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Abstract

We address the problem of lifelong fixed-budget best-arm identification (BAI),
which arises in realistic sequential A/B testing scenarios where the value of each
arm is correlated across test phases. We propose a hierarchical Gaussian model
and develop a Bayesian fixed-budget BAI algorithm. Our main contribution is to
investigate the impact of prior misspecification on the missidentification probability
along the learning trajectory through an upper bound on a novel risk metric. We
conduct extensive empirical evaluations of our algorithm against state-of-the-art
methods on various types of martingales with different dependency structures. Our
results show that our approach outperforms other algorithms across a wide range
of settings.

1 Introduction

Practical A/B testing often involves sequentially testing changing options with limited trial budget
for each test phase: a new treatment (or version) (B(1)) is proposed to replace and improve a legacy
one (A) and is tested on a fixed and finite proportion of the traffic. If the test fails (’A ≳ B(1)’), A
remains in place and a new treatment (B(2)) must be designed to be tested again against A.

Each of theses phases is a statistical test that can be efficiently performed with a fixed-budget Best Arm
Identification (BAI) algorithm [White, 2013]. However, for small sample sizes, or when alternatives
are hard to distinguish, the error probability may remain high.

Oftentimes though, treatments are tuned models or small modifications of the legacy version, and have
close performance to previously tested ones. We leverage this observation to propose an incremental
method that adaptively uses all the previous test phases to improve the estimation during the future
ones. We call this new problem Lifelong Best-Arm Identification.

We build on and extend the Bayesian Fixed-Budget BAI framework introduced by Atsidakou et al.
[2022], in which the learner can encode side information in a prior over bandit instances. The metric
studied therein is an expected probability of missidentification (or error) with respect to a prior
over bandit instances, but that prior is assumed to be known. In practice, this assumption is often
unrealistic and the learner may have to use a misspecified prior. Our contribution is to address the
following main questions:

1. What is the cost of using a misspecified prior for Bayesian Fixed-Budget BAI?

2. Can we sequentially improve the expected probability of error?

We answer (1) with a general technical result on prior misspecification (Lemma 1). Then we introduce
the notion of Lifelong Error for algorithms that sequentially learn a sequence of priors, and we prove
a bound on the performance of our algorithm called META-BAYESELIM (Theorem 1).
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Notation For an integer L, we denote [L] = {1, ..., L}. We denote by i∗(θ) the optimal arm of the
bandit instance θ ∈ RK , and just i∗ when there is no ambiguity. We denote Xn →L X when the
random variable Xn converges to X in law. Throughout, we use the standard notation as in Lattimore
and Szepesvári [2020] for ease of readability but the paper is self-contained.

2 Problem setting

Figure 1: Hierarchical Gaussian Graphical model.

We consider a sequence of m fixed-budget BAI
problems with n rounds, also called tasks. The
s-th task is parameterised by a K-tuple θs,∗ =

(θ
(1)
s,∗, ..., θ

(K)
s,∗ ) ∈ RK . We assume that each

instance is sampled i.i.d. from an (unknown)
distribution: θs,∗ ∼ P∗ = N (µ∗, σ

2
∗IK). The

best arm of task θs,∗ is denoted as i∗ (θs,∗).

Bayesian Fixed-Budget BAI. Each task con-
sists of n rounds and a policy consists of a se-
lection rule that chooses which arm to pull for
each round, and a final decision rule that decides which arm is the best at the end. More specifically,
at each round t ∈ [n] of a task s ∈ [m], the agent chooses an arm As,t ∈ [K] and observes a

(stochastic) reward Ys,t ∼ N
(
θ
(As,t)
s,∗ , σ2

)
. By this selection process, the learner collects a history

Hs = (As,1, Ys,1, ..., As,n, Ys,n) and uses it to make a decision Js ∈ [K] at the end of task s.

In order to incorporate uncertainty on the choice of the prior in a Bayesian way , we introduce a prior
distribution Q over priors on bandit instances P∗ ∼ Q. For computational reasons, we set Q to be a
conjugate prior, hence here a Gaussian distribution.

During each test phase s ∈ [m], the policy πs must first select actions sequentially to collect Hs, and
after round n, the decision follows a given rule. We assume that each πs is instantiated with a prior
over the arms distributions Ps. This sequence of priors is chosen by a meta-policy H1, ...,Hs−1 7→ Ps

which combines evidence from previous phases to progressively (better) set πs. Thus, in all generality,
πs’s decision Js depends on all the history H1, ...Hs through its prior.

Lifelong Error Probability We introduce a novel metric to evaluate policies for our problem
that accounts for each error rate along the sequence. For a given m < ∞, the Lifelong Error is
the averaged expected probability of missidentification (also refereed as probability of error) of
π = (π1, ...πm) characterized by its sequence of misspecified priors:

LE(π,m;P∗) =
1

m

m∑
s=1

Eθ∗∼P∗ [Pπ (Js ̸= i∗ | θ∗, Ps)] (1)

where P (J ̸= i∗ (θs,∗) | θs,∗, Ps) is the probability of selecting a suboptimal arm in instance θs,∗
when using a prior Ps ̸= P∗ almost-surely. This metric extends and generalizes the recently studied
expected probability of missidentification [Atsidakou et al., 2022], whereby the learner is assumed to
know P∗ and is evaluated on E = Eθ∗∼P∗ [P (J ̸= i∗ | θ∗, P∗)]. Note that indeed, when our learner is
given P∗, each term in Eq. (1) is equal and our metric is consistent with theirs. We formally analyse
the convergence and consistency properties of our metric in Section 4.

Informally, if the meta-learning process is consistent, Ps →L
s→∞ P∗, and thenLE(π,m;P∗)→m→∞

E almost surely. Otherwise, if Ps →L
s→∞ P̃ with P̃ ̸= P∗ almost everywhere, then LE(π,m;P∗)

converges almost surely to the expected probability of error for a fixed misspecified prior, which we
bound in a technical result of independent interest in Lemma 1.

Hierarchical Gaussian case In this paper we focus on the hierarchical Gaussian generative
model described in Figure 1. More precisely, the (unknown) prior distribution over instances
is P∗(θ) = N (θ|µ∗, σ

2
∗). We assume σ2

∗ known. We consider µ∗ as a random variable whose
(known) prior is Q(µ) = N

(
µ|µq, σ

2
q

)
. Similarly, each prior distribution used at task s are assumed

Gaussian: Ps (µ) = N
(
µ|µs, σ

2
0IK

)
. Since σ2

0 is assumed known, these prior distributions are fully
characterized by µs which is considered as a random variable that is sampled from the meta-posterior.
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3 Meta-BayesElim

Algorithm 1 BAYESELIM with prior P̃

Input: Fixed-budget n
S1 ← [K]
R← ⌈log2(K)⌉
for r = 1, ...R do

for i ∈ Sr do
Get nr,i samples of arm i
Compute posterior means (µ̄i)i ▷ Eq. 2

end for
Update Sr+1 as the set of ⌈ |Sr|

2 ⌉ arms in Sr with largest posterior means (µ̄i)i∈Sr .
end for

We first describe BAYESELIM (BE) [Atsidakou et al., 2022]. It builds on the classic successive-rejects
algorithm but uses the posterior means of the arms for both the sequential eliminations and the final
decision. The algorithm is a phase-based algorithm. At the end of each phase, it eliminates half of
the arms according to their empirical posterior means. Importantly, the prior P̃ used for the inference
is given as input arbitrarily. The schedule is determined before the start of the exploration: during
each phase, each arm is pulled 1 nphase = ⌊n/(K⌈log2(K)⌉)⌋ times and then half of the arms with
the lowest posterior means are eliminated (Alg. 1).

The posterior means after each round is computed as follows in the Gaussian case where P̃ (µ) =
N (µ|µ̃, σ2

0) :

µ̄(i)
r = σ̄2

(
µ̃(i)

σ2
0

+

∑
t∈[nr]

Yi,t

σ2

)
, σ̄2 =

(
1

σ2
0

+
nphase

σ2

)−1

(2)

We now describe our main algorthm in the Gaussian setting. We build META-BAYESELIM by adding
an outer-loop to BAYESELIM that sequentially updates the choice of prior Ps given as input to the
selecting policy BE. META-BAYESELIM (Alg. 2) starts with a prior P1 sampled from the Meta-prior
Q1 = (µq, σ

2
q ) at the beginning of the first task. At each task s ∈ [m], a distribution Ps is sampled

from the current meta-posterior Qs and an instance of BE(Ps, n) is launched with a (potentially
misspecified) prior Ps to select actions for n rounds.

Algorithm 2 META-BAYESELIM

Input: Meta prior Q, fixed-budget n, parameters (µq, σ
2
q , σ

2
0)

Q1 ← Q
for s = 1, ... do

Sample a prior from the current meta-posterior: Ps ∼ Qs

Run BE for n rounds with prior Ps ▷ Alg. 1
Output Js = BE(Ps, n) ▷ highest posterior mean of remaining arms
Update meta-posterior Qs+1 with collected observations (Eq 3)

end for

For each task s ∈ [m], and each arm i ∈ [K], we denote T
(i)
s =

∑
t∈[n] 1{As,t = i} the number of

pulls of arm i, and
∑

t Y
(i)
s,t the according sum of rewards.

Using the collected data at task s ∈ [m], the parameters of the meta-posterior Qs+1 are updated as:

µ̂
(i)
s+1 = σ̂2

s+1,i

(
µ̂
(i)
s

σ̂2
s,i

+
T

(i)
s

T
(i)
s σ2

0 + σ2

∑
t Y

(i)
s,t

T
(i)
s

)
, σ̂2

s+1,i =

(
1

σ̂2
s,i

+
T

(i)
s

T
(i)
s σ2

0 + σ2

)−1

(3)

1In general, nr,i = ⌊ n
⌈log2(K)⌉

σ2
i∑

k σ2
k
⌋ but we assume σ2

i = σ2 here.
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The recursive updates of Eq. (3) reflect the transfer of information from task s to task s + 1. The
meta-posterior variance σ̂2

s+1,i is strictly decreasing (concentration of the posterior) as we factor in
the newly collected information. Similarly, one can see that the posterior mean is easily rewritten as a
convex combination of the previous value µ̂s and the new empirical average

∑
t Ys,t/Ts. We discuss

and quantify in depth the impact the hyperparameters in Section 5.

µ̄(i)
r = σ̄2

(
µ̃(i)

σ2
0

+

∑
t∈[nr]

Yi,t

σ2

)
, σ̄2 =

(
1

σ2
0

+
nphase

σ2

)−1

(4)

Remark 1 (Beyond Gaussian case) A similar algorithm can be generalized beyond the Gaussian
hierarchical model. For instance, one can consider Bernoulli distributions for arms with beta-priors
on instances and categorical meta-prior (see e.g. Kveton et al. [2021], Basu et al. [2021]). However,
we only focus on the Gaussian case in this work as it is quite general and has the benefit to derive
closed-form integrals for the analysis.

Remark 2 (Frequentist algorithms) It would be possible to design a frequentist algorithm based
on the successive elimination procedure of [Karnin et al., 2013] together with the usual biased
regularization ideas in the meta-learning literature [Denevi et al., 2020]. Though out of the scope of
this paper, we discuss initial ideas in Appendix A.

4 Analysis

We quantify the cost of learning an informative prior and provide an upper bound on the Lifelong
Error. We make two major contributions. First, we quantify the cost of running BAYESELIM with
a prior P̃ ̸= P∗ almost everywhere. This extends and gives a practical point of view on the metric
introduced by Atsidakou et al. [2022]. Then we bound the Lifelong Errorfor META-BAYESELIM and
show that for a correct choice of prior variance σ2

0 = σ2
∗, META-BAYESELIM ’s performance

converge to the optimal error probability (Theorem 1).

4.1 Main results

Our first result bounds the expected probability of error of BAYESELIM when given a prior P̃ ̸= P∗.
This technical result is of independent interest and we provide details on the proof further below.

Lemma 1 Let denote P̃ (µ) = N (µ|µ̃, σ2
0) and P∗(θ) = N (θ|µ∗, σ

2
∗). The expected probability of

error in a n−fixed-budget BAI using BAYESELIM with a given prior P̃ is upper bounded as follows:

Eθ∗∼P∗

[
P
(
J ̸= i∗ | θ∗, P̃

)]
≤ 2 log(K)Cn

env(σ
2
∗)
∑
i∈[K]

∑
j∈[K]

e
− 1

4σ2
∗
(µ∗

i −µ∗
j )

2

ϕ
(
P ij
∗ , P̃ ij

)
where Cn

env is a constant that depends on the parameters of the environment, the budget n and σ2
∗,

and ϕ measures the distance between the unknown distribution P∗ and the prior P̃ :

Cn
env(σ

2
∗) :=

√
log2(K)Kσ2

nσ2
∗ + log2(K)Kσ2

, ϕ
(
P ij
∗ , P̃ ij

)
= e

Cn
env(σ

2
∗)

2.
σ2
∗

σ4
0

[
σ2
0

σ2
∗
(µ∗

i −µ∗
j )−(µ̃i−µ̃j)

]2

(5)

The proof is postponed to the next subsection and the necessary technical lemmas are in Appendix B.

Remark 3 For any couple (i, j), ϕ
(
P ij
∗ , P̃ ij

)
> 1 for any misspecified prior P̃ and the equality

ϕ
(
P ij
∗ , P̃ ij

)
= 1 holds if and only if P̃ = P∗. In this precise case, we recover exactly the bound

stated in Atsidakou et al. [2022]. Moreover, one can link the distance measure ϕ to common measures
between distributions, as :

ϕ
(
P ij
∗ , P̃ ij

)
= e

2Cn
env(σ

2
∗)

2.KL
(
N(µ∗

i −µ∗
j ,σ

2
∗)∥N

(
σ2
∗

σ2
0
(µ̃i−µ̃j),σ

2
∗

))
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In the particular case where the prior is not misspecified i.e. σ2
0 = σ2

∗ and µ̃ = µ∗, we have

KL
(
N
(
µ∗
i − µ∗

j , σ
2
∗
)
∥N

(
σ2
∗

σ2
0
(µ̃i − µ̃j) , σ

2
∗

))
= 0 and then ϕ

(
P ij
∗ , P̃ ij

)
= 0 for any pair (i, j).

We are now ready to prove our a Lifelong Error bound for META-BAYESELIM .

Theorem 1 Consider the Lifelong fixed-budget BAI setting as described in Section 2 where the prior
distributions (P1, ..., Pm) are generated according to META-BAYESELIM . Then with probability at
least 1− δ′,

LE(πMBE ,m;P∗) ≤ O

Cn
env(σ

2
∗)
∑
i∈[K]

∑
j∈[K]

e
− 1

4σ2
∗
(µ∗

i −µ∗
j )

2

︸ ︷︷ ︸
:=Ẽ: Upper bound of Atsidakou et al. [2022]

× 1

m

m∑
s=1

e
Cδ′
1
s +|κ−1|C

δ′
2
s +|κ−1|2Cδ′

3

︸ ︷︷ ︸
Cost of learning an informative prior


where Cδ′

1 , Cδ′

2 and Cδ′

3 scale as O
(
Km
δ′

)
.

Before discussing the proof of this result, we make a few observations. First, we can distinguish 2
cases depending on the value of κ. In the case where κ = 1 i.e. σ2

0 = σ2
∗ , the Lifelong Error is upper

bounded with high probability by:

LE(πMBE ,m;P∗) ≤ Ẽ ×
1

m

m∑
s=1

eO(
1
s ) (6)

So, in the long run (as m→ +∞), the cost of learning an informative prior vanishes, and we recover
E∗, i.e. the case where the learner knows P∗. This is because the multiplicative term in Eq. (6)
converges to 1 (Césaro summation).

In the case where κ ̸= 1 i.e. σ2
0 ̸= σ2

∗, Theorem 1 shows that the bound suffers a non-vanishing
cost of learning P∗, even in the long run. This cost is explicitly characterized by the term e(κ−1)2Cδ

3 ,
which is the asymptotic Césaro limit of this rightmost term. We confirm this observation in practice
in Section 5.

Remark 4 Theorem 1 exhibits a δ−PAC, or Probably approximately correct bound on the random
quantity LE , where the randomness comes from the sequential sampling of the tasks, which can
be controlled with high probability. Another choice could be to bound the (deterministic) quantity
Eµ∗∼Q[LE(πMBE ,m;P∗)]. However, this metric choice would only move the problem of prior
misspecification one layer up as we would then only get guarantees for an algorithm that knows
the meta-prior Q. Moreover, this type of high-probability bound is strictly stronger than bounds in
expectation in general. Thus, we believe that a PAC-style bound makes more sense in our setting.

The proof of this result is a nearly direct consequence of a more general upper bound for any fixed
sequence of priors (P1, ..., Pm) that we prove in Appendix B. We need to handle additionally the
concentration of the posterior parameters (µ̂s)s≥1; more details are provided in Appendix B.

4.2 Proof of Lemma 1

Proof: Denote R = log2(K). Our analysis is a generalisation of the work of Atsidakou et al.
[2022]. We start by bounding the expected probability of error when using a prior P̃ for a fixed task
θ∗: we first take a union bound over the rounds where the bad event of eliminating the best arm i∗

happened,

P
(
Js ̸= i∗ | θ∗, P̃

)
≤ P

 ⋃
r∈[R−1]

{
i∗ (θ∗) /∈ Sr+1 | θ∗, {i∗ (θ∗) ∈ Sr}

}
≤

∑
r∈[R−1]

P (i∗ (θ∗) /∈ Sr+1 | θ∗, {i∗ (θ∗) ∈ Sr})
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Figure 2: Probability of error under covariance parameter misspecification: impact of σ2
0 (left) and

σ2
q (right). We set K = 10, µq = (0, 0.1, ..., 0.9), σ2

∗ = 5.10−3, observation noise σ2 = 10−1, and
budget n = 30 for each task.

We then apply our technical lemmas (see Appendix B): Lemma 3 states that under the bad event, at
least one remaining arm must be badly estimated,

P
(
Js ̸= i∗ | θ∗, P̃

)
≤

Lem. 3
2
∑

r∈[R−1]

e
− n

4RKσ2

(
θ∗
jr,θ∗

−θ∗
i∗

)2
−

(
µ̃i∗−µ̃jr,θ∗

)(
θ∗jr,θ∗

−θ∗i∗

)
2σ2

0

≤ 2Rmax
r

e
− n

4RKσ2

(
θ∗
jr,θ∗

−θ∗
i∗

)2
−

(
µ̃i∗−µ̃jr,θ∗

)(
θ∗jr,θ∗

−θ∗i∗

)
2σ2

0


Finally, we bound the maximum by summing over possible (i, j):

P
(
Js ̸= i∗ | θ∗, P̃

)
≤ 2R

∑
i∈[K]

∑
j∈[K]

e
− n

4RKσ2 (θ
∗
j−θ∗

i )
2−

(µ̃i−µ̃j)(θ∗j −θ∗i )
2σ2

0

To obtain the result claimed in Lemma 1 we integrate the last quantity with respect to P∗:

Eθ∗∼P∗

[
P
(
J ̸= i∗ | θ∗, P̃

)]
≤ 2R

∑
i∈[K]

∑
j∈[K]

∫∫
(θ∗i ,θ∗j )

e
− n

4RKσ2 (θ
∗
j −θ∗i )

2−
(µ̃i−µ̃j)(θ∗j −θ∗i )

2σ2
0 P∗

(
d(θ∗i , θ

∗
j )
)

≤
Lem. 4

2RCn
env(σ

2
∗)

∑
i∈[K]

∑
j∈[K]

e
− 1

4σ2
∗
(µ∗

i −µ∗
j )

2

ϕ
(
P ij
∗ , P̃ ij

)
□

The upper bound for LE(πMBE ,m;P∗) in Theorem 1 follows from an application of the previous
Lemma to a particular sequence of (random) priors. We then use the concentration of this sequence
of priors with high probability (details are given in Appendix B.)

5 Experiments

We simulate Lifelong n-fixed budget BAI problems with K = 10. The (unknown) bandit instances
are sampled around µ∗ which is sampled from the meta-prior whose mean isµq = (0, 0.1, ..., 0.9)
with variance σ2

∗ = 5.10−3 (this noise level is chosen so that the best arm changes approximately
15% of the time). We set the noise of the observations σ2 = 10−1 for a per-task budget of n = 30
such that each task remain hard for a naive (non-meta-learning) algorithm.

In each experiment, we start from a non-informative prior to verify if the involved algorithms adapt
to the bandit tasks. The choice of σq is studied in a separate experiment as it influences the inference.
For each task, the results are averaged over 100 runs on the same environment to obtain an empirical
probability of error. Then we repeat 100 times this m-task procedure in order to have confidence
intervals over probabilities. We denote BAYESELIM-ORACLE the algorithm BAYESELIM that knows
and uses the prior P∗.

We plot the probability of error at task s ∈ [m] as a function of s, rather than the actual Lifelong Error,
though it would converge to the same limit. The intention is to show the progress of the meta-learners
more directly.

6



0 10 20 30 40 50
m

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 e
rro

r MetaBayesElim
BayesElim
TS-TC
BayesElim-Oracle
MetaTS (D)
MetaTS (R)
B-MetaSRM

Figure 3: Comparison of the probability of expected missidentification of META-BAYESELIM com-
pared to other fixed-budget BAI algorithms (described in Sec. 5.2. Some baselines also progressively
learn the right prior: META-TS(D) , META-TS(R) , B-METASRM . TSTC and BAYESELIM use
the same non-informative prior for each task.

5.1 Misspecification on the covariance parameters

The variance parameters σ0 and σq are constant and assumed to be known in our theoretical results,
and play a crucial role on the convergence of the Lifelong Error (Section 4.1). We study numerically
the consequences of misspecifying these parameters.

Influence of σ2
0 The covariance parameter σ2

0 reflects the confidence the user has on the prior
that is learnt over tasks. As seen in Section 4.1, it should ideally match σ2

∗. Fig. 2 shows that as
the value of σ2

0 decreases towards σ2
∗, the probability of error converges to the performances of

BAYESELIM-ORACLE . This result is consistent with Theorem 1. Intuitively, the more σ2
0 decreases,

the more the learner exploits the information collected by the observations during the last tasks.
However, for the first tasks, the probability of error suffers from choosing a too small σ2

0 : the learner’s
confidence in its prior is too strong while too little experience have been collected so far to have an
informative one. As we saw in Theorem 1, the long-term cost of learning the prior does not vanish
when σ2

0 ̸= σ2
∗.

Influence of σ2
q Before the beginning of the first task, the algorithm samples a distribution from

the meta-prior distribution with covariance σ2
q . Having a too strong confidence on this meta-prior

(i.e. σ2
q → 0) makes it difficult for the algorithm to update its belief with the observations collected

trough interactions with bandit instances. On Figure 2, we show that σq directly influences the rate of
convergence of the probability of error.

5.2 Comparison to other fixed-budget BAI algorithms

For this benchmark, we set σ2
0 = σ2

∗ and σ2
q = 10−2. We compare the performances of META-

BAYESELIM with the six following baselines:

• BAYESELIM [Atsidakou et al., 2022] uses the same non-informative prior P̃ with mean
µ̃ =

(
1
2 , ...,

1
2

)
and covariance σ̃2 = 1.

• TSTC [Jourdan et al., 2022] is a variant of Top-Two Thomson Sampling [Russo, 2016] that
is the state-of-the-art for the fixed-confidence setting (see benchmarks in [Jourdan et al.,
2022]). We adapt it to our setting easily because this strategy is anytime, i.e. it does not
depend on the confidence level δ. At each round t of each task, the leader arm is sampled
with probability β. Otherwise, it samples the challenger arm. In TSTC , the leader is
sampled according to Thompson-sampling with a prior µ̃. The challenger is chosen such
that a Transportation cost w.r.t. the leader is minimised. The Gaussian setting leads to
closed-form solutions. We use the same non-informative prior every task, P̃ , with mean
µ̃ =

(
1
2 , ...,

1
2

)
and covariance σ̃2 = 1, and set β = 0.5 as in prior work.

• META-TS(R) [Kveton et al., 2021] (Meta-Thompson sampling - Random version) is a
Meta-learning algorithm that learns an informative prior while minimizing the per-task
cumulative (Bayesian) regret. At the end of each task, the best arm is sampled proportionally
to the number of pulls.
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• META-TS(D) (Meta-Thompson sampling - Deterministic version) similar to META-
TS(D) but at the end of each task, arm with the highest posterior mean is returned de-
terministically.

• B-METASRM [Azizi et al., 2023] consists in applying ADATS [Basu et al., 2021] to the
simple regret minimisation setting. Its simple regret is bounded as Õ( m√

n
). The prior is

updated as the number of tasks increases. Contrarily to META-TS(D) , the prior Ps is
not sampled from the meta-posterior Qs but is directly computed (this is possible in the
Gaussian case), leading to a variance reduction and better theoretical performances.

• BAYESELIM-ORACLE corresponds to BAYESELIM using P∗ as a prior.

Figure 3 shows that META-BAYESELIM adapts sequentially in the sense that it converges to the
probability of error of BAYESELIM-ORACLE that knows P∗. This observation is consistent with
the bounds stated in Section 4.1. We remark that B-METASRM (based on ADATS ) has better
performances than META-TS(R) in this BAI setting, which confirms the observations in Kveton et al.
[2021] that marginalizing when possible improves performance.

5.3 Example of a sequential A/B testing problem

We consider a more realistic lifelong testing task which violates the Gaussian assumptions we’ve
made so far. We simulate the sequential A/B testing task that we stated with in introduction: we start
with K = 2 treatments sampled from P∗, (1) and (2), and when a decision is made by the fixed-budget
BAI algorithm, the chosen option is kept for the next round, and a new treatment is sampled from the
distribution of the eliminated arm (new challenger). This process creates a martingale as follows:

Alg Alg Alg

We run BAYESELIM and META-BAYESELIM on an instance of this problem with µ∗ = (0.5, 0.56),
σ2
∗ = 10−2, σ2 = 10−1, and a small budget n = 10 (the task is hard for a non-meta learning

algorithm). We initialize both algorithms with a non-informative2 prior σ2
q = 1, µq = (0.53, 0.53).

We show two indicators of performance: as before, the probability of error (returning the action
with current lower mean) over tasks is shown in Figure 4b and the point-wise value of the current
maximum option is shown in Figure 4a. The latter shows two interesting effects: the martingale
generated by MBE converges to a higher value, and its overall variance is much lower, two desirable
properties in practice. The probabilities of error in Figure 4b show similar trends as observed in
previous experiments where our assumptions on the environment were not violated.

Though this experiment remains a toy problem, we believe it is an interesting and promising result that
could open novel areas of research in sequential testing. We discuss these ideas further in Conclusion.

6 Related Work

Learning the prior for Bayesian inference is a successful idea in Machine Learning. Though it
has been explored in classical single-task supervised learning [Rivasplata et al., 2018, Dziugaite
et al., 2021] where the dataset can be split before training to ‘learn’ a data-dependent prior, it fits
more closely the Meta-Learning setting [Thrun and Pratt, 1998] where multiple tasks can be used
to meta-learn the task distribution. More specifically, Bayesian and PAC Bayes frameworks [Amit
and Meir, 2018, Rothfuss et al., 2021] have exploited the idea of learning a meta-prior. Simchowitz
et al. [2021] studies prior misspecification with applications to meta-learning in the setting of regret
minimization ; they prove general (upper and lower) bounds on regret when performing a Bayesian
regret minimization algorithm with a prior that differs from the true prior in terms of total variation
distance.

2the choice of the prior mean µq has no effect with this variance, we also tried µq = (0, 0) with no noticeable
impact.
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Figure 4: Sequential A/B testing with n = 10,K = 2, µq = (0.5, 0.56) , σ2 = 10−1, σ2
∗ =

10−2. META-BAYESELIM starts with a non-informative prior µq = (0.53, 0.53), σ2
q = 10−2 and

BAYESELIM uses it for each task.

Online Meta-Learning and Lifelong Learning both refer to the idea of performing meta-learning
in an online learning scenario where tasks, and sometimes even data, are streamed with either full-
information [Alquier et al., 2017, Khodak et al., 2019] or bandit feedback [Jedor et al., 2020, Cella
et al., 2020, Kveton et al., 2021, Basu et al., 2021, Simchowitz et al., 2021]. The latter setting, also
called Lifelong bandits, has recently received attention, especially around ’Meta-regret’ minimization
problems (sum of the per-task regrets) where a structure of the task space can be learnt [Azizi et al.,
2022, Schur et al., 2022].

Pure Exploration and Best-Arm identification are comparatively less thoroughly studied in the
Lifelong setting and we are only aware of [Azizi et al., 2023] tackling the expected simple-regret in
the fixed-confidence setting and optimizing. For single-task problems, pure exploration in bandits is
now well-understood both in the simple regret minimization setting [Bubeck et al., 2009, Audibert
et al., 2010] and in BAI with fixed-confidence [Gabillon et al., 2012, Kaufmann et al., 2016]. On the
other hand, many open problems remain in the fixed-budget setting, in particular, the very existence
of a complexity is not resolved [Degenne, 2023, Karnin et al., 2013, Even-Dar et al., 2006].

7 Conclusion

Existing works on Bayesian Fixed-budget BAI assumed the prior to be known [Atsidakou et al.,
2022], which can be impractical. We relax this assumption and study a PAC-style new metric for
Lifelong Best-Arm Identification. Based on related works [Kveton et al., 2021, Azizi et al., 2023,
Basu et al., 2021], we propose META-BAYESELIM , the first algorithm to sequentially adapt to an
unknown environment in the fixed-budget BAI setting. Our theoretical and numerical analysis of
META-BAYESELIM show that it converges towards the same error probability as algorithms that
assume the prior known.

Our work also opens new directions of research around sequential testing in structured and/or
changing environments.

Martingales of testing problems. Our sequential A/B testing problem is the first of a kind, to
the best of our knowledge. Many practical applications of machine learning algorithms feature this
performative aspect [Perdomo et al., 2020]: the learner’s action impact the next learning problems.
We believe there is a lack of understanding of this key issue in sequential testing problems, both
in fixed-confidence and fixed-budget settings. Another key practical issue is that of making ’safe’
decisions such that the chain remains as stable as possible by only changing treatment when the new
one is significantly better than the legacy one. One could for instance introduce meta-switching costs
[Dekel et al., 2014], or conservative constraints [Wu et al., 2016].

On stopping easy problems. Consider the case K = 2 and a particular environment where
σ2
∗ ≪ ∆∗ (the meta-gap). In such setting, when a good prior is known, testing is no longer needed as

with high-probability the best arm is always the same. An interesting metric is the stopping time for
which the lifelong algorithm outputs the best arm indicated by the prior information. We believe that
our results pave the way to give a problem-dependent bound on the expectation of this stopping time.
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META-BAYESELIM in linear bandit setting. As mentioned in Atsidakou et al. [2022], an
interesting direction could be to extend the Bayesian FB-BAI setting to linear bandit models so
far only studied with frequentist metrics [Soare et al., 2014, Azizi et al., 2021]. We could extend
our lifelong-learning setting to adapt to the case where the prior is unknown to the learner. For the
Gaussian hierarchical model, the computations in the contextual setting are tractable [Basu et al.,
2021].

Faster rates in Bayesian Fixed-budget BAI. The analysis of BAYESELIM derived in our paper
and in Atsidakou et al. [2022] does not take into account the Bayesian structure of the setting. More
precisely, it bounds the (frequentist) probability of error under a fixed environment θ and, at the end,
integrates the environments over the prior distribution π(dθ). An interesting direction would be to
derive a more general proof for any Bayesian FB BAI algorithm that takes advantage of the posterior
distribution of the means of the arms. An open question if whether the expected probability of error
under prior distribution can reach an exponential rate as in the frequentist metric in FB-BAI [Audibert
et al., 2010, Carpentier and Locatelli, 2016].
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A Frequentist and Bayesian approach in the Gaussian case

The frequentist equivalent of the Bayesian inference problem we addressed in this paper (Gaussian
case) is a least squares regression with biased regularization. These ideas were proposed early in the
meta-learning literature [Baxter, 2000] and have been studied extensively since then [Denevi et al.,
2020, Kuzborskij and Orabona, 2013, Maurer and Jaakkola, 2005].

Under a linear model, the biased regularization algorithm is

θ̂ = arg min
θ∈RK

t∑
s=1

∥Ys −X⊤
s θ∥2 + λ∥θ − θ0∥2

In our case, Xs = (1{As = i})i=1..K is the indicator vector of the chosen arms and the closed-form
solution is

θ̂i =

∑t
s=1 Y

(i)
s − T

(i)
t θ

(i)
0

T
(i)
t + tλ

The parameter θ0 is the regularization bias and λ balances out the confidence the learner has in this
bias, similarly to the effect of the prior variance choice in our model. As usual in learning theory,
the parameter λ can be optimized to minimize a bias-variance trade-off of the resulting estimator.
Similarly to Cella et al. [2020], Denevi et al. [2019], Khetarpal et al. [2022], one could progressively
improve the choice of bias θ0 over tasks using the collected data from previous tasks. This would
result in a similar estimator to ours, with the additional issue of having to tune the parameter λ(m,n)

(now potentially depending on the current task, the budget and other problem-dependent quantities).

To obtain a frequentist equivalent of META-BAYESELIM , one would need to prove high-probability
concentration bounds for the estimator discussed above (for well-chosen values of λ), and then use
the successive-rejects algorithm. This alone is beyond the scope of this paper. Bayesian regret bounds
on this frequentist algorithm could be obtain using the ideas in Atsidakou et al. [2022].

B Detailed proofs

We first recall the table of notations.

Notation Signification
Sr set of active arms at round r when playing BAYESELIM

R = ⌈log2(K)⌉ total amount of rounds
σ2 variance of the observations of arm
n budget per task
Yi,t observation of arm i at round t
P∗ prior distributions on bandit instances(

µ∗, σ
2
∗IK

)
parameters of P∗

Ps prior used by the algorithm at task s(
µs, σ

2
0IK

)
parameters of Ps

Q meta-prior(
µq, σ

2
qIK

)
parameters of the meta-prior

Qs meta-posterior at task s(
µ̂s, Σ̂s

)
parameters of the meta-posterior Qs at task s

Table 1: Notations used in this paper

We include the main technical lemmas in the main paper. Lemma 2 and Lemma 3 correspond to
Lemma 4.3 and Lemma 4.4 in Atsidakou et al. [2022] respectively ; we state these Lemmas in
Appendix B.1 for completeness, but we do not provide the proofs. Lemma 4 is mainly a technical
lemma. Lemma 5 corresponds to Lemma 6 of Kveton et al. [2021]. The only difference is that we
bound |µ∗

i | for any coordinate i with probability 1− δ
K instead of bounding the norm of the whole

vector ∥µ∗∥∞ with probability 1− δ. Since the arguments of the proofs are not different from theirs,
we do not provide the proof.
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B.1 Main Lemmas

Lemma 2 For any instance θ∗ and round r ∈ [R], suppose we use the prior P̃ (µ) = N (µ|µ̃, σ2
0IK).

then for any arm i ∈ Sr, the posterior means are correctly ordered with high probability:

P
(
µ̄i,nr,i

> µ̄i∗,nr,i∗
|θ∗
)
≤ 2 exp

(
− n

4R|Sr|σ2

(
θ∗i − θ∗i∗

)2 − (µ̃i∗ − µ̃i)
(
θ∗i − θ∗i∗

)
2σ2

0

)

Lemma 3 With the same notations as in Lemma 2, there exists an arm jr,θ∗ ∈ Sr \ {i∗} such that
the probability of wrongly eliminating i∗ in round r is bounded as:

P (i∗ /∈ Sr+1| {i∗ ∈ Sr} , θ∗) ≤ 2 exp

− n

4R|Sr|σ2

(
θ∗jr,θ∗ − θ∗i∗

)2
−

(
µ̃i∗ − µ̃jr,θ∗

) (
θ∗jr,θ∗ − θ∗i∗

)
2σ2

0


Lemma 4 Let c1, c2 > 0. Assume the case where P∗ is a product of 2 Gaussian distributions:
P∗ (d(θi, θj)) = N

(
dθi|µ∗

i , σ
2
∗
)
N
(
dθj |µ∗

j , σ
2
∗
)
. Then for any positive constant c1, c2 > 0 we have

the following identity:

∫
(θi,θj)

e
−c1(θi−θj)

2−c2
(θi−θj)(µ̃i−µ̃j)

σ2
0 P∗ (d(θi, θj)) =

1√
1 + 4c1σ2

∗
e
− c1σ2

∗+c2−c22
σ2
∗(4c1σ2

∗+1) (µ
∗
i −µ∗

j )
2

.e
σ2
∗c22

(4c1σ2
∗+1)σ4

0

(
( σ0

σ∗ )
2
(µ∗

i −µ∗
j )−(µ̃i−µ̃j)

)2

Lemma 5 Let µ∗ ∼ N
(
µq, σ

2
qIK

)
and the prior parameter in task s sampled such that µs|H1:s−1 ∼

N
(
µ̂s, Σ̂s

)
. Then for each arm i ∈ [K] and each task s ∈ [m], with probability at least 1− mδ

K ,

|µi
s − µi

∗| ≤ 2

√
2

σ2
0 + σ2

(σ2
0 + σ2)σ−2

q + s− 1
log

(
4K

δ

)

B.2 Proof of technical Lemmas

Proof: [Lemma 4] This is mainly a technical proof which combines classical results in Bayesian
statistics. Since we integrate w.r.t. a joint measure that is the product of 2 measures, we can integrate
one at a time the term with respect to P (dθi) then P (dθj) (Fubini theorem). Since the proof is mostly
computational, we only give to the reader the big lines of the proof.

Let denote I :=
∫∫

(θi,θj)
e
−c1(θi−θj)

2−c2
(θi−θj)(µ̃i−µ̃j)

σ2
0 P∗ (d(θi, θj))

Integrate w.r.t. N (dθi|µ∗
i , σ

2
∗) :∫

θi

e
−c1(θ

2
i−2θiθj)− c2

σ2
0
θi(µ̃i−µ̃j)

e
− 1

2σ2
∗
(θi−µ̃i)

2

N (dθi|µ∗
i , σ

2
∗) =

√
2πσ2

ae
1

2σ2
a
m2

ae
− 1

2σ2
∗
µ̃2
i

where

ma =
σ2
∗

2c1σ2
∗ + 1

(
2θjc1 −

c2(µ̃i − µ̃j)

σ2
0

+
µ̃i

σ2
∗

)
, σ2

a =
σ2
∗

2c1σ2
∗ + 1

Integrate w.r.t. N (dθj |µ∗
j , σ

2
∗) : the last yields to :
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I =

∫
θj

e
−c1θ

2
j+

c2
σ2
0
θj(µ̃i−µ̃j)

e
− 1

2σ2
∗
(θj−µ̃j)

2
√

2πσ2
a

2πσ2
∗

e
1

2σ2
a
m2

ae
− µ̃2

i
2σ2

∗N (dθj |µ∗
j , σ

2
∗)

=
σaσb

σ2
∗

. exp

(
1

2

(
σ2
∗

2c1σ2
∗ + 1

(
µ̃iσ

2
0 − c2σ

2
∗(µ̃i − µ̃j)

σ2
0σ

2
∗

)2

+
m2

b

σ2
b

− 1

σ2
∗

(
(µ̃2

i + µ̃2
j

)
)

))

where


mb =

1

4c1σ2
∗ + 1

.
c2 (µ̃i − µ̃j)σ

2
∗
(
2c1σ

2
∗ + 1

)
+ µ̃jσ

2
0

(
2c1σ

2
∗ + 1

)
+ 2c1

(
µ̃i

σ2
∗
− c2(µ̃i−µ̃j)

σ2
0

)
σ4
∗σ

2
0

σ2
0

σ2
b =

σ2
∗
(
2c1σ

2
∗ + 1

)
4c1σ2

∗ + 1

Rearranging the terms yields the desired identity.

□

B.3 Proof of Theorem 1

We recall

Cn
env(σ

2
∗) :=

√
log2(K)Kσ2

nσ2
∗ + log2(K)Kσ2

(7)

A direct application of Lemma 1 gives :

LE(πMBE ,m;P∗) ≤ 2 log(K)Cn
env(σ

2
∗)

2
∑
i

∑
j

e
− 1

4σ2
∗
(µ∗

i −µ∗
j )

2

.
1

m

m∑
s=1

e
Cn

env(σ
2
∗)

2.
σ2
∗

σ4
0

[
σ2
0

σ2
∗
(µ∗

i −µ∗
j )−(µs

i−µs
j)

]2

(8)
This bound, however, is not fully explicit. The last term on the right-hand side depends on quantities
µ
(i,j)
s which will concentrate with s > 0. To study this phenomenon, it remains to bound the term

e
Cn

env(σ
2
∗)

2.
σ2
∗

σ4
0

[
σ2
0

σ2
∗
(µ∗

i −µ∗
j )−(µs

i−µs
j)

]2

at each task s.

Let κ =
σ2
0

σ2
∗

:

[
σ2
0

σ2
∗
(µ∗

i − µ∗
j )− (µs

i − µs
j)

]2
=
[
(µ∗

i − µs
i )−

(
µ∗
j − µs

j

)
− (κ− 1)

(
µ∗
j − µ∗

i

)]2
≤ (µ∗

i − µs
i )

2
+
(
µ∗
j − µs

j

)2 − 2 (µ∗
i − µs

i )
(
µ∗
j − µs

j

)
+ (κ− 1)

2 (
µ∗
j − µ∗

i

)2
− 2 (κ− 1)

(
µ∗
j − µ∗

i

) [
(µ∗

i − µs
i )−

(
µ∗
j − µs

j

)]
≤ (µ∗

i − µs
i )

2
+
(
µ∗
j − µs

j

)2
+ (κ− 1)

2 (
µ∗
j − µ∗

i

)2
+ 2|κ− 1|.|µ∗

j − µ∗
i |.
[
|µ∗

i − µs
i | − |µ∗

j − µs
j |
]

(8)

First, we use Lemma 5 to exploit the concentration of posterior distributions ; for any arm i ∈ [K]
and each task s ∈ [m], with probability at least 1− mδ

K ,

|µi
s − µi

∗| ≤ 2

√
2

σ2
0 + σ2

(σ2
0 + σ2)σ−2

q + s− 1
log

(
4K

δ

)
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Thus, this bound holds simultaneously for all arms with probability at least 1−mδ (union bound on
all arms).

Next, we remark the following for any arms (i, j) :

|µ∗
j − µ∗

i | ≤ |µ∗
j − µq

j |+ |µ
∗
i − µq

i |+ |µ
q
i − µq

j |

For any arm i ∈ [K], with probability at least 1− δ
K ,

|µ∗
i − µq

i | ≤

√
2σ2

q log

(
2K

δ

)
Let introduce the following mild assumption :

Assumption 1 The diameter of µq is bounded by a real B : maxi∈[K] µ
q
i − infi∈[K] µ

q
i ≤ B

Under Assumption 1, the following bound holds for any arms (i, j) ∈ [K] with probability at least
1− δ :

|µ∗
j − µ∗

i | ≤ B +

√
2σ2

q log

(
2K

δ

)
Now we are ready to bound Eq. (8) : with probability at least 1− (m+ 1)δ,

[
σ2
0

σ2
∗
(µ∗

i − µ∗
j )− (µs

i − µs
j)

]2
≤

6 log
(
4K
δ

) (
σ2
0 + σ2

)
(σ2

0 + σ2)σ−2
q + s− 1

+ |κ− 1|2
(
B +

√
2σ2

q log

(
2K

δ

))2

+ 2|κ− 1|.

(
B +

√
2σ2

q log

(
2K

δ

))
.4

√
log

(
4K

δ

)√
2

σ2
0 + σ2

(σ2
0 + σ2)σ−2

q + s− 1

If we adjust the confidence δ = δ′

m+1 for δ′ ∈]0, 1[, we have the following high-probability bound :
with probability at least 1− δ′,

[
σ2
0

σ2
∗
(µ∗

i − µ∗
j )− (µs

i − µs
j)

]2
≤

6 log
(

4K(m+1)
δ′

) (
σ2
0 + σ2

)
(σ2

0 + σ2)σ−2
q + s− 1

+ |κ− 1|2
(
B +

√
2σ2

q log

(
2K(m+ 1)

δ′

))2

+ 8|κ− 1|.

(
B +

√
2σ2

q log

(
2K(m+ 1)

δ′

))√√√√2 log
(

4K(m+1)
δ′

)
(σ2

0 + σ2)

(σ2
0 + σ2)σ−2

q + s− 1

= O

(
log
(
Km
δ′

)
s

+ |κ− 1|
log
(
Km
δ′

)
s

+ |κ− 1|2 log
(
Km

δ′

))

C A general Lifelong Error bound for any arbitrary sequence of priors

Theorem 2 Assume m prior distributions (P1, ..., Pm) are given to the learner, where for any s,
Ps(µ) = N

(
µ|µs, σ

2
0IK

)
. At each task s, the learner runs BAYESELIM with n rounds using prior

Ps. In this setting, the associated Lifelong Error is upper bounded as follows:

LE(πBE,m;P∗) ≤
2 log2 (K)Cn

env(σ
2
∗)

m

∑
i∈[K]

∑
j∈[K]

e
− 1

4σ2
∗
(µ∗

i −µ∗
j )

2 m∑
s=1

ϕ
(
P ij
∗ , P ij

s

)
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Figure 5: Probability of error when sampling prior µs from meta-posterior (META-BAYESELIM ) or
computing from marginalization (META-BAYESELIM (M) ) at each task s.

The term
∑m

s=1 ϕ
(
P ij
∗ , P ij

s

)
reflects the cost of running BE with m possibly misspecified priors.

An example of an explicit bound is given in Theorem 1 for our Gaussian setting.

The proof is a direct application of Lemma 1 and a sum over tasks of the errors. For a given choice of
model and prior, the divergences ϕ’s can be derived and bounded explicitly.

D Additional numerical experiments

D.1 META-BAYESELIM without sampling

In this section, we introduce META-BAYESELIM (M) which applies the same idea of ADATS from
Basu et al. [2021] to META-BAYESELIM . More precisely, at each task s, the prior Ps is not
sampled from the meta-posterior anymore but directly computed from a marginalization w.r.t. the
meta-posterior distribution. In the Gaussian case,

Ps(µ) = N
(
µ|µ̂s, Σ̂s + σ2

0IK

)
where Σ̂s is the diagonal covariance matrix whose entries are the σ̂2

s defined in Eq.(3). Figure 5 shows
that META-BAYESELIM (M) performs slightly better than META-BAYESELIM for a small amount
of instances m, then converges asymptotically to the same value. This is not surprising since the
prior is computed via marginalizing the meta-prior, which yields to a reduction of variance. However,
this marginalization is only possible in very particular cases due to computational tractability. The
sampling scheme µs ∼ Qs applies to a broader class of distributions with the use of sampling
methods (e.g. MCMC sampling).

D.2 Case of strongly changing environments

We test the robustness of our meta-algorithm in cases where there is little or no structure. In these
situation it should not be relevant to learn a specific prior and the question is whether doing so would
significantly hurt performance or not.

We study the case of strongly changing environment ; we set σ2
∗ = 0.5, such that the best arm changes

70% of the time. The data observed in previous epochs might not be useful for the current task.
Figure 6 shows that setting σ2

0 ≪ σ2
∗ is detrimental in this situation: there is almost no structure in

the bandit instances θ∗,s, so, setting a too low value of σ2
0 biases the outcomes too much and not

appropriately.

With the exact choice σ2
0 = σ2

∗ , META-BAYESELIM stagnates around the performance of the Oracle
(green curve), which itself is not very good (around 30% error rate). This means that, at least in this
case, learning the correct prior does not hurt but it also does not help.
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Figure 6: Probability of error under misspecification of σ2
0 . We set K = 10, µ∗ = (0, 0.1, ..., 0.9),

σ2
∗ = 0.5, observation noise σ2 = 10−1, and budget n = 30 for each task.
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