
Plug & Play Sequence Parallelism for Long Post-Training

Anonymous ACL submission

Abstract001

Nowadays, large language models (LLMs) are002
expected to process inputs of unprecedented003
length, with current token limits extending004
to several million tokens. To meet the long-005
sequence demands of LLMs, fine-tuning frame-006
works must also support post-training on ex-007
tended sequences. Based on the LLaMA-008
Factory framework, we implemented multi-009
ple sequence parallelism (DeepSpeed-Ulysses010
and Ring-Attention), provided feasible support011
for sequence parallelism of long sequences.012
Meanwhile, we extended DeepSpeed-Ulysses013
by adding dummy heads to handle cases where014
the number of attention heads is not divisible015
by the sequence parallel size. At the same time,016
we conducted an in-depth analysis of the prac-017
tical issues and potential errors of applying se-018
quence parallelism to post-training. Finally,019
we experimentally validated the correctness of020
our sequence parallelism implementation and021
demonstrated the efficiency of our Dummy-022
Head Ulysses. We also compared different se-023
quence parallel strategies in terms of maximum024
sequence length and runtime efficiency. Our025
code is open at https://anonymous.4open.026
science/r/SP-LLaMA-Factory-B8B1.027

1 Introduction028

Large language models (LLMs) are becoming in-029

creasingly important for long sequence perfor-030

mance, and the context length of today’s state-of-031

the-art models (Liu et al., 2024; Yang et al., 2024)032

has reached millions of tokens. Although comput-033

ing speed has been improved, limited computing034

resources sometimes become a bottleneck for train-035

ing. To achieve post-training of long sequences,036

sequence parallelism has become a necessity. Ring-037

Attention (Liu et al., 2023) and DeepSpeed-Ulysses038

(Jacobs et al., 2023) are the two most common im-039

plementations of sequence parallelism. Although040

they have been applied to some existing frame-041

works (Contributors, 2023; Zhao et al., 2025; Hu042

et al., 2024), some implementations have problems, 043

and there is still no work that has fully explored the 044

specific implementation details of sequence paral- 045

lelism and the comparison of the details of different 046

sequence parallelism. 047

Among the existing open source training frame- 048

works, the LLaMA-Factory (Zheng et al., 2024) 049

framework supports many models and various train- 050

ing functions, but unfortunately, it does not sup- 051

port sequence parallelism. Based on the LLaMA- 052

Factory framework, we implemented the sequence 053

parallelism of Ring-Attention and Deepspeed- 054

Ulysses, and only one line of extra code is needed 055

to implement sequence parallel post-training. At 056

the same time, we try to allow sequence parallelism 057

to coexist with most of the original functions and 058

optimizations to ensure that a series of functions 059

such as LoRA (Hu et al., 2022) and neat-packing 060

(Kundu et al., 2024) can be compatible normally. 061

In addition, we noticed that the DeepSpeed- 062

Ulysses must satisfy the requirement that the num- 063

ber of attention heads is divisible by sequence 064

parallel size. One possible approach is to com- 065

bine DeepSpeed-Ulysses with other sequence paral- 066

lelism methods, as demonstrated by USP (Fang and 067

Zhao, 2024) which integrates Ring-Attention, and 068

LoongTrain (Gu et al., 2024) which incorporates 069

Double-Ring Attention. However, incorporating 070

other sequence parallelism mechanisms may lose 071

the efficiency advantages of DeepSpeed-Ulysses. 072

Another approach, as adopted by Xtuner (Contribu- 073

tors, 2023), avoids integrating with other sequence 074

parallelism methods. Instead, it creates virtual at- 075

tention heads by partitioning the hidden dimension. 076

However, Xtuner’s solution not only takes up more 077

memory, but also reduces computational efficiency. 078

We proposed a simple and effective supplementary 079

solution, Dummy-Head Ulysses. By making up 080

for the empty dummy heads, we can reduce the 081

additional overhead and make the sequence paral- 082

lel size of ulysses no longer limited by the number 083
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of heads. We have proved through experiments084

that this solution has significant improvements in085

memory optimization and efficiency optimization086

compared to Xtuner’s implementation.087

In addition, we conducted systematic analysis of088

critical challenges in sequence parallelism, includ-089

ing distributed communication problem and the im-090

pact of position IDs. Furthermore, we performed091

comprehensive comparsion between different se-092

quence parallel implementations across key met-093

rics, including throughput and maximum sequence094

length capacity, providing empirical foundations095

for practical deployment decisions.096

Our contributions are summarized in the follow-097

ing three points:098

• Based on the LLaMA-Factory framework,099

we implemented the post-training sequence100

parallel functions (SFT and DPO) of Ring-101

Attention and DeepSpeed-Ulysses, while tak-102

ing into account most of the original func-103

tions and providing support for post-training104

of long sequences. The correctness of our im-105

plementation is proved through experimental106

loss error analysis.107

• We proposed a new method of adding empty108

dummy heads to make up for the shortcom-109

ings of ulysses, and verified its memory and ef-110

ficiency improvements through experiments.111

• We explored the specific issues of applying112

different sequence parallelism to actual post-113

training, and compared the maximum training114

length and efficiency of different sequence115

parallel methods.116

2 Related Works117

2.1 Sequence Parallelsim118

Due to the need for long sequence training, se-119

quence parallelism is becoming increasingly im-120

portant. Deepspeed-Ulysses (Jacobs et al., 2023)121

and Ring-Attention (Liu et al., 2023) are two im-122

portant sequence parallel technologies. The former123

converts the sequence parallelism in attention calcu-124

lation into head parallelism through all-to-all com-125

munication, while the latter’s attention output is ob-126

tained by iterative calculation of local query chunk127

with all KV chunks. The communication of Ring-128

Attention is organized in a ring form, and each129

GPU sends and receives KV chunks at the same130

time. The biggest problem with Ulysses is that131

it must satisfy the requirement that the sequence 132

parallel size is divisible by the head num, so for 133

certain models, it may be difficult to support the 8 134

GPUs sequence parallel training. USP (Fang and 135

Zhao, 2024) combines Ulysses and Ring-Attention 136

and proposes a new Unified Sequence Parallelism 137

Attention. In addition, LoongTrain (Gu et al., 2024) 138

also pays attention to the scalability and efficiency 139

issues of existing methods, proposes a new 2D at- 140

tention mechanism, combines head parallelism and 141

sequence parallelism, and proposes Double-Ring 142

attention to accelerate training. Although the tech- 143

nology of sequence parallelism has become ma- 144

ture, the details of its application to actual training 145

frameworks still need to be explored. 146

2.2 Fine-Tuning framework 147

Due to the increasing demand for LLM fine-tuning 148

tasks, more and more LLM fine-tuning frameworks 149

have emerged. Megatron-LM (Shoeybi et al., 2019) 150

serves as a research-oriented framework leveraging 151

Megatron-Core for LLM training. OpenRLHF (Hu 152

et al., 2024) is a high-performance Reinforcement 153

Learning from Human Feedback (RLHF) (Ouyang 154

et al., 2022) framework built on Ray (Moritz et al., 155

2018), DeepSpeed (Rasley et al., 2020), vLLM 156

(Kwon et al., 2023) and Hugging Face Transform- 157

ers (Wolf et al., 2020). Ms-swift (Zhao et al., 2025) 158

is an official framework for fine-tuning and deploy- 159

ing large language models and multi-modal large 160

models, which supports the training, inference, 161

evaluation, quantization, and deployment. XTuner 162

(Contributors, 2023) is an efficient, flexible and 163

full-featured toolkit for fine-tuning large models, 164

which supports continuous pre-training, instruction 165

fine-tuning, and agent fine-tuning. Although the 166

above frameworks all implement sequence paral- 167

lel functions, these frameworks may suffer from 168

usability challenges, complex code encapsulation, 169

and even errors in sequence parallelism. LLaMA- 170

Factory (Zheng et al., 2024) is a unified framework 171

that integrates a suite of efficient training methods. 172

Although it is fully functional and easy to use, it 173

does not yet implement sequence parallel capabili- 174

ties. Therefore, it is necessary to provide support 175

for sequence parallelism in LLaMA-Factory and 176

conduct systematic research on the practical appli- 177

cation of sequence parallelism. 178
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3 Sequential Parallel Development179

We first describe the specific implementation of180

sequence parallelism, focusing on the declaration181

of sequence parallel groups, data processing, and182

the post-training loss calculation processing.183

3.1 Sequential Parallel Initialization184

The initialization of sequential parallelism includes185

grouping of corresponding GPUs and attention re-186

placement. Given the sequence parallel size sp187

(sp > 1) and gpu nums N , each group contains all188

N/sp GPUs, which subsequently support commu-189

nication between GPUs.190

Following the initialization of communication191

groups, we employ a monkey patch to substi-192

tute the default attention function with either193

Ring-Attention or DeepSpeed-Ulysses. The Ring-194

Attention implementation is adapted from the195

zigzag_ring_flash_attn_func provided by the ring-196

flash-attention 1 library, whereas the DeepSpeed-197

Ulysses variant is modified form the UlyssesAtten-198

tion function in the yunchang 2 library. It is worth199

noting that the operations we described above are200

all performed before loading the model.201

3.2 Sequentially Parallel Data Processing202

Since sequence parallelism requires data to be split203

onto GPUs in a same sequence parallel group for204

parallel computing, we need to preprocess the data.205

First, we pad the input sequences to a length divisi-206

ble by 8 × sequence parallel size. In practice, we207

further pad the sequences to the length closest to the208

cutoff_len (which is the maximum input length) pa-209

rameter that satisfies this constraint. Subsequently,210

all fields in the input data are evenly partitioned211

into multiple segments according to the sequence212

parallel size. For DeepSpeed-Ulysses, a simple213

sequential split of the data is sufficient. But for214

Ring-Attention, in order to achieve load balancing215

of multi-GPUs computing, we need to use zigzag216

split 3 (Fang and Zhao, 2024). It is worth noting217

that in order to make DeepSpeed-Ulysses compati-218

ble with the neat-packing function, we need to keep219

the attention_mask without splitting it, but copy it220

to other GPUs in the sequence parallel group for221

subsequent processing.222

1https://github.com/zhuzilin/
ring-flash-attention

2https://github.com/feifeibear/
long-context-attention/

3https://github.com/zhuzilin/
ring-flash-attention/issues/2

3.3 Correct Loss Calculation 223

In Supervised Fine-Tuning, the model is fine-tuned 224

via supervised learning, optimizing a loss function 225

based on human-provided labels, as shown in Equa- 226

tion 1: 227

Lθ = −
∑
i

log pθ(xi|inst, x<i) (1) 228

where θ is the parameter of the model, xi is the 229

ith token in the sequence, and inst is the human 230

instructions. 231

However, in the implementation of sequence par- 232

allelism, since only local output results are calcu- 233

lated on each GPU, the loss is only partial loss of 234

part of sequence. Therefore, the final calculation 235

loss should be performed by all_reduce operation 236

to sum. 237

Directed Preference Optimization (DPO) is used 238

to train the model to fit human preferences, whose 239

specific loss function is shown in Equation 2: 240

LDPO(πθ;πref ) = −E(x,yw,yl)[
log σ

(
β log

πθ(yw|x)
πref (yw|x)

− β
πθ(yl|x)
πref (yl|x)

)]
(2)

241

where x is the prompt, yw and yl denotes the 242

preferred and dispreferred completion, πθ and πref 243

denotes the policy model and reference model re- 244

spectively, the β is a hyperparameter and the σ 245

denotes the sigmoid (Han and Moraga, 1995) func- 246

tion. 247

Due to the impact of sequence parallelism, it is 248

necessary to perform an all-reduce operation across 249

GPUs within the same sequence parallel group to 250

obtain the final loss. However, unlike in SFT, the 251

presence of the sigmoid function prevents direct all- 252

redue on loss. Instead, we first perform all-reduce 253

operations on the πθ(yw|x), πref (yw|x), πθ(yl|x), 254

πref (yl|x) respectively, and then compute the DPO 255

loss according to Equation 2. 256

4 Dummy Head Ulysses 257

There is a problem with DeepSpeed-Ulysses. Since 258

it converts the sequence parallelism into the head 259

parallelism in the attention through an all-to-all op- 260

eration, it cannot handle the situation where the 261

head nums in the attention cannot divide the se- 262

quence parallel size. 263

Suppose the input sequence before attention is 264

[bs, seq_len/sp, hs, dim], where bs is the batch 265
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size, seq_len is the input sequence length, sp is266

the sequence parallel size, hs is the head num, and267

dim is hidden_dim after multi-head dimensional268

transformation. After the all-to-all operation, it will269

be converted to [bs, seq_len, hs/sp, dim]. When270

hs is not divisible by sp, the above operation will271

fail.272

Xtuner (Contributors, 2023) addresses this273

issue by transforming the hidden dimen-274

sion to introduce additional virtual heads,275

making it divisible. This approach involves276

a dimensional transformation, converting277

the shape from [bs, seq_len/sp, hs, dim] to278

[bs, seq_len/sp, insp × hs, dim/insp], thereby279

expanding the number of virtual heads. Here, insp280

represents an additional internal communication281

sequence parallel group, which aggregates the282

hidden dimension through an internal all_gather283

operation. This transformation reshapes the284

sequence into [bs, seq_len, hs × insp, dim],285

followed by additional attention operations. As286

a result, the hidden dimension is effectively287

recalculated insp times during the actual com-288

putation. However, in practice, this approach289

incurs higher memory consumption and increased290

communication overhead. To solve this problem,291

we use a simple method to add a few empty heads292

to solve this problem.293

4.1 Dummy Head Implementation294

If the number of attention heads is not divisi-295

ble by the sequence parallel size sp, we pad the296

head dimension by adding sp − (hs%sp) addi-297

tional heads, so that the total number of heads298

becomes divisible by sp. To ensure correctness299

during both the forward and backward passes, we300

extend the input along the head dimension before301

the all-to-all operation, resulting in an input shape302

of [bs, seq_len/sp, hsnew, dim], where hsnew in-303

cludes the padded heads. The extra heads are then304

removed appropriately during the backward pass.305

The corresponding code is shown in Algorithm 1:306

Algorithm 1: Dummy-Head-Ulysses
307

1 def pad_heads(tensor , sp):308
2 head_cnt = tensor.size (2)309
3 remainder = head_cnt % sp310
4 if remainder != 0:311
5 pad_size = sp - remainder312
6 tensor_padded = torch.nn.313

functional.pad(314
7 tensor ,315
8 pad=(0, 0, 0, pad_size , 0,316

0, 0, 0),317
9 mode='constant ',318

10 value =0.0 319
11 ) 320
12 return tensor_padded 321
13 else: 322
14 return tensor 323
15 324
16 def unpad_heads(padded , ori_head_cnt): 325
17 return padded[:, :, :ori_head_cnt , 326

:] 327328

4.2 Communication Analysis 329

We conducted communication complexity analy- 330

sis on DeepSpeed-Ulysses (Jacobs et al., 2023), 331

Ring-Attention (Liu et al., 2023), USP (Fang and 332

Zhao, 2024), Xtuner-Ulysses (Contributors, 2023), 333

as well as our Dummy-Head-Ulysses approach. We 334

uniformly set the batch size of the input data to 335

bs, the original sequence length to seq_len, and 336

the hidden dimension to d, i.e., the initial input is 337

(bs, seq_len, d). Our communication analysis ac- 338

counts for the additional overhead introduced by 339

sequence parallelism during both forward and back- 340

ward propagation. The communication and time 341

complexity comparison of all sequential parallel 342

algorithms is shown in Table 1. 343

DeepSpeed-Ulysses. The communication over- 344

head in DeepSpeed-Ulysses originates from all-to- 345

all operations, where query, key, value and output 346

are exchanged during attention computation. This 347

communication occurs twice, once during forward 348

process and once during backward propagation. On 349

modern clusters with intra-node NVSwitch inter- 350

connects inter-node fat tree IB topology, the total 351

communication cost is: O( 8
N × bs× seq_len× d), 352

where N denotes the sequence parallel size. 353

Ring-Attention. The communication in Ring- 354

Attention arises from P2P communication of key 355

and value during both forward and backward prop- 356

agation in attention computation. The total com- 357

munication cost is O(4× bs×seq_len×d). Since 358

the sequence parallel size is usually greater than or 359

equal to 2, Ring-Attention will have higher com- 360

munication cost than DeepSpeed-Ulysses. 361

USP. We denote spcp and sphp as the sequence 362

parallel size for Ring-Attention and DeepSpeed- 363

Ulysses in USP, respectively. Then USP can 364

be regarded as the outer layer performing Ring- 365

Attention with sequence length L
sphp

, and the in- 366

ner layer performing DeepSpeed-Ulysses with se- 367

quence length L
spcp

, so its final communication com- 368

plexity is O(
8+4spcp

N × bs× L× d). Therefore, its 369

communication complexity will introduce more 370

time complexity compared to DeepSpeed-Ulysses. 371
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Table 1: Complexity Analysis of Different Sequence Parallel Methods

Method Communication Complexity Time Complexity

DeepSpeed-Ulysses O
(
8
N × bs× seq_len× d

)
O
(
bs× seq_len2 × d

N

)
Ring-Attention O (4× bs× seq_len× d) O

(
bs× seq_len2 × d

N

)
USP O

(
8+4spcp

N × bs× L× d
)

O
(
bs× seq_len2 × d

N

)
Xtuner-Ulysses O

((
8
N + 3

insp

)
× bs× seq_len× d

)
O
(
bs× seq_len2 × d

N × insp
)

Dummy-Head-Ulysses O
(
8
N × hsnew

hs × bs× seq_len× d
)

O
(
bs× seq_len2 × d

N × hsnew
hs

)
Xtuner-Ulysses. Xtuner-Ulysses’ communication372

overhead originates from two components: all-373

gather and all-to-all operations. The all-to-all374

communication complexity remains identical to375

DeepSpeed-Ulysses, while an additional all-gather376

operation is required for query, key and value after377

all-to-all, contributing O( 3
insp × bs × seq_len ×378

d). Thus, the total communication complexity is379

O(( 8
N + 3

insp)×bs×seq_len×d), where insp rep-380

resents the inner sequence parallel size. It is worth381

mentioning that, unlike the previous sequence par-382

allelism, due to the operation of all_gather, the383

attention calculation complexity has doubled by384

the insp times, which is caused by the increase of385

dim dimension.386

Dummy-Head-Ulysses. The communication com-387

plexity of Dummy-Head-Ulysses is similar to that388

of Ulysses, except that we may add the head nums,389

so its communication complexity is O(8× hsnew
hs ×390

bs × seq_len × d
N ). In most cases, we do not391

need to add head nums, and when we need to392

add it, in most models today, the head nums that393

needs to be added is usually very small, so the394

value of hsnew
hs is only slightly greater than 1. In395

addition, due to the increase in head nums, the396

computational time complexity of the attention is397

O
(
bs× seq_len2 × d

N × hsnew
hs

)
.398

5 Thorough Analysis of Sequence399

Parallelism400

In this section, we analyze several practical issues401

related to the application of sequence parallelism,402

including the details of distributed communication403

during training and the impact of position IDs.404

5.1 Distributed Communication Problem405

Algorithm 2: Sample code to verify distributed commu-
nication

406
1 import torch407
2 import torch.distributed as dist408
3409

4 USE_NN_REDUCE = 0 410
5 411
6 def main_worker(gpu): 412
7 dist.init_process_group( 413
8 backend="nccl", init_method="tcp 414

:// localhost :12345", 415
world_size =2, rank=gpu 416

9 ) 417
10 torch.cuda.set_device(gpu) 418
11 w0 = torch.ones (1).cuda(device=gpu). 419

requires_grad_ () 420
12 if dist.get_rank () == 0: 421
13 x = torch.ones (1).cuda(device= 422

gpu).requires_grad_ () * 2 423
14 else: 424
15 x = torch.ones (1).cuda(device= 425

gpu).requires_grad_ () * 3 426
16 427
17 y = torch.mul(w0, x) 428
18 if USE_NN_REDUCE: 429
19 y = dist.nn.all_reduce(y) 430
20 else: 431
21 dist.all_reduce(y) 432
22 loss = 2 * y - 1 433
23 loss.backward () 434
24 435
25 def local(): 436
26 w0 = torch.ones (1).cuda(device =0). 437

requires_grad_ () 438
27 x = torch.ones (1).cuda(device =0). 439

requires_grad_ () * 5 440
28 y = w0 * x 441
29 loss = 2 * y - 1 442
30 loss.backward () 443444

Since all-reduce is used in sequence paral- 445

lelism to aggregate the final loss, it is im- 446

portant to note that, in actual implementa- 447

tion, communication should be performed us- 448

ing torch.distributed.nn.all_reduce rather than 449

torch.distributed.all_reduce. This is because 450

the latter does not implement the corresponding 451

backpropagation wrapper, and the difference be- 452

tween the two can be found in 4. We provide an 453

additional code to analyze the difference between 454

the two, as shown in Algorithm 2. 455

Based on a simulated sequence parallel 456

scenario using the test code above, we 457

4https://github.com/pytorch/pytorch/issues/
58005
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Figure 1: Performance of grad norm under distributed
communication.

observe that the gradients of w0 under458

torch.distributed.nn.all_reduce are 8 and459

12 (GPU 0 and GPU 1), while those under460

torch.distributed.all_reduce are 4 and 6. These461

results differ by exactly the sequence parallel462

size, indicating incorrect scaling in the latter case.463

Furthermore, when sequence parallelism is not464

applied (i.e., in the local setting), the gradient465

of w0 is expected to be 10, which matches the466

averaged result between two GPUs produced by467

torch.distributed.nn.all_reduce. This consis-468

tency further validates the correctness of using469

torch.distributed.nn.all_reduce for gradient470

aggregation in sequence parallelism.471

We can perform the following analysis. Assume472

that the input data on two GPUs is [x0, x1], and the473

intermediate computation yields [y0 = w0x0, y1 =474

w0x1]. The final output on each GPU becomes475

[y = y0+y1, y = y1+y0], leading to a loss of [2y−476

1, 2y − 1]. Under torch.distributed.all_reduce,477

the gradient with respect to w0 becomes [∂loss∂y ·478
∂y
∂y0

· ∂y0
∂w0

, ∂loss∂y · ∂y
∂y1

· ∂y1
∂w0

]. In contrast,479

torch.distributed.nn.all_reduce also performs480

an allreduce operation during the backward pass,481

which results in a final gradient proportional to482

[all_reduce(∂loss∂y ) · ∂y
∂y0

· ∂y0
∂w0

, all_reduce(∂loss∂y ) ·483
∂y
∂y1

· ∂y1∂w0
], which differs from the former by a factor484

equal to the sequence parallel size. We also evalu-485

ated the impact of this issue within our framework.486

As shown in Figure 1, the gradient norm differs487

by a factor corresponding to the sequence parallel488

size.489

5.2 The Impact of Position IDs490

It should be noted that most current decoder-only491

models, such as Qwen (Yang et al., 2024), LLaMa492

(Grattafiori et al., 2024), etc., use RoPE (Su et al.,493

2024) position encoding. When using sequence494

parallelism, if the position_ids parameter is not 495

explicitly passed in, the existing sequence will be 496

re-encoded on each GPU, which will cause se- 497

rious errors. That is, when no position_ids is 498

passed in, for a sequence of length seq_len, it is 499

split into seq_len/sp length on each GPU, and 500

it will be assigned the default position_ids of 501

[0, 1, 2, ..., seq_len/sp− 1], Where seq_len is the 502

length of the training data and sp is the sequence 503

parallel size. However, since it essentially repre- 504

sents a complete sequence, it should have a com- 505

plete position encoding, that is, its position encod- 506

ing should be a partition of [0, 1, 2, ...seq_len− 1]. 507

Therefore, we need to initialize the position_ids 508

of the data in advance and explicitly pass them into 509

the forward process of the corresponding model. 510

6 Experiments 511

The experimental section focuses primarily on ver- 512

ifying the correctness of our implementation, as 513

well as comparing the performance of DeepSpeed- 514

Ulysses and Ring-Attention, including their maxi- 515

mum supported sequence lengths and throughput 516

efficiency. In addition, we provide an experimental 517

analysis of the performance and efficiency of our 518

proposed Dummy-Head-Ulysses variant. 519

6.1 Correctness Verification 520

Experiment Settings. To verify correctness, we 521

construct 30 samples each for the SFT and DPO 522

tasks. The experiments were conducted using the 523

Qwen2.5-0.5B-Instruct (Yang et al., 2024) model. 524

For training, we used a gradient accumulation step 525

of 8, trained for 8 epochs, and set the input se- 526

quence length to 8k tokens. We adopted Deep- 527

Speed ZeRO Stage 3 with offloading, enabled se- 528

quence parallel size 2, and used bfloat16 precision. 529

The learning rate was set to 5× 10−5 for SFT and 530

1×10−6 for DPO, with the DPO β parameter set to 531

0.1. When sequence parallelism was enabled, we 532

used 2×A100 GPUs (80GB); otherwise, we used a 533

single A100 (80GB). 534

Results. The experimental results are presented 535

in Figures 2 and 3. As shown, both DeepSpeed- 536

Ulysses and Ring-Attention under our implementa- 537

tion produce loss curves that are nearly identical to 538

those obtained without sequence parallelism. 539

For SFT, the loss difference is negligible, with 540

the curves almost perfectly overlapping. In the 541

case of DPO, the loss exhibits slightly greater vari- 542

ance. This is partially due to the inherently smaller 543
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Figure 2: Comparison of SFT loss between sequential
parallel and non-sequential parallel.
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Figure 3: Comparison of DPO loss between sequential
parallel and non-sequential parallel.

magnitude of DPO loss values. Furthermore, we544

conducted a experiment in which the learning rate545

was set to zero, effectively disabling parameter546

updates, to isolate the effect of backward commu-547

nication. In this setting, the πθ(yw|x) and πθ(yl|x)548

from the forward pass matched exactly between549

the sequence-parallel and non-sequence-parallel550

implementations, indicating that any discrepancies551

originate from the backward communication in se-552

quence parallelism.553

Table 2: Max Sequence Length Comparison Between
DeepSpeed-Ulysses (DU) and Ring-Attention (RA)

Model Method SP DU RA

Qwen2.5-7B
SFT

4 86k 96k
8 166k 182k

DPO
4 38k 34k
8 76k 60k

Qwen2.5-14B
SFT 8 136k 152k
DPO 8 68k 52k

Qwen2.5-72B
SFT 8 132k 110k
DPO 8 46k 44k

6.2 Performance camparsion of 554

DeepSpeed-Ulysses and Ring-Attention 555

This subsection compares the maximum sup- 556

ported sequence length and runtime efficiency of 557

DeepSpeed-Ulysses and Ring-Attention. 558

Experiment Settings. We constructed SFT and 559

DPO datasets in which each individual sample ex- 560

ceeds 200k tokens. This design ensures that the 561

evaluation of maximum sequence length is not 562

affected by padding, thereby providing accurate 563

stress-testing results5. The batch size was fixed 564

to 1 across all experiments, with sequence paral- 565

lel size set to either 4 or 8. We employed Deep- 566

Speed ZeRO Stage 3 with offloading and trained 567

using bfloat16 precision. Length and runtime effi- 568

ciency evaluations were conducted on Qwen2.5-7B, 569

Qwen2.5-14B, and Qwen2.5-72B. The 72B model 570

was trained on 32×A100 (80GB) GPUs, while 571

the other models were trained on 8×A100 (80GB) 572

GPUs. The learning rate was set to 5 × 10−6 for 573

SFT and 1 × 10−6 for DPO, with the DPO beta 574

parameter set to 0.1. 575

Results. The results of maximum sequence 576

length stress testing are presented in Table 2. It 577

can be observed that sequence parallelism enables 578

both SFT and DPO to process longer sequences 579

under limited resource conditions. However, due to 580

the additional communication overhead introduced 581

by sequence parallelism, the improvement in maxi- 582

mum sequence length is not strictly proportional to 583

the increase in the number of devices. 584

Furthermore, when comparing the two imple- 585

mentation approaches, we find that DeepSpeed- 586

Ulysses generally supports longer sequences in 587

DPO tasks, while it tends to support shorter lengths 588

in SFT. This difference may stems from DPO’s 589

additional reference model, which introduces ex- 590

tra communication overhead such that DeepSpeed- 591

Ulysses appears more efficient. The suboptimal 592

performance of Ring-Attention on the 72B model 593

may be attributed to the additional communica- 594

tion overhead across multiple nodes, which leads 595

to a reduction in the maximum sequence length 596

achievable for both SFT and DPO tasks. These 597

observations suggest that the choice of sequence 598

parallelism strategy should be guided by the char- 599

acteristics of the specific training task. 600

5All experiments were conducted using torch 2.2.1, trans-
formers 4.45.2 (Wolf et al., 2020) and flash_attention 2.6.1.
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Table 3: Throughout (Tokens/s) Comparsion between differnt sequence parallel methods

Model Method Length Ulysses DHU XU USP-u4 USP-u2 RA

1.5B SFT 128k – 1351.66 1131.08 1720.42 1809.38 1732.45
1.5B DPO 32k – 1256.85 1070.64 1758.42 1637.75 1421.16
3B SFT 100k 1118.50 – – 1027.85 919.56 890.52
3B DPO 32k 753.13 – – 951.60 885.27 885.27
7B SFT 130k – 619.88 380.86 594.33 586.55 567.27
7B DPO 48k – 570.62 426.70 709.51 615.36 689.31
14B SFT 100k 284.73 – – 281.94 282.51 282.78
14B DPO 32k 250.48 – – 321.44 272.75 307.44
32B SFT 80k 146.55 – – 156.15 141.57 139.55
32B DPO 24k 104.10 – – 141.80 120.67 126.90

6.3 Throughout Comparsion of Different601

Sequence Parallel Methods602

To evaluate the effectiveness of our Dummy-Head603

Ulysses (DHU) implementation, we compare its604

throughput with Xtuner-Ulysses (XU), Ulysses,605

USP-u(s, the sequence number of ulysses degree)606

and Ring-Attention (RA).607

Experiment Settings. We conduct experiments608

using different size qwen2.5-models with a se-609

quence parallel size of 8, where only the 1.5B and610

7B models encounter cases where the number of611

attention heads is not divisible by the sequence612

parallel size. The dataset and hyperparameters are613

consistent with those used in Section 6.2. All exper-614

iments are conducted on 8 × A100 (80GB) GPUs.615

Results. The experimental results for both SFT616

and DPO tasks are shown in Table 3. It can be617

observed that our Dummy-Head-Ulysses achieves618

higher throughput compared to the Xtuner-Ulysses.619

This improvement is attributed to the fact that620

Xtuner-Ulysses replicates the same attention heads621

across multiple devices, which leads to increased622

memory consumption and computational overhead.623

In contrast, our method only introduces a small624

number of additional heads as padding.625

Our Dummy-Head-Ulysses exhibits marginally626

lower throughput than USP in certain cases (e.g.,627

DPO with 7B models), likely attributable to in-628

creased attention computation complexity intro-629

duced by the dummy-head mechanism. While630

DeepSpeed-Ulysses maintains optimal through-631

put in most scenarios, we observe that USP-U4632

achieves superior throughput in selected experi-633

ments. Notably, while DeepSpeed-Ulysses gener-634

ally achieves optimal throughput, USP-U4 outper-635

forms it in some cases—with DeepSpeed-Ulysses636

even underperforming Ring-Attention. This stems 637

from its reliance on flash_attn_varlen_func (trig- 638

gered by passing in attention_mask for neat- 639

packing compatibility), which incurs overhead 640

in padding-free scenarios like our experiments, 641

though it benefits padded data. 642

7 Conclusion and Future Work 643

In this work, we present the integration of se- 644

quence parallelism strategies into the LLaMA- 645

Factory framework to support long-sequence train- 646

ing. We provide a detailed account of the imple- 647

mentation process and key challenges. In addi- 648

tion, we proposed Dummy-Head-Ulysses to solve 649

the problem that the head nums cannot divide the 650

sequence parallel size encountered by DeepSpeed- 651

Ulysses. We verified the accuracy of our implemen- 652

tation through experiments and carefully analyzed 653

a series of indicators such as the max sequence 654

length and throughput of different sequence paral- 655

lel methods. 656

In future work, we plan to continuously improve 657

our repository with a focus on the following direc- 658

tions: 659

(1) Extending support to a broader range of mod- 660

els, including enabling sequence parallelism for 661

multimodal models; 662

(2) Exploring more efficient sequence paral- 663

lelism strategies to further reduce memory con- 664

sumption and improve computational efficiency; 665

(3) Enhancing functionality to support more effi- 666

cient training workflows, such as enabling precom- 667

putation of reference model outputs in DPO. 668

8



Limitations669

The limitations of our current work are summarized670

as follows:671

(1) In extending DeepSpeed-Ulysses, the imple-672

mentation of Dummy-Head-Ulysses incurs a cer-673

tain amount of overhead. We aim to explore more674

efficient implementations to ease this cost.675

(2) We observe that the DPO loss exhibits a small676

discrepancy. While the deviation remains within an677

acceptable range, we are interested in investigating678

approaches to further reduce this error.679
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