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Abstract001

Graph convolutional networks (GCNs) have002
been successfully applied to text classifica-003
tion tasks. However, existing GCN-based004
methods fail to fully utilize the representa-005
tional advantages of tree-like structures in hy-006
perbolic space and struggle to capture hier-007
archical hypernym-hyponym relationships be-008
tween words. Additionally, text graph con-009
struction heavily relies on structural informa-010
tion from fixed corpora. To address these011
limitations, this study proposes a wavelet-012
enhanced Euclidean-hyperbolic graph convo-013
lutional network (EHGCN) for text classifica-014
tion. The method establishes complementary015
semantic enhancement across multiple dimen-016
sions through frequency-domain analysis and017
Euclidean-hyperbolic cross-space topology re-018
structuring. The frequency-domain perspective019
captures text fine-grained features via multi-020
scale semantic decoupling of word vectors,021
while the Euclidean-hyperbolic semantic topol-022
ogy constructs cross-space text structures and023
integrates heterogeneous features from cross-024
space graph convolution to achieve text rep-025
resentations combining local semantics with026
hierarchical dependencies. Experiments on five027
benchmark datasets (R8, R52, MR, Ohsumed,028
TREC) show that EHGCN achieves a 1.89% av-029
erage accuracy improvement over mainstream030
methods. Compared to task-specific LLM-031
based models (CAPR, COT), EHGCN demon-032
strates a 7.21% average performance gain.033

1 Introduction034

Text classification involves analyzing the features035

of a given text and comparing them with the shared036

characteristics of known categories, ultimately as-037

signing the text to the most semantically similar038

class. For example, categorizing news articles into039

sports, entertainment, or technology (Li et al., 2024;040

Daud et al., 2023), or classifying customer reviews041

as positive, negative, or neutral (Taherdoost and042

Madanchian, 2023). Compared to traditional deep043

learning methods, graph convolutional neural net- 044

work (GCN)-based approaches overcome the lim- 045

itations of modeling local sequential word depen- 046

dencies (Ai et al., 2025). For instance, conventional 047

methods rely on convolutional or recurrent oper- 048

ations to extract local contextual features (Kim, 049

2014; Liu et al., 2016), whereas GCNs aggregate 050

multi-hop neighborhood information to simulta- 051

neously model fine-grained semantic units (e.g., 052

words, phrases) and structured cross-document re- 053

lationships (Lei et al., 2021; Yao et al., 2019), sig- 054

nificantly enhancing classification robustness in 055

complex scenarios. 056

However, GCN-based text classification remains 057

highly dependent on the quality of underlying word 058

embeddings. Traditional methods typically employ 059

pre-trained word vector models (e.g., Word2Vec 060

(Mikolov et al., 2013), GloVe (Pennington et al., 061

2014)) to map vocabulary into low-dimensional 062

Euclidean spaces, capturing shallow semantic as- 063

sociations through statistical co-occurrence. Yet, 064

these embeddings exhibit critical drawbacks: (1) 065

high-frequency noise (e.g., random co-occurring 066

word pairs or spelling errors) can induce semantic 067

drift (Newell et al., 2019; Schnabel et al., 2015); 068

(2) single-scale global statistics fail to disentan- 069

gle fine-grained word semantics (e.g., polysemy 070

such as "cell" in biology vs. telecommunications) 071

(Levy and Goldberg, 2014). Directly constructing 072

text graphs from such embeddings may introduce 073

noisy edges or weaken hierarchical relationship 074

modeling, ultimately constraining GCN’s reason- 075

ing capabilities. 076

Moreover, while traditional GCN-based methods 077

effectively exploit global text information (Wang 078

et al., 2024), their reliance on constructing word- 079

word or word-document graph structures poses 080

scalability challenges for large-scale datasets (Wu 081

et al., 2023). Although techniques like noise fil- 082

tering and graph centrality reduction can prune 083

redundant edges (Yang et al., 2022b), or sliding 084
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Figure 1: When projecting the hierarchical relationship
"Biology-Animal-Mammal-Dog-Retriever-Husky" us-
ing Uniform Manifold Approximation and Projection
(UMAP) into a low-dimensional plot, proximity to the
origin indicates higher hierarchical levels. This demon-
strates that the hyperbolic space (b) presents a clearer
hierarchical structure compared to the Euclidean space
(a).

windows can establish word-level graphs indepen-085

dent of document relationships (Huang et al., 2019),086

most graph construction methods still operate on087

fixed corpora. These graphs are typically built from088

word co-occurrences in known documents, limiting089

their generalizability to unseen texts.090

Additionally, conventional GCN-based methods091

embed texts in Euclidean space and perform classi-092

fication via translation, scaling, or nonlinear trans-093

formations. However, Euclidean geometry has in-094

herent limitations in representing tree-like or hierar-095

chical data structures (Chami et al., 2019). Natural096

language data often inherently exhibits hierarchical097

patterns (Dhingra et al., 2018; Nickel and Kiela,098

2017), as illustrated in Figure 1, which contrasts099

hyperbolic and Euclidean embeddings of word hi-100

erarchies. Consequently, Euclidean space-based101

methods may inadequately capture such structural102

information. Fortunately, hyperbolic space natu-103

rally embeds hierarchical relationships, and hyper-104

bolic embeddings have proven effective for text105

classification (Zhu et al.; Xu et al., 2022). Notably,106

Chami et al. (Ganea et al., 2018) first integrated hy-107

perbolic embeddings into GCNs, achieving promis-108

ing results in node classification and link prediction.109

Motivated by these advancements, we propose in-110

tegrating hyperbolic space into GCN-based text111

classification.112

To address these challenges, we propose a113

Wavelet-enhanced Euclidean-Hyperbolic Graph 114

Convolutional Network (EHGCN). First, to mit- 115

igate noise sensitivity and semantic ambiguity in 116

traditional word embeddings, we project raw word 117

vectors into the frequency domain. Using wavelet 118

basis functions, we decompose embeddings into 119

multi-scale subbands, separating high-frequency 120

noise from low-frequency semantic components, 121

thereby enhancing noise robustness and multi-level 122

semantic representation. Second, we introduce a 123

novel graph sparsification method that constructs 124

dual semantic graphs in both Euclidean and hyper- 125

bolic spaces, pruning weakly related edges to im- 126

prove information propagation efficiency. Finally, 127

we fuse heterogeneous features from both spaces 128

to comprehensively model global similarities and 129

hierarchical dependencies. 130

The main contributions of this work are three- 131

fold: 132

(1) Hierarchical decomposition of word vectors 133

in a document using wavelet bases, suppressing 134

noise interference and fusing multi-scale informa- 135

tion, realizes deep parsing of text semantics in order 136

to be able to further extract detailed information in 137

the text. 138

(2) Constructing text graph structure through the 139

similarity of heterogeneous space between words, 140

replacing the traditional complex approach of mul- 141

tiple matrix union. Free from the dependence of 142

traditional methods on fixed corpora, it supports 143

online document prediction and reduces memory 144

consumption. To the best of our knowledge, this 145

is the first graph construction method that does not 146

rely on the fixed corpus level at all. 147

(3) Embedding Euclidean and hyperbolic spaces 148

into our text categorization model allows capturing 149

global similarities and hierarchical relationships be- 150

tween words more comprehensively, compensating 151

for the limitations of single-space representations. 152

2 Related Work 153

Recent advances in multi-scale feature modeling 154

and graph-structured learning have opened new 155

perspectives for text classification. Wavelet analy- 156

sis, with its multi-scale signal processing capabil- 157

ities, has been widely applied to enhance textual 158

feature representations. For instance, (Chamorro- 159

Padial and Rodríguez-Sánchez, 2020) proposed 160

dimensionality reduction of document-term ma- 161

trices via discrete wavelet transforms, while dif- 162

fusion wavelet techniques were adopted to con- 163
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struct multi-scale word co-occurrence graphs for164

addressing short-text sparsity issues (Jain and Ma-165

hadeokar, 2014). Additionally, hybrid models166

based on Haar wavelets were designed to map167

term frequency matrices onto hierarchical seman-168

tic features for hypernymy-hyponymy relationship169

modeling (Dönmez and Aslan, 2021). However,170

existing wavelet-based methods primarily rely on171

surface-level statistical features and lack effective172

integration with deep semantic embeddings.173

In the domain of graph convolutional networks174

(GCNs), research efforts have focused on opti-175

mizing graph construction strategies. Spatial-176

domain GCNs, which update node representations177

through neighbor aggregation (Velišković et al.,178

2019), demonstrate superior efficiency compared179

to spectral-domain approaches (Kipf and Welling,180

2016). To capture non-contiguous semantic rela-181

tionships, heterogeneous graphs have been built182

using TF-IDF, PPMI (Yao et al., 2019), and docu-183

ment sliding windows (Li et al., 2023), or by inte-184

grating multi-perspective features (e.g., semantic,185

syntactic, and contextual) (Liu et al., 2020). De-186

spite improved global modeling capabilities, these187

methods suffer from high computational overhead188

due to complex multi-metric graph construction,189

limiting their scalability for large-scale text appli-190

cations.191

Hyperbolic space, with its exponential volume192

growth property, provides inherent advantages for193

hierarchical text modeling. Compared to flat Eu-194

clidean embeddings (Mikolov et al., 2013), hy-195

perbolic representations encode tree-like semantic196

structures through geodesic distances (Zhu et al.),197

validated in hierarchical attention networks (Zhang198

and Gao, 2021) and hyperbolic graph convolutions199

(Chami et al., 2019). Nevertheless, existing hy-200

perbolic models predominantly treat semantic hi-201

erarchies in isolation, with insufficient exploration202

of joint optimization between hyperbolic and Eu-203

clidean space features.204

The key distinction of this work lies in our pro-205

posed framework. It integrates text feature en-206

hancement, graph structure optimization, and het-207

erogeneous space fusion. Through collaborative208

modeling of heterogeneous geometric features, our209

framework unifies the representation of hierarchi-210

cal semantics and local contextual dependencies in211

text analysis.212

3 Model Architecture 213

This section introduces the core methodology of 214

EHGCN. The model architecture is illustrated in 215

Figure 2, and the fundamental concepts used in this 216

section are detailed in Appendix C. 217

3.1 Text feature enhancement based on 218

multilevel discrete wavelet decomposition 219

We denote the given document collection as D = 220

{S1, S2, . . . , Sn}, where Si represents an individ- 221

ual sentence. Each sentence Si consists of multiple 222

words:Si = [wi
1, w

i
2, · · · , wi

k]. For simplicity, we 223

remove the sentence-specific indices of words and 224

refer to the set of unique words in document D as 225

the document word corpus W = [w1, w2. . . . , wm], 226

where m denotes the number of distinct words in 227

D. Assuming each word embedding vector has 228

a dimensionality of wi ∈ Rd(here, initialized us- 229

ing 300-dimensional GloVe embeddings1), the raw 230

feature matrix of the corpus can be expressed as: 231

E = [w1, w2, . . . , wm]T ∈ Rm×d (1) 232

For each word vector, we perform a j-level wavelet 233

decomposition using the bior-3.5(Cohen et al., 234

1992) wavelet basis, with wavelet coefficients given 235

by: 236

l ≈ [0.0469,−0.1407, 0.1094, 0.6029,
0.2669,−0.0782,−0.0169, 0.0268]

h ≈ [−0.0268,−0.0169, 0.0782,−0.2669,
0.6029,−0.1094,−0.1407,−0.0469]

(2) 237

Then, the decomposition for the first layer and the 238

j-th layer is: 239{
a1l = downsample(wi ∗ l) ∈ Rd/2

a1h = downsample(wi ∗ h) ∈ Rd/2
(3) 240

241{
ajl = downsample(aj−1 ∗ l) ∈ Rd/2j

ajh = downsample(aj−1 ∗ h) ∈ Rd/2j
(4) 242

The final enhanced text features are denoted as 243

E′ = [w′
1, w

′
2, . . . , w

′
m]T ∈ Rm×d′ , where d′ = 244

d(1− 1
/
2j). Figure 3 compares the energy distri- 245

bution between the original and wavelet-enhanced 246

features (three-level decomposition). The en- 247

hanced features exhibit three key characteristics: 248

(1) increased low-frequency energy (A) strength- 249

ens global semantic representation of topics and 250

1http://nlp.stanford.edu/data/glove.6B.zip
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Figure 2: EHGCN Model Framework Diagram
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Figure 3: Comparison of energy distribution

paragraph logic, (2) reduced high-frequency energy251

(D1) suppresses short-term noise interference (NS252

and Surendran, 2019), and (3) elevated mid-low-253

frequency energy (D3) improves context coherence254

and long-range dependency modeling. This multi-255

scale energy allocation mechanism consequently256

provides more discriminative multi-level feature257

representations for complex text classification tasks.258

259

3.2 Inverse-Distance Preferential Graph260

Structure261

The construction of common text graphs primar-262

ily involves three matrices: Word-word matrix263

A1 ∈ Rm×m, Word-sentence matrix A2 ∈ Rm×n,264

Sentence-sentence matrix A3 ∈ Rn×n, where m265

and n denote the number of unique words and sen-266

tences in the corpus. For A1 , word-edge rela-267

tionships are typically fixed, often computed using268

point-wise mutual information (PMI) to determine269

weights between words (Yao et al., 2019). How- 270

ever, this approach requires recalculating A1 when 271

new corpora are added. A2 generally uses TF-IDF 272

(term frequency-inverse document frequency) to 273

establish edge weights (Li et al., 2023; Gao et al., 274

2024), but storing A2 demands significant memory 275

resources for large corpora. A3 is usually an iden- 276

tity matrix or built using sentence similarity, yet 277

it relies on the target text for matrix construction, 278

limiting online prediction capability. 279

To address these issues, IDPG requires only the 280

A1 matrix. The edge weights between words are 281

computed using the inverse of distance-based simi- 282

larity between enhanced word features E′ , defined 283

as: 284

aij =

1
/(√ d∑

k=1

(xik − xjk)2 + ε

)
if i ̸= j

max(aij) if i = j

(5) 285

286

Ah =

1
/
arccosh

(
⟨w′

i, w
′
j⟩L + ε

)
if i ̸= j

max
j ̸=i

aij if i = j
(6) 287

Here, Ad and Ah denote the similarity weight 288

matrices between all words in Euclidean and hy- 289

perbolic spaces, respectively, where xi,k represents 290

the k-th dimension parameter of the i-th word. Af- 291

ter normalization via Equation 19, the K neigh- 292

bors with the highest weights for each node are 293

selected to form the matrices A′
d and A′

h. This 294

single-matrix sparse storage reduces memory over- 295

head and scales efficiently for large corpora. Addi- 296

tionally, the inverse-distance-based selection miti- 297

4



hyperbolic Space

,
H
i

d K

x

exp ( )o

K 

,d K

o

Euclidean Space Tangent Space(Euclidean) hyperbolic Space

exp ( )o

K 

,d K

log ( )K

o 

o

Figure 4: Schematic Diagram of Hyperbolic Neighbor-
hood Aggregation

gates noise from weakly correlated neighbors dur-298

ing message propagation.299

3.3 Hyperbolic Neighborhood Aggregation300

Hyperbolic space is a smooth Riemannian mani-301

fold with constant negative curvature (Benedetti302

and Petronio, 1992). This paper employs the303

Lorentz model due to its superior numerical sta-304

bility (Nickel and Kiela, 2018).Neighborhood ag-305

gregation is a critical step in GCNs, as shown in306

Figure 4, which captures neighborhood structure307

and features. Consider a node xi on matrix Ah that308

aggregates neighbors xi ∈ N(i) with learnable309

weight parameters wh ∈ Rm×m. The neighbor-310

hood aggregation for the node is formulated as:311

312

(xHi )′ = expK
xH
i

σK

 ∑
j∈N(i)

A′
h[i, j] · logKxh

i
(xHj ) · wH

ij

 (7)313

where logKo (·) and expKo (·) denote the logarithmic314

map and exponential map, respectively. The term315 ∑
j∈N(i)A

′
h[i, j] · log

K
xh
i
(xHj ) · wH

ij represents the316

aggregation of neighboring features for node xi via317

mean pooling. Notably, this aggregation operation318

is performed in the local tangent space of the cen-319

tral node xHi . σK denotes the non-linear activation320

function in hyperbolic space:321

σK(xH) = expKo
(
σ
(
logKo (xH)

))
(8)322

3.4 Heterogeneous Space Feature Fusion and323

Classification Prediction324

Heterogeneous space feature fusion integrates hy-325

perbolic space (non-Euclidean geometry) and Eu-326

clidean space features for text analysis, including a327

preliminary classification module and a heteroge-328

neous feature fusion mechanism.329

Preliminary Classification: Let the pre-330

trained word vector representation be F ∈331

Rn×d0(defaulting to Euclidean space or tangent332

space). The aggregated sentence-level represen- 333

tation is defined as: S = [F i
1, F

i
2, . . . , F

i
m, ] ∈ 334

Rm×d0 , where m denotes the number of words 335

in the current sentence. 336

Y = Conv1D(σ(S ⊙W ),K) ·M (9) 337

where W ∈ Rm×d0 , and ⊙ denotes the element- 338

wise multiplication between S and the learnable 339

matrix W . After applying the activation function 340

σ and 1D convolution (K = 1), a d0-dimensional 341

feature representation is formed. This is further 342

processed by M ∈ Rd0×m, where c is the number 343

of classes and b is the bias vector. 344

Feature Fusion and Classification Prediction: 345

First, the Euclidean features Y1, Y2 and hyperbolic 346

hierarchical features Y3, Y4 from the preliminary 347

classification are concatenated along the feature 348

dimension as Y j = [Y j
1 , Y

j
2 , Y

j
3 , Y

j
4 , ] ∈ R4m, 349

where j denotes the j-th text sentence. The concate- 350

nated features are then fed into an MLP to produce 351

the final predictionZj ∈ Rc. 352

4 Experiment 353

4.1 Dataset 354

We evaluate our method on five datasets from dif- 355

ferent domains and sizes. Brief data statistics 356

are listed below (see more details in Appendix 357

A). (1) R82: Classifies documents from Reuters 358

news wires into 8 categories. (2) R52: Sim- 359

ilar to R8 but divided into 52 categories. (3) 360

Ohsumed3(Ohs): Medical literature corpus from 361

the MEDLINE database. (4)MR(Tang et al., 2015): 362

Single-sentence review dataset for binary sentiment 363

classification. (5)TREC(Li and Roth, 2002):TREC 364

question classification dataset containing 6 cate- 365

gories. 366

4.2 Baseline and Experimental Settings 367

We compare the EHGCN model with three cate- 368

gories of baseline models: sequence-based deep 369

learning models, word embedding-based models, 370

and graph-based representation learning models, as 371

detailed below: 372

Sequence-based Deep Learning Models: CNN 373

(Kim, 2014): Uses convolutional kernels to extract 374

local text features. LSTM (Liu et al., 2016): Mod- 375

els sequential dependencies via Long Short-Term 376

Memory (LSTM) units. Bi-LSTM (Huang et al., 377

2http://www.daviddlewis.com/resources/
testcollections/reuters21578/

3http://disi.unitn.it/moschitti/corpora.htm
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2015): Captures bidirectional contextual informa-378

tion.379

Word Embedding-based Models: PV-DBOW380

(Le and Mikolov, 2014): Predicts random words381

in documents using paragraph vectors while ig-382

noring word order. fastText (Joulin et al., 2016):383

Leverages bag-of-words and subword embeddings.384

LEAM (Wang et al., 2018): Incorporates label em-385

beddings with attention mechanisms.386

Graph-based Representation Learning Mod-387

els: TextGCN (Yao et al., 2019): Constructs a388

document-word heterogeneous graph and jointly389

learns document/word representations through390

graph convolutions. HyperGAT (Ding et al., 2020):391

Builds hyper-edges and iteratively updates node392

and edge features in graph convolutions. Ten-393

sorGCN (Liu et al., 2020): Merges additional node-394

edge weights for semantic, syntactic, and sequen-395

tial relations. CGA2TC (Yang et al., 2022b): A396

graph-based text classification framework. Text-397

MGNN (Gu et al., 2023): Models multi-granularity398

relationships on a tripartite graph (word-document-399

topic). MHGAT (Jin et al., 2024): Captures word400

positions and multi-element information for docu-401

ment classification.402

The model initializes word vectors with 300D403

GloVe embeddings, enhances features via 3-level404

wavelet decomposition, and sets hyperbolic curva-405

ture to 1. The inverse-distance neighbor selection406

retains top-3 weights. Training uses a batch size of407

32 and Adam optimizer (learning rate 0.001) for408

up to 100 epochs, with early stopping triggered if409

validation loss plateaus for 10 epochs. Reported410

results are averaged over 10 independent runs.411

4.3 Text Classification Performance412

We compare EHGCN with the baseline models,413

and the experimental performance is summarized414

in Table 1. The table shows that EHGCN achieves415

superior performance on all five datasets. Specifi-416

cally, we draw the following conclusions:417

Graph-based methods generally outperform bag-418

of-words or sequence models (e.g., LSTM, Fast-419

Text) as they integrate corpus-level co-occurrence420

information through global relational graphs, effec-421

tively modeling long-range semantic dependencies.422

These methods exhibit stronger robustness in data-423

sparse or structurally complex tasks.424

The EHGCN model further optimizes the lim-425

itations of traditional graph-based methods: it426

enhances feature granularity through multi-level427

wavelet decomposition, models hierarchical rela-428

Model R8 R52 Ohs MR TREC
CNN 95.17 87.59 58.44 77.75 93.62
LSTM 96.09 90.48 41.13 77.33 93.01
Bi-LSTM 96.31 90.54 49.27 77.68 93.32
PV-DBOW 85.87 78.29 46.65 61.09 80.36
fastText 96.13 92.81 57.70 75.14 91.29
LEAM 93.31 91.84 58.58 76.95 89.21
TextGCN 97.07 93.56 68.36 76.74 91.40
Hyper-GAT 97.97 94.98 69.90 78.32 93.55
TensorGCN 98.04 95.05 70.11 77.91 -
CGA2TC 97.76 94.47 70.62 77.80 -
Text-MGNN 97.39 94.20 70.00 77.46 -
MHGAT 97.65 94.78 72.88 78.09 -
EHGCN 98.25 95.67 69.27 84.95 99.20

Table 1: Test accuracy (%) of different models on
five different datasets. Bold numbers indicate the best-
performing models.

tionships via hyperbolic space embeddings, and im- 429

proves generalization capability through dynamic 430

graph construction (IDPG), achieving significant 431

advantages on the MR and TREC datasets. Specif- 432

ically, the MR test set contains numerous unseen 433

words, and EHGCN’s independence from fixed 434

corpus characteristics strengthens its new docu- 435

ment prediction capability. TREC’s hierarchi- 436

cal intent relationships are effectively captured 437

through tree-like semantic encoding in hyperbolic 438

space. However, on the Ohsumed dataset, MH- 439

GAT achieves higher accuracy than EHGCN, This 440

reflecting EHGCN’s shortcomings in positional in- 441

formation modeling and domain-specific structure 442

representation. 443

In summary, EHGCN validates the effectiveness 444

of its improvement strategies across multiple tasks, 445

particularly achieving performance breakthroughs 446

on datasets with high baseline accuracy (R8 and 447

R52). Meanwhile, MHGAT’s advantages in pro- 448

cessing long domain-specific texts offer comple- 449

mentary insights for future research. 450

4.4 Ablation Study 451

We study the impact of various improved com- 452

ponents in the model on text classification tasks. 453

"W/O MDWD" denotes removing the multi-level 454

wavelet decomposition-based text feature enhance- 455

ment module. "W/O Pre-Words" indicates elimi- 456

nating the neighbor preference selection strategy 457

in the graph structure. "PMI (Pref-Words)" rep- 458

resents constructing the text graph using the PMI 459

method with neighbor preference selection. "PMI 460
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Model R8 R52 MR TREC
EHGCN(ours) 98.45 95.67 84.95 99.20
w/o MDWD 97.57 94.31 83.78 98.60
w/o Pref-Words 97.72 94.74 77.41 98.20
PMI(Pref-Words) 97.53 94.19 75.97 97.80
PMI(NonPref-Words) 97.40 93.30 75.91 76.22
w/o Hyperbolic 97.85 95.40 75.75 98.80
w/o Euclidean 97.35 94.98 75.66 99.00

Table 2: Impact of model on classification accuracy (%).

(NonPref-Words)" refers to building the text graph461

via the PMI method without neighbor preference462

selection. "W/O Hyperbolic" signifies removing463

the hyperbolic space feature representation, while464

"W/O Euclidean" means discarding the Euclidean465

space feature representation. As shown in Table2,466

these components demonstrate diverse effects, and467

we observe that removing or modifying any com-468

ponent severely negatively impacts the model.469

4.5 Hyperparameter Experiment470

During the experimental process, we identify three471

critical hyperparameters that significantly influence472

predictive performance. These include the num-473

ber of neighbor node information K, the type of474

wavelet basis, and the wavelet decomposition level475

J . In this section, we analyze the impact of vary-476

ing these hyperparameters on the overall model477

performance.478

4.5.1 The impact of neighbor node K479

Experiments on R8 and MR datasets evaluate the480

impact of neighborhood sampling range (K-value)481

on model performance. As shown in Figure 5:482

(1) Accuracy exhibits a positive correlation with483

K, peaking at K ≈ 15; (2) Beyond this thresh-484

old, accuracy gradually declines, approaching the485

full-connection baseline. This suggests that insuf-486

ficient neighbors limit semantic modeling, while487

excessive neighbors introduce noise from redun-488

dant weak edges. Optimal neighborhood filtering489

balances semantic integrity and noise robustness.490

Additionally, reduced edge counts lower memory491

consumption, demonstrating the model’s efficiency.492

493

4.5.2 The impact of wavelet basis and494

decomposition levels495

Experiments on the R8 and MR datasets evaluate496

the impact of different wavelet bases (haar, db4,497

sym8, bior3.5) (Zhang, 2019) and three decom-498

Model R8 R52 MR
EHGCN(ours) 98.45 95.67 84.95

CARP 75.10 73.05 83.94
COT 90.48 91.24 89.37

Table 3: Test accuracy of large language models and
EHGCN on three different datasets

position levels (2, 3, 4). For decomposition level 499

selection: when the decomposition level is set to 1, 500

the signal splits only into low-frequency (A) and 501

high-frequency (D1) components, failing to capture 502

multi-scale semantic features; levels (≥ 5) lead to 503

exponential expansion of feature dimensions and 504

amplified high-frequency noise, causing informa- 505

tion redundancy (Jr et al., 2018). The experimen- 506

tal results (Figure 6) reveal: (1) As shown in Fig- 507

ures 6a, 6b, and 6c, the bior3.5 basis achieves the 508

highest proportion of low-frequency component A, 509

providing stronger global semantic representation; 510

(2) Figures 6d and 6e demonstrate that all wavelet 511

bases enhance classification performance; (3) Opti- 512

mal performance is achieved with 3 decomposition 513

levels. 514

4.6 Comparison with large language models 515

EHGCN is compared with CARP (Sun et al., 2023) 516

(using LLaMA2-7B (Touvron et al., 2023) as the 517

backbone model, with training results sourced from 518

(Liu et al., 2024)) and COT (Kojima et al., 2022) 519

(using GPT-3 (Ouyang et al., 2022) as the back- 520

bone network, with training results from (Sun et al., 521

2023)) on the R8 and R52 datasets. As shown in 522

Table 3, EHGCN outperforms CARP by 31.08% 523

and COT by 8.80% on R8, while achieving a 524

22.62% and 4.43% lead over CARP and COT, re- 525

spectively, on R52. These results demonstrate that 526

the graph convolutional architecture, which models 527

document topological relationships, exhibits signif- 528

icant advantages in specific text classification tasks. 529

However, EHGCN underperforms COT (89.37%) 530

on the MR sentiment dataset (84.95%), which may 531

be related to the graph structure’s limited ability to 532

capture semantics in short texts. Future research 533

may explore heterogeneous architectures that inte- 534

grate EHGCN’s lightweight design with the seman- 535

tic comprehension capabilities of large language 536

models (LLMs). 537
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Figure 5: The impact of neighbor count in graphs on classification performance. Description: The results of each
edge are based on 100 experiments, visualized through a combined method of box plots and scatter elements to
present the accuracy distribution across different datasets and numbers of neighbors.
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Figure 6: Comparative effectiveness figure of different wavelet bases and decomposition levels. Note: Each result in
(d) and (e) is averaged over 100 experimental trials.

5 Conclusion538

This paper proposes a novel text classification539

model, EHGCN. The model enhances semantic540

representation through multi-scale feature decom-541

position and constructs global semantic associa-542

tion graphs in Euclidean and hyperbolic spaces to543

improve prediction capability for new documents.544

Furthermore, it integrates heterogeneous spatial545

features to fuse contextual and hierarchical seman-546

tics. Experiments on benchmark datasets validate547

the model’s effectiveness and superiority.548

Limitations 549

Dynamic modeling for domain adaptation: The 550

current graph structure construction relies on gen- 551

eral corpus environments and does not explic- 552

itly incorporate domain knowledge (e.g., on the 553

Ohsumed medical dataset, classification perfor- 554

mance remains relatively insufficient due to miss- 555

ing hierarchical relationships among specialized 556

terms). Additionally, the dynamic optimization 557

mechanism does not consider semantic sparsity 558

commonly observed in low-resource languages, 559

8



which may introduce cross-domain bias.560

Hyperbolic curvature configuration: Al-561

though the current model adopts a fixed hyperbolic562

curvature value (C = 1) (Yang et al., 2022a) to563

align with mainstream methods, it does not vali-564

date the impact of dynamic curvature adjustment565

on modeling heterogeneous semantic hierarchies566

(Fu et al., 2021).567
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A Details on Datasets and Pre-processing 832

The experimental preprocessing pipeline follows 833

the steps in (Yao et al., 2019), including text clean- 834

ing, tokenization, stop word removal, and filtering 835

of low-frequency words that occur fewer than five 836

times (except for the MR dataset). The summarized 837

statistics of the preprocessed datasets are shown in 838

Table 4. 839

B Method Supplementation and 840

Visualization 841

B.1 Training Objective 842

The total loss function Ltotal of the EHGCN model 843

comprises three components: the Euclidean space 844

classification loss Leuc , the hyperbolic space clas- 845

sification loss Lhyp, and the final prediction loss 846

Lfinal for Zj . irst, the features from both hyper- 847

bolic and Euclidean spaces are passed through fully 848

connected layers and a softmax function to predict 849

class labels. The cross-entropy loss is used as the 850

classification loss. Taking the Euclidean space fea- 851

ture classification as an example, the loss is defined 852

as: 853

ŷj = softmax
(
[Y j

3 , Y
j
4 ] ·Wfc + b

)
(10) 854

855

Leuc = −
∑
j

yj log(ŷj) (11) 856

where Wfc and b denote the weight and bias pa- 857
rameters. The losses Lfinal and Ltotal are defined 858
as follows: 859

Lfinal = −1

b

b∑
j=1

log

(
exp(−Zj

lj
)∑c

i=1 exp(−Zj
lj
)

)
, (k = 1, 2, . . . , c) (12) 860

861

Ltotal = Lfinal + Leuc + Lhyp (13) 862

where b denotes the batch size, and lj represents the 863

ground-truth class label of the j -th text sentence 864

in the batch. The model parameters are optimized 865

via the final total loss Ltotal. 866

B.2 Pseudo-code for Batch Learning 867

In summary, the model can be summarized as Al- 868

gorithm 1. 869
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Dataset #Docs #Train #Test #Words #Classes Average Length
R8 7674 5485 2189 7688 8 65.72
R52 9100 6532 2568 8892 52 69.82
Ohsumed 7400 3357 4043 14157 23 135.80
MR 10662 7108 3554 18764 2 20.39
TREC 5952 5452 500 8783 6 11.05

Table 4: Dataset Details

Algorithm 1 Wavelet-Enhanced EuclideanHyper-
bolic Graph Convolutional Networks for Text Clas-
sification

Input: Corpus W and dataset D
1.Ed = (W ← glove)← MDWD, Eh = Ed ←

Hyperbolicspace, A′
d ← IDPG, A′

h ← IDPG.
2.For epoch← 1, 2, . . . , e do
3. h1 = gcn1h(A

′
h, E

′
h), e1 = gcn1e(A

′
d, E

′
d),

h2 = h1 ⊕ liner(Eh), e2 = e1 ⊕ liner(Ed).
4. e3 = gcn2d ((liner(Ed)⊕ e1) , A

′
d) ,

e4 = gcn3d (e3, A
′
d).

5. Y1 = liner(Ed)← (PC), Y2 = e4 ← PC.
6. Y3 = liner(Eh)← PC,

h3 = gcn2(A′
h, (h2 ⊕ h1)), Y4 = h3 ← PC.

7. Z = [Y1.Y2, Y3, Y4],MLP (Z)← Predi-
ction Classification.

8. Euclidean Space Classification Loss
Leuc Computation, Hyperbolic Space
Classification loss Lhyp is computed,
and the classification loss Lfinal for fe-
ature Z is calculated.The total loss Ltotal
is computed.

9. Parameters are updated via stochastic gr-
adient ascent to maximize Ltotal.

10. End for.
11.Obtain the final trained model.
Output: Predicted labels for each tagged doc
ument.

B.3 visualization870

We visualize the four models in Figure 7 on the871

MR test set using the t-SNE tool (Van der Maaten872

and Hinton, 2008). The models include: EHGCN,873

EHGCN w/o Hyperbolic, EHGCN w/o Euclidean,874

and W/O Pref-Words. It is visually evident that the875

EHGCN model learns more differentiated embed-876

dings for categorized documents compared to other877

models and achieves closer intra-class distances.878

C Related Concepts 879

In this section, we summarize the core concepts 880

and corresponding formulas involved in the model. 881

Specifically, we first introduce the fundamental con- 882

cepts and decomposition workflow of multilevel 883

discrete wavelet decomposition; then describe the 884

relevant concepts and formulas of the Graph Convo- 885

lutional Network (GCN) model used in our frame- 886

work; and finally elaborate on the basic definitions 887

of hyperbolic space, including the exponential map 888

and logarithmic map. 889

C.1 Multilevel Discrete Wavelet 890

Decomposition 891

Multilevel Discrete Wavelet Decomposition 892

(MDWD) is a feature processing method based 893

on recursive filter banks(Mallat, 1989). It de- 894

composes raw features through low-frequency 895

and high-frequency filter groups across multiple 896

levels, partitioning features at each layer into 897

low-frequency approximation features (reflect- 898

ing global trends) and high-frequency detail 899

features (capturing local abrupt changes). The 900

low-frequency and high-frequency filters are 901

determined by the wavelet function, with common 902

choices including the Haar wavelet, bior-3.5 903

wavelet, sym8 wavelet, and db4 wavelet(Zhang, 904

2019). 905

Let the original feature be X ∈ Rd, where d 906

denotes the dimensionality. Let Xi
l and Xi

h repre- 907

sent the low-frequency and high-frequency sub- 908

features generated at the i-th layer through the 909

low-frequency and high-frequency filters, respec- 910

tively. At the (i + 1)-th layer, MDWD employs 911

a low-frequency filter l = {l1, l2, . . . , lk} and a 912

high-frequency filter h = {h1, h2, . . . , hk}, where 913

k ≪ d, The filters l and h satisfy the following 914

properties: 915{
hi = (−1)i · lk+1−i∑k
i=1 l

2
i +

∑k
i=1 l

2
i = 1

(14) 916

Perform a convolution operation on the low- 917
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NegativePositive

(c) EHGCN w/o Hyperbolic(b) EHGCN w/o Euclidean(a) EHGCN (b) EHGCN w/o Pref-Words

Figure 7: The t-SNE visualization of test set document embeddings on MR.
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Figure 8: Framework Description of MWDN

frequency sub-features from the previous layer:918

ai+1
l (n) =

K∑
m

xil(n+m− 1) · lk (15)919

920

ai+1
h (n) =

K∑
m

xil(n+m− 1) · hk (16)921

where xil(n) is the n-th element of the low-922

frequency sub-feature at the i -th layer, and x0l923

represents the input feature. The intermediate vari-924

able components are downsampled by 1/2.925

ail =
{
ail(1), a

i
l(2), ...

}
(17)926

927
aih =

{
aih(1), a

i
h(2), ...

}
(18)928

The i-th level low-frequency and high-frequency929

components xil(n) and xih(n) can be generated. As930

shown in Figure8, the i-th layer decomposition931

result of x is Xi =
[
X1

h, X
2
h, . . . X

i
h, X

i
l

]
. The932

three-layer decomposition feature of X is then rep-933

resented as X3 =
[
X1

h, X
2
h, X

3
h, X

3
l

]
.934

C.2 GCN Model935

Formally, let G = (V, ε) represent a graph, where936

V (n = |v|) and ε denote the node set and edge937

set, respectively. Each node is self-connected (i.e., 938

has a self-loop). The initial node features are rep- 939

resented by X ∈ Rn×d, where n is the number of 940

nodes and d is the feature dimensionality. To enable 941

nodes to aggregate neighborhood information, we 942

introduce an adjacency matrix A ∈ Rn×n , where 943

Aij represents the correlation coefficient between 944

nodes vi and vj , with Aii = 1. We normalize the 945

adjacency matrix to ensure uniform information 946

propagation and numerical stability: 947

Ã = D− 1
2AD

1
2 (19) 948

where D is the degree matrix, with Dij =
∑

j Aij . 949

At the K-th convolutional layer, node embeddings 950

are computed as: 951

H(k) = σ(ÃH(k−1)Wk) (20) 952

where k ∈ {1, 2, . . . , h}, h is the number of 953

convolutional layers, σ is the activation function, 954

Wk ∈ Rd×d is a trainable weight matrix, and 955

H(0) = X . 956

C.3 Hyperbolic Geometry Representation and 957

Domain Aggregation 958

Hyperbolic space is a smooth Riemannian mani- 959

fold with constant negative curvature(Benedetti and 960

Petronio, 1992). Common models of hyperbolic 961

space include five types: the Lorentz model (also 962

known as the hyperboloid model), the Klein model, 963

the Jemisphere model, the Poincaré ball model, and 964

the Poincaré half-plane model(Cannon et al., 1997). 965

This paper adopts the Lorentz model due to its su- 966

perior numerical stability(Nickel and Kiela, 2018). 967

In Table5, Hd,k is the first-order local approxima- 968

tion of the manifold at x, and the Minkowski inner 969

product is positive definite on Hd,k. Let x∈Hd,k, 970

u∈TxHd,K with ⟨u, u⟩L = 1, then the following 971

conclusions can be derived: 972

Hyperbolic Distance:Let x ∈ Hd,k and y ∈ 973

Hd,k be two points on the aforementioned manifold. 974
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Symbol Illustrate
⟨·, ·⟩L :

Rd+1 × Rd+1 → R
Minkowski inner
product

Hd,k

d-dimensional
hyperbolic manifold
with constant negative
curvature
−1/k (k > 0)

TxHd,K Tangent space at point
x

∥v∥L =
√
⟨v, v⟩L Norm of v ∈ TxHd,K

o :=
{
√
K, 0, . . . , 0} ∈

Hd,K

Origin (North Pole) in
Lorenz model

Table 5: Basic symbol definitions of the Lorenz model

The distance function between them is defined as:975

dKL (x, y) =
√
K arccosh

(
−⟨x, y⟩L

K

)
(21)976

Exponential Map and Logarithmic Map:The977

non-Euclidean geometric properties of hyper-978

bolic space (e.g., negative curvature, nonlinear979

geodesics) make it challenging to directly perform980

standard neural network operations (e.g., addition,981

matrix multiplication) on the manifold. By ap-982

plying the logarithmic map, points in hyperbolic983

space can be projected to the corresponding tan-984

gent space (Euclidean space), enabling the use of985

well-established Euclidean geometric operations986

(e.g., linear transformations, attention mechanisms)987

within the tangent space. The results are then988

mapped back to hyperbolic space via the expo-989

nential map. Therefore, the exponential map and990

logarithmic map fundamentally bridge hyperbolic991

and Euclidean geometries, overcoming the inherent992

limitations of native hyperbolic space operations993

while retaining their hierarchical modeling advan-994

tages. For x ∈ Hd,k,v∈TxHd,K with v ̸= 0, and995

y ∈ Hd,k with y ̸= x, the exponential map and996

logarithmic map are defined as:997

expKx (v) = cosh

(
|v|L√
K

)
x+
√
K sinh

(
|v|L√
K

)
v

|v|L
(22)998

999
logKx (v) = dKL (x, y) (23)1000

Mapping from Euclidean Space to Hyperbolic1001

Space: Let x0,E ∈ Rd denote the input Euclidean1002

feature. Since ⟨(0, x0,E), 0⟩ = 0, and ⟨(0, x0,E)1003

lies in ToHd,K , where v∈TxHd,K , the mapping of1004

x0,E to hyperbolic space x0,H is defined as: 1005

x0,H = expK0

[
cosh

(
∥xE0 ∥√

K

)
· 0 +

√
K sinh

(
∥xE0 ∥√

K

)
· xE0
∥xE0 ∥

]
(24) 1006

Hyperbolic Linear Transformation:Hyperbolic 1007

linear transformations require the use of exponen- 1008

tial and logarithmic maps to complete the transfor- 1009

mation process. Linear transformations primarily 1010

involve multiplying input vectors with matrices and 1011

applying bias translation operations to the vectors. 1012

Let xH be a point in hyperbolic space projected 1013

onto the tangent space ToHd,K , and W ∈ Rd′×d be 1014

the learnable weight matrix. The hyperbolic matrix 1015

multiplication is defined as: 1016

W ⊗K xH = expKo
(
W logKo (xH)

)
(25) 1017

where logKo (·) ∈ Hd,K and expKo (·) ∈ Hd′,K . To 1018

preserve the hierarchical relationships and geomet- 1019

ric invariance of hyperbolic space and avoid dis- 1020

tortion during hyperbolic bias translation, first set 1021

b ∈ ToHd′,K , then translate xH to the tangent space 1022

TxHHd′,K . The hyperbolic bias addition is defined 1023

as: 1024

xH ⊕K b = expKxH

(
PK
o→

xH
(xH)

)
(26) 1025
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