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ABSTRACT

Graph invariant learning aims to learn invariant graph representations across dif-
ferent environments, which achieves great success in tackling Out-of-Distribution
(OOD) generalization in graph-related tasks. As environments on graphs are usu-
ally expensive to obtain, most graph invariant learning methods heavily rely on
inferring the underlying environments to learn the environment-wise invariant
graph representations. Actually, inferring the underlying environments is extremely
challenging, due to the high heterogeneity of the graph environments and the
unknown number of underlying environments. In this paper, we solve the OOD
graph generalization task from a class-wise perspective, enabling us to generate
more reliable virtual environments for effective graph invariant learning. This
is motivated by the observation that class-wise spurious features are more likely
shared by different classes despite high environment heterogeneity. To this end, we
introduce a novel framework, named Class-wise invariant risk minimization via
Virtual Environment Inference (C-VEI), which aims to discard class-wise spurious
correlations and preserve class-wise invariance. Specifically, to infer the class-wise
virtual environments, C-VEI introduces a contrastive strategy on the latent space,
which i) pulls samples from the same class but dissimilar graph representations
together and ii) pushes samples from different classes but similar graph represen-
tations away. In addition, we design a class-wise invariant risk minimization to
preserve class-wise invariance, We conduct extensive experiments on several graph
OOD benchmarks and demonstrate the consistent superiority of our C-VEI across
all settings and metrics. The source code will be made publicly available.

1 INTRODUCTION

Graph representation learning with graph neural networks (GNNs) has gained great success and has a
wide range of realistic applications, e.g., drug discovery (Gaudelet et al., 2021) and recommender
systems (Ahmad & Lin, 1976). Despite the success, the existing graph representation learning
methods heavily rely on the independent and identically distributed assumption, i.e., the testing and
training graph data are independently drawn from the same distribution. However, in reality, such an
assumption is difficult to satisfy as the incoming graph data can easily be affected by some underlying
environmental factors (Ji et al., 2023; Gui et al., 2022). Inspired by causal invariance principle (Peters
et al., 2016) and Invariant Risk Minimization (Arjovsky et al., 2019) (IRM) and graph invariant
learning (Wu et al., 2022; Li et al., 2022b; Chen et al., 2022b) is proposed to learn invariant graph
representations with respect to an invariant subgraph across different environments, such that the
predictions made based on the invariant subgraphs can generalize to unknown distribution.

Due to the abstraction of graph data, the environment partitions on graphs are usually unavailable.
Hence, most existing graph invariant learning approaches focus on inferring the underlying envi-
ronment labels (Wu et al., 2022; Li et al., 2022b; Yang et al., 2022). However, in many realistic
applications such as drug affinity predictions (Ji et al., 2023), the heterogeneity of the training envi-
ronments is often high: (a) the number of data from each environment can be too small to cover all of
the classes; (b) the number of the underlying environments can be too large to infer reliably. Without
strong assumptions or more inductive bias, it is extremely challenging to uncover the full underlying
environment labels. Take the most representative graph invariant learning approach GIL (Li et al.,
2022b) as an example, GIL first partitions the input graphs as the invariant and variant subgraphs, and
infers the environments via clustering on the variant subgraphs. GIL can fail catastrophically even in

1



Under review as a conference paper at ICLR 2024

(a) SP-Motif dataset (b) Previous work

Env#3

CycleHouse

Motif I

Ladder WheelTree

Base V

Y= house
Y= cycle

Label Latent actual 
environment

... ...
...

The infered actual environment

Identify variant 
subgraph Gs

 Apply k-means on Gs 

Env#2Env#1

...

...

The identified variant subgraph

... ... ...

(c) Ours 

Env#2

Env#1

Cycle as anchor 
House 

...

si
m

ila
r

di
ss

im
ila

r

...

...

The infered class-wise virtual environment

Similar to Cycle
or not 

group i

group ii

Figure 1: (a). SP-Motif dataset is a synthetic dataset where each graph consists of one variant
subgraph (i.e., base, denoted by V ) and invariant subgraph (i.e., motif, denoted by I); the ground
truth labels Y only depends on invariant subgraph I but variant subgraph V spuriously correlates Y .
(b). GIL (Li et al., 2022b) applies K-means to infer the underlying environments. However, due to
the high environment heterogeneity, the learned environments by GIL (Li et al., 2022b) are inaccurate
(Env#1) or only contain samples from the same class (Env#3). (c). Our C-VEI creates two specific
environments for each class to remove its spurious correlation. With the assistance of labels, the
inferred class-wise virtual environments are more reliable and interpretable.

a toy setting (see Fig. 1(a)), where “House” spuriously correlates “Tree” base and “Cycle” spuriously
correlates “Ladder”. As shown in Fig. 1(b), without sufficient data, the subgraph partitioning can
easily be misled by spurious subgraphs, which further exacerbates the biases in the inferred environ-
ments (Env#1 and Env#3). Moreover, without knowing the number of the underlying environments,
the inferred environments can be too diverse to cover all classes or too dense to cover all the spurious
patterns in each environment. Therefore, it raises a challenging question:

How can we generate reliable environments for graph invariant learning under heterogeneous
environments?

To tackle the challenge, we propose a novel graph invariant learning framework, termed Class-wise
invariant risk minimization via Virtual Environment Inference (C-VEI) for graph OOD generalization.
Instead of inferring the underlying environments, C-VEI creates virtual environments to discard
spurious subgraphs from a class-wise perspective. Our key observation is that spurious features are
more likely shared by different classes despite high environment heterogeneity. Thus, it is easier
to identify the spurious subgraphs by contrasting samples that are similar but from different classes.

We thus are motivated to propose to use each class as an anchor to split the samples of the rest of
the classes into two groups: similar to the anchor or not. As a result, for C classes, we will have
a total of 2C approximately virtual environments. Finally, we apply the IRM objective function
based on contrastive learning on the inferred virtual environments to remove spurious correlation. As
shown in Fig. 1(c), when “Cycle” as the anchor, we first split other class graphs into two groups: (i
similar to “Cycle” and (ii others. Considering that the “Cycle” class spuriously correlates with the
“Ladder” base, the group (i more likely contains graphs with the “Ladder” base. In Env#1, the model
is required to identify “Cycle” graphs from most graphs with “Ladder”, so that it is easy to remove
the spurious correlations between the “Cycle” and the “Ladder”.

C-VEI consists of four modules: a Rationale Generator (RG), a Class-wise Virtual Environment
inference module (CVE), a GNN feature encoder, and a classifier. Specifically, RG learns to split the
input graph into rationale subgraphs and variant subgraphs, which are respectively encoded by the
feature encoder into representation. Then, CVE constructs two virtual environments for each class
according to the similarity of rationale subgraph representations. Finally, we apply a class-wise IRM
objective to perform contrastive learning under the constructed environments. To sum up, our main
contributions are as follows:

• We identify several challenges prohibiting the environment inference for graph invariant learning.
• We propose a unified class-wise graph invariant learning framework, C-VEI, which aims to

heuristically create class-wise virtual environments to disregard the variant spurious correlations
and learn invariant representations for graph OOD generalization. With the assistance of labels,
the inferred class-wise virtual environments are interpretable and reliable.

• We conduct extensive experiments on both synthetic and real-world graph OOD generalization
datasets, and show that our C-VEI achieves new state-of-the-art results.
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2 RELATED WORKS

Graph Out-of-Distribution Generalization. Graph Out-of-distribution (OOD) generalization (Li
et al., 2022a; Chen et al., 2023; Liu et al., 2023; Zhu et al., 2023; Li et al., 2023; Gui et al., 2023) aims
to achieve satisfactory generalization performance under distribution shifts, which facilitates graph
machine learning model deployments in real-world scenarios. As a promising learning strategy to
achieve graph OOD generalization, graph invariant learning aims to exploit the invariant relationships
between invariant features and labels across different environments to make OOD generalizable
predictions (Li et al., 2022a; Creager et al., 2021; Wang et al., 2022; Chen et al., 2022a). Due to the
abstraction of graph data, in reality, graph data usually comes from a mixture of latent environments
without accurate environment labels (Chen et al., 2022b). Hence, most existing graph invariant
learning approaches rely on inferring the underlying environment labels (Wu et al., 2022; Li et al.,
2022b; Yang et al., 2022). However, in many realistic applications such as drug affinity predictions (Ji
et al., 2023), the heterogeneity of the training environments is often high: i) The number of underlying
environments may be too large to be reliably inferred. ii) The number of data samples from each
environment may be insufficient to represent all classes. For example, DrugOOD (Ji et al., 2023),
a systematic graph OOD benchmark for AI-aided drug discovery, has a total of 186, 875 scaffold
domains but only 568, 556 samples. Considering the high heterogeneity environments, without strong
assumptions (Wu et al., 2022; Chen et al., 2022b; Li et al., 2022b; Yang et al., 2022; Chen et al.,
2023) or more inductive bias, it is extremely challenging to uncover the full underlying environment
labels. The falsely inferred environments can further exacerbate the bias the invariant learning and
lead to degenerated OOD generalization. Instead of inferring the factual environments, we propose to
generate class-wise virtual environments. With the assistance of class labels, it is relatively easier to
identify spurious subgraphs in the virtual environments.

GNN Explainability. GNN explainability aims to find an explanation in the form of input features
with the maximum influence over the prediction. These explanations denote rationale subgraphs,
which can be a set of either node features or a substructure (set of nodes/edges) or both (Ying et al.,
2019; Yuan et al., 2020). Recently there are several inherently interpretable models (Miao et al.,
2022; Yu et al., 2021; Wu et al., 2022) build relationships between the explainability and OOD
generalizations of GNNs. Inspired by the information bottleneck (IB) principle (Tishby et al., 2000),
GIB (Yu et al., 2021) and GSAT (Miao et al., 2022) both aim to identify a rationale subgraph to
interpret GNNs by optimizing an IB objective. Moreover, DIR (Wu et al., 2022) aims to provide
robust explanations under distribution shifts from a causality perspective. Following Chen et al.
(2022b); Li et al. (2022b), we also select the state-of-the-art GNN explanation methods (Yu et al.,
2021; Miao et al., 2022; Ranjan et al., 2020; Wu et al., 2022) as baselines.

3 PROBLEM FORMULATION

In this work, we focus on OOD generalization in graph classification. Specifically, we are given a set
of graph datasets D = {De}e∈Eall collected from multiple environments Eall. Samples (Ge

i , Y
e
i ) ∈ De

from the same environment are considered as drawn independently from an identical distribution Pe.
The environment labels for graphs are unobserved since it is expensive to collect environment labels
for most real scenarios. The goal of OOD generalization on graphs is to train a GNN f with training
dataset {De}e∈Etr⊆Eall , which generalizes well to all (unseen) environments:

f∗(·) = argmin
f

sup
e∈Eall

R(f |e), (1)

where R(f |e) = Ee
G,Y [L(f(G), Y )] is the risk of the predictor f on the environment e, and L(·, ·):

Y× Y → R denotes a loss function. We further decompose f(·) = ρ ◦ h, where the h(·) : G → Rd

is a GNN encoder, d is the hidden dimension and ρ : Rd → Y is the classifier. It is known that the
Eq. 1 is difficult to solve since environment labels are unobserved. Hence, previous works focus on
inferring the environment labels (Wu et al., 2022; Li et al., 2022b; Yang et al., 2022). For example,
GIL (Li et al., 2022b) clusters variant subgraphs of all graphs by K-means to infer the environments.
However, due to the high heterogeneity of environments in the training dataset, GIL (Li et al., 2022b)
will suffer from two limitations. First, without the constraints of class numbers in each environment,
GIL (Li et al., 2022b) tends to cluster the same class graphs into an environment, which fails to learn
invariant features. Second, when the wrong variant subgraphs are identified, GIL also fails to cluster
graphs with the same variant subgraphs into an environment. More details are given in Sec. 5.2 where
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Figure 2: The overall architecture of C-VEI. The core modules are Rationale Subgraph Discovery
(RSD), Class-wise Virtual Environment inference (CVE), and Class-wise Invariant Learning (CIL).
First, a GNN-based subgraph generator Φ identifies the invariant subgraph Gc and its augmented
views Ga

c and Gb
c. Then, the GNN encoder ρ encodes Gc, Ga

c and Gb
c into representations. Based on

the representations, CVE generates class-wise virtual environments for each class. A class-wise IRM
objective is applied to jointly optimize all the components.

the experiments on SP-Motif reveal the limitations of GIl (Li et al., 2022b). Instead of inferring the
actual environments and learning environment-wise invariance (Li et al., 2022b; Wu et al., 2022;
Chen et al., 2022b), we propose to infer class-wise virtual environments, which is easier to learn by
leveraging labels. Moreover, we apply a class-wise invariant risk minimization to disregard class-wise
spurious correlations and preserve class-wise invariance. Later, we will introduce our C-VEI in detail.

4 METHOD

In this section, we introduce our proposed method (see Fig. 2) in detail. Specifically, C-VEI comprises
three components. First, C-VEI applies a rationale generator (RG) to discover the invariant subgraph.
Then, a class-wise virtual environment construction (CVE) module is designed to heuristically
construct class-wise environments. Next, C-VEI optimizes class-wise IRM based on the contrastive
objective to generate graph representations that can generalize to test graphs under domain shift.

Rationale Subgraph Discovery. In this work, we assume that each input graph (G, Y ) ∈ D consists
of two disjoint parts: the invariant subgraph Gc ∈ G and the variant subgraph Gs ∈ G. The invariant
subgraph Gc has an invariant relationship with the label across different environments while Gs has
a spurious correlations with labels. Therefore, identifying invariant subgraphs is helpful for graph
OOD generalization. Here, we apply a rationale generator Φ(·) to predict the invariant subgraph as
Gc = Φ(G). Following previous invariant learning works (Chen et al., 2022b; Li et al., 2022b; Wu
et al., 2022), an optimal invariant subgraph generator Φ∗(·) for graph G should satisfy two property:

• Sufficiency property: Y = h∗(ρ∗(Φ∗(G))) + ε, ε ⊥ G, where ρ∗(·) denotes the optimal GNN
encoder, h∗ is the optimal classifier, ⊥ indicates statistical independence, and ε is random noise.

• Invariance property: ∀e1, e2 ∈ Eall, Pe1(Y |Φ∗(G)) = Pe2(Y |Φ∗(G)).
The sufficiency property means that the generated invariant subgraphs should have sufficient predictive
abilities in predicting the graph labels. The invariance property means that an optimal subgraph
generator satisfies a good generalization, i.e., it can generate accurate invariant subgraphs across
different environments.

Specifically, given an input graph instance G = (V, E) with the node set V and the edge set E , its
adjacency matrix is A ∈ [0, 1]

|V×V|, where Aij = 1 denotes the edge from node i to node j, and
Aij = 0 otherwise. The rationale generator Φ first adopts a GNN (denoted by GNN1) to generate the
mask matrix M ∈ R|V×V| on A, where mask Mi,j indicates the importance of edge Aij :

Z = GNN1(g), Mi,j = σ(ZT
i Zj), (2)

where σ(·) is the sigmoid function and Z ∈ R|V×d| summarizes the d-dimensional representations
of all nodes. The generator then selects the edges with the highest masks to construct the rationale
Gc and collects Gc’s complement as Gs, as follows:

EGc = Topα(M⊙A), EGs = Top1−α((1−M)⊙A), (3)
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where EGc
and EGs

are the edge sets of Gc and Gs, respectively; Topα(·) selects the top-K edges
with K = α× E , and α is the hyper-parameter (e.g., 0.6); ⊙ is the element-wise product. With the
selected edges, we can distill the nodes appearing in the edges to establish Gc and Gs. Inspired by
RCL (Li et al., 2022c), we randomly samples half edges EGa

s
from complement EGs

to augment
rationale graph and also for the left edges EGb

s
= EGs

/EGa
s
. Then we can obtain two augmented view

Ga
c and Gb

c as follows:

EGa
c
= EGc ∪ EGa

s
, EGb

c
= EGc ∪ EGb

s
,

s.t. EGa
s
, EGb

s
⊂ EGs , EGs = EGa

s
∪ EGb

s
, |EGa

s
| = |EGb

s
| = 0.5× |EGs

|,
(4)

where EGa
c

and EGb
c

are the edge sets of Ga
c and Gb

c, respectively. In the following, we jointly optimize
invariant subgraph generator Φ, GNN encoder ρ, and classifier h to satisfy the mentioned invariance
and sufficiency property.

Class-wise Virtual Environment Inference. In this paper, we aim to optimize the objective function
in Eq. 1 to obtain invariant graph representation. However, Eq. 1 is difficult to optimize as we do
not have environment annotations. To solve this problem, we propose an efficient Class-wise Virtual
Environment inference (CVE) module, which aims to heuristically create two virtual environments
E ′

tr for each class by similarity. Specifically, for an anchor class c containing k graphs, environment
Env#1 contains these k samples as positive and the “similar” samples from other classes as negative;
environment Env#2 contains the same positive samples while the “dissimilar” samples from other
classes as negative. A straightforward way to define the “similarity” between two samples is to
use cosine similarity. Thus, we compute the cosine similarity between each rationale subgraph pair
sampled from the anchor class and other classes receptively, formulated as:

zc = ρ(Gc
c) ∈ Rk,d, {Gc

c ∈ Gc|(Gc, Y c) ∈ D, Y c = c}
zo = ρ(Go

c) ∈ Rn,d, {Go
c ∈ Gc|(Go, Y o) ∈ D, Y o ̸= c}

S = zo · zcT ∈ Rn×k,

(5)

where zc and zo are respectively the normalized feature of invariant subgraph from anchor class and
other classes and n is the number of graphs in other classes. Meanwhile, due to the similarities of
different classes being different, to remove the effect of class from S, we adjust every sample-to-
sample similarity by subtracting a class-to-class similarity. Specifically, we first calculate the class
feature by averaging all rationale subgraph features in each class. Next, the class-to-class similarity
M ∈ RC×C is calculated by the cosine similarity among classes, and C is the number of classes in
the dataset. We then can obtain a purer similarity which has environment effects:

S̃i,j = zo[i] · zc[j]−M[Y o[i], c]. (6)

Then, we average this similarity matrix along the axis of the anchor class, as follows:

L =
1

k

k∑
j=1

S̃i,j, L ∈ Rn. (7)

Finally, it is easy to get “similar” samples (corresponding to lower half values in L grouped in Env#1
and “dissimilar” samples (corresponding to the higher half values in L) grouped in Env#2.

Invariant Representation Learning. With the automatically constructed class-wise virtual environ-
ments, we are ready to remove the spurious correlations by optimizing a class-wise IRM objective
function. For each anchor class k, we define an environment-based supervised contrastive loss.
Specifically, our loss is computed within each environment e ∈ Ec = e1, e2. For an anchor class
graph in e1, we take the representations of other rationale subgraphs Gc in the anchor class and their
augmented views Ga

c (or Gb
c for e = e2) as positive z+ and the representations of rationale subgraphs

from other class samples as negative z−. Then we have:

L(e ∈ Ek, w = 1) =
∑
z∈e

1

N+

∑
z+∈e

[−log
exp(zT z+ · w)

exp(zT z+) +
∑

z−∈e exp(z
T z−)

], (8)

where N+ denotes the number of the positive samples in the current mini-batch and w = 1 is a
“dummy” classifier to calculate the gradient penalty term (Koyama & Yamaguchi, 2020). Therefore,
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the proposed class-wise IRM loss is:

Lclass
irm =

C∑
k=1

Lk
irm =

C∑
k=1

∑
e∈Ek

L(e, w = 1) + trace(Var(▽L(e, w = 1))). (9)

Meanwhile, we follow GIL (Li et al., 2022b) and apply a conventional IRM loss objective function to
constrain the rationale subgraphs and its augmented view to satisfy invariance and sufficiency:

Lce
irm =

∑
Gsub∈{Gc,Ga

c ,G
b
c}

Lce(Gsub) + trace(Var ▽Lce(Gsub))). (10)

Finally, the overall training objective is the combination of the conventional cross entropy Lce and
the class-wise IRM regularization Lclass

irm :

min
ρ,h,Φ

Lce
irm + λLclass

irm , (11)

where λ is the trade-off hyper-parameter. The former term in Eq. 11 forces the rationale subgraphs
to satisfy invariance and sufficiency property mentioned in Sec. 4. Meanwhile the latter term in
Eq. 11 aims to remove spurious correlation on each class by contrasting similar but different class
representations in latent space. In our experiments, we demonstrate that the two components are
mutually beneficial for an effective graph OOD generalization framework. Moreover, we directly use
ρ ◦ h(Φ(G)) for inference.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. We adopt one synthetic dataset with controllable ground-truth environments and four
real-world benchmarks for the graph classification task.

• SP-Motif dataset. Following Chen et al. (2022b); Li et al. (2022b); Wu et al. (2022), we construct
3-class synthetic datasets, where each graph consists of one variant subgraph and one rationale
subgraph, i.e.,, motif. The variant subgraph includes Tree, Ladder, and Wheel (denoted by V = 0,
1, 2, respectively), and the invariant subgraph includes Cycle, House, and Crane (denoted by I =
0, 1, 2). The ground-truth label Y only depends on the invariant subgraph I , which is sampled
uniformly. The spurious correlation between V and Y is injected by controlling the variant
subgraphs distribution as P (V ) = r if V = I and P (V ) = (1 − r)/2 if V ̸= I . Intuitively, r
controls the strength of the spurious correlation. We set r to different values in the testing and
training set to simulate the distribution shifts

• Graph-SST5 dataset. Following Chen et al. (2022b), we split the data curated from sentiment
graph data to study distribution shifts in graph sizes. We convert sentiment sentence classification
datasets SST5 into graphs as Graph-SST5 dataset.

• SST-Twitter dataset. Similar to the Graph-SST5 dataset, we convert sentiment sentence classi-
fication datasets SST-Twitter (Socher et al., 2013; Dong et al., 2014) into graphs to study the
distribution shifts in graph sizes.

• DrugOOD datasets. To evaluate the OOD performance in realistic scenarios, we also in-
clude three datasets from the DrugOOD benchmark (Ji et al., 2023). In particular, we select
DrugOOD-lbap-core-ic50-assay/scaffold/size from Ligand Based Affinity Pre-
diction task which uses ic50 measurement type and contains core level annotation noises.

Evaluation. We report the classification accuracy for all datasets, except for DrugOOD datasets
where we use ROC-AUC following Li et al. (2022b); Chen et al. (2022b). We repeat the evaluation
multiple times, select models based on the validation performances, and report the mean and standard
deviation of the corresponding metric.

Baseline. We thoroughly compare C-VEI with Empirical Risk Minimization (ERM) (Vapnik, 1991)
and the following two categories of baselines:

• Interpretable Baselines. GIB (Yu et al., 2021), ASAP Pooling (Ranjan et al., 2020), GAST (Miao
et al., 2022) and DIR (Wu et al., 2022). We compare with SOTA interpretable GNNs to validate
the effectiveness of the optimization objective in C-VEI.
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Table 1: OOD generalization performance on complex distribution shifts for real-world graphs. Bold
numbers are superior results.

Scenario 1: rtest = 1/3 Scenario 2: rtest = 0.2

rtrain 0.33 0.5 0.6 0.7 0.8 0.33 0.5 0.6 0.7 0.8

IRM 52.00±2.34 50.60±3.54 47.84±6.95 38.80±3.72 39.84±3.21 50.24±6.73 41.60±4.75 35.24±5.35 34.92±8.03 29.44±5.47

v-REx 53.16±3.25 46.04±6.11 45.36±3.66 40.24±3.86 39.48±3.00 50.56±2.83 37.16±6.24 34.52±3.00 29.72±4.58 27.32±3.18

GroupDRO 53.20±4.91 51.40±4.35 48.32±5.35 39.12±4.27 38.40±2.76 52.68±4.04 43.68±4.05 31.92±6.84 34.36±8.41 28.88±5.14

ERM 53.60±3.79 51.24±4.13 47.04±7.01 38.80±3.72 37.84±3.01 48.48±4.53 41.72±4.81 36.92±6.93 35.72±8.33 28.80±3.91

DIR 52.96±5.06 52.08±1.93 50.12±2.76 49.84±2.46 45.20±1.11 50.68±5.20 49.96±1.75 45.44±6.00 40.56±2.36 39.92±4.53

GSAT 53.67±3.65 53.34±4.08 51.54±3.78 50.12±3.29 45.83±4.01 51.36±4.21 50.48±3.98 46.93±5.03 43.55±3.67 40.35±4.21

GIL 55.44±3.11 54.56±3.02 53.60±4.82 53.12±2.18 51.24±3.88 54.80±3.93 52.48±4.41 50.08±5.47 47.44±2.87 46.36±3.80

Ours 73.40±1.01 68.28±0.90 69.28±3.32 63.78±5.54 62.22±10.93 72.90±1.02 69.26±0.69 66.52±1.91 62.30±4.65 64.74±7.89
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Figure 3: (a) The results of discovering the ground truth invariant subgraphs on SP-Motif
(rtest = 0.2); (b) The hyper-parameter sensitivity analysis on Drug-Scaffold; (c) The hyper-parameter
sensitivity analysis on SP-Motif.

• Invariant Learning Baselines. GroupDRO (Sagawa et al., 2019), IRM (Arjovsky et al., 2019), v-
REx (Krueger et al., 2021), IB-IRM (Ahuja et al., 2021), CNC (Zhang et al., 2022), CIGA (Chen
et al., 2022b), LSI (Yang et al., 2022), GIL (Li et al., 2022b), and GALA (Chen et al., 2023).
This class of algorithms improves the robustness and generalization of GNNs, which helps the
models better generalize in unseen groups or out-of-distribution datasets.

5.2 EXPERIMENT ON SP-MOTIF

Setting. We first compare our C-VEI with state-of-the-art methods on the synthetic SP-Motif dataset.
Following Li et al. (2022b), we introduce variations in r within both the training and testing datasets
of SP-Motif to simulate different levels of distribution shifts. For the training set, we select rtrain
from 1/3, 0.5, 0.6, 0.7, 0.8, 0.9. A higher value of rtrain indicates a stronger spurious correlation
between Y and GV in the training set, while rtrain = 1/3 implies a balanced training set without any
spurious correlation. For the testing set, we consider two settings: (1) rtest = 1/3, which simulates
random attachment of invariant and variant subgraphs without spurious correlations; (2) rtest = 0.2,
indicating the presence of reversed spurious correlations in the testing set, posing a greater challenge.

C-VEI has better generalization ability than baselines. The results are reported in Tab. 1. It is
clear that C-VEI consistently outperforms all state-of-the-art methods across all datasets. Specifically,
C-VEI surpasses the current best competitor GIL (Li et al., 2022b) by 17.9% with rtrain = 0.33
and rtest = 0.2. The results demonstrate that our proposed C-VEI has a remarkable graph OOD
generalization on unknown domain shifts. As the degree of the distribution shift is large, invariant
baselines show more stable performance. Among them, GIL is a graph invariant learning method for
OOD generalization, which is one competitive baseline. As an interpretable graph method, GSAT
also achieves promising results. Meanwhile, our proposed C-VEI achieves optimal performance. It
indicates that learning invariant subgraphs is critical and beneficial for OOD generalization on graphs.

C-VEI has better intrinsic interpretability than baselines. Following Li et al. (2022b), to analyze
whether our proposed C-VEI can accurately capture the rationale subgraph, we compare C-VEI
with baselines that also output subgraphs using the ground-truth invariant subgraph on SP-Motif
(rtest = 0.2). The Precision@5 is reported in Fig. 3(a). From the consistent improvements over the
baselines, we find that C-VEI has better intrinsic interpretability than the baselines. As we can see,
the method with better interpretation tends to achieve better OOD generalization performance. It also
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(a) 

Class label Underlying envrionment label  

(b)  

Underlying envrionment label  Class label 

Figure 4: The distributions of the class label and underlying environment label on environment
learned by (a) GIL (Li et al., 2022b) and (b) C-VEI. For C-VEI, considering the positive samples are
same in two environments, we only investigate negative samples.

Table 2: OOD generalization performance on complex distribution shifts for real-world graphs.
Numbers in bold represent the best results.

Methods
Datasets Drug-Assay Drug-Sca Drug-Size Graph-SST5 SST-Twitter

IRM (Arxiv2019) 72.12±0.49 68.69±0.65 66.54±0.42 43.69±1.26 63.50±1.23

v-REx (ICML2021) 72.05±1.25 68.92±0.98 66.33±0.74 43.28±0.52 63.21±1.57

EIIL (ICML2021) 72.60±0.47 68.45±0.53 66.38±0.66 42.98±1.03 62.76±1.72

IB-IRM (NeurIPS2021) 72.50±0.49 68.50±0.40 66.64±0.28 40.85±2.08 61.26±1.20

CNC (ICML2022) 72.40±0.46 67.24±0.90 65.79±0.80 42.78±1.53 61.03±2.49

ERM (NeurIPS1991) 71.79±0.27 68.85±0.62 66.70±1.08 43.89±1.73 60.81±2.05

GIB (ICLR2021) 63.01±1.16 62.01±1.41 55.50±1.42 38.64±4.52 48.08±2.27

DIR (ICLR2022) 68.25±1.40 63.91±1.36 60.40±1.42 41.12±1.96 59.85±2.98

CIGA (NeurIPS2022) 73.17±0.39 69.70±0.27 67.78±0.76 44.91±4.31 64.45±1.99

GALA (ICLRw2023) - - - 44.8±1.02 62.45±0.62

LSI (NeurIPS2022) 71.38±0.68 68.02±0.55 66.51±0.55 - -

Ours 73.60±0.35 70.59±0.21 67.80±0.33 45.24±1.17 64.78±0.84

verifies our assumption that accurately capturing rationale subgraphs is beneficial for graph OOD
generalization.

Analysis of learned class-wise virtual environment. We further investigate the class-wise envi-
ronments learned by C-VEI and the actual environments inferred by GIL (Li et al., 2022b) on the
SP-Motif dataset (rtrain = 0.8, rtest = 0.33). Specifically, we investigate the distribution of labels
and underlying environment labels in each environment1. For simplicity, for C-VEI, we only show
two class-wise environments learned by C-VEI for the “House” class. The results are shown in
Fig. 4. For GIL, since it aims to infer the actual environments, each inferred environment should
ideally be split according to environment labels, i.e., each environment contains graphs from multiple
classes but with the same base subgraph. However, we find that the environments inferred by GIL
are unreliable and suffer from two limitations: i) without extra constraints, some environments only
contain graphs from a single class, which fails to remove spurious correlations (see left of Fig. 4(a),
Env#2 only contains “House” class samples); ii) the inferred environments are sensitive to variant
graph identification. When variant subgraphs are misidentified, GIL fails to cluster graphs with
the same variant subgraphs (see Env#1 and Env#3 in right of Fig. 4(a)). While, instead of directly
inferring actual environments, we propose to generate class-wise virtual environments which should
be reliable and effective to remove the spurious correlation in each class. As the right of Fig. 4(b)
shows, the graphs with environment label “Tree” and “Wheel” are evenly distributed in Env#1 and
Env#2 but graphs with “Ladder” as environment label are mostly split in Env#2. Considering the
difference of “Ladder” in two class-wise environments, it is easy to decouple the spurious correlation
between the “House” class and the “Ladder” base.

5.3 EXPERIMENTS ON REAL-WORLD GRAPH DATASETS

We further evaluate the effectiveness of our method on real-world graph datasets. The results are
reported in Tab. 2. Our C-VEI achieves the best performance on all datasets, indicating that C-VEI
can handle distribution shifts on real-world graphs. For example, C-VEI increase the classification

1Here, we set the number of environments for C-VEI and K-means as C and 2C respectively, where the
class number C = 3.
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Table 3: The ablation study of each component on DrugOOD datasets. Numbers in bold represent the
best results.

Methods Drug-Assay Drug-Scaffold Drug-Size

Ours w/o rationale generator 72.46±0.12 69.28±0.40 67.05±0.19

Ours w/o Lclass
irm 72.83±0.21 70.00±0.45 67.45±0.28

Ours w/ random environment 70.36±0.21 68.60±0.19 66.67±0.29

Ours w/ inferred actual environment 71.32±0.43 68.73±0.32 66.92±0.18

Ours 73.60±0.35 70.59±0.21 67.80±0.33

accuracy by 0.89% on Drug-Scaffold against the strongest baselines respectively. Besides, different
datasets have different distribution shifts, e.g., Graph-SST5 has different node degrees, and the
distribution shift of DrugOOD (Ji et al., 2023) is size, assay, and scaffold. Therefore, the results show
that our proposed C-VEI is robust against diverse types of distribution shifts in real graphs.

5.4 ABLATION STUDY

We analyze the contribution of each component to the final performance in this section. Tab. 3 reports
detailed ablation experimental results on Drug-Assay, Drug-Scaffold, and Drug-Size.

Effect of the rationale generator. To study the impact of the rationale generator, we remove the
rationale generator from C-VEI and use the representation of the full graph to infer the virtual
environment and classify. As shown in Tab. 3, removing the rationale generator leads to performance
degradation. This verifies our assumption that the rationale graph identification is important to
boosting performance. With the aid of such a rationale generator, the impact of our proposed class-
wise virtual environment inference and class-wise IRM regularization can be further strengthened.

Effect of the class-wise virtual experiment inference. To evaluate the impact of our proposed
class-wise virtual experiment inference module, we compare our C-VEI with two variants: i) we
randomly split graphs into 2C environments; ii) we follow GIL (Li et al., 2022b) to infer actual
environment by carrying out K-means on the representations of variant subgraphs, where the number
of environments is 2C and C is the number of class. Our C-VEI beats variant i) and ii) across all
datasets (see Tab. 3). It reveals that a meaningful and effective environment is essential for graph
invariant learning. Thus, we can attribute the main superiority of our full model to the inferred
class-wise virtual experiment.

Effect of the class-wise IRM regularization. Similarly, we remove the proposed class-wise IRM
regularization to evaluate its impact. As shown in Tab. 3, only removing the class-wise IRM
regularization degrades the OOD generalization performance. This indicates that the new learning
objective can better guide the model to learn invariant representation against distribution shift.

5.5 HYPER-PARAMETER SENSITIVITY ANALYSIS

In this section, we investigate the sensitivity of our C-VEI to the only hyper-parameters: the trading-
off parameter λ in Eq. 11. We carry out experiments on Drug-Scaffold and SP-Motif datasets, and
the results are reported in Fig. 3(b) and Fig. 3(c) respectively. As we can see, our C-VEI are robust to
the different values of λ across different datasets and distribution shifts.

6 CONCLUSION

In this paper, we identify several practical challenges in the underlying environment inference (Li
et al., 2022b; Yang et al., 2022; Chen et al., 2022b; Wu et al., 2022) for graph invariant learning. To
tackle the challenge, instead of inferring underlying actual environments, we introduce a novel graph
invariant learning framework, named by C-VEI, which infers class-wise virtual environments with
the assistance of labels and learning class-wise invariant features. We conduct extensive experiments
on several graph OOD generalization benchmarks and show that our C-VEI achieves new state-of-
the-art results. Identifying class-wise spurious characteristics across classes under the heterogeneous
environment, positions our approach as a noteworthy contribution to graph representation learning.
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7 ETHICS STATEMENT

In this work, we propose a novel algorithm for graph invariant learning, where no human subject
is related. We believe the graphs OOD generalization is beneficial for inspecting and eliminating
potential discrimination and fairness issues in deep models for real applications.

8 REPRODUCIBILITY STATEMENT

We summarize the efforts made to ensure reproducibility in this work. (1) Datasets: we use one
synthetic dataset and three public datasets where the processing details are included in Appendix A.1.
(2) Model Training: We provide the training details (including hyper-parameters settings) in Ap-
pendix A.2 and the procedure of training in Algorithms A.3.
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Table 4: Information about the datasets used in experiments. The number of nodes and edges are
taking average among all graphs.

DATASETS # TRAINING # VALIDATION # TESTING # CLASSES # NODES # EDGES METRICS

SP-MOTIF 9, 000 3, 000 3, 000 3 44.96 65.67 ACC
SST5 6, 090 1, 186 2, 240 5 19.85 37.70 ACC
TWITTER 3, 238 694 1, 509 3 21.10 40.20 ACC
DRUGOOD-ASSAY 34, 179 19, 028 19, 032 2 32.27 70.25 ROC-AUC
DRUGOOD-SCAFFOLD 21, 519 19, 041 19, 048 2 29.95 64.86 ROC-AUC
DRUGOOD-SIZE 36, 597 17, 660 16, 415 2 30.73 66.90 ROC-AUC

A IMPLEMENTATION DETAILS

A.1 DETAILS ABOUT THE DATASETS

We provide more details about the datasets (see Tab. 4) that are used in our experiments.

SP-Motif datasets. Following Chen et al. (2022b); Li et al. (2022b), we construct 3-class synthetic
datasets based on BAMotif (Ying et al., 2019; Luo et al., 2020), where the model needs to tell which
one of three motifs (House, Cycle, Crane) that the graph contains. For each dataset, we generate 3000
graphs for each class at the training set, 1000 graphs for each class at the validation set and testing
set, respectively. During the construction, we respectively inject the different distribution shifts in
the training data and the testing/validation data with rtrain and rtest. Following Chen et al. (2022b);
Li et al. (2022b), the motif and one of the three base graphs (Tree, Ladder, Wheel) are artificially
(spuriously) correlated with a probability of various biases, and equally correlated with the other two.
Specifically, given a predefined bias r (r ∈ {rtrain, rtest}), the probability of a specific motif (e.g.,
House) and a specific base graph (Tree) will co-occur is r while for the others is (1 − r)/2 (e.g.,
House-Ladder, House-Wheel).

Graph-SST datasets. Following Chen et al. (2022b), we split the data curated from sentiment
graph data (Yuan et al., 2020), that converts sentiment sentence classification datasets SST5 and
SST-Twitter (Socher et al., 2013; Dong et al., 2014) into graphs, where node features are generated
using BERT (Devlin et al., 2019) and the edges are parsed by a Biaffine parser (Gardner et al., 2018).
Our splits are created according to the averaged degrees of each graph. Specifically, we assign the
graphs as follows: Those that have smaller or equal than 50-th percentile averaged degree are assigned
into training, those that have averaged degree large than 50-th percentile while smaller than 80-th
percentile are assigned to validation set, and the left are assigned to test set. For SST5 we follow the
above process while for Twitter we conduct the above split in an inversed order to study the OOD
generalization ability of GNNs trained on large degree graphs to small degree graphs.

DrugOOD datasets. To evaluate the OOD performance in realistic scenarios with realistic distribu-
tion shifts, we also include three datasets from DrugOOD benchmark. DrugOOD is a systematic OOD
benchmark for AI-aided drug discovery, focusing on the task of drug target binding affinity prediction
for both macromolecule (protein target) and small-molecule (drug compound). The molecule data
and the notations are curated from realistic ChEMBL database (Mendez et al., 2019). Complicated
distribution shifts can happen on different assays, scaffolds and molecule sizes. In particular, we se-
lect DrugOOD-lbap-core-ic50-assay, DrugOOD-lbap-core-ic50-scaffold, and
DrugOOD-lbap-core-ic50-size, from the task of Ligand Based Affinity Prediction which
uses ic50 measurement type and contains core level annotation noises. For more details, we refer
interested readers to Ji et al. (2023).
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A.2 TRAINING AND OPTIMIZATION IN EXPERIMENTS

During the experiments, we do not tune the hyperparameters exhaustively while following the
common recipes for optimizing GNNs. Details are as follows.

GNN encoder. For fair comparison, we use the same GNN architecture as graph encoders for all
methods. Following Chen et al. (2022b), we use 3-layer GNN with Batch Normalization (Ioffe &
Szegedy, 2015) between layers and JK residual connections at last layer (Xu et al., 2018). For the
architectures, following Li et al. (2022b); Wu et al. (2022), we use the LeGCN Ranjan et al. (2020)
with mean readout for SP-Motif datasets. Meanwhile, we use the GCN (Kipf & Welling, 2017) with
mean readout for Graph-Twitter/STT5 where we follow Chen et al. (2022b) and use a GIN (Xu et al.,
2019) with max readout for DrugOOD datasets where we follow the backbone used in the paper (Ji
et al., 2023), i.e., 4-layer GIN with sum readout. The hidden dimensions are fixed as 32 for SP-Motif
and 128 for SST5, Twitter and DrugOOD datasets.

Optimization and model selection. Following Chen et al. (2022b), we use Adam optimizer (Kingma
& Ba, 2015) with a learning rate of 1e-3 and a batch size of 32 for all models at all datasets. Except for
DrugOOD datasets, we use a batch size of 128 following the original paper (Ji et al., 2023). To avoid
overfitting, we also employ an early stopping of 5 epochs according to the validation performance.

Meanwhile, dropout (Srivastava et al., 2014) is also adopted for some datasets. Specifically, we
use a dropout rate of 0.5 for SST5, Twitter, DrugOOD-Assay and DurgOOD-Scaffold and 0.1 for
DrugOOD-Size following the practice of Chen et al. (2022b).

The results of baselines. In this paper, we use the results of baselines reported in Chen et al. (2022b);
Li et al. (2022b) for comparisons. Meanwhile, for the analysis of environment inferred by GIL (Li
et al., 2022b), we implements it according the pseudo-code in the original paper.

A.3 IMPLEMENTATIONS OF C-VEI.

For fair comparison, C-VEI uses the same GNN architecture for GNN encoders as the baseline
methods. We did not do exhaustive hyperparameters tuning for the loss Eq. 11. By default, we
merely search λ from {0.5, 1, 2, 4, 16, 32} for Drug-OOD and {1, 2, 3, 4, 5, 6, 7, 8} for other datasets.
Moreover, for a fair comparison, we uniformally set the hyper-parameter α for C-VEI and baselines
as 0.25, 0.5, 0.6, and 0.8 on SP-Motif, Graph-SST5, Graph-Twitter and DrugOOD respectively.
Meanwhile, The detailed algorithm for C-VEI is given in the Algorithm 1.
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Algorithm 1 Pseudo code for the CIGA framework.
Input: Training graphs and labels D = {Gi, Yi}Ni=1; learning rate γ; loss weights λ required by
Eq. 11; the number of training epochs e; the number of classes C; the batch size B;
Randomly initialize parameters of Φ, h, ρ;
for i = 1 to e do

Sample a batch of graphs {Gj , Y j}Bj=1;
Estimate the invariant subgraph and its two augmented views for the batch:
{Ĝj

c, Ĝ
a,j
c , Ĝb,j

c }Bj=1 = Φ({Gj , Y j}Bj=1);
Make predictions based the estimated invariant subgraph and its two augmented views:

{Ŷ j}Bj=1 = h({Ĝj
c}Bj=1), {Ŷa

j
}Bj=1 = h({Ĝa,j

c }Bj=1), {Ŷb

j
}Bj=1 = h({Ĝb,j

c }Bj=1) ;

Calculate the empirical loss Lce
irm in Eq. 10 with {Ŷ j}Bj=1, {Ŷa

j
}Bj=1, {Ŷb

j
}Bj=1;

Fetch the graph representations of invariant subgraphs from ρ as {hĜj
c
}Bj=1, {hĜa,j

c
}Bj=1,

{hĜb,j
c
}Bj=1;

for c = 1 to C do
Select c as the anchor class and split other classes samples into two group according to the
Eq. 7; then obtain the inferred class-wise virtual environment.
Calculate the contrastive loss Lclass

irm with Eq. 9 in inferred virtual environments, where
positive samples and negative samples are respectively anchor class and other classes graphs.

end for
Calculate the total class-wise IRM loss in the Eq. 8.
Calculate the total loss in Eq. 11 with the trade-off hyper-parameter λ;
Update parameters of Φ, h, ρ with respect to minρ,h,Φ Lce

irm + λLclass
irm as Eq. 11;

end for
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