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Abstract

Nowadays, large language models (LLMs) are
expected to process inputs of unprecedented
length, with current token limits extending
to several million tokens. To meet the long-
sequence demands of LLMs, fine-tuning frame-
works must also support post-training on ex-
tended sequences. Based on the LLaMA-
Factory framework, we implemented multi-
ple sequence parallelism (DeepSpeed-Ulysses
and Ring-Attention), provided feasible support
for sequence parallelism of long sequences.
Meanwhile, we extended DeepSpeed-Ulysses
by adding dummy heads to handle cases where
the number of attention heads is not divisible
by the sequence parallel size. At the same time,
we conducted an in-depth analysis of the prac-
tical issues and potential errors of applying se-
quence parallelism to post-training. Finally,
we experimentally validated the correctness of
our sequence parallelism implementation and
demonstrated the efficiency of our Dummy-
Head Ulysses. We also compared different se-
quence parallel strategies in terms of maximum
sequence length and runtime efficiency. Our
code is open at https://anonymous.4open.
science/r/SP-LLaMA-Factory-B8B1.

1 Introduction

Large language models (LLMs) are becoming in-
creasingly important for long sequence perfor-
mance, and the context length of today’s state-of-
the-art models (Liu et al., 2024; Yang et al., 2024)
has reached millions of tokens. Although comput-
ing speed has been improved, limited computing
resources sometimes become a bottleneck for train-
ing. To achieve post-training of long sequences,
sequence parallelism has become a necessity. Ring-
Attention (Liu et al., 2023) and DeepSpeed-Ulysses
(Jacobs et al., 2023) are the two most common im-
plementations of sequence parallelism. Although
they have been applied to some existing frame-
works (Contributors, 2023; Zhao et al., 2025; Hu

et al., 2024), some implementations have problems,
and there is still no work that has fully explored the
specific implementation details of sequence paral-
lelism and the comparison of the details of different
sequence parallelism.

Among the existing open source training frame-
works, the LLaMA-Factory (Zheng et al., 2024)
framework supports many models and various train-
ing functions, but unfortunately, it does not sup-
port sequence parallelism. Based on the LLaMA-
Factory framework, we implemented the sequence
parallelism of Ring-Attention and Deepspeed-
Ulysses, and only one line of extra code is needed
to implement sequence parallel post-training. At
the same time, we try to allow sequence parallelism
to coexist with most of the original functions and
optimizations to ensure that a series of functions
such as LoRA (Hu et al., 2022) and neat-packing
(Kundu et al., 2024) can be compatible normally.

In addition, we noticed that the DeepSpeed-
Ulysses must satisfy the requirement that the num-
ber of attention heads is divisible by sequence
parallel size. One possible approach is to com-
bine DeepSpeed-Ulysses with other sequence paral-
lelism methods, as demonstrated by USP (Fang and
Zhao, 2024) which integrates Ring-Attention, and
LoongTrain (Gu et al., 2024) which incorporates
Double-Ring Attention. However, incorporating
other sequence parallelism mechanisms may lose
the efficiency advantages of DeepSpeed-Ulysses.
Another approach, as adopted by Xtuner (Contribu-
tors, 2023), avoids integrating with other sequence
parallelism methods. Instead, it creates virtual at-
tention heads by partitioning the hidden dimension.
However, Xtuner’s solution not only takes up more
memory, but also reduces computational efficiency.
We proposed a simple and effective supplementary
solution, Dummy-Head Ulysses. By making up
for the empty dummy heads, we can reduce the
additional overhead and make the sequence paral-
lel size of ulysses no longer limited by the number
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of heads. We have proved through experiments
that this solution has significant improvements in
memory optimization and efficiency optimization
compared to Xtuner’s implementation.

In addition, we conducted systematic analysis of
critical challenges in sequence parallelism, includ-
ing distributed communication problem and the im-
pact of position IDs. Furthermore, we performed
comprehensive comparsion between different se-
quence parallel implementations across key met-
rics, including throughput and maximum sequence
length capacity, providing empirical foundations
for practical deployment decisions.

Our contributions are summarized in the follow-
ing three points:

* Based on the LLaMA-Factory framework,
we implemented the post-training sequence
parallel functions (SFT and DPO) of Ring-
Attention and DeepSpeed-Ulysses, while tak-
ing into account most of the original func-
tions and providing support for post-training
of long sequences. The correctness of our im-
plementation is proved through experimental
loss error analysis.

* We proposed a new method of adding empty
dummy heads to make up for the shortcom-
ings of ulysses, and verified its memory and ef-
ficiency improvements through experiments.

* We explored the specific issues of applying
different sequence parallelism to actual post-
training, and compared the maximum training
length and efficiency of different sequence
parallel methods.

2 Related Works

2.1 Sequence Parallelsim

Due to the need for long sequence training, se-
quence parallelism is becoming increasingly im-
portant. Deepspeed-Ulysses (Jacobs et al., 2023)
and Ring-Attention (Liu et al., 2023) are two im-
portant sequence parallel technologies. The former
converts the sequence parallelism in attention calcu-
lation into head parallelism through all-to-all com-
munication, while the latter’s attention output is ob-
tained by iterative calculation of local query chunk
with all KV chunks. The communication of Ring-
Attention is organized in a ring form, and each
GPU sends and receives KV chunks at the same
time. The biggest problem with Ulysses is that

it must satisfy the requirement that the sequence
parallel size is divisible by the head num, so for
certain models, it may be difficult to support the 8
GPUs sequence parallel training. USP (Fang and
Zhao, 2024) combines Ulysses and Ring-Attention
and proposes a new Unified Sequence Parallelism
Attention. In addition, LoongTrain (Gu et al., 2024)
also pays attention to the scalability and efficiency
issues of existing methods, proposes a new 2D at-
tention mechanism, combines head parallelism and
sequence parallelism, and proposes Double-Ring
attention to accelerate training. Although the tech-
nology of sequence parallelism has become ma-
ture, the details of its application to actual training
frameworks still need to be explored.

2.2 Fine-Tuning framework

Due to the increasing demand for LLM fine-tuning
tasks, more and more LLM fine-tuning frameworks
have emerged. Megatron-LM (Shoeybi et al., 2019)
serves as a research-oriented framework leveraging
Megatron-Core for LLM training. OpenRLHF (Hu
et al., 2024) is a high-performance Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022) framework built on Ray (Moritz et al.,
2018), DeepSpeed (Rasley et al., 2020), vLLM
(Kwon et al., 2023) and Hugging Face Transform-
ers (Wolf et al., 2020). Ms-swift (Zhao et al., 2025)
is an official framework for fine-tuning and deploy-
ing large language models and multi-modal large
models, which supports the training, inference,
evaluation, quantization, and deployment. XTuner
(Contributors, 2023) is an efficient, flexible and
full-featured toolkit for fine-tuning large models,
which supports continuous pre-training, instruction
fine-tuning, and agent fine-tuning. Although the
above frameworks all implement sequence paral-
lel functions, these frameworks may suffer from
usability challenges, complex code encapsulation,
and even errors in sequence parallelism. LLaMA-
Factory (Zheng et al., 2024) is a unified framework
that integrates a suite of efficient training methods.
Although it is fully functional and easy to use, it
does not yet implement sequence parallel capabili-
ties. Therefore, it is necessary to provide support
for sequence parallelism in LLaMA-Factory and
conduct systematic research on the practical appli-
cation of sequence parallelism.



3 Sequential Parallel Development

We first describe the specific implementation of
sequence parallelism, focusing on the declaration
of sequence parallel groups, data processing, and
the post-training loss calculation processing.

3.1 Sequential Parallel Initialization

The initialization of sequential parallelism includes
grouping of corresponding GPUs and attention re-
placement. Given the sequence parallel size sp
(sp > 1) and gpu nums N, each group contains all
N/sp GPUs, which subsequently support commu-
nication between GPUs.

Following the initialization of communication
groups, we employ a monkey patch to substi-
tute the default attention function with either
Ring-Attention or DeepSpeed-Ulysses. The Ring-
Attention implementation is adapted from the
zigzag_ring_flash_attn_func provided by the ring-
flash-attention ! library, whereas the DeepSpeed-
Ulysses variant is modified form the UlyssesAtten-
tion function in the yunchang ? library. It is worth
noting that the operations we described above are
all performed before loading the model.

3.2 Sequentially Parallel Data Processing

Since sequence parallelism requires data to be split
onto GPUs in a same sequence parallel group for
parallel computing, we need to preprocess the data.
First, we pad the input sequences to a length divisi-
ble by 8 x sequence parallel size. In practice, we
further pad the sequences to the length closest to the
cutoff_len (which is the maximum input length) pa-
rameter that satisfies this constraint. Subsequently,
all fields in the input data are evenly partitioned
into multiple segments according to the sequence
parallel size. For DeepSpeed-Ulysses, a simple
sequential split of the data is sufficient. But for
Ring-Attention, in order to achieve load balancing
of multi-GPUs computing, we need to use zigzag
split 3 (Fang and Zhao, 2024). It is worth noting
that in order to make DeepSpeed-Ulysses compati-
ble with the neat-packing function, we need to keep
the attention_mask without splitting it, but copy it
to other GPUs in the sequence parallel group for
subsequent processing.

"https://github.com/zhuzilin/
ring-flash-attention

2https://github.com/feifeibear/
long-context-attention/

3https://github.com/zhuzilin/
ring-flash-attention/issues/2

3.3 Correct Loss Calculation

In Supervised Fine-Tuning, the model is fine-tuned
via supervised learning, optimizing a loss function
based on human-provided labels, as shown in Equa-
tion 1:

L9 = _Zlogpg(xﬂinst, .’L'<i) (1)

1

where 0 is the parameter of the model, x; is the
145, token in the sequence, and inst is the human
instructions.

However, in the implementation of sequence par-
allelism, since only local output results are calcu-
lated on each GPU, the loss is only partial loss of
part of sequence. Therefore, the final calculation
loss should be performed by all_reduce operation
to sum.

Directed Preference Optimization (DPO) is used
to train the model to fit human preferences, whose
specific loss function is shown in Equation 2:

Lppo(my; 7Tref) = —E(m,yw,yz)
[log(j(m()g noyuls) ol )}
7Tref(yw|x) 7Tref(yl’a:)

(@)

where zx is the prompt, y,, and y; denotes the
preferred and dispreferred completion, 7y and 7,
denotes the policy model and reference model re-
spectively, the [ is a hyperparameter and the o
denotes the sigmoid (Han and Moraga, 1995) func-
tion.

Due to the impact of sequence parallelism, it is
necessary to perform an all-reduce operation across
GPUs within the same sequence parallel group to
obtain the final loss. However, unlike in SFT, the
presence of the sigmoid function prevents direct all-
redue on loss. Instead, we first perform all-reduce
operations on the 7y (Yuw | ), Tref (Yw|x), To(Ui]x),
Tref (41| ) respectively, and then compute the DPO
loss according to Equation 2.

4 Dummy Head Ulysses

There is a problem with DeepSpeed-Ulysses. Since
it converts the sequence parallelism into the head
parallelism in the attention through an all-to-all op-
eration, it cannot handle the situation where the
head nums in the attention cannot divide the se-
quence parallel size.

Suppose the input sequence before attention is
[bs, seq_len/sp, hs,dim], where bs is the batch
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size, seq_len is the input sequence length, sp isio
the sequence parallel size, s is the head num, and "'
dim is hidden_dim after multi-head dimensional i
transformation. After the all-to-all operation, it will 14
be converted to [bs, seq_len, hs/sp, dim]. When
hs is not divisible by sp, the above operation w1ll
fail.

Xtuner (Contributors, 2023) addresses this
issue by transforming the hidden dimen-
sion to introduce additional virtual heads,
making it divisible. This approach involves
a dimensional transformation, converting
the shape from [bs, seq_len/sp,hs,dim] to
[bs, seq_len/sp,insp x hs,dim/insp|, thereby
expanding the number of virtual heads. Here, insp
represents an additional internal communication
sequence parallel group, which aggregates the
hidden dimension through an internal all_gather
operation.  This transformation reshapes the
sequence into [bs,seq_len,hs X insp,dim],
followed by additional attention operations. As
a result, the hidden dimension is effectively
recalculated insp times during the actual com-
putation. However, in practice, this approach
incurs higher memory consumption and increased
communication overhead. To solve this problem,
we use a simple method to add a few empty heads
to solve this problem.

4.1 Dummy Head Implementation

If the number of attention heads is not divisi-
ble by the sequence parallel size sp, we pad the
head dimension by adding sp — (hs%sp) addi-
tional heads, so that the total number of heads
becomes divisible by sp. To ensure correctness
during both the forward and backward passes, we
extend the input along the head dimension before
the all-to-all operation, resulting in an input shape
of [bs, seq_len/sp, hsnew, dim|, where hspe,, in-
cludes the padded heads. The extra heads are then
removed appropriately during the backward pass.
The corresponding code is shown in Algorithm 1:

Algorithm 1: Dummy-Head-Ulysses

def pad_heads(tensor, sp):
head_cnt = tensor.size(2)
remainder = head_cnt % sp

if remainder != 0:
pad_size = sp - remainder
tensor_padded = torch.nn.
functional.pad(

tensor,

pad=(0, @0, 0, pad_size, 0,
o, 90, 0),

mode= s

value=0.0
)
return tensor_padded
else:
return tensor

def unpad_heads(padded,
return padded[:, :,
]

ori_head_cnt):
:ori_head_cnt,

4.2 Communication Analysis

We conducted communication complexity analy-
sis on DeepSpeed-Ulysses (Jacobs et al., 2023),
Ring-Attention (Liu et al., 2023), USP (Fang and
Zhao, 2024), Xtuner-Ulysses (Contributors, 2023),
as well as our Dummy-Head-Ulysses approach. We
uniformly set the batch size of the input data to
bs, the original sequence length to seq_len, and
the hidden dimension to d, i.e., the initial input is
(bs, seq_len, d). Our communication analysis ac-
counts for the additional overhead introduced by
sequence parallelism during both forward and back-
ward propagation. The communication and time
complexity comparison of all sequential parallel
algorithms is shown in Table 1.
DeepSpeed-Ulysses. The communication over-
head in DeepSpeed-Ulysses originates from all-to-
all operations, where query, key, value and output
are exchanged during attention computation. This
communication occurs twice, once during forward
process and once during backward propagation. On
modern clusters with intra-node NVSwitch inter-
connects inter-node fat tree IB topology, the total
communication cost is: O(% X bs x seq_len X d),
where IV denotes the sequence parallel size.
Ring-Attention. The communication in Ring-
Attention arises from P2P communication of key
and value during both forward and backward prop-
agation in attention computation. The total com-
munication cost is O(4 X bs X seq_len x d). Since
the sequence parallel size is usually greater than or
equal to 2, Ring-Attention will have higher com-
munication cost than DeepSpeed-Ulysses.

USP. We denote sp., and spy, as the sequence
parallel size for Ring-Attention and DeepSpeed-
Ulysses in USP, respectively. Then USP can
be regarded as the outer layer performing Ring-
Attention with sequence length ﬁ, and the in-
ner layer performing DeepSpeed-Ulysses with se-
quence length = L , so its final communication com-

plexity is O(8+§5p 2 x bs x L x d). Therefore, its
communication complexity will introduce more
time complexity compared to DeepSpeed-Ulysses.




1

Table 1: Complexity Analysis of Different Sequence Parallel Methods

Method

Communication Complexity

Time Complexity

DeepSpeed-Ulysses

(— X bs x seq_len x d)

0] (bs X seq_len2 X %)
X ¥

Ring-Attention O (4 x bs x seq_len x d) O (bs x seq_len® )
USP <8+45pq’ X bs x L x d) O (bs x seq_len? x %)
Xtuner-Ulysses (( 8 + msp) X bs X seq_len x d) O (bs X seq_len? x % X insp)
Dummy-Head-Ulysses O (% X hs”“" X bs X seq_len X d) 0] (bs x seq_len? x % X hsh%)

Xtuner-Ulysses. Xtuner-Ulysses’ communication :
overhead originates from two components: all-’
gather and all-to-all operations. The all-to-all |
communication complexity remains identical to s
DeepSpeed-Ulysses, while an additional all-gather

operation is required for query, key and value after ,
all-to-all, contributing O(— X bs x seq_len X!
d). Thus, the total communlca‘uon complexity is'
O((%+ msp) X bs x seq_len x d), where insp rep-,
resents the inner sequence parallel size. It is worth '®
mentioning that, unlike the previous sequence par- ,
allelism, due to the operation of all_gather, the s
attention calculation complexity has doubled by

the insp times, which is caused by the increase of 1(
dim dimension. I8
Dummy-Head-Ulysses. The communication com-'

plexity of Dummy-Head-Ulysses is similar to that,I
of Ulysses, except that we may add the head nums,>
s0 its communication complexity is O(8 x hsh% X 4

bs x seq_len X %) In most cases, we do not»s
need to add head nums, and when we need to°
add it, in most models today, the head nums that
needs to be added is usually very small, so the
value of hs”ew is only slightly greater than 1. In*
addition, due to the increase in head nums, the
computational time complexity of the attention is
@) (bs X seq_len2 X % X h“”h%)

5 Thorough Analysis of Sequence

Parallelism

In this section, we analyze several practical issues
related to the application of sequence parallelism,
including the details of distributed communication
during training and the impact of position IDs.

5.1 Distributed Communication Problem

Algorithm 2: Sample code to verify distributed commu-
nication

import torch
import torch.distributed as dist

USE_NN_REDUCE = @

def main_worker (gpu):
dist.init_process_group(
backend= , init_method=
world_size=2, rank=gpu
)
torch.cuda.set_device(gpu)
w@ = torch.ones(1).cuda(device=gpu).
requires_grad_()
if dist.get_rank() == 0:
x = torch.ones(1).cuda(device=
gpu).requires_grad_() x 2

else:
x = torch.ones(1).cuda(device=
gpu).requires_grad_() * 3
y = torch.mul(w@, x)

if USE_NN_REDUCE:

y = dist.nn.all_reduce(y)
else:

dist.all_reduce(y)
loss = 2 xy -1
loss.backward()

def local():
w@ = torch.ones(1).cuda(device=0).
requires_grad_()
x = torch.ones(1).cuda(device=0).
requires_grad_() * 5
y = wd * x

loss = 2 x y -1
loss.backward ()

Since all-reduce is used in sequence paral-
lelism to aggregate the final loss, it is im-
portant to note that, in actual implementa-
tion, communication should be performed us-
ing torch.distributed.nn.all_reduce rather than
torch.distributed.all_reduce. This is because
the latter does not implement the corresponding
backpropagation wrapper, and the difference be-
tween the two can be found in . We provide an
additional code to analyze the difference between
the two, as shown in Algorithm 2.

Based on a simulated sequence parallel
scenario using the test code above, we

4https://github.com/pytorch/pytor‘ch/issues/
58005
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Figure 1: Performance of grad norm under distributed
communication.

observe that the gradients of wy under
torch.distributed.nn.all_reduce are 8 and
12 (GPU 0 and GPU 1), while those under
torch.distributed.all_reduce are 4 and 6. These
results differ by exactly the sequence parallel
size, indicating incorrect scaling in the latter case.
Furthermore, when sequence parallelism is not
applied (i.e., in the local setting), the gradient
of wq is expected to be 10, which matches the
averaged result between two GPUs produced by
torch.distributed.nn.all_reduce. This consis-
tency further validates the correctness of using
torch.distributed.nn.all_reduce for gradient
aggregation in sequence parallelism.

We can perform the following analysis. Assume
that the input data on two GPUs is [x(, 21], and the
intermediate computation yields [yg = wozo,y1 =
wox1]. The final output on each GPU becomes
[y = yo+y1,y = y1+y0), leading to aloss of [2y—
1,2y — 1]. Under torch.distributed.all_reduce,
the gradient with respect to wy becomes [%js .

Oy . Oy Oloss . Oy . O
dyo ~ Owe’ Oy o dogl- In contrast,

torch.distributed.nn.all_reduce also performs
an allreduce operation during the backward pass,
which results in a final gradient proportional to
[all_reduce(ag’;s) . g—yyo . C%%, all_reduce(ag%) .
(%yl . %], which differs from the former by a factor
equal to the sequence parallel size. We also evalu-
ated the impact of this issue within our framework.
As shown in Figure 1, the gradient norm differs
by a factor corresponding to the sequence parallel

size.

5.2 The Impact of Position IDs

It should be noted that most current decoder-only
models, such as Qwen (Yang et al., 2024), LLaMa
(Grattafiori et al., 2024), etc., use RoPE (Su et al.,
2024) position encoding. When using sequence

parallelism, if the position_ids parameter is not
explicitly passed in, the existing sequence will be
re-encoded on each GPU, which will cause se-
rious errors. That is, when no position_ids is
passed in, for a sequence of length seq_len, it is
split into seq_len/sp length on each GPU, and
it will be assigned the default position_tds of
[0,1,2,...,seq_len/sp — 1], Where seq_len is the
length of the training data and sp is the sequence
parallel size. However, since it essentially repre-
sents a complete sequence, it should have a com-
plete position encoding, that is, its position encod-
ing should be a partition of [0, 1, 2, ...seq_len — 1].
Therefore, we need to initialize the position_ids
of the data in advance and explicitly pass them into
the forward process of the corresponding model.

6 Experiments

The experimental section focuses primarily on ver-
ifying the correctness of our implementation, as
well as comparing the performance of DeepSpeed-
Ulysses and Ring-Attention, including their maxi-
mum supported sequence lengths and throughput
efficiency. In addition, we provide an experimental
analysis of the performance and efficiency of our
proposed Dummy-Head-Ulysses variant.

6.1 Correctness Verification

Experiment Settings. To verify correctness, we
construct 30 samples each for the SFT and DPO
tasks. The experiments were conducted using the
Qwen2.5-0.5B-Instruct (Yang et al., 2024) model.
For training, we used a gradient accumulation step
of 8, trained for 8 epochs, and set the input se-
quence length to 8k tokens. We adopted Deep-
Speed ZeRO Stage 3 with offloading, enabled se-
quence parallel size 2, and used bfloat16 precision.
The learning rate was set to 5 x 10~ for SFT and
1 x 1079 for DPO, with the DPO 3 parameter set to
0.1. When sequence parallelism was enabled, we
used 2xA 100 GPUs (80GB); otherwise, we used a
single A100 (80GB).

Results. The experimental results are presented
in Figures 2 and 3. As shown, both DeepSpeed-
Ulysses and Ring-Attention under our implementa-
tion produce loss curves that are nearly identical to
those obtained without sequence parallelism.

For SFT, the loss difference is negligible, with
the curves almost perfectly overlapping. In the
case of DPO, the loss exhibits slightly greater vari-
ance. This is partially due to the inherently smaller
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Figure 2: Comparison of SFT loss between sequential
parallel and non-sequential parallel.
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Figure 3: Comparison of DPO loss between sequential
parallel and non-sequential parallel.

magnitude of DPO loss values. Furthermore, we
conducted a experiment in which the learning rate
was set to zero, effectively disabling parameter
updates, to isolate the effect of backward commu-
nication. In this setting, the mg(y,,|z) and mg(y;|z)
from the forward pass matched exactly between
the sequence-parallel and non-sequence-parallel
implementations, indicating that any discrepancies
originate from the backward communication in se-
quence parallelism.

Table 2: Max Sequence Length Comparison Between
DeepSpeed-Ulysses (DU) and Ring-Attention (RA)

Model Method SP DU RA
4 86k 96k

Owen2.5.78 SFT 8 166k 182k
wenzs.o- PO 4 38k 34k
8 76k 60k

SFT 8 136k 152k

Qwen2.5-14B - b 8 68k 52k
SFT 8 132k 110k

Qwen2.5-72B - b 8 46k 44k

6.2 Performance camparsion of
DeepSpeed-Ulysses and Ring-Attention

This subsection compares the maximum sup-
ported sequence length and runtime efficiency of
DeepSpeed-Ulysses and Ring-Attention.

Experiment Settings. We constructed SFT and
DPO datasets in which each individual sample ex-
ceeds 200k tokens. This design ensures that the
evaluation of maximum sequence length is not
affected by padding, thereby providing accurate
stress-testing results’. The batch size was fixed
to 1 across all experiments, with sequence paral-
lel size set to either 4 or 8. We employed Deep-
Speed ZeRO Stage 3 with offloading and trained
using bfloat16 precision. Length and runtime effi-
ciency evaluations were conducted on Qwen2.5-7B,
Qwen2.5-14B, and Qwen2.5-72B. The 72B model
was trained on 32xA100 (80GB) GPUs, while
the other models were trained on 8xA100 (80GB)
GPUs. The learning rate was set to 5 x 1076 for
SFT and 1 x 1079 for DPO, with the DPO beta
parameter set to 0.1.

Results. The results of maximum sequence
length stress testing are presented in Table 2. It
can be observed that sequence parallelism enables
both SFT and DPO to process longer sequences
under limited resource conditions. However, due to
the additional communication overhead introduced
by sequence parallelism, the improvement in maxi-
mum sequence length is not strictly proportional to
the increase in the number of devices.

Furthermore, when comparing the two imple-
mentation approaches, we find that DeepSpeed-
Ulysses generally supports longer sequences in
DPO tasks, while it tends to support shorter lengths
in SFT. This difference may stems from DPO’s
additional reference model, which introduces ex-
tra communication overhead such that DeepSpeed-
Ulysses appears more efficient. The suboptimal
performance of Ring-Attention on the 72B model
may be attributed to the additional communica-
tion overhead across multiple nodes, which leads
to a reduction in the maximum sequence length
achievable for both SFT and DPO tasks. These
observations suggest that the choice of sequence
parallelism strategy should be guided by the char-
acteristics of the specific training task.

5All experiments were conducted using torch 2.2.1, trans-
formers 4.45.2 (Wolf et al., 2020) and flash_attention 2.6.1.



Table 3: Throughout (Tokens/s) Comparsion between differnt sequence parallel methods

Model Method Length Ulysses DHU XU USP-u4 USP-u2 RA
1.5B SFT 128k — 1351.66 1131.08 1720.42 1809.38 1732.45
1.5B DPO 32k - 1256.85 1070.64 1758.42 1637.75 1421.16
3B SFT 100k 1118.50 - — 1027.85 919.56  890.52
3B DPO 32k 753.13 - - 951.60 88527 885.27
7B SFT 130k — 61988 380.86 594.33 586.55 567.27
7B DPO 48k - 570.62 426770 709.51 61536 689.31
14B SFT 100k 284.73 - - 281.94 28251 28278
14B DPO 32k 250.48 - - 32144 272775 30744
32B SFT 80k 146.55 - - 156.15 14157 139.55
32B DPO 24k 104.10 - - 141.80 120.67 126.90

6.3 Throughout Comparsion of Different
Sequence Parallel Methods

To evaluate the effectiveness of our Dummy-Head
Ulysses (DHU) implementation, we compare its
throughput with Xtuner-Ulysses (XU), Ulysses,
USP-u(s, the sequence number of ulysses degree)
and Ring-Attention (RA).

Experiment Settings. We conduct experiments
using different size qwen2.5-models with a se-
quence parallel size of 8, where only the 1.5B and
7B models encounter cases where the number of
attention heads is not divisible by the sequence
parallel size. The dataset and hyperparameters are
consistent with those used in Section 6.2. All exper-
iments are conducted on 8 x A100 (80GB) GPUs.

Results. The experimental results for both SFT
and DPO tasks are shown in Table 3. It can be
observed that our Dummy-Head-Ulysses achieves
higher throughput compared to the Xtuner-Ulysses.
This improvement is attributed to the fact that
Xtuner-Ulysses replicates the same attention heads
across multiple devices, which leads to increased
memory consumption and computational overhead.
In contrast, our method only introduces a small
number of additional heads as padding.

Our Dummy-Head-Ulysses exhibits marginally
lower throughput than USP in certain cases (e.g.,
DPO with 7B models), likely attributable to in-
creased attention computation complexity intro-
duced by the dummy-head mechanism. While
DeepSpeed-Ulysses maintains optimal through-
put in most scenarios, we observe that USP-U4
achieves superior throughput in selected experi-
ments. Notably, while DeepSpeed-Ulysses gener-
ally achieves optimal throughput, USP-U4 outper-
forms it in some cases—with DeepSpeed-Ulysses

even underperforming Ring-Attention. This stems
from its reliance on flash_attn_varlen_func (trig-
gered by passing in attention_mask for neat-
packing compatibility), which incurs overhead
in padding-free scenarios like our experiments,
though it benefits padded data.

7 Conclusion and Future Work

In this work, we present the integration of se-
quence parallelism strategies into the LLaMA-
Factory framework to support long-sequence train-
ing. We provide a detailed account of the imple-
mentation process and key challenges. In addi-
tion, we proposed Dummy-Head-Ulysses to solve
the problem that the head nums cannot divide the
sequence parallel size encountered by DeepSpeed-
Ulysses. We verified the accuracy of our implemen-
tation through experiments and carefully analyzed
a series of indicators such as the max sequence
length and throughput of different sequence paral-
lel methods.

In future work, we plan to continuously improve
our repository with a focus on the following direc-
tions:

(1) Extending support to a broader range of mod-
els, including enabling sequence parallelism for
multimodal models;

(2) Exploring more efficient sequence paral-
lelism strategies to further reduce memory con-
sumption and improve computational efficiency;

(3) Enhancing functionality to support more effi-
cient training workflows, such as enabling precom-
putation of reference model outputs in DPO.



Limitations

The limitations of our current work are summarized
as follows:

(1) In extending DeepSpeed-Ulysses, the imple-
mentation of Dummy-Head-Ulysses incurs a cer-
tain amount of overhead. We aim to explore more
efficient implementations to ease this cost.

(2) We observe that the DPO loss exhibits a small
discrepancy. While the deviation remains within an
acceptable range, we are interested in investigating
approaches to further reduce this error.
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