma 4.

Case 1: Suppose all nodes in the tree are in Bδ(s), then the union of their Voronoi regions is S. Then
it is trivial that the union of their Voronoi regions has measure > |B δ

5
|.

Case 2: Suppose there is a tree node with z /∈ Bδ(s). We show that if s′ ∈ B δ
5
(s) then snear ∈ Bδ(s).

Observe that n. state ∈ B 2δ
5
(s), so by the triangle inequality, ||s′−n. state || ≤ 3δ

5 . Since z /∈ Bδ(s),
||snear − z|| ≥ 4δ

5 . Therefore, ||s′ − n. state || < ||s′ − z||. Hence, z is not the nearest neighbor
of s′. Since z was chosen arbitrarily from nodes outside of Bδ(s), this holds for all nodes outside
of Bδ(s). It follows that s′ is in the Voronoi region of some node within Bδ(s). Since s′ was again
chosen arbitrarily from points in B δ

5
(s), the union of the Voronoi regions of nodes node in Bδ(s)

includes all points in B δ
5
(s). Observe that the volume of this region is |B δ

5
|.

Therefore, the union of the Voronoi regions of all nodes in Bδ(s) has a volume of at least |B δ
5
|. ■

Next, we must show bounds on α. Together with Lemma 5, this will give us a lower bound on the
probability of sampling a node in a given region once that region has been reached.
Lemma 6. 1:

α ≥ maxn(V(n) + λVol(n))

and 2:
α ≤ maxn(V(n)) + λ
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Proof. 1: α = V(n) + λVol(n)
dπ(n) . Since dπ(n) ≤ 1, α = V(n) + λVol(n) for all n. Hence,

α ≥ maxn(V(n) + λVol(n)).

2:
∑
n d

π(n) = 1. Therefore, 1 =
∑
n
λVol(n)
α−V(n) ≥

∑
n

λVol(n)
α−maxn′ (V(n′)) . Hence, α −

maxn′(V(n′)) ≥
∑
n λVol(n) = λ. Therefore, α ≥ maxn(V(n)) + λ. ■

From this result, it is easy to derive the following bound on dπ:

Lemma 7. Suppose, without loss of generality, that 0 ≤ R ≤ 1. Then,

dπ(n) ≥ c(1−γ)√
N+c(1−γ) Vol(n)

Proof. 0 ≤ R ≤ 1, so 0 ≤ V(n) ≤ 1
1−γ for all n. Hence,

dπ(n) =
λVol(n)

α− V(n)

≥ λVol(n)

maxn(V(n)) + λ− V(n)

≥ λVol(n)
1

1−γ + λ− V(n)

≥ λVol(n)
1

1−γ + λ− 0

≥ λVol(n)
1

1−γ + λ

≥ λVol(n)
1

1−γ + λ

≥ Vol(n)
c√

N( 1
1−γ + c√

N
)

≥ Vol(n)
c

√
N

1−γ + c

≥ Vol(n)
c(1− γ)√
N + c(1− γ)

■

Now that we have established bounds on dπ(n), we can establish lower bounds on the probability of
sampling a node near s once Bδ(s) has been reached.

Corollary 2. If the ball Bδ(s) has been reached, then the probability of expanding a node in Bδ(s)
at time N is at least |B δ

5
| c(1−γ)√
N+c(1−γ) .

Corollary 3. For N ≥ c2(1− γ)2, dπ(n) ≥ c(1−γ)
2
√
N

Vol(n) for all nodes n.
For N ≤ c2(1− γ)2, dπ(n) ≥ 1

2 Vol(n) for all nodes n.

Proof. Suppose N ≥ c2(1− γ)2. Recall that dπ(n) ≥ Vol(n) 1√
N

c(1−γ)
+1

. Then 1 ≤
√
N

c(1−γ) . Hence,

Vol(n) 1√
N

c(1−γ)
+1
≥ Vol(n) 1√

N
c(1−γ)

+
√

N
c(1−γ)

= Vol(n) 1

2
√

N
c(1−γ)

= Vol(n) c(1−γ)
2
√
N

Suppose N ≤ c2(1 − γ)2. Recall that dπ(n) ≥ Vol(n) 1√
N

c(1−γ)
+1

. Then 1 ≥
√
N

c(1−γ) . Hence,

Vol(n) 1√
N

c(1−γ)
+1
≥ Vol(n) 1

1+1 = 1
2 Vol(n) ■
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Corollary 4. dπ(n) ≥ 1
2 min(1, c(1−γ)√

N
)Vol(n) for all nodes n.

Now, we can provide a lower bound on the probability that a state in a trajectory will be reached after
a given expansion.

Our goal is to take a δ-controllable trajectory and cover each state in a δ-ball. Then we will find a
lower bound on the probability of reaching each of these balls in sequence. This will provide us with
a high-probability bound on the time it will take to reach the last ball in the sequence.
Lemma 8. Let M be an MDP with action space A, bounded state space S, and deterministic
transition function T (si, ai). Let dA be the dimensionality of A. Let τ be a δ-controllable trajectory.
Let Bδ(τi) be the δ-ball around τi, the i-th state in τ . Then Bδ(τi+1) will be reached by time Ni+1

with probability exp
(
−|B δ

5
|c(1− γ)σδdA(2

√
Ni+1 − 2

√
Ni)
)

Proof. Bδ(τi+1) will be reached if we expand a node in Bδ(τi) and then sample an action that
takes us to Bδ(τi+1). At timestep N ≥ c2(1 − γ)2, a node in Bδ(s) has a probability of at least
|B δ

5
| 12 min

(
1, c(1−γ)√

N

)
of being expanded. Since τ is a δ-controllable trajectory, we have a proba-

bility of at least σδdA of sampling an action that takes the agent to a point in Bδ(τi+1) if a node in
Bδ(τi) is sampled. Hence, we have a probability of at least

|B δ
5
|σδdA 1

2
min

(
1,
c(1− γ)√

N

)
of reaching the next ball in the sequence at each step. Observe that these samples are drawn
independently, so the chance of failing many times in a row is the product of the probability of failure
at each time. Then, the probability of failing to reach Bδ(τi+1) by time Ni+1 is less than or equal to

Ni+1∏
t=Ni

1− |B δ
5
|σδdA 1

2
min

(
1,
c(1− γ)√

t

)

We then have

P (Bδ(τi+1) not reached | Bδ(τi) reached) ≤
Ni+1∏
t=Ni

1− |B δ
5
|σδdA 1

2
min

(
1,
c(1− γ)√

t

)

≤ exp

Ni+1∑
t=Ni

ln

(
1− |B δ

5
|σδdA 1

2
min

(
1,
c(1− γ)√

t

))
≤ exp

− Ni+1∑
t=Ni

|B δ
5
|σδdA 1

2
min

(
1,
c(1− γ)√

t

)
≤ exp

−|B δ
5
|σδdA

Ni+1∑
t=Ni

1

2
min

(
1,
c(1− γ)√

t

)

This summation is difficult to analyze, so we will instead bound it with an integral that is more
tractable.

Observe that c(1−γ)
2
√
t

is non-increasing in t. Therefore we can apply the bound

Ni+1∑
t=Ni

min

(
1,
c(1− γ)√

t

)
≥
∫ Ni+1

Ni

min

(
1,
c(1− γ)√

t

)
dt

We now attempt to simplify the right hand side. The min operation here produces 3 cases.
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1. Ni < Ni+1 < c2(1− γ)2

2. Ni < c2(1− γ)2 < Ni+1

3. c2(1− γ)2 < Ni < Ni+1

In the first case,
∫ Ni+1

Ni
min

(
1, c(1−γ)√

t

)
dt =

∫ Ni+1

Ni
1dt = Ni+1 −Ni.

In the second case, we must first split the integral into portions covering t < c2(1 − γ)2 and
t ≥ c2(1− γ)2∫ Ni+1

Ni

min

(
1,
c(1− γ)√

t

)
dt =

∫ c2(1−γ)2

Ni

1dt+

∫ Ni+1

c2(1−γ)2

c(1− γ)√
t

)dt

= c2(1− γ)2 −Ni + c(1− γ)(
√
Ni+1 −

√
c2(1− γ)2)

= c2(1− γ)2 −Ni + c(1− γ)
√
Ni+1 − c2(1− γ)2

= c(1− γ)
√
Ni+1 −Ni

In the third case,
∫ Ni+1

Ni
min

(
1, c(1−γ)√

t

)
dt =

∫ Ni+1

Ni

c(1−γ)√
t
dt = c(1− γ)(

√
Ni+1 −

√
Ni).

We can simplify this solution to

min
(
Ni+1, c(1− γ)

√
Ni+1

)
−min(Ni, c(1− γ)

√
Ni) = min

(
t, c(1− γ)

√
t
)
|Ni+1

Ni

Hence,

Ni+1∑
t=Ni

min

(
1,
c(1− γ)√

t

)
≥
∫ Ni+1

Ni

min

(
1,
c(1− γ)√

t

)
dt

= min
(
t, c(1− γ)

√
t
)
|Ni+1

Ni

We now see that

P (Bδ(τi+1) not reached | Bδ(τi) reached) ≤ exp

−|B δ
5
|σδdA

Ni+1∑
t=Ni

1

2
min

(
1,
c(1− γ)√

t

)
≤ exp

(
−1

2
|B δ

5
|σδdA min

(
t, c(1− γ)

√
t
)
|Ni+1

Ni

)
■

Now that we have a bound on the probability of reaching the next node within a fixed time frame, we
will use this to find a bound on the probability of traversing a sequence of points. In other words, we
need an upper bound on P (Bδ(τi+1) not reached by time N). To achieve this, we will use the law of
total probability, defining

P (Bδ(τi+1) reached by time N)

=

Ni+1∑
t=0

P (Bδ(τi+1) reached by time N |Bδ(τi) reached at time t)P (Bδ(τi) reached at time t)

However, we do not know the exact probability P (Bδ(τi) reached at time t). Instead, we will show
that if we have a lower bound LBi(t) on the probability that Bδ(τi) has been reached by time t such
that limt→inf 0y LBi(t) = 1, then we can define Mi to be the PDF of this upper bound: Mi(t) =

LBi(t) − LBi(t − 1). We show that
∑Ni+1

t=0 P (Bδ(τi+1) reached by time t)Mi(t) is then a lower
bound on P (Bδ(τi+1) reached by time N). This is true as long as P (Bδ(τi+1) reached by time t) is
monotonically decreasing in t.
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Lemma 9. Let A(x) with x ∈ [0,∞) be a function that integrates to 1. Let B(x) with x ∈ [0,∞) be
a function that integrates to 1. Suppose that for any k,

∫ k
0
B(x)dx ≤

∫ k
0
A(x)dx. Then if a function

F (x) is non-negative and non-decreasing, then
∫∞
0
B(x)F (x)dx ≥

∫∞
0
A(x)F (x)dx. Similarly, if

F is non-negative and non-increasing, then
∫ k
0
B(x)F (x)dx ≤

∫ k
0
A(x)F (x)dx.

Proof. Observe that
∫∞
0
B(x)F (x)dx ≥

∫∞
0
A(x)F (x)dx iff

∫∞
0

(A(x)−B(x))F (x)dx ≤ 0.

First, recall that for any k,
∫ k
0
B(x)dx ≤

∫ k
0
A(x)dx. Then,∫ k

0

B(x)dx ≤
∫ k

0

A(x)dx

1−
∫ k

0

B(x)dx ≥ 1−
∫ k

0

A(x)dx∫ ∞

k

B(x)dx ≥
∫ ∞

k

A(x)dx

0 ≥
∫ ∞

k

(A(x)−B(x))dx

Note that because F (x) is non-negative and non-decreasing, F ′(x) ≥ 0 for all x.

We now introduce an additional integration variable. This will allow us to rearrange to the integral
and make the proof easier. Observe that F (x)− F (0) =

∫ x
0
F ′(y)dy Then,∫ ∞

0

(A(x)−B(x))F (x)dx =

∫ ∞

0

(A(x)−B(x))(

∫ x

0

F ′(y)dy − F (0))dx

=

∫ ∞

0

(A(x)−B(x))

∫ x

0

F ′(y)dydx− F (0)
∫ ∞

0

(A(x)−B(x))dx

=

∫ ∞

0

(A(x)−B(x))

∫ x

0

F ′(y)dydx− F (0)
∫ ∞

0

A(x)dx+ F (0)

∫ ∞

0

B(x)dx

=

∫ ∞

0

(A(x)−B(x))

∫ x

0

F ′(y)dydx− F (0)(1) + F (0)(1)

=

∫ ∞

0

(A(x)−B(x))

∫ x

0

F ′(y)dydx

=

∫ ∞

0

∫ x

0

(A(x)−B(x))F ′(y)dydx

By Fubini’s theorem, we can then rearrange the integrals as follows∫ ∞

0

(A(x)−B(x))F (x)dx =

∫ ∞

0

∫ x

0

(A(x)−B(x))F ′(y)dydx

=

∫ ∞

0

∫ ∞

y

(A(x)−B(x))F ′(y)dxdy

=

∫ ∞

0

F ′(y)

∫ ∞

y

(A(x)−B(x))dxdy

Observe that
∫∞
y

(A(x) − B(x))dx ≤ 0, and F ′(y) ≥ 0 for all y. Therefore, F ′(y)
∫∞
y

(A(x) −
B(x))dx ≤ 0 for all y. It then follows that F ′(y)

∫∞
y

(A(x) − B(x))dx ≤ 0. By our earlier
observation, this implies that

∫∞
0
B(x)F (x)dx ≥

∫∞
0
A(x)F (x)dx. ■

Theorem 4. Let τ be a δ-controllable trajectory, with states s0...sL. Let dA be the dimension of the
action space. Let Bδ(τi) be the δ-ball around τi, the i-th state in τ .

Then the probability that Bδ(τi) will be reached after N expansions is lower-bounded by 1 −
Γ(i, 12 |B δ

5
|σδdAc(1−γ)(

√
N1−

√
t0)))

Γ(i)
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Proof. Note that the first state in the trajectory is the starting state s0, which is reached by the first
time step. Assuming that Bδ(τi−1) was reached at time Ni−1, Bδ(τi) will be reached by time Ni
with probability 1− exp

(
−|B δ

5
|σδdA min(t, c(1− γ)

√
t) |Ni+1

Ni

)
. We can integrate over the time

that Bδ(τi−1) was reached to find a tight bound LBi(Ni) on the probability of reaching Bδ(τi) by
time Ni.

We aim to find a closed-form expression LBi(t) for all i, t. We do this by proof by induction. We
show that there exists LBi(Ni) such that

1. P (Bδ(τi) reached by Ni) ≥ LBi(Ni)

2. For Ni < t0, LBi(Ni) = 0

3. limNi→∞ LBi(Ni) = 1

Let t0 = c2(1− γ)2.

Since the first region is reached when the problem begins, it is clear that P (Bδ(τ1) reached by t) = 1
for all t ≥ 1. However, we will find that it is more convenient to use the lower bound for the probability
LB0(t) = 0 when t < t0 and LB0(t) = 1 when t ≥ t0. This trivially gives a lower bound for
P (Bδ(τ1) reached by N1) ≥ LB1(N1), where LB1(N1) = 0 for N1 < t0 and LB1(N1) = 1 −
exp

(
− 1

2 |B δ
5
|σδdA min(t, c(1− γ)

√
t) |N1

t0

)
= 1− exp

(
−|B δ

5
|σδdAc(1− γ)(

√
N1 − c(1− γ))

)
for N1 ≥ t0.

Let C = 1
2 |B δ

5
|σδdAc(1 − γ). Let LBi(Ni) = 0 for Ni < t0. Then P (Bδ(τi) reached by Ni) ≥

LBi(Ni) for Ni < t0.. For the rest of the derivation, we work under the assumption that Ni ≥ t0.

Then

P (Bδ(τi) reached by Ni) =
Ni∑

Ni−1=t0

P (Bδ(τi) reached by Ni | Bδ(τi−1) reached at Ni−1)P (Bδ(τi−1) reached at Ni−1)

≥
Ni∑

Ni−1=t0

(
1− exp

(
−C(

√
Ni −

√
Ni−1)

))
P (Bδ(τi−1) reached at Ni−1)

≥
Ni∑

Ni−1=t0

(1− exp
(
−C(

√
Ni −

√
Ni−1)

)
)P (Bδ(τi−1) reached at Ni−1)

≥
∞∑

Ni−1=t0

max
(
0, 1− exp

(
−C(

√
Ni −

√
Ni−1)

))
P (Bδ(τi−1) reached at Ni−1)

≥
∫ ∞

t0

max
(
0, 1− exp

(
−C(

√
Ni −

√
Ni−1)

))
P (Bδ(τi−1) reached at ⌊Ni−1⌋)dNi−1

Observe that max
(
0, 1− exp

(
−C(
√
Ni −

√
Ni−1)

))
is non-negative and non-decreasing in Ni−1.

Additionally, LBi−1 ≤ P (Bδ(τi−1) reached by Ni−1). This means we can apply Lemma 9, using
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dLBi−1

dNi−1
(Ni−1) to bound P (Bδ(τi−1) reached at ⌊Ni−1⌋).

P (Bδ(τi) reached by Ni) ≥
∫ ∞

t0

max
(
0, 1− exp

(
−C(

√
Ni −

√
Ni−1)

))
P (Bδ(τi−1) reached at ⌊Ni−1⌋)dNi−1

≥
∫ ∞

t0

max
(
0, 1− exp

(
−C(

√
Ni −

√
Ni−1)

)) dLBi−1

dNi−1
(Ni−1)dNi−1

≥
∫ Ni

t0

max
(
0, 1− exp

(
−C(

√
Ni −

√
Ni−1)

)) dLBi−1

dNi−1
(Ni−1)dNi−1

≥
∫ Ni

t0

(
1− exp

(
−C(

√
Ni −

√
Ni−1)

)) dLBi−1

dNi−1
(Ni−1)dNi−1

≥
∫ Ni

t0

(
1− exp

(
−C
√
Ni

)
exp

(
C
√
Ni−1)

)) dLBi−1

dNi−1
(Ni−1)dNi−1

We have then shown thatLBi(Ni) = 1−exp
(
−C
√
Ni
) ∫ Ni

t0
exp

(
C
√
Ni−1)

) dLBi−1

dNi−1
(Ni−1)dNi−1

is a lower bound on P (Bδ(τi) reached by Ni) if LBi−1(Ni−1) is a lower bound on
P (Bδ(τi−1) reached by Ni−1). However, we now see that dLBi

dNi
(Ni) is the more immedi-

ately useful term, because it is what appears in our bound. If we find dLBi

dNi
(Ni) for all Ni, we can use

this recurrence relation to calculate a closed-form bound. With this in mind, we now solve for dLBi

dNi
.

dLBi
dNi

=
d

dNi

∫ Ni

t0

(
1− exp

(
−C
√
Ni

)
exp

(
C
√
Ni−1)

)) dLBi−1

dNi−1
(Ni−1)dNi−1

=
dLBi−1

dNi−1
(Ni)−

d

dNi

∫ Ni

t0

exp
(
−C
√
Ni

)
exp

(
C
√
Ni−1)

) dLBi−1

dNi−1
(Ni−1)dNi−1

=
d

dNi

∫ Ni

t0

dLBi−1

dNi−1
(Ni−1)dNi−1 −

d

dNi
exp

(
−C
√
Ni

)∫ Ni

t0

exp
(
C
√
Ni−1)

) dLBi−1

dNi−1
(Ni−1)dNi−1

=
dLBi−1

dNi−1
(Ni)−

C exp
(
−C
√
Ni
)

2
√
Ni

∫ Ni

t0

exp
(
C
√
Ni−1

) dLBi−1

dNi−1
(Ni−1)dNi−1

− exp
(
−C
√
Ni

) d

dNi

∫ Ni

t0

exp
(
C
√
Ni−1)

) dLBi−1

dNi−1
(Ni−1)dNi−1

=
dLBi−1

dNi−1
(Ni)−

C exp
(
−C
√
Ni
)

2
√
Ni

∫ Ni

t0

exp
(
C
√
Ni−1

) dLBi−1

dNi−1
(Ni−1)dNi−1

− exp
(
−C
√
Ni

)
exp

(
C
√
Ni)
) dLBi−1

dNi−1
(Ni)

=
dLBi−1

dNi−1
(Ni)−

C exp
(
−C
√
Ni
)

2
√
Ni

∫ Ni

t0

exp
(
C
√
Ni−1

) dLBi−1

dNi−1
(Ni−1)dNi−1 −

dLBi−1

dNi−1
(Ni−1)

= −
C exp

(
−C
√
Ni
)

2
√
Ni

∫ Ni

t0

exp
(
C
√
Ni−1

) dLBi−1

dNi−1
(Ni−1)dNi−1

We now show by induction that the general solution to this is dLBi

dNi
= 0 for Ni < t0 and dLBi

dNi
=

Ci

2(i−1)! exp(−C
√
Ni)

(
√
Ni−

√
t0)

i−1

√
Ni

for Ni ≥ t0, for all i ≥ 1.

31



Base Case: Let i = 1 Recall that LB0(N0) = 1 for all N0 > t0, and LB1(N1) = 1 −
exp

(
−C(
√
N1 − c(1− γ))

)
.

dLB1

dN1
=
C exp

(
−C(
√
N1 − c(1− γ))

)
2
√
N1

=
C

2
N

− 1
2

1 exp
(
−C(

√
N1 − c(1− γ))

)
= −C

1

21!

(
√
N1 −

√
t0)

0

√
Ni

exp
(
−C(

√
N1 − c(1− γ))

)

Thus, dLBi

dNi
= Ci

2(i−1)! exp(−C
√
Ni)(Ni)

i−2
2 for i = 1.

Inductive case: By the inductive hypothesis,

C exp(−C
√
Ni+1)

2
√
Ni+1

∫ Ni+1

t0

dLBi
dNi

exp(C
√
Ni)dNi

=
C exp(−C

√
Ni+1)

2
√
Ni+1

∫ Ni+1

t0

Ci

2(i− 1)!
exp(−C

√
Ni)

(
√
Ni −

√
t0)

i−1

√
Ni

exp(C
√
Ni))dNi

=
C exp(−C

√
Ni+1)

2
√
Ni+1

∫ Ni+1

t0

Ci

2(i− 1)!

(
√
Ni −

√
t0)

i−1

√
Ni

dNi

=
C exp(−C

√
Ni+1)

2
√
Ni+1

(
Ci

2(i− 1)!( i2 )
(
√
Ni −

√
t0)

i |Ni+1

t0 )

=
C exp(−C

√
Ni+1)

2
√
Ni+1

(
Ci

i!
(
√
Ni −

√
t0)

i |Ni+1

t0 )

=
C exp(−C

√
Ni+1)

2
√
Ni+1

Ci

i!
((
√
Ni −

√
t0)

i − 0
i
2 )

Observe that i ≥ 1, so 0
i
2 = 0

C exp(−C
√
Ni+1)

2
√
Ni+1

∫ Ni+1

t0

dLBi
dNi

exp(C
√
Ni)dNi =

C exp(−C
√
Ni+1)

2
√
Ni+1

Ci

i!
(
√
Ni −

√
t0)

i

=
Ci+1

2i!

exp(−C
√
Ni+1)√

Ni+1

(
√
Ni −

√
t0)

i

=
Ci+1

2i!
exp(−C

√
Ni+1)

(
√
Ni+1 −

√
t0)

i√
Ni+1

=
Ci+1

2((i+ 1)− 1)!
exp(−C

√
Ni+1)

(
√
Ni+1 −

√
t0)

i√
Ni+1

Thus, the solution holds for the inductive case. Hence, Ci

2(i−1)! exp(−C
√
Ni)

(
√
Ni−

√
t0)

i−1

√
Ni

is the
solution for all i ≥ 1.
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It follows that

LBi(Ni) =

∫ Ni

t0

dLBi
dT

dT

=

∫ Ni

t0

Ci

2(i− 1)!
exp(−C

√
T )

(
√
T −
√
t0)

i−1

√
T

dT

=
Ci

2(i− 1)!

∫ Ni

t0

exp(−C
√
T )

(
√
T −
√
t0)

i−1

√
T

dT

Here, we can make an interesting observation – this integral is in fact an incomplete Gamma function.
Simplifying, we find that

LBi(Ni) =
Ci

2(i− 1)!
(−2C−i)Γ(i, C(

√
T −
√
t0)) |Ni

0

=
1

(i− 1)!
(−1)Γ(i, C(

√
T −
√
t0)) |Ni

0

=
1

(i− 1)!
(Γ(i)− Γ(i, C(

√
N1 −

√
t0)))

= 1− Γ(i, C(
√
N1 −

√
t0)))

(i− 1)!

= 1− Γ(i, C(
√
N1 −

√
t0)))

Γ(i)

Hence, P (Bδ(τi) reached by Ni) ≥ 1− Γ(i,C(
√
N1−

√
t0)))

Γ(i)

■

Observe that the form given is a Gamma distribution over the variable (
√
N1 −

√
t0) with shape i

and rate C.

D Experimental Details

D.1 Hardware

All experiments were performed on an Alienware-Aurora-R9 with an 8-core Intel i7-9700 CPU.
Since tree operations were the performance bottleneck, we did not use a graphics card for training.

D.2 Hyperparameters

AlphaZero and Volume-MCTS:
For all AlphaZero variants, we set λ = 1

(1−γ)
√
N

(equivalent to setting the exploration coefficient c

to 1
1−γ for AlphaZero). We chose this value due to an insight from our efficient exploration proof.

The bound on time needed to reach new states depends on
√
N − c(1− γ). Setting c = 1

1−γ makes
c(1− γ) = 1, which minimizes the bound on exploration time.

For the loss coefficients, we used cV = 1
cKL = 10
cA = 1.

All neural nets use MLPs with ReLU activations and 3 hidden layers of 256 each. Training uses the
Adam optimizer with the following hyperparameters
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Learning rate = 0.001
β1, β2 = [0.9, 0.99]
Weight decay = 0
ϵ = 1e-07
amsgrad: False
These hyperparameters were standard for the implementation our code was based on, and we did not
change them.

We did not otherwise do any extensive hyperparameter search. As much as possible, we used the
hyperparameter settings from the existing implementation we were comparing to. These included the
following hyperparameter values

SST:
Selection radius = 0.3
Witness radius = 0.16

POLY-HOOT:
HOO depth limit = 10
α = 2.5
ξ = 10
η = 0.5

HER:
Replay k = 4
Polyak averaging = 0.95
Entropy regularization = 0.01
Batch Size = 256
Batches per episode = 40

D.3 Setting seeds

For all experiments, we repeat these experiments with three random seeds. We report the average and
two-standard deviation confidence interval.

D.4 Data Collection

For all of the Maze environments, we performed 3 training runs, and gathered 10 samples from each.
We report the mean and 95% confidence interval for each method.

We found that the Quadcopter environment was significantly higher-variance, so we used more
evaluations. Each method was run 60 times. For all the planning methods, this time was spend purely
on search instead of learning. We found that planning was much more efficient per environmental
interaction than learning, at least on the scale we evaluated for. For each HER run, we initialized a
new neural net, trained it for the stated number of environmental interactions, and then evaluated it
once.

D.5 Algorithm details

Beyond the algorithm described in the paper, there are a few problem-specific adaptations we make
to the algorithms we study in order to improve convergence on the navigation environments. Firstly,
we assume that there exists a "stay still" action in the action space that allows the agent to stay in
the same state. This is important for two reasons. First, Volume-MCTS and Open-Loop AlphaZero
are both open-loop algorithms – they plan out a sequence of actions, and then follow that sequence
without replanning at future steps. If they run out of actions in that sequence before the episode ends,
the agent takes the "stay still" action until the episode ends. Since the agent always has access to this
action, we also lower bound the value estimate for every state as 1

1−γR(s), as the agent can always
achieve this reward by just repeatedly selecting the "stay still" action.
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Data collection: AlphaZero only uses the root node of the tree for training. This works for closed-
loop algorithms, because they run a search at each step of the episode, so they will perform searches
with root nodes in every explored location. However, for open-loop algorithms, the root node is
always the state that the agent starts the episode in, which may be a much more limited distribution.
Therefore, we must use the entire search tree as learning data if we wish to train on data from the
whole space. We use data from every node that has at least 1 action to train.

Action selection: MCTS also typically selects the action that has been explored the most times to be
executed by the agent. MCTS as Regularized Policy Optimization instead chooses to calculate the
optimal policy exactly and then samples from it to take actions. For both methods, this is preferable
to selecting the action with the highest value, because it encourages exploration. However, as a
open-loop algorithm, Volume-MCTS selects an action only after it has completed all its search for the
entire episode. The whole search tree can be built and stored for training before actions are executed.
It never benefits from selecting suboptimal or exploratory actions for execution, because selecting
these actions never leads to different data than it would get by taking the optimal action.

Instead, both Volume-MCTS and Open-Loop AlphaZero keep track of the maximum actual earned
reward of each branch, and always select the branch with the highest maximum value at the end of
the episode.

D.6 Implementation

Our implementation draws on several existing codebases: an implementation of AlphaZero-
Continuous by Moerland et al. (2018), the pyOptimalMotionPlanning package developed
by Kris Hauser (https://github.com/krishauser/pyOptimalMotionPlanning). For HER, we
draw on Tianhong Dai’s implementation of HER (https://github.com/TianhongDai/hindsight-
experience-replay) and the implementation from the authors of USHER
(https://github.com/schrammlb2/USHER_Implementation) Schramm et al. (2022). Our POLY-HOOT
implementation uses the author’s implementation (https://github.com/xizeroplus/POLY-HOOT) Mao
et al. (2020).

D.7 Environment Details

D.7.1 Maze

In this environment, the agent must navigate a maze to reach a goal. Episodes are 50 steps long. The
reward function is 1 in the goal region, and 0 at all other states. If an agent reaches the goal before
the end of the episode, the episode ends and the agent receives a reward of 1 for each remaining time
step left in the episode.

We tested two sets of dynamics on the maze environment. Geometric dynamics are simple; the
state space and action spaces are both 2-dimensional, and st+1 = st + vmaxat, where st+1 is the
next state, st is the current state, at is the action, and vmax is the maximum speed allowed by the
environment. If this movement would cause the agent to collide with a wall, instead the agent does
not move (st+1 = st).

Dubins car dynamics are slightly more complicated. The state space has three dimensions: two
position coordinates and one rotation coordinate. The action space is two-dimensional. The agent
selects a forward/backward speed and a turning angle, which is bounded to give the agent a minimum
turning radius. The dynamics are as follows: Let x, y be the car’s x and y coordinates. Let θ be the
car’s rotation coordinate. Let vmax be the car’s maximum speed and ϕmax be the car’s maximum
steering angle. Let a0 be the first dimension of the action, controlling the car’s speed. Let a1 be the
second dimension of the action, controlling the car’s steering.

Then the next state described by the variables x, y, θ is found by numerically integrating the differen-
tial equation

dx

dt
(t) = a0 cos θ(t)

dy

dt
(t) = a0 sin θ(t)

dθ

dt
(t) = a1

from time t to time t + 1. The x(t + 1), y(t + 1), θ(t + 1) found at the end of this numerican
integration is the next state.
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D.7.2 Quadcopter

The Quadcopter environment is taken from Sivaramakrishnan et al. (2023). In this environment, the
agent must navigate a quadcopter around a series of pillars to reach a goal. Episodes are 30 steps
long. The reward function is 1 in the goal region, and 0 at all other states. If an agent reaches the
goal before the end of the episode, the episode ends and the agent receives a reward of 1 for each
remaining time step left in the episode. The dynamics of this environment are given by a Mujoco
simulation.

D.8 Additional Experiments

In the experiments section, we reported that Volume-MCTS outperformed SST on reward, but not
success rate. Here we provide addition details on this finding.
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Figure 3: Reward and success rate on Quadcopter environment

Here, success is defined as reaching the goal within the 30-step episode. The goal state is treated as a
s SST and Volume-MCTS reach the goal roughly the same fraction of the time. However,
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