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Abstract

Graph convolutional networks (GCNs) have
been successfully applied to text classifica-
tion tasks. However, existing GCN-based
methods fail to fully utilize the representa-
tional advantages of tree-like structures in hy-
perbolic space and struggle to capture hier-
archical hypernym-hyponym relationships be-
tween words. Additionally, text graph con-
struction heavily relies on structural informa-
tion from fixed corpora. To address these
limitations, this study proposes a wavelet-
enhanced Euclidean-hyperbolic graph convo-
lutional network (EHGCN) for text classifica-
tion. The method establishes complementary
semantic enhancement across multiple dimen-
sions through frequency-domain analysis and
Euclidean-hyperbolic cross-space topology re-
structuring. The frequency-domain perspective
captures text fine-grained features via multi-
scale semantic decoupling of word vectors,
while the Euclidean-hyperbolic semantic topol-
ogy constructs cross-space text structures and
integrates heterogeneous features from cross-
space graph convolution to achieve text rep-
resentations combining local semantics with
hierarchical dependencies. Experiments on five
benchmark datasets (R8, R52, MR, Ohsumed,
TREC) show that EHGCN achieves a 1.89% av-
erage accuracy improvement over mainstream
methods. Compared to task-specific LLM-
based models (CAPR, COT), EHGCN demon-
strates a 7.21% average performance gain.

1 Introduction

Text classification involves analyzing the features
of a given text and comparing them with the shared
characteristics of known categories, ultimately as-
signing the text to the most semantically similar
class. For example, categorizing news articles into
sports, entertainment, or technology (Li et al., 2024;
Daud et al., 2023), or classifying customer reviews
as positive, negative, or neutral (Taherdoost and
Madanchian, 2023). Compared to traditional deep

learning methods, graph convolutional neural net-
work (GCN)-based approaches overcome the lim-
itations of modeling local sequential word depen-
dencies (Ai et al., 2025). For instance, conventional
methods rely on convolutional or recurrent oper-
ations to extract local contextual features (Kim,
2014; Liu et al., 2016), whereas GCNs aggregate
multi-hop neighborhood information to simulta-
neously model fine-grained semantic units (e.g.,
words, phrases) and structured cross-document re-
lationships (Lei et al., 2021; Yao et al., 2019), sig-
nificantly enhancing classification robustness in
complex scenarios.

However, GCN-based text classification remains
highly dependent on the quality of underlying word
embeddings. Traditional methods typically employ
pre-trained word vector models (e.g., Word2Vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014)) to map vocabulary into low-dimensional
Euclidean spaces, capturing shallow semantic as-
sociations through statistical co-occurrence. Yet,
these embeddings exhibit critical drawbacks: (1)
high-frequency noise (e.g., random co-occurring
word pairs or spelling errors) can induce semantic
drift (Newell et al., 2019; Schnabel et al., 2015);
(2) single-scale global statistics fail to disentan-
gle fine-grained word semantics (e.g., polysemy
such as "cell" in biology vs. telecommunications)
(Levy and Goldberg, 2014). Directly constructing
text graphs from such embeddings may introduce
noisy edges or weaken hierarchical relationship
modeling, ultimately constraining GCN’s reason-
ing capabilities.

Moreover, while traditional GCN-based methods
effectively exploit global text information (Wang
et al., 2024), their reliance on constructing word-
word or word-document graph structures poses
scalability challenges for large-scale datasets (Wu
et al., 2023). Although techniques like noise fil-
tering and graph centrality reduction can prune
redundant edges (Yang et al., 2022b), or sliding
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Figure 1: When projecting the hierarchical relationship
"Biology-Animal-Mammal-Dog-Retriever-Husky" us-
ing Uniform Manifold Approximation and Projection
(UMAP) into a low-dimensional plot, proximity to the
origin indicates higher hierarchical levels. This demon-
strates that the hyperbolic space (b) presents a clearer
hierarchical structure compared to the Euclidean space

(a).

windows can establish word-level graphs indepen-
dent of document relationships (Huang et al., 2019),
most graph construction methods still operate on
fixed corpora. These graphs are typically built from
word co-occurrences in known documents, limiting
their generalizability to unseen texts.

Additionally, conventional GCN-based methods
embed texts in Euclidean space and perform classi-
fication via translation, scaling, or nonlinear trans-
formations. However, Euclidean geometry has in-
herent limitations in representing tree-like or hierar-
chical data structures (Chami et al., 2019). Natural
language data often inherently exhibits hierarchical
patterns (Dhingra et al., 2018; Nickel and Kiela,
2017), as illustrated in Figure 1, which contrasts
hyperbolic and Euclidean embeddings of word hi-
erarchies. Consequently, Euclidean space-based
methods may inadequately capture such structural
information. Fortunately, hyperbolic space natu-
rally embeds hierarchical relationships, and hyper-
bolic embeddings have proven effective for text
classification (Zhu et al.; Xu et al., 2022). Notably,
Chami et al. (Ganea et al., 2018) first integrated hy-
perbolic embeddings into GCNs, achieving promis-
ing results in node classification and link prediction.
Motivated by these advancements, we propose in-
tegrating hyperbolic space into GCN-based text
classification.

To address these challenges, we propose a

Wavelet-enhanced Euclidean-Hyperbolic Graph
Convolutional Network (EHGCN). First, to mit-
igate noise sensitivity and semantic ambiguity in
traditional word embeddings, we project raw word
vectors into the frequency domain. Using wavelet
basis functions, we decompose embeddings into
multi-scale subbands, separating high-frequency
noise from low-frequency semantic components,
thereby enhancing noise robustness and multi-level
semantic representation. Second, we introduce a
novel graph sparsification method that constructs
dual semantic graphs in both Euclidean and hyper-
bolic spaces, pruning weakly related edges to im-
prove information propagation efficiency. Finally,
we fuse heterogeneous features from both spaces
to comprehensively model global similarities and
hierarchical dependencies.

The main contributions of this work are three-
fold:

(1) Hierarchical decomposition of word vectors
in a document using wavelet bases, suppressing
noise interference and fusing multi-scale informa-
tion, realizes deep parsing of text semantics in order
to be able to further extract detailed information in
the text.

(2) Constructing text graph structure through the
similarity of heterogeneous space between words,
replacing the traditional complex approach of mul-
tiple matrix union. Free from the dependence of
traditional methods on fixed corpora, it supports
online document prediction and reduces memory
consumption. To the best of our knowledge, this
is the first graph construction method that does not
rely on the fixed corpus level at all.

(3) Embedding Euclidean and hyperbolic spaces
into our text categorization model allows capturing
global similarities and hierarchical relationships be-
tween words more comprehensively, compensating
for the limitations of single-space representations.

2 Related Work

Recent advances in multi-scale feature modeling
and graph-structured learning have opened new
perspectives for text classification. Wavelet analy-
sis, with its multi-scale signal processing capabil-
ities, has been widely applied to enhance textual
feature representations. For instance, (Chamorro-
Padial and Rodriguez-Sanchez, 2020) proposed
dimensionality reduction of document-term ma-
trices via discrete wavelet transforms, while dif-
fusion wavelet techniques were adopted to con-



struct multi-scale word co-occurrence graphs for
addressing short-text sparsity issues (Jain and Ma-
hadeokar, 2014). Additionally, hybrid models
based on Haar wavelets were designed to map
term frequency matrices onto hierarchical seman-
tic features for hypernymy-hyponymy relationship
modeling (Donmez and Aslan, 2021). However,
existing wavelet-based methods primarily rely on
surface-level statistical features and lack effective
integration with deep semantic embeddings.

In the domain of graph convolutional networks
(GCNps), research efforts have focused on opti-
mizing graph construction strategies. Spatial-
domain GCNs, which update node representations
through neighbor aggregation (VelisSkovic¢ et al.,
2019), demonstrate superior efficiency compared
to spectral-domain approaches (Kipf and Welling,
2016). To capture non-contiguous semantic rela-
tionships, heterogeneous graphs have been built
using TF-IDF, PPMI (Yao et al., 2019), and docu-
ment sliding windows (Li et al., 2023), or by inte-
grating multi-perspective features (e.g., semantic,
syntactic, and contextual) (Liu et al., 2020). De-
spite improved global modeling capabilities, these
methods suffer from high computational overhead
due to complex multi-metric graph construction,
limiting their scalability for large-scale text appli-
cations.

Hyperbolic space, with its exponential volume
growth property, provides inherent advantages for
hierarchical text modeling. Compared to flat Eu-
clidean embeddings (Mikolov et al., 2013), hy-
perbolic representations encode tree-like semantic
structures through geodesic distances (Zhu et al.),
validated in hierarchical attention networks (Zhang
and Gao, 2021) and hyperbolic graph convolutions
(Chami et al., 2019). Nevertheless, existing hy-
perbolic models predominantly treat semantic hi-
erarchies in isolation, with insufficient exploration
of joint optimization between hyperbolic and Eu-
clidean space features.

The key distinction of this work lies in our pro-
posed framework. It integrates text feature en-
hancement, graph structure optimization, and het-
erogeneous space fusion. Through collaborative
modeling of heterogeneous geometric features, our
framework unifies the representation of hierarchi-
cal semantics and local contextual dependencies in
text analysis.

3 Model Architecture

This section introduces the core methodology of
EHGCN. The model architecture is illustrated in
Figure 2, and the fundamental concepts used in this
section are detailed in Appendix C.

3.1 Text feature enhancement based on
multilevel discrete wavelet decomposition

We denote the given document collection as D =
{51,852, ...,S,}, where S; represents an individ-
ual sentence. Each sentence S; consists of multiple
words:S; = [wi,w}, -, wi]. For simplicity, we
remove the sentence-specific indices of words and
refer to the set of unique words in document D as
the document word corpus W = w1, we. . . ., Wy,
where m denotes the number of distinct words in
D. Assuming each word embedding vector has
a dimensionality of w; € R%(here, initialized us-
ing 300-dimensional GloVe embeddings'), the raw
feature matrix of the corpus can be expressed as:

E = [wl,wg,...,wm]T ERde (D)
For each word vector, we perform a j-level wavelet
decomposition using the bior-3.5(Cohen et al.,
1992) wavelet basis, with wavelet coefficients given
by:

[ ~]0.0469, —0.1407,0.1094, 0.6029,
0.2669, —0.0782, —0.0169, 0.0268]

h ~ [—0.0268, —0.0169, 0.0782, —0.2669,
0.6029, —0.1094, —0.1407, —0.0469]

2

Then, the decomposition for the first layer and the
j-th layer is:

a} = downsample(w; 1) € RY/? 3)
a} = downsample(w; * h) € RY/?
al = downsample(a;_1 * [) € RY? @
afl = downsample(a;_1 * h) € R¥?

The final enhanced text features are denoted as
E = [w),wh,... w7 € R™*¥ where d' =
d(1 —1/27). Figure 3 compares the energy distri-
bution between the original and wavelet-enhanced
features (three-level decomposition). The en-
hanced features exhibit three key characteristics:
(1) increased low-frequency energy (A) strength-

ens global semantic representation of topics and
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Figure 3: Comparison of energy distribution

paragraph logic, (2) reduced high-frequency energy
(D1) suppresses short-term noise interference (NS
and Surendran, 2019), and (3) elevated mid-low-
frequency energy (D3) improves context coherence
and long-range dependency modeling. This multi-
scale energy allocation mechanism consequently
provides more discriminative multi-level feature
representations for complex text classification tasks.

3.2 Inverse-Distance Preferential Graph
Structure

The construction of common text graphs primar-
ily involves three matrices: Word-word matrix
A; € R™*™ Word-sentence matrix Ay € R™*"™,
Sentence-sentence matrix A3 € R™*™, where m
and n denote the number of unique words and sen-
tences in the corpus. For A; , word-edge rela-
tionships are typically fixed, often computed using
point-wise mutual information (PMI) to determine

Figure 2: EHGCN Model Framework Diagram

weights between words (Yao et al., 2019). How-
ever, this approach requires recalculating A; when
new corpora are added. A generally uses TF-IDF
(term frequency-inverse document frequency) to
establish edge weights (Li et al., 2023; Gao et al.,
2024), but storing Ao demands significant memory
resources for large corpora. As is usually an iden-
tity matrix or built using sentence similarity, yet
it relies on the target text for matrix construction,
limiting online prediction capability.

To address these issues, IDPG requires only the
Ap matrix. The edge weights between words are
computed using the inverse of distance-based simi-
larity between enhanced word features £’ , defined
as:

aij = 1/ (\/él(xik —z)? + E) ifij )

max(aij)

ifi=j

1/arccosh ((wé,wé)L + E) ifi#j

Aax aq;
JFi

Ap = (6)

ifi=j
Here, Ay and Ay, denote the similarity weight
matrices between all words in Euclidean and hy-
perbolic spaces, respectively, where z; ;, represents
the k-th dimension parameter of the ¢-th word. Af-
ter normalization via Equation 19, the K neigh-
bors with the highest weights for each node are
selected to form the matrices A/, and Aj. This
single-matrix sparse storage reduces memory over-
head and scales efficiently for large corpora. Addi-
tionally, the inverse-distance-based selection miti-



Figure 4: Schematic Diagram of Hyperbolic Neighbor-
hood Aggregation

gates noise from weakly correlated neighbors dur-
ing message propagation.

3.3 Hyperbolic Neighborhood Aggregation

Hyperbolic space is a smooth Riemannian mani-
fold with constant negative curvature (Benedetti
and Petronio, 1992). This paper employs the
Lorentz model due to its superior numerical sta-
bility (Nickel and Kiela, 2018).Neighborhood ag-
gregation is a critical step in GCNs, as shown in
Figure 4, which captures neighborhood structure
and features. Consider a node z; on matrix A, that
aggregates neighbors x; € N (i) with learnable
weight parameters w;, € R™*™. The neighbor-
hood aggregation for the node is formulated as:

(@l) = exply ( ( S Afd) - log (@) - w)) (7)
JEN(7)

where logZ (-) and expX (-) denote the logarithmic
map and exponential map, respectively. The term
> jen) Anli, g] - logfc{? (mf) . wg represents the
aggregation of neighboring features for node x; via
mean pooling. Notably, this aggregation operation
is performed in the local tangent space of the cen-
tral node 1. o denotes the non-linear activation
function in hyperbolic space:

oK (@H) = expl (o (logh (@) ®)

3.4 Heterogeneous Space Feature Fusion and
Classification Prediction

Heterogeneous space feature fusion integrates hy-
perbolic space (non-Euclidean geometry) and Eu-
clidean space features for text analysis, including a
preliminary classification module and a heteroge-
neous feature fusion mechanism.

Preliminary Classification: Let the pre-
trained word vector representation be F €
R™*40 (defaulting to Euclidean space or tangent

space). The aggregated sentence-level represen-
tation is defined as: S = [F},Fi,...,F..] €
R™*do_ \where m denotes the number of words
in the current sentence.

Y = ConvlD(c(SOW),K) - M )

where W € R™*%_and ® denotes the element-
wise multiplication between S and the learnable
matrix W . After applying the activation function
o and 1D convolution (K = 1), a dp-dimensional
feature representation is formed. This is further
processed by M € R%*™ where c is the number
of classes and b is the bias vector.

Feature Fusion and Classification Prediction:
First, the Euclidean features Y7, Y5 and hyperbolic
hierarchical features Y3, Y, from the preliminary
classification are concatenated along the feature
dimension as Y7 = [Y{,Vy V) Y/ ] € Ri™,
where j denotes the j-th text sentence. The concate-
nated features are then fed into an MLP to produce
the final predictionZ’ € R¢.

4 Experiment

4.1 Dataset

We evaluate our method on five datasets from dif-
ferent domains and sizes. Brief data statistics
are listed below (see more details in Appendix
A). (1) R8?%: Classifies documents from Reuters
news wires into 8 categories. (2) R52: Sim-
ilar to R8 but divided into 52 categories. (3)
Ohsumed?(Ohs): Medical literature corpus from
the MEDLINE database. (4)MR(Tang et al., 2015):
Single-sentence review dataset for binary sentiment
classification. (5)TREC(Li and Roth, 2002):TREC
question classification dataset containing 6 cate-
gories.

4.2 Baseline and Experimental Settings

We compare the EHGCN model with three cate-
gories of baseline models: sequence-based deep
learning models, word embedding-based models,
and graph-based representation learning models, as
detailed below:

Sequence-based Deep Learning Models: CNN
(Kim, 2014): Uses convolutional kernels to extract
local text features. LSTM (Liu et al., 2016): Mod-
els sequential dependencies via Long Short-Term
Memory (LSTM) units. Bi-LSTM (Huang et al.,

Zhttp://www.daviddlewis.com/resources/
testcollections/reuters21578/
3http://disi.unitn.it/moschitti/corpora.htm
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2015): Captures bidirectional contextual informa-
tion.

Word Embedding-based Models: PV-DBOW
(Le and Mikolov, 2014): Predicts random words
in documents using paragraph vectors while ig-
noring word order. fastText (Joulin et al., 2016):
Leverages bag-of-words and subword embeddings.
LEAM (Wang et al., 2018): Incorporates label em-
beddings with attention mechanisms.

Graph-based Representation Learning Mod-
els: TextGCN (Yao et al., 2019): Constructs a
document-word heterogeneous graph and jointly
learns document/word representations through
graph convolutions. HyperGAT (Ding et al., 2020):
Builds hyper-edges and iteratively updates node
and edge features in graph convolutions. Ten-
sorGCN (Liu et al., 2020): Merges additional node-
edge weights for semantic, syntactic, and sequen-
tial relations. CGA2TC (Yang et al., 2022b): A
graph-based text classification framework. Text-
MGNN (Gu et al., 2023): Models multi-granularity
relationships on a tripartite graph (word-document-
topic). MHGAT (Jin et al., 2024): Captures word
positions and multi-element information for docu-
ment classification.

The model initializes word vectors with 300D
GloVe embeddings, enhances features via 3-level
wavelet decomposition, and sets hyperbolic curva-
ture to 1. The inverse-distance neighbor selection
retains top-3 weights. Training uses a batch size of
32 and Adam optimizer (learning rate 0.001) for
up to 100 epochs, with early stopping triggered if
validation loss plateaus for 10 epochs. Reported
results are averaged over 10 independent runs.

4.3 Text Classification Performance

We compare EHGCN with the baseline models,
and the experimental performance is summarized
in Table 1. The table shows that EHGCN achieves
superior performance on all five datasets. Specifi-
cally, we draw the following conclusions:

Graph-based methods generally outperform bag-
of-words or sequence models (e.g., LSTM, Fast-
Text) as they integrate corpus-level co-occurrence
information through global relational graphs, effec-
tively modeling long-range semantic dependencies.
These methods exhibit stronger robustness in data-
sparse or structurally complex tasks.

The EHGCN model further optimizes the lim-
itations of traditional graph-based methods: it
enhances feature granularity through multi-level
wavelet decomposition, models hierarchical rela-

Model R8 R52 Ohs MR TREC

CNN 95.17 87.59 58.44 77.75 93.62
LSTM 96.09 90.48 41.13 77.33 93.01
Bi-LSTM  96.31 90.54 49.27 77.68 93.32
PV-DBOW 85.87 78.29 46.65 61.09 80.36
fastText 96.13 92.81 57.70 75.14 91.29
LEAM 93.31 91.84 58.58 76.95 89.21
TextGCN  97.07 93.56 68.36 76.74 91.40
Hyper-GAT 97.97 94.98 69.90 78.32 93.55

TensorGCN 98.04 95.05 70.11 77.91 -
CGA2TC  97.76 94.47 70.62 77.80 -
Text-MGNN 97.39 94.20 70.00 77.46 -
MHGAT 97.65 94.78 72.88 78.09 -
EHGCN 98.25 95.67 69.27 84.95 99.20

Table 1: Test accuracy (%) of different models on
five different datasets. Bold numbers indicate the best-
performing models.

tionships via hyperbolic space embeddings, and im-
proves generalization capability through dynamic
graph construction (IDPG), achieving significant
advantages on the MR and TREC datasets. Specif-
ically, the MR test set contains numerous unseen
words, and EHGCN’s independence from fixed
corpus characteristics strengthens its new docu-
ment prediction capability. TREC’s hierarchi-
cal intent relationships are effectively captured
through tree-like semantic encoding in hyperbolic
space. However, on the Ohsumed dataset, MH-
GAT achieves higher accuracy than EHGCN, This
reflecting EHGCN’s shortcomings in positional in-
formation modeling and domain-specific structure
representation.

In summary, EHGCN validates the effectiveness
of its improvement strategies across multiple tasks,
particularly achieving performance breakthroughs
on datasets with high baseline accuracy (R8 and
R52). Meanwhile, MHGAT’s advantages in pro-
cessing long domain-specific texts offer comple-
mentary insights for future research.

4.4 Ablation Study

We study the impact of various improved com-
ponents in the model on text classification tasks.
"W/O MDWD" denotes removing the multi-level
wavelet decomposition-based text feature enhance-
ment module. "W/O Pre-Words" indicates elimi-
nating the neighbor preference selection strategy
in the graph structure. "PMI (Pref-Words)" rep-
resents constructing the text graph using the PMI
method with neighbor preference selection. "PMI



Model R8 R52 MR TREC

EHGCN(ours) 98.45 95.67 84.95 99.20
w/o MDWD 97.57 94.31 83.78 98.60
w/o Pref-Words 97.72 94.74 77.41 98.20
PMI(Pref-Words) 97.53 94.19 75.97 97.80

PMI(NonPref-Words) 97.40 93.30 75.91 76.22
w/o Hyperbolic 97.85 95.40 75.75 98.80
w/o Euclidean 97.35 94.98 75.66 99.00

Table 2: Impact of model on classification accuracy (%).

(NonPref-Words)" refers to building the text graph
via the PMI method without neighbor preference
selection. "W/O Hyperbolic" signifies removing
the hyperbolic space feature representation, while
"W/O Euclidean" means discarding the Euclidean
space feature representation. As shown in Table2,
these components demonstrate diverse effects, and
we observe that removing or modifying any com-
ponent severely negatively impacts the model.

4.5 Hyperparameter Experiment

During the experimental process, we identify three
critical hyperparameters that significantly influence
predictive performance. These include the num-
ber of neighbor node information K, the type of
wavelet basis, and the wavelet decomposition level
J. In this section, we analyze the impact of vary-
ing these hyperparameters on the overall model
performance.

4.5.1 The impact of neighbor node K

Experiments on R8 and MR datasets evaluate the
impact of neighborhood sampling range (K-value)
on model performance. As shown in Figure 5:
(1) Accuracy exhibits a positive correlation with
K, peaking at K ~ 15; (2) Beyond this thresh-
old, accuracy gradually declines, approaching the
full-connection baseline. This suggests that insuf-
ficient neighbors limit semantic modeling, while
excessive neighbors introduce noise from redun-
dant weak edges. Optimal neighborhood filtering
balances semantic integrity and noise robustness.
Additionally, reduced edge counts lower memory
consumption, demonstrating the model’s efficiency.

4.5.2 The impact of wavelet basis and
decomposition levels

Experiments on the R8 and MR datasets evaluate
the impact of different wavelet bases (haar, db4,
sym8, bior3.5) (Zhang, 2019) and three decom-

Model R8 R52 MR
EHGCN(ours) 98.45 95.67 84.95
CARP 75.10 73.05 83.94
COT 90.48 91.24 89.37

Table 3: Test accuracy of large language models and
EHGCN on three different datasets

position levels (2, 3, 4). For decomposition level
selection: when the decomposition level is set to 1,
the signal splits only into low-frequency (A) and
high-frequency (D1) components, failing to capture
multi-scale semantic features; levels (> 5) lead to
exponential expansion of feature dimensions and
amplified high-frequency noise, causing informa-
tion redundancy (Jr et al., 2018). The experimen-
tal results (Figure 6) reveal: (1) As shown in Fig-
ures 6a, 6b, and 6c¢, the bior3.5 basis achieves the
highest proportion of low-frequency component A,
providing stronger global semantic representation;
(2) Figures 6d and 6e demonstrate that all wavelet
bases enhance classification performance; (3) Opti-
mal performance is achieved with 3 decomposition
levels.

4.6 Comparison with large language models

EHGCN is compared with CARP (Sun et al., 2023)
(using LLaMA2-7B (Touvron et al., 2023) as the
backbone model, with training results sourced from
(Liu et al., 2024)) and COT (Kojima et al., 2022)
(using GPT-3 (Ouyang et al., 2022) as the back-
bone network, with training results from (Sun et al.,
2023)) on the R8 and R52 datasets. As shown in
Table 3, EHGCN outperforms CARP by 31.08%
and COT by 8.80% on R8, while achieving a
22.62% and 4.43% lead over CARP and COT, re-
spectively, on R52. These results demonstrate that
the graph convolutional architecture, which models
document topological relationships, exhibits signif-
icant advantages in specific text classification tasks.
However, EHGCN underperforms COT (89.37%)
on the MR sentiment dataset (84.95%), which may
be related to the graph structure’s limited ability to
capture semantics in short texts. Future research
may explore heterogeneous architectures that inte-
grate EHGCN’s lightweight design with the seman-
tic comprehension capabilities of large language
models (LLMs).
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5 Conclusion

This paper proposes a novel text classification
model, EHGCN. The model enhances semantic
representation through multi-scale feature decom-
position and constructs global semantic associa-
tion graphs in Euclidean and hyperbolic spaces to
improve prediction capability for new documents.
Furthermore, it integrates heterogeneous spatial
features to fuse contextual and hierarchical seman-
tics. Experiments on benchmark datasets validate
the model’s effectiveness and superiority.

Limitations

Dynamic modeling for domain adaptation: The
current graph structure construction relies on gen-
eral corpus environments and does not explic-
itly incorporate domain knowledge (e.g., on the
Ohsumed medical dataset, classification perfor-
mance remains relatively insufficient due to miss-
ing hierarchical relationships among specialized
terms). Additionally, the dynamic optimization
mechanism does not consider semantic sparsity
commonly observed in low-resource languages,



which may introduce cross-domain bias.

Hyperbolic curvature configuration: Al-
though the current model adopts a fixed hyperbolic
curvature value (C = 1) (Yang et al., 2022a) to
align with mainstream methods, it does not vali-
date the impact of dynamic curvature adjustment
on modeling heterogeneous semantic hierarchies
(Fu et al., 2021).
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A Details on Datasets and Pre-processing

The experimental preprocessing pipeline follows
the steps in (Yao et al., 2019), including text clean-
ing, tokenization, stop word removal, and filtering
of low-frequency words that occur fewer than five
times (except for the MR dataset). The summarized
statistics of the preprocessed datasets are shown in
Table 4.

B Method Supplementation and
Visualization

B.1 Training Objective

The total loss function Ly, of the EHGCN model
comprises three components: the Euclidean space
classification loss L, , the hyperbolic space clas-
sification loss Ly, and the final prediction loss
L tina for Z7. irst, the features from both hyper-
bolic and Euclidean spaces are passed through fully
connected layers and a softmax function to predict
class labels. The cross-entropy loss is used as the
classification loss. Taking the Euclidean space fea-
ture classification as an example, the loss is defined
as:

§; = softmax ([YZ,Y?] - We. + b (10)
J 3514 f

‘Ceuc = - Zyj log(g)]) (11)
J

where W, and b denote the weight and bias pa-
rameters. The losses L finq; and Lyozq; are defined
as follows:

exp(—Z])

b
1
Linal = 7—Zlog ( {
bj:l >

L en(—Z))

> J(k=1,2,...,¢c) (12)

Liotal = Lfinal + Leue + »Chyp (13)

where b denotes the batch size, and [; represents the
ground-truth class label of the j -th text sentence
in the batch. The model parameters are optimized
via the final total 1oss L4

B.2 Pseudo-code for Batch Learning

In summary, the model can be summarized as Al-
gorithm 1.
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Dataset #Docs #Train #Test #Words #Classes Average Length
R8 7674 5485 2189 7688 8 65.72

R52 9100 6532 2568 8892 52 69.82
Ohsumed 7400 3357 4043 14157 23 135.80

MR 10662 7108 3554 18764 2 20.39

TREC 5952 5452 500 @ 8783 6 11.05

Table 4: Dataset Details

Algorithm 1 Wavelet-Enhanced EuclideanHyper-
bolic Graph Convolutional Networks for Text Clas-
sification

Input: Corpus W and dataset D

1.E; = (W — glOVC) < MDWD, E, = E; +
Hyperbolicspace, A, <— IDPG, A} «+ IDPG.

2.For epoch < 1,2,...,edo

3. hi = gcnflz(A;w E;L)’ €1 = gcni( :17 Eél)7

ha = hy ® liner(E}), ea = eg & liner(FEy).

es = gen? ((liner(Eq) @ e1) , AY),

eq = gend (e3, AL).

Y] = liner(Ey) + (PC), Yy =e4 + PC.

Y3 = liner(E},) < PC,

hs = gcn2(A;1, (ha ® h1)), Y4 = hs < PC.

Z =Y1.Y2,Ys, Yy, MLP(Z) < Predi-

ction Classification.

Euclidean Space Classification Loss

Ly Computation, Hyperbolic Space

Classification loss Ly, is computed,

and the classification loss L f;,,; for fe-

ature Z is calculated.The total loss Liotal

is computed.

Parameters are updated via stochastic gr-

adient ascent to maximize L;pzq7.

10. End for.

11.Obtain the final trained model.

Output: Predicted labels for each tagged doc

ument.

4,

B.3 visualization

We visualize the four models in Figure 7 on the
MR test set using the t-SNE tool (Van der Maaten
and Hinton, 2008). The models include: EHGCN,
EHGCN w/o Hyperbolic, EHGCN w/o Euclidean,
and W/O Pref-Words. It is visually evident that the
EHGCN model learns more differentiated embed-
dings for categorized documents compared to other
models and achieves closer intra-class distances.
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C Related Concepts

In this section, we summarize the core concepts
and corresponding formulas involved in the model.
Specifically, we first introduce the fundamental con-
cepts and decomposition workflow of multilevel
discrete wavelet decomposition; then describe the
relevant concepts and formulas of the Graph Convo-
lutional Network (GCN) model used in our frame-
work; and finally elaborate on the basic definitions
of hyperbolic space, including the exponential map
and logarithmic map.

C.1 Multilevel Discrete Wavelet
Decomposition

Multilevel Discrete Wavelet Decomposition
(MDWD) is a feature processing method based
on recursive filter banks(Mallat, 1989). It de-
composes raw features through low-frequency
and high-frequency filter groups across multiple
levels, partitioning features at each layer into
low-frequency approximation features (reflect-
ing global trends) and high-frequency detail
features (capturing local abrupt changes). The
low-frequency and high-frequency filters are
determined by the wavelet function, with common
choices including the Haar wavelet, bior-3.5
wavelet, sym8 wavelet, and db4 wavelet(Zhang,
2019).

Let the original feature be X € RY, where d
denotes the dimensionality. Let X l’ and X }’l repre-
sent the low-frequency and high-frequency sub-
features generated at the i-th layer through the
low-frequency and high-frequency filters, respec-
tively. At the (i + 1)-th layer, MDWD employs
a low-frequency filter | = {l1,l2,...,l;} and a
high-frequency filter h = {hy, ha, ..., hi}, where
k < d, The filters [ and h satisfy the following

hi = (=1)" - liy1—

properties:
{251 B4y, =1

Perform a convolution operation on the low-

(14)
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frequency sub-features from the previous layer:

z+1

le (n4+m—1)-1 (15)

K
art(n) :Za:f(n—l—m—l)-hk (16)
m
where zi(n) is the n-th element of the low-
frequency sub-feature at the ¢ -th layer, and x?
represents the input feature. The intermediate vari-
able components are downsampled by 1/2.

={aj(1),q}(2),...}

ay, = {a;,(1), a},(2), ..}
The ¢-th level low-frequency and high-frequency
components z¢(n) and zi (n) can be generated. As
shown in Figure8, the i-th layer decomposition
result of z is X' = [X}, X7,... X}, X/]. The
three-layer decomposition feature of X is then rep-
resented as X3 = [X,{,X%,Xg,X?’]

A7)
(18)

C.2 GCN Model

Formally, let G = (V, ¢) represent a graph, where
V(n = |v|) and € denote the node set and edge
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set, respectively. Each node is self-connected (i.e.,
has a self-loop). The initial node features are rep-
resented by X € R™*¢, where n is the number of
nodes and d is the feature dimensionality. To enable
nodes to aggregate neighborhood information, we
introduce an adjacency matrix A € R™*"™ | where
A;; represents the correlation coefficient between
nodes v; and v; , with A;; = 1. We normalize the
adjacency matrix to ensure uniform information
propagation and numerical stability:

A=D 2AD2 (19)
where D is the degree matrix, with D;; = > j Aij.
At the K-th convolutional layer, node embeddings
are computed as:

H® = g(AH*DW,) (20)

where k € {1,2,...,h}, h is the number of
convolutional layers, o is the activation function,

Wy, € R is a trainable weight matrix, and
HO — x

C.3 Hyperbolic Geometry Representation and
Domain Aggregation

Hyperbolic space is a smooth Riemannian mani-
fold with constant negative curvature(Benedetti and
Petronio, 1992). Common models of hyperbolic
space include five types: the Lorentz model (also
known as the hyperboloid model), the Klein model,
the Jemisphere model, the Poincaré ball model, and
the Poincaré half-plane model(Cannon et al., 1997).
This paper adopts the Lorentz model due to its su-
perior numerical stability(Nickel and Kiela, 2018).
In Table5, H%* is the first-order local approxima-
tion of the manifold at x, and the Minkowski inner
product is positive definite on H**. Let € H%*,
u € T,H*X with (u,u)s = 1, then the following
conclusions can be derived:

Hyperbolic Distance:Let z € H%* and y €
H%¥ be two points on the aforementioned manifold.



Symbol Illustrate
Y Minkowski inner
R x R 5 R product
d-dimensional
hyperbolic manifold
Hd* with constant negative
curvature
—1/k (k> 0)
T, K Tangent space at point
x

Norm of v € T, H&K

vl = V/{v,v)c

- Origin (North Pole) in
Lorenz model

0:=
{(VK,0,...,0} €
Hd’K

Table 5: Basic symbol definitions of the Lorenz model

The distance function between them is defined as:

) 2D

Exponential Map and Logarithmic Map:The
non-Euclidean geometric properties of hyper-
bolic space (e.g., negative curvature, nonlinear
geodesics) make it challenging to directly perform
standard neural network operations (e.g., addition,
matrix multiplication) on the manifold. By ap-
plying the logarithmic map, points in hyperbolic
space can be projected to the corresponding tan-
gent space (Euclidean space), enabling the use of
well-established Euclidean geometric operations
(e.g., linear transformations, attention mechanisms)
within the tangent space. The results are then
mapped back to hyperbolic space via the expo-
nential map. Therefore, the exponential map and
logarithmic map fundamentally bridge hyperbolic
and Euclidean geometries, overcoming the inherent
limitations of native hyperbolic space operations
while retaining their hierarchical modeling advan-
tages. For x € H** v € T,H*X with v # 0, and
y € H%* with y # x, the exponential map and
logarithmic map are defined as:

<£U,y>£

d¥ (x,y) = VK arccosh <—

K = ‘Uﬁ T sin \vﬁ v
exp;, (v) = cosh (\/?) z 4+ VK sinh <\/?> oz 22)
log;; (v) = d (z,y) (23)

Mapping from Euclidean Space to Hyperbolic
Space: Let 2% ¢ R? denote the input Euclidean
feature. Since ((0,2%%),0) = 0, and ((0, 2%F)
lies in 7, H X, where v € T, H%¥, the mapping of

14

0.H s defined as:

)

Hyperbolic Linear Transformation:Hyperbolic
linear transformations require the use of exponen-
tial and logarithmic maps to complete the transfor-
mation process. Linear transformations primarily
involve multiplying input vectors with matrices and
applying bias translation operations to the vectors.
Let 2 be a point in hyperbolic space projected
onto the tangent space T,H**, and W ¢ R%*d be
the learnable weight matrix. The hyperbolic matrix
multiplication is defined as:

x%F to hyperbolic space x

E
o

=5l

el

VK

208 = expll {cosh <%> -0+ VK sinh ( } 24)

W @ 2t = expll (Wloghk(2"))  (25)
where log (-) € HX and expX(-) € H*"X. To
preserve the hierarchical relationships and geomet-
ric invariance of hyperbolic space and avoid dis-
tortion during hyperbolic bias translation, first set
b e T,H% X then translate z* to the tangent space
Tou H? K The hyperbolic bias addition is defined
as:

2ok p= expr (Po[izH

") @6
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