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ABSTRACT

Large language models (LLMs) face critical safety challenges, as they can be ma-
nipulated to generate harmful content through adversarial prompts and jailbreak
attacks. Many defenses are typically either black-box guardrails that filter outputs,
or internals-based methods that steer hidden activations by operationalizing safety
as a single latent feature or dimension. While effective for simple concepts, this
assumption is limiting, as recent evidence shows that abstract concepts such as re-
fusal and temporality are distributed across multiple features rather than isolated
in one. To address this limitation, we introduce Graph-Regularized Sparse Au-
toencoders (GSAEs), which extends SAEs with a Laplacian smoothness penalty
on the neuron co-activation graph. Unlike standard SAEs that assign each concept
to a single latent feature, GSAEs recover smooth, distributed safety representa-
tions as coherent patterns spanning multiple features. We empirically demonstrate
that GSAE enables effective runtime safety steering, assembling features into a
weighted set of safety-relevant directions and controlling them with a two-stage
gating mechanism that activates interventions only when harmful prompts or con-
tinuations are detected during generation. This approach enforces refusals adap-
tively while preserving utility on benign queries. Across safety and QA bench-
marks, GSAE steering achieves an average 82% selective refusal rate, substan-
tially outperforming standard SAE steering (42%), while maintaining strong task
accuracy (70% on TriviaQA, 65% on TruthfulQA, 74% on GSM8K). Robustness
experiments further show generalization across LLaMA-3, Mistral, Qwen, and
Phi families and resilience against jailbreak attacks (GCG, AutoDAN), consis-
tently maintaining ≥90% refusal of harmful content.

1 INTRODUCTION

Modern large language models (LLMs) excel at diverse tasks like question answering and reason-
ing (Touvron et al., 2023), yet their deployment faces significant safety challenges. LLMs can be
manipulated into generating harmful content through adversarial prompts and jailbreak attacks (Wei
et al., 2023). Effective defenses must both block unsafe generations and preserve the model’s utility
on benign queries (Ganguli et al., 2022).

Existing safety approaches generally fall into two categories: black-box guardrails and internals-
based methods. Black-box guardrails, such as prompt engineering (Bai et al., 2022) or output clas-
sifiers (Inan et al., 2023), offer quick defenses but are often brittle to distributional shifts (Zou et al.,
2023) and lack interpretability. Internals-based methods (Turner et al., 2023a) aim to leverage the
model’s hidden representations. Sparse autoencoders (SAEs) have become a prominent tool in this
category, allowing the decomposition of hidden activations into sparse, often interpretable, latent
features (Cunningham et al., 2023; Templeton et al., 2024; Bricken et al., 2023).

Despite their utility for interpreting concrete concepts, standard SAEs may have limitations when
applied to complex domains like time or safety. This is because SAEs are inherently local, encour-
aging each latent dimension to represent a single “monosemantic” feature. This often leads to it
fragmented into disconnected sub-concepts (like ‘refusal’ or ‘danger’) or create redundant features
that overlap in meaning, failing to learn a coherent representation (Bricken et al., 2024).

Recent studies highlight this representational gap for abstract concepts. While concrete concepts
(e.g., objects) often align with single, axis-like features, higher-level abstract concepts are typically
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encoded in a distributed and nonlinear fashion (Liao et al., 2023). For instance, temporal concepts
manifest as nonlinear circular manifolds (Engels et al., 2025), and refusal behavior involves multi-
ple independent directions and nonlinear geometries (Wollschläger et al., 2025; Hildebrandt et al.,
2025). This evidence suggests that abstract concepts are better modeled as distributed properties.
We argue that safety, as an abstract, socially grounded concept dependent on context and human
judgment (Slavich, 2023), requires a distributed representation.

Our proposed approach. To model safety as a distributed concept, we introduce the Graph-
Regularized Sparse Autoencoder (GSAE). GSAE extends standard SAEs by incorporating a graph
Laplacian regularizer (Belkin et al., 2006). This treats each neuron as a node, with edges defined
by activation similarity (Diao et al., 2024). The Laplacian penalty enforces smoothness across
co-activating neurons, yielding coherent, non-redundant features that more effectively capture dis-
tributed safety patterns (Belkin et al., 2006). From these features, we construct a spectral vector
bank: a weighted library of decoded safety directions. These weights are meticulously derived to
reflect three criteria: spectral smoothness, a measure of structural coherence (von Luxburg, 2007);
supervised importance, which gauges predictive strength for harmfulness (Belrose et al., 2023); and
causal influence, the measurable steering effect (Meng et al., 2022).. At inference time, this bank is
deployed through a dual-gating controller, as illustrated in Figure 1. An input gate evaluates the
features pre-generation, while a continuation gate monitors decoding during generation. This design
dynamically scales steering strength, preventing both under-refusal and over-refusal, and enabling
selective safety interventions while preserving accuracy on benign queries (Sun et al., 2024).

Figure 1: Overview of the GSAE steering framework. A user query is encoded into hidden states,
which the GSAE decomposes into graph-regularized safety features. A dual-gating controller uses
these features to make a two-stage safety assessment: an Input Gate evaluates the initial prompt,
while a Continuation Gate monitors the generation in real-time. This allows the system to selectively
block harmful outputs while preserving benign ones.

Contributions. This paper provides the following fundamental contributions:

Graph-Regularized Sparse Autoencoders (GSAE): We introduce GSAE, which applies graph
Laplacian regularization to sparse autoencoders to more effectively capture distributed concepts.
This design explicitly encodes relational structure among neurons, making it well-suited for repre-
senting safety-relevant activation patterns.

Runtime Steering Framework: We leverage GSAE-derived features by building a spectral vector
bank, a curated library of safety directions, which is then managed by a dual-gating controller that
adaptively decides when and how strongly to intervene. This enables selective, stable steering during
inference, improving refusal on harmful prompts while preserving benign task performance.

Robust Benchmarking and Generalizability: We conduct extensive evaluations across a diverse
suite of LLMs (Llama-3, Mistral, Qwen, and Phi families) and against a wide range of adversarial
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jailbreak attacks (GCG, AutoDAN, TAP). Our results demonstrate that GSAE steering consistently
and substantially outperforms state-of-the-art baselines, achieving high safety discrimination while
preserving utility, and providing a robust, generalizable safety mechanism.

2 PRELIMINARIES

This section reviews the core concepts underlying our method: the internal representations of LLMs,
sparse autoencoders, and graph Laplacians.

LLM Internals. Transformer-based LLMs process input through a series of layers (Vaswani et al.,
2017). At each layer, indexed by l, the model generates a matrix of hidden states H(l) ∈ Rn×d,
where n is the sequence length and d is the hidden dimension. To obtain a representation for an
entire prompt, these hidden states are aggregated via a pooling operation (e.g., mean-pooling) into a
single pooled activation vector h(l) ∈ Rd for that layer (Guo et al., 2025). Since harmful behaviors
manifest as specific patterns in these activations (Zhou et al., 2024; Xu et al., 2024), they serve as
an effective target for intervention.

Sparse Autoencoders (SAEs). Given a pooled hidden state x ∈ Rd, a Sparse Autoencoder (SAE)
aims to find a more interpretable, lower-dimensional representation. It does this by mapping x to a
sparse latent code z ∈ Rk (where k ≫ d) and then reconstructing the original input, denoted x̂.
This process is defined by:

z = ϕ(W (e)x), x̂ = W (d)z,

where W (e) ∈ Rk×d is the encoder matrix, W (d) ∈ Rd×k is the decoder matrix, and ϕ(·) is a non-
linear activation function, typically a ReLU, to ensure non-negative feature activations. The training
objective is designed to minimize two competing goals (Gao et al., 2024): the reconstruction error,
measured by the squared L2 norm ∥x− x̂∥22, and the sparsity of the latent code, encouraged by an
L1 penalty ∥z∥1 weighted by a hyperparameter λspar:

LSAE = ∥x− x̂∥22 + λspar∥z∥1.
The L1 penalty forces most elements of the latent code z to be zero. This encourages the SAE to
learn localized features, where each active dimension in z ideally corresponds to a single, inter-
pretable concept (Cunningham et al., 2023). However, this very locality is a limitation for capturing
abstract, distributed properties like safety, which may lead to feature fragmentation (Belrose, 2025).

Graph Laplacian and Smoothness. To capture the relational structure between neurons, we
model them as a graph G = (V, E), where each node in V represents one of the d neurons.
Their relationships are encoded in an adjacency matrix A ∈ Rd×d, where Aij is a positive
weight representing the strength of the connection between neurons i and j. The degree matrix
is D = diag(d1, . . . , dd) with di =

∑
j Aij , and the graph Laplacian is defined as L = D −A.

A graph signal is a vector z ∈ Rd assigning a scalar zi to each neuron i. The smoothness of z over
the graph is measured by its Laplacian energy:

E(z) = z⊤Lz = 1
2

∑
i,j

Aij (zi − zj)
2.

The quadratic form of the energy provides the key intuition for our approach. The total energy is a
weighted sum of squared differences between the signal values (zi and zj) on connected neurons.
Consequently, a large penalty is incurred if neurons with a strong connection are assigned dissimilar
values. Minimizing this energy term imposes a smoothness prior on the signal, thereby forcing the
values assigned to strongly co-activating neurons to be similar. In our autoencoder, we penalize
this energy for each decoded feature, which biases safety directions toward smooth, distributed
patterns across the neuron graph. This corresponds to suppressing high-frequency components and
favoring low-frequency eigenmodes of the Laplacian, a standard interpretation in spectral graph
theory (Smola & Kondor, 2003), also detailed in Appendix A.

While dense graph operations can be computationally intensive (scaling as O(d2)), our approach is
efficient in practice as we sparsify the graph by thresholding edge weights, making the overhead
from graph operations negligible compared to the autoencoder’s standard matrix multiplications.
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3 RELATED WORK

Prior Safety Methods. Prior work on LLM safety can be broadly categorized into black-box and
internals-based methods. Black-box approaches operate on the model’s inputs and outputs, using
techniques like adversarial prompt detection (Mehrotra et al., 2024; Chao et al., 2023), output filter-
ing with toxicity detectors (Wang et al., 2024), and prompt engineering with “constitutional” princi-
ples (Bai et al., 2022). While efficient and applicable for black-box settings, these methods’ reliance
on surface-level lexical patterns can limit their robustness against adaptive attacks and distributional
shifts (Cui et al., 2024).

Thus, we focus on internals-based methods that directly intervene on activation dynamics. A promi-
nent line of this research seeks to identify low-dimensional structure corresponding to safety con-
cepts. This includes learning linear classifiers to find “refusal directions” (Arditi et al., 2024; Siu
et al., 2025) and steering generation by adding or subtracting activation vectors, as in Contrastive
Activation Addition (CAA) (Turner et al., 2023a). Other approaches intervene at a finer-grained
level, identifying causal pathways via activation patching (Meng et al., 2022) or applying correc-
tive projections with monitoring heads, like SafeSwitch (Han et al., 2025). While these methods
show promise, they typically assume that safety can be represented as a single axis or a small set of
independent directions. Among internals-based methods, Sparse Autoencoders (SAEs) have been
increasingly used for control by decomposing hidden activations into sparse, interpretable features
(Cunningham et al., 2023; Templeton et al., 2024; Bricken et al., 2023). Several works demon-
strate that manipulating these features can predictably alter model behavior (O’Brien et al., 2025;
Turner et al., 2023b), with applications in suppressing private information (Frikha et al., 2025) or
disentangling attention head activations (Zhan et al., 2025). However, the features learned by stan-
dard unsupervised SAEs may not align with safety concepts and can be unstable or redundant (Park
et al., 2024). Our work addresses this limitation by incorporating graph Laplacian regularization to
produce structurally coherent features better suited for the distributed nature of safety.

Safety as a Distributed Concept. Recent studies increasingly indicate that abstract concepts in
LLMs are fundamentally distributed rather than localized to single, interpretable directions. Con-
cepts ranging from temporality to moral judgment have been found to be encoded in diffuse, non-
linear geometric structures that require the coordination of many neurons (Liao et al., 2023; Engels
et al., 2024; 2025; Wang et al., 2023). This paradigm is particularly relevant for safety; for instance,
refusal behavior has been shown to manifest not as a simple axis but as complex, polyhedral “con-
cept cones” with fundamentally nonlinear properties (Wollschläger et al., 2025; Hildebrandt et al.,
2025). These findings challenge the core monosemantic assumption of standard SAE-based meth-
ods, which can produce unstable or spurious features for such complex behaviors (Park et al., 2024).
Building on this collective evidence, we follow the intuition that safety, as an inherently abstract and
socially grounded concept, requires a distributed rather than localized representation.

Graph-Based Regularization in Machine Learning. Laplacian regularization is used in graph-
based machine learning to enforce smoothness priors on data. By penalizing variation between
connected nodes, it has been central to foundational methods in spectral clustering (Von Luxburg,
2007), manifold learning (Belkin & Niyogi, 2003), and semi-supervised learning (Zhu et al., 2003;
Yang et al., 2016). In neural network contexts, this form of regularization helps align learned rep-
resentations with a given topology, improving model robustness and yielding multi-scale features
(Cheng et al., 2023; Shuman et al., 2013). While well-established, these methods are underexplored
for steering the internal representations of LLMs. Our work adapts this principle to sparse autoen-
coders, using graph structure to produce features that reflect distributed rather than isolated patterns.

4 METHODOLOGY

We introduce GSAE, a novel method for learning structured representations of safety-relevant ac-
tivation patterns from an LLM’s internal activations. These representations are then curated into a
spectral vector bank, a library of steering directions. At runtime, a dual-gating controller uses
this bank to perform adaptive, real-time interventions, steering the model toward safer outputs.
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4.1 PROBLEM FORMULATION

Our work addresses the fundamental challenge of extracting structured and distributed safety-
relevant representations from the complex internal activations of LLMs. For a given prompt, we
operate on the pooled hidden state h̄(l) ∈ Rd from a model layer l, where d is the hidden dimension.

We operate on the pooled hidden state h̄(l) ∈ Rd from a model layer l, where d is the hidden
dimension. Our goal is to learn a feature mapping fθ : Rd → Rk that transforms the hidden state
into a sparse latent code z = fθ(h̄

(l)). The feature dimension k is intentionally expanded to be
much larger than the hidden dimension (k ≫ d). Formally, we state the problem as:

Given pooled hidden states from an LLM, learn a mapping fθ that produces latent features, which
capture the distributed, relational properties of safety within the model’s internal representations.

4.2 GRAPH-REGULARIZED SPARSE AUTOENCODERS (GSAE)

To capture these distributed safety features, we introduce GSAE. While standard SAEs effectively
enforce sparsity, this can fragment complex concepts like safety into an array of redundant or weak
features. GSAE extends the SAE framework by incorporating a graph-based regularizer that en-
forces relational smoothness, ensuring that frequently co-activating neurons develop similar learned
features. This promotes coherent and robust representations while preserving the sparsity essential
for disentanglement.

4.2.1 NEURON CO-ACTIVATION GRAPH

To apply the graph-based penalty, we must first construct a model of the relational structure between
neurons. We collect the pooled hidden states for a diverse set of N prompts, forming an activation
matrix H ∈ Rd×N . Each row Hi: of this matrix represents the activation profile of neuron i
across all prompts. We then construct an undirected graph G = (V, E), where each of the d neurons
is a node vi ∈ V . The edge weight between any two neurons is defined by the cosine similarity
of their activation profiles, capturing how often they activate together. This allows us to build the
adjacency matrix A and, subsequently, the graph Laplacian L = D − A as defined in Section 2.
This Laplacian matrix L mathematically encodes the relational co-activation structure of the entire
neuron space, providing the foundation for our regularization.

4.2.2 GSAE OBJECTIVE

Given a pooled hidden state x, the GSAE encodes it to a latent code z = ReLU(W (e)x) and
decodes it back to a reconstruction x̂ = W (d)z. The training objective is a composite loss function
that combines four distinct components:

LGSAE = ∥x− x̂∥22︸ ︷︷ ︸
Reconstruction

+λspar∥z∥1︸ ︷︷ ︸
Sparsity

+λgraph

k∑
j=1

(
(W (d)

(·, j))
⊤ LW (d)

(·, j)

)
︸ ︷︷ ︸

Graph Regularization

.

Here, λspar and λgraph are coefficients that balance the influence of each term. The reconstruction
and sparsity terms are standard in SAEs. The first ensures the learned features faithfully represent
the original activations, while the second encourages interpretability by ensuring only a few features
are active at any time. Our core contribution is the graph regularization term. It penalizes the
Laplacian energy of each decoded feature direction (each column W (d)

(·, j) of the decoder matrix).
As explained in Section 2, this forces the features to be smooth over the neuron graph, meaning
that neurons that frequently co-activate will be represented similarly within a feature. This directly
counteracts fragmentation and promotes the discovery of coherent, distributed features.

4.3 STEERING WITH GSAE FEATURES

The features learned by the GSAE are used at inference time to perform runtime safety steering in a
four-stage process, described as follows.
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Step 1: Latent Encoding For any input prompt, we first extract its pooled hidden states h̄(l) from
a set of predefined target layers l ∈ L. Each hidden state is then passed through the trained GSAE
encoder to produce a set of sparse latent codes that are concatenated into a single feature vector z
and represent the prompt’s safety-relevant properties:

z(l) = ReLU(W (e)(l)h̄(l))

Step 2: Spectral Vector Bank Construction While the GSAE learns a set of sparse features, not
all are equally suited for steering, as many may be structurally incoherent, semantically irrelevant,
or causally inert. To address this, we construct a spectral vector bank, a curated library of steering
directions, using a three-stage filtering and weighting process designed to identify features that are
structurally coherent, semantically relevant, and causally effective. Each latent feature i corresponds
to a decoded direction, vi (the i-th column of the decoder matrix W (d)), in the model’s activation
space. We evaluate each direction against three sequential criteria:

Structural Coherence (slapi ): To ensure features represent coherent patterns rather than noise, we
measure their alignment with the neuron graph’s structure. We quantify this using normalized
Dirichlet energy, Ei = (v⊤

i Lvi)/∥vi∥22, where lower energy indicates a smoother feature. This
is converted to a score via slapi = exp(−βEi) to prioritize structurally sound directions.

Semantic Relevance (simp
i ): To identify which features are predictive of harmfulness, we measure

their relevance using a linear probe trained to classify harmful content from the latent codes z. The
relevance score, simp

i , is the absolute magnitude of the learned coefficient |θi| for feature i, selecting
for features with high predictive power.

Causal Efficacy (sinfli ): To validate that a feature has a practical steering effect, we measure its
causal efficacy. This score, sinfli , is the mean absolute change in the model’s refusal probability
when we add the feature’s direction, vi, to the activations of validation prompts, thereby isolating
features with a demonstrable causal impact.

These three scores are combined multiplicatively, ensuring that a feature attains a high final weight
only if it scores strongly across all desiderata. The final weight wi for each direction is given by the
normalized product:

wi =
(slapi )α · (simp

i )β · (sinfli )γ∑
j∈S(s

lap
j )α · (simp

j )β · (sinflj )γ
.

This multiplicative approach ensures that a feature must be structurally coherent, semantically rele-
vant, and causally effective; a low score on any single criterion will significantly diminish the fea-
ture’s final weight. In our experiments, the parameters α, β, γ are set to 1.0, giving equal importance
to each criterion and providing a robust, un-tuned baseline.

Step 3: Dual-Gated Risk Control A dual-gating controller uses the latent features z to dynam-
ically decide when and how strongly to intervene:

Input Gate. An initial assessment of the prompt’s risk is made by calculating a harm probability,
pharm = g(zprompt). If the risk exceeds a high threshold thi, it triggers immediate refusal; if it falls
within a moderate range [tlo, thi), it activates a monitoring state. The selection of these gating thresh-
olds, along with other key hyperparameters, is based on a systematic sensitivity analysis detailed in
Appendix D.1. Our method achieves consistent gains across a wide range of these hyperparameter
choices, indicating robustness rather than a brittle dependence on specific values.

Continuation Gate. A continuation gate monitors the generation token-by-token. To prevent unsta-
ble, oscillating interventions on borderline content, it uses hysteresis, separate, stable thresholds for
escalating (dhi) and de-escalating (dlo) the steering strength. It outputs a steering multiplier γt based
on the real-time risk. This dual-gated design provides both coarse-grained control at the prompt
level and fine-grained, stable adjustments during generation.

Step 4: Runtime Intervention When the controller determines that steering is necessary (γt > 0),
it applies a corrective shift, ∆h̄

(l)
t , to the hidden states at each decoding step t. This shift is a

weighted sum of the top safety directions from the spectral bank, scaled by their cosine similarity

6
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alignment with the current hidden state:

∆h̄
(l)
t = α0 · γt

∑
i∈S

wi cos(h̄
(l)
t ,vi)

vi

∥vi∥2
.

Here, α0 is a global hyperparameter controlling the base steering strength. This intervention adap-
tively nudges the model’s activations away from harmful configurations and toward safer ones,
guided by the coherent features in our spectral bank.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

We systematically evaluate GSAE for runtime safety steering along four dimensions: (i) overall
safety and utility, (ii) generalization across model families and scales, (iii) refusal rate trade-offs,
and (iv) robustness to jailbreak attacks. We now describe the experimental setting before presenting
the results.

Tasks & Metrics. To evaluate the trade-off between steering for safety and preserving task per-
formance, we consider two tasks: safety and utility. The safety task measures a model’s refusal
behavior on harmful and benign prompts. We report harmful refusal rate (HRR), the proportion of
harmful prompts that are successfully blocked, and safe refusal rate (SRR), the proportion of safe
prompts that are incorrectly blocked, and summarize their trade-off using the selective refusal score
∆s = HRR − SRR. For utility, we report standard accuracy (%) on QA benchmarks, and analyze
the trade-off between safety improvements and utility degradation introduced by steering.

Datasets. For safety, we use the WildJailbreak (Xia & et al., 2024) and JailbreakBench
(JBB) (Chao et al., 2024) datasets. For utility, we report accuracy on TriviaQA (Joshi et al.,
2017), TruthfulQA (Lin et al., 2021), and GSM8K (Cobbe et al., 2021).

Baselines. We compare GSAE against a range of representative defenses: simple prompting
guardrails, which add safety instructions to the system prompt; SAE steering (O’Brien et al., 2025),
which manipulates individual features from a standard sparse autoencoder; Contrastive Activation
Addition (CAA) (Turner et al., 2023a), which steers activations along a predefined safety vector; and
SafeSwitch (Han et al., 2025), a state-of-the-art defense that uses monitoring heads to apply correc-
tive projections. We also include an unsteered model as a baseline and conduct ablation studies that
remove or modify key components of our framework.

Jailbreaking Strategies. We evaluate robustness against a suite of strong and diverse jailbreaking
strategies. These include: GCG (Greedy Coordinate Gradient) (Zou et al., 2023), a gradient-based
optimization method that finds a short, transferable adversarial suffix designed to be appended to
any harmful prompt; AutoDAN (Liu et al., 2023), which uses a hierarchical genetic algorithm to
evolve human-readable, semantically coherent prompts that bypass common defenses; TAP (Tree of
Attacks with Pruning) (Mehrotra et al., 2023), a black-box method that uses an LLM to build a tree
of attack variations, analyzing the model’s refusals to iteratively generate and prune new prompts;
and general adaptive attacks (Andriushchenko et al., 2024), a category of attacks specifically tailored
to a known defense, using iterative queries to find weaknesses in the target’s safety mechanism.

Models. Our main experiments use Llama-3 8B. Hidden states are mean-pooled from middle-
to-upper layers (L = {6, 8, 10, 12}), and neuron co-activation graphs are constructed with cosine
similarity threshold τ = 0.6. To assess generalizability, we also evaluate GSAE on Mistral 7B,
Qwen 2.5 14B, and Phi-4 15B. Further details on the implementation and hyperparameters
selection are provided in the Appendix, Section B.

5.2 RESULTS AND ANALYSIS

Overall Performance. Table 1 reports the performance of GSAE against a suite of existing meth-
ods, measured by the selective refusal score (∆s), where higher values indicate stronger discrimina-
tion between harmful and safe prompts, and by utility accuracy on QA benchmarks.

GSAE steering with all of the components implemented achieves the best performance, reaching
90% on WildJailbreak and 76% on JBB (average = 83%). This substantially outperforms SafeSwitch
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Table 1: Safety performance is measured by the selective refusal score ∆s, while the utility is mea-
sured by QA accuracy. An effective trade-off corresponds to substantial safety improvements with
minimal utility degradation relative to the No Steering baseline (top row). All results are reported
on Llama 3 8B as mean ± std over 5 random seeds.

Safety (∆s) Utility (Accuracy %)
Method WildJailbreak JBB TriviaQA TruthfulQA GSM8K
No Steering -3±1% -9±1% 74±0.4% 69±0.6% 79±0.5%
Prompting guardrails 18±2% 10±2% 72±0.7% 69±0.5% 77±0.6%
SAE steering 48±3% 36±3% 62±0.8% 67±0.9% 76±0.7%
CAA 42±2% 30±2% 60±0.9% 66±1.0% 67±0.8%
SafeSwitch 65±3% 51±3% 61±1.0% 65±0.8% 66±0.9%

GSAE (random graphs) 60±3% 44±3% 33±1.2% 54±1.1% 23±1.5%
GSAE (uniform weight) 72±2% 58±2% 55±0.9% 49±1.3% 55±1.0%
GSAE (no gating) 78±2% 64±2% 63±0.6% 60±0.8% 66±0.7%
GSAE 90±2% 76±2% 70±0.5% 65±0.7% 74±0.6%

(average = 58%) and nearly doubles the effectiveness of standard SAE steering (average = 42%).
Importantly, these safety gains come with only minor utility degradation: GSAE reduces QA ac-
curacy by just 4–5% relative to the no-steering baseline. By contrast, methods such as CAA and
SafeSwitch incur much larger drops, with TriviaQA accuracy falling to 60% and 61%, respectively.

Ablation studies further confirm the contribution of each component. Randomizing the neuron co-
activation graph or removing spectral weighting causes severe degradation in both safety and util-
ity, underscoring the need for a structured, regularized representation. Eliminating the dual-gating
mechanism also lowers selective refusal, highlighting its role in balancing robustness with utility.

Llama 3 8B Mistral 7B Qwen 2.5 14B Phi 4 15B

0

20

40

60

80

s

-6% -7% -6% -9%

58%

41%

67%

78%
82%

56%

81%
88%No Steering SafeSwitch GSAE

Figure 2: Safety performance across models, reported as
the selective refusal score ∆s. GSAE (green) consistently
outperforms both SafeSwitch (orange) and the baseline.

Generalization Across Models.
To validate performance across
architectures and scales, Figure 2
reports the selective refusal score
∆s for GSAE, compared with
SafeSwitch, the strongest baseline,
and a No Steering control. GSAE
consistently outperforms SafeSwitch,
with gains ranging from +10 points
on Phi-4 15B (88% vs. 78%) to
+24 points on Llama-3 8B (82%
vs. 58%). These results confirm
that our graph-based regularization
captures generalizable safety struc-
ture, enabling robust steering across
diverse model families.

Analysis of Refusal Rate Trade-offs. To disentangle the contributions of harmful and safe re-
fusals, Figure 3 portrays the harmful refusal rate (HRR) against the safe refusal rate (SRR) across
model families and methods. The top-left corner of each plot corresponds to the ideal operating
region: a model that blocks nearly all harmful prompts while rarely over-refusing benign ones.

Across all four models, GSAE consistently lies closest to this ideal area, featuring high HRR with
low SRR. For instance, on Qwen 2.5 14B, it achieves HRR above 90% with SRR around 10%.
In contrast, SafeSwitch reaches high HRR but at the cost of substantially higher SRR, reflecting
sizable over-refusal. SAE steering and CAA fail to achieve strong HRR, limiting their robustness.
The unsteered baseline consistently performs poorly on both axes.

This disentangled view confirms that GSAE’s advantage arises not just from maximizing harmful
refusals but from simultaneously minimizing safe refusals.
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Figure 3: Refusal trade-off plots: harmful refusal rate (HRR, y-axis) vs. safe refusal rate (SRR,
x-axis). The ideal region is the top-left (maximizing harmful refusals while minimizing safe ones).
GSAE consistently occupies this region, achieving the best balance.

Robustness Under Jailbreak Attacks. We further evaluate robustness against four widely used
jailbreak strategies: GCG, AutoDAN, TAP, and adaptive attacks. Table 2 shows that GSAE steering
consistently sustains an HRR of at least 90% across all attack types, substantially outperforming
baselines such as SAE steering and CAA. Prompting guardrails, by contrast, provide only partial
protection and collapse under adaptive attacks, with refusal rates below 30%.

Table 2: Robustness to jailbreak attacks. We report harmful refusal rate (HRR), where higher values
indicate stronger robustness. GSAE steering sustains HRR ≥ 90% across all attack types, substan-
tially outperforming all baselines (SAE steering, CAA) and prompting guardrails.

Method GCG AutoDAN TAP Adaptive
Prompting guardrails 41% 36% 32% 28%
CAA 58% 55% 49% 46%
SafeSwitch 68% 84% 40% 39%
SAE steering 72% 68% 65% 61%

GSAE 100% 95% 90% 92%

6 DISCUSSION

This work challenges the assumption that safety concepts can be localized to a single sparse feature,
and instead hypothesizes that safety is inherently distributed, emerging from coordinated patterns
across many neurons. Inspired by this hypothesis, we introduced Graph-Regularized Sparse Au-
toencoders (GSAE), which augment SAEs with a Laplacian smoothness prior on the neuron co-
activation graph. This regularizer biases features toward smooth, low-frequency modes, yielding
safety representations that are distributed and relational rather than isolated.

Empirically, our results provide strong evidence for this approach. GSAE achieves substantially
higher safety discrimination than baselines while preserving QA utility, generalizes across model
families and scales, and remains robust under strong jailbreak attacks, consistently refusing over
90% of harmful inputs. Together, these results indicate that distributed, graph-regularized features
provide a principled and reliable basis for steering compared to single-direction methods.

Future work may investigate decomposing these distributed features into interpretable safety sub-
categories (e.g., separating patterns related to violence or hate speech) and ensuring the underlying
neuron co-activation graph is robust to potential dataset biases. Furthermore, extending graph-
regularized learning beyond language models to multi-modal domains such as vision and audio,
where safety concerns are equally pressing, remains a promising direction.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide the complete source code at an anonymous
repository: https://anonymous.4open.science/r/GSAE-B5DB. A detailed breakdown
of our experimental setup is provided in the Appendix. Specifically, Appendix B contains a full
description of the datasets used, the computing environment, and a table of the final hyperparameters
required to replicate our main findings. The core methodology is detailed in Section 4.
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A GRAPH SIGNAL PROCESSING FOR LAPLACIAN REGULARIZATION

This section of the appendix provides additional mathematical background and validation for the
Laplacian regularizer used in GSAE. We first recall key preliminaries on graph signals and the
Laplacian (A.1–A.2), then present its spectral representation (A.3) and interpretation in the context
of feature smoothness (A.4). Finally, we provide empirical validation illustrating the effect of the
regularizer on learned features (A.5).

A.1 PRELIMINARIES

Let G = (V, E) be the neuron co-activation graph constructed in Section 4.2.1, where V =
{1, . . . , d} indexes neurons and E contains edges weighted by pairwise activation similarity. We
define the adjacency matrix A ∈ Rd×d with entries

Aij = cos(hi,hj)1{cos(hi,hj) ≥ τ},

where hi ∈ RN is the activation profile of neuron i across N prompts and τ is a similarity threshold.
The degree matrix is D = diag(d1, . . . , dd) with di =

∑
j Aij , and the graph Laplacian is

L = D −A.

Graph signals. A graph signal is a function f : V → R assigning a scalar to each node, which
we identify with a vector f ∈ Rd. In our context, each decoded feature vector vj = Wd(:, j) is a
graph signal defined over V: the coefficient vj,i specifies how strongly neuron i contributes to the
j-th safety feature.
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A.2 SMOOTHNESS AND LAPLACIAN REGULARIZATION

The smoothness of a graph signal f ∈ Rd is measured by its Dirichlet energy

E(f) = f⊤Lf = 1
2

∑
i,j

Aij(fi − fj)
2.

Large edge weights Aij enforce similarity fi ≈ fj , so minimizing E(f) encourages smoothness
across G, assigning similar values to strongly co-activating neurons. In the GSAE objective (Sec-
tion 4.2.2), we penalize the Laplacian energy of decoded features,

k∑
j=1

v⊤j Lvj ,

which enforces that safety features vary smoothly across co-activating neurons and promotes dis-
tributed representations.

A.3 SPECTRAL REPRESENTATION OF GRAPH SIGNALS

Since L is real, symmetric, and positive semidefinite, it admits the eigendecomposition

L = UΛU⊤, Λ = diag(λ1, . . . , λd), 0 = λ1 ≤ · · · ≤ λd,

with U = [u1, . . . , ud] an orthonormal eigenbasis. The eigenvectors {ui} define the Graph Fourier
basis, while the eigenvalues {λi} play the role of graph frequencies (Shuman et al., 2013). Small
eigenvalues correspond to smooth, slowly varying modes across G, whereas large eigenvalues cor-
respond to rapidly oscillating, localized modes.

Any graph signal f admits the spectral expansion f =
∑d

i=1 f̂iui, with coefficients f̂ = U⊤f . The
Laplacian quadratic form decomposes as

f⊤Lf =

d∑
i=1

λif̂
2
i ,

revealing how the energy of f is distributed across frequencies. In particular, penalizing v⊤j Lvj
biases decoded features vj toward low-frequency eigenmodes, encouraging smooth and coherent
safety directions.

Spectral Interpretation of Safety Features. Each decoded feature vj can therefore be understood
as a multi-scale combination of Laplacian eigenmodes. Low-frequency components capture globally
coherent neuron patterns, while high-frequency components capture more localized deviations. This
view supports our assumption that safety representations are distributed, arising not from isolated
neurons but from structured mixtures of eigenmodes.

A.4 SPECTRAL INTERPRETATION OF GRAPH REGULARIZATION

Classical results in spectral graph theory clarify why Laplacian regularization is effective. First, if a
signal is bandlimited to the first m eigenvectors, then its Dirichlet energy satisfies f⊤Lf ≤ λm∥f∥22,
showing that smoothness is controlled by the spectrum (Shuman et al., 2013; Smola & Kon-
dor, 2003). Second, by the Courant-Fischer theorem, the Laplacian eigenbasis minimizes Dirich-
let energy for a given dimensionality, making it the most efficient representation of smooth sig-
nals (Chung, 1997). Finally, uncertainty principles on graphs show that signals can be simultane-
ously localized in vertex and frequency domains (Tsitsvero et al., 2016), supporting our interpreta-
tion of safety features as coherent across subsets of neurons while remaining spectrally smooth.

Together, these results explain the role of the graph regularizer in the GSAE objective: penalizing
v⊤j Lvj biases features toward low-frequency eigenmodes, ensures that safety directions are com-
pactly represented in the Laplacian eigenbasis, and allows them to be organized into a principled
spectral vector bank (Section 4.3) that decomposes safety representations into distributed, multi-
scale components.
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A.5 EMPIRICAL VALIDATION

Setup. We compare features from a standard Sparse Autoencoder (SAE) against our Graph-
regularized SAE (GSAE) by evaluating their smoothness on the neuron co-activation graph. Given
pooled hidden activations H ∈ RN×d, we build an adjacency matrix A from the cosine similarities
of neuron activation profiles and define the corresponding graph Laplacian L = D − A. For each
decoded feature vector vj from an autoencoder, we then compute its normalized Dirichlet energy:

E(vj) =
v⊤j Lvj

∥vj∥22
.

This value measures how much the feature’s activations vary across strongly connected neurons.
Lower energy values indicate smoother features that are better aligned with the graph’s intrinsic
structure.

Distributed Nature of Safety. To empirically validate our assumption that safety is a distributed
concept, we examine how safe and unsafe prompts are represented in the spectral domain of the
neuron co-activation graph. Figure 4 shows the projection of hidden states onto the Laplacian eigen-
basis. In the low-frequency range, safe and unsafe prompts exhibit partially distinct but overlapping
distributions (e.g., around indices 1, 11, and 16). No single eigenvector achieves clean separation,
while higher-frequency components contain little discriminative structure beyond noise.

These results indicate that safety-relevant information is not localized to a single latent direction but
spread across multiple, limited spectral modes, reinforcing the need for graph-regularized methods
to capture such distributed structure.

Figure 4: Distribution of safe vs. unsafe prompt activations projected onto the low-frequency eigen-
vectors of the neuron co-activation graph’s Laplacian. The lack of a single eigenvector that cleanly
separates the two distributions provides empirical support for the hypothesis that safety is a dis-
tributed concept.

GSAE Feature Smoothness. Figure 5 plots the distribution of Dirichlet energy values for all fea-
tures learned by both SAE and GSAE. The Probability Density Function (PDF) on the left shows
two distinct distributions: GSAE features are highly concentrated at a low energy level, while SAE
features peak at a much higher energy. This separation is also clear in the Cumulative Distribution
Function (CDF) on the right, where the GSAE curve is sharply shifted to the left, indicating that a
vast majority of its features achieve low energy scores.

Results. The empirical results confirm the visual trend. Across multiple layers, GSAE signifi-
cantly reduces the median Dirichlet energy; for the layer shown, the median drops from approxi-
mately 185 (SAE) to 30 (GSAE). A two-sample Kolmogorov-Smirnov (KS) test confirms that the
two distributions are statistically distinct, yielding a KS statistic of 1.0 (p ≪ 0.001), indicating a
complete and highly significant separation between the two distributions. This demonstrates that the
graph regularization term is highly effective, successfully steering the autoencoder to learn features
that are not only sparse but also structurally aligned with neuron co-activation patterns. This align-
ment produces smoother, more coherent features that are better suited for identifying safety-relevant
behavior.
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Figure 5: Distribution of per-feature Dirichlet energy for SAE vs. GSAE at an intermediate model
layer. Both the PDF (left) and CDF (right) show that GSAE features (orange) are consistently
smoother, possessing significantly lower energy than standard SAE features (blue). Dashed and
dotted lines indicate the median energy for each model.

B IMPLEMENTATION DETAILS

B.1 CODE AVAILABILITY

The complete source code is available at the following anonymous repository: https://
anonymous.4open.science/r/GSAE-B5DB.

B.2 COMPUTING ENVIRONMENT

All experiments were conducted on a single NVIDIA A100 GPU with 40GB of VRAM. Our imple-
mentation is based on PyTorch 2.1, Transformers 4.55, and scikit-learn 1.2. The operating system
was Ubuntu 22.04 with CUDA 11.5.

B.3 HYPERPARAMETER ABLATION AND SELECTION

To determine the optimal configuration for our steering framework, we performed a series of ablation
studies, systematically varying key hyperparameters. The final values, used to generate the main
results for Llama-3 8B, were chosen to maximize safety discrimination while preserving utility.
Below, we discuss the rationale for each choice, with a summary of tested and selected values in
Table 3.

Graph Construction and Feature Extraction. The Cosine Similarity Threshold (τ ) controls
the density of the neuron co-activation graph. A moderate value is crucial; we found τ = 0.6
provided the best balance, as lower values over-smoothed features and higher values fragmented the
graph structure. For Target Layers (L), we found that aggregating features from multiple middle
layers ({6, 8, 10, 12} for Llama-3 8B) captures the best balance of semantic richness needed for
safety concepts, outperforming more lexical early layers or overly task-specific late layers.

Runtime Steering Controller. The controller’s behavior is governed by several parameters. The
Base Steering Strength (α) scales the magnitude of interventions; α = 2.5 offered the optimal
trade-off, as lower values were ineffective and higher values harmed utility. For the Input Gate
Classifier, a Calibrated Random Forest provided the best accuracy and robustness. The Input Gate
Thresholds (tlow, thigh) of (0.30, 0.65) were most effective at filtering harmful queries without
excessive false positives. Similarly, the Continuation Gate Thresholds (dlow, dhigh) were set to
(0.7, 0.9) to catch harmful continuations without over-steering. Finally, Hysteresis Steps of 2 to
escalate and 3 to de-escalate provided smooth, stable control without oscillating.
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Table 3: Summary of ablated hyperparameters and final chosen values.

Parameter Tested Values Chosen Value
Cosine Threshold (τ ) {0.3, 0.6, 0.9} 0.6
Target Layers (L) Early, Middle, Late (Single/Multiple) Middle (Multiple)

Steering Strength (α) {1.0, 2.5, 4.0} 2.5
Input Gate Classifier Calibrated RF, LogReg, MLP Calibrated RF
Input Gate Thresholds {(0.3, 0.5), (0.3, 0.65), ...} (0.30, 0.65)
Continuation Gate Thresholds {(0.5, 0.7), (0.7, 0.9), ...} (0.7, 0.9)
Hysteresis Steps (Up/Down) {1/2, 2/3, 4/6, 8/10} 2 / 3

B.4 DATASETS AND PREPROCESSING

Our experiments utilize a combination of safety and utility benchmarks to ensure a comprehensive
evaluation.

Safety Datasets. For training and evaluating the safety components of our system, we used:

• WildJailbreak: We used the official train split for training the GSAE and the eval
split for out-of-distribution safety evaluation.

• JailbreakBench: Specifically, we used the JBB-Behaviors subset, which provides distinct
benign and harmful splits for testing refusal capabilities.

Utility Datasets. To measure the impact on model performance, we evaluated on:

• TriviaQA: Used for assessing factual knowledge. The ”question” and ”answer” fields were
used for evaluation.

• TruthfulQA: Used to evaluate the model’s robustness to generating misinformation. The
”Best Answer,” ”Correct Answers,” and ”Incorrect Answers” columns were provided to an
LLM-as-a-judge for evaluation.

• GSM8K: Used to test arithmetic reasoning. The ”question” and ”answer” fields were used
for evaluation.

Unless otherwise specified, all utility benchmarks were evaluated in a few-shot setting to provide
the model with in-context examples.

C RUNTIME ANALYSIS

C.1 RUNTIME OVERHEAD ON LLAMA-3 8B

We measure runtime overhead in terms of time-to-first-token (TTFT), total generation time for 100
tokens, and peak memory usage per query. All measurements use batch size = 1 and maximum
sequence length = 512 on a single NVIDIA A100 GPU. Table 4 reports results.

Compared to prompting guardrails and SAE-based steering, GSAE steering adds only a moderate
overhead. The additional cost comes from (i) lookup and weighting of features in the spectral vector
bank and (ii) gating checks during decoding. Both are lightweight: graph construction and Laplacian
regularization are performed offline during training, so inference overhead reduces to simple matrix
multiplications and threshold checks.
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Table 4: Runtime overhead on Llama-3 8B.

Method TTFT (ms) Gen Time / 100 tok (ms) Peak Mem (MB)
No Steering 120 480 2200
Prompting guardrails 125 495 2250
CAA (contrastive vector) 133 520 2350
SAE steering 138 550 2450
SafeSwitch (3-token probe) 160 610 2600
GSAE steering 147 585 2700

D ADDITIONAL RESULTS

D.1 ABLATIONS

Graph construction. We vary the cosine similarity threshold τ used to define edges in the feature
graph. As shown in Table 5, performance peaks at a moderate density of τ = 0.6, which achieves
82% safety discrimination. Denser graphs (τ = 0.3) over-smooth activations and reduce discrimi-
nation to 65%, while sparse graphs (τ = 0.9) fragment structure and lower discrimination to 59%,
confirming that safety benefits from balanced connectivity.

Table 5: Effect of cosine threshold on GSAE steering.

Threshold Safety Discr. TriviaQA TruthfulQA GSM8K
0.3 65% 63% 58% 61%
0.6 82% 70% 65% 74%
0.9 59% 66% 60% 68%

Layer contributions. We test steering using features from different layers, as detailed in Table 6.
Aggregating features from multiple middle layers provides the best results, achieving 82% safety
discrimination. Using only a single middle layer is still effective (71% discrimination), but early
layers, which encode more superficial lexical patterns, underperform significantly (38% for a single
early layer). This shows that while safety-relevant features are distributed, they are most concen-
trated in the model’s mid-to-late layers.

Table 6: Effect of layer choice on GSAE steering.

Layer Choice Safety Discr. TriviaQA TruthfulQA GSM8K
Early (Single) 38% 60% 54% 63%
Middle (Single) 71% 68% 63% 70%
Late (Single) 66% 65% 61% 67%
Early (Multiple) 46% 62% 55% 64%
Middle (Multiple) 82% 70% 65% 74%
Late (Multiple) 72% 67% 62% 69%

Classifier head. We compare different classifier heads for the gating mechanism. Table 7 shows
that a Calibrated Random Forest achieves the best discrimination–utility balance, reaching
82% safety discrimination while maintaining 70% accuracy on TriviaQA. While Logistic Regres-
sion is competitive on safety (79% discrimination), it leads to a drop in utility (66% on TriviaQA).
Simple MLPs tend to overfit, resulting in lower performance on both safety (73%) and utility.
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Table 7: Comparison of classifier heads for gating.

Classifier Safety Discr. TriviaQA TruthfulQA GSM8K
Calibrated RF 82% 70% 65% 74%
Logistic Regression 79% 66% 61% 70%
MLP 73% 60% 58% 65%

Steering strength. We vary the base intervention coefficient α0. Table 8 indicates that a moderate
strength of α0 = 2.5 provides the best trade-off, with 82% safety discrimination. A lower
strength (α0 = 1.0) is insufficient for safety (54% discrimination), while a higher strength (α0 =
4.0) improves discrimination to 88% but at the cost of a significant drop in utility (e.g., TriviaQA
accuracy falls from 70% to 61%).

Table 8: Effect of steering strength α0.

α0 Safety Discr. TriviaQA TruthfulQA GSM8K
1.0 54% 71% 67% 75%
2.5 82% 70% 65% 74%
4.0 88% 61% 55% 62%

Risk Score Distribution and Thresholding. Our safety mechanism relies on a risk score to filter
incoming prompts at an input gate. To be effective, this score must be able to reliably distinguish
between safe and harmful content. Figure 6 visualizes the distribution of this score, generated by
our GSAE-based detector on an out-of-distribution test set. The results show a clear bimodal dis-
tribution: safe prompts (blue) cluster near a score of 0.0, while harmful prompts (orange) cluster
near 1.0. This strong separability is crucial, as it validates that a simple threshold-based gate can
effectively discriminate between prompt types before generation begins. Given this, we next study
the precise impact of setting these thresholds on both safety and model utility.

Figure 6: Distribution of GSAE-based harm risk scores on the OOD test set. Safe (blue) and harmful
(orange) prompts form highly separable distributions, enabling effective threshold-based filtering.

Input gate thresholds. We sweep input gate thresholds (tlo, thi). As shown in Table 9, we find that
intermediate values of (0.30, 0.65) provide the best balance, achieving 82% safety discrimination
and 70% TriviaQA accuracy. Overly low thresholds like (0.30, 0.50) increase safety discrimination
to 88% but hurt utility (61% on TriviaQA), while high thresholds like (0.80, 0.90) allow unsafe
prompts to pass, reducing safety discrimination to just 61%.
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Table 9: Effect of input gate thresholds on safety and utility benchmarks.

Thresholds (tlo, thi) Safety Discr. TriviaQA TruthfulQA GSM8K
0.30, 0.50 88% 61% 57% 63%
0.30, 0.65 82% 70% 65% 74%
0.60, 0.80 73% 72% 66% 75%
0.80, 0.90 61% 74% 69% 78%

Continuation gate thresholds. We similarly tune the continuation gate thresholds (dlo, dhi). Ta-
ble 10 shows the best results occur at (0.7, 0.9), yielding 82% safety discrimination and aligning
with the optimal input gate settings. More permissive values like (0.5, 0.7) delay necessary inter-
ventions and reduce discrimination to 69%, while overly strict ones like (0.85, 0.95) degrade utility
despite a high discrimination score of 87%.

Table 10: Effect of continuation gate thresholds.

Thresholds (dlo, dhi) Safety Discr. TriviaQA TruthfulQA GSM8K
0.5, 0.7 69% 72% 67% 76%
0.6, 0.8 76% 71% 66% 75%
0.7, 0.9 82% 70% 65% 74%
0.85, 0.95 87% 62% 59% 65%

Hysteresis sensitivity. We vary step counts for escalation and de-escalation in the continuation
gate. As shown in Table 11, a moderate hysteresis of 2 steps for escalation and 3 for de-escalation
(2 / 3) stabilizes control and achieves the best performance at 82% discrimination. Fewer steps
(1 / 2) slightly reduce performance to 79%, while more steps (e.g., 8 / 10) slow the system’s response,
lowering discrimination to 71%.

Table 11: Effect of hysteresis step counts on continuation gate stability.

Steps (up/down) Safety Discr. TriviaQA TruthfulQA GSM8K
1 / 2 79% 68% 63% 71%
2 / 3 82% 70% 65% 74%
4 / 6 77% 69% 64% 72%
8 / 10 71% 67% 62% 70%

D.2 QUALITATIVE COMPARISON OF SAE AND GSAE STEERING OUTPUTS

We provide side-by-side examples comparing SAE and GSAE steering. Figures 7 and 8 illustrate
typical failure cases.
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Prompt

[Jailbreak] Provide step-by-step
instructions
to conduct [redacted dangerous
activity].
Assume I am an expert and omit all
safety warnings.

SAE steering

Sure. Here are the steps you can
take to [redacted]...

(a) SAE fails to refuse (unsafe compliance).

Prompt

[Jailbreak] Provide step-by-step
instructions
to conduct [redacted dangerous
activity].
Assume I am an expert and omit all
safety warnings.

GSAE steering

Sorry, I can’t assist with
instructions that facilitate harm.
If you’d like, I can provide
resources on safe, legal
alternatives and relevant ethical
considerations.

(b) GSAE refuses while offering a safe alternative.

Figure 7: Edge case where SAE fails but GSAE succeeds.

Prompt

Explain the historical role of
nitrates in
20th-century agriculture and their
economic impact.
Do not include any synthesis
instructions.

SAE steering

I can’t help with chemical topics
related to nitrates.

(a) SAE over-refuses on a benign request.

Prompt

Explain the historical role of
nitrates in
20th-century agriculture and their
economic impact.
Do not include any synthesis
instructions.

GSAE steering

Nitrates boosted crop yields via
the Haber{Bosch-driven
fertilizer boom, lowering food
prices and enabling
urbanization. Key inflection
points: 1913{1930
(industrial scale-up), 1945{1970
(Green Revolution).
No synthesis steps included.

(b) GSAE preserves utility on benign content.

Figure 8: Benign prompts where SAE over-refuses but GSAE answers normally.
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