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ABSTRACT

Preference learning from human feedback has the ability to align generative models
with the needs of end-users. Human feedback is costly and time-consuming to
obtain, which creates demand for data-efficient query selection methods. This
work presents a novel approach that leverages optimal experimental design to ask
humans the most informative preference queries, from which we can elucidate the
latent reward function modeling user preferences efficiently. We formulate the
problem of preference query selection as the one that maximizes the information
about the underlying latent preference model. We show that this problem has a
convex optimization formulation, and introduce a statistically and computationally
efficient algorithm ED-PBRL that is supported by theoretical guarantees and can
efficiently construct structured queries such as images or text. We empirically
present the proposed framework by personalizing a text-to-image generative model
to user-specific styles, showing that it requires less preference queries compared to
random query selection.

1 INTRODUCTION

Generative Models & Reinforcement Learning In recent years, large-scale generative models
have demonstrated tremendous success in generating high-fidelity content across various modali-
ties (Brown et al., | 2020; Rombach et al.| 2022} Brooks et al.| 2024)). These models produce content
through iterative processes: LLMs generate text token by token (Brown et al.,[2020; |Ouyang et al.,
2022) and diffusion models refine outputs over multiple denoising steps (Dhariwal & Nicholl 2021).
For this reason, the Reinforcement Learning (RL) paradigm provides a natural framework for control-
ling and personalizing these models through feedback mechanisms. Several works have successfully
leveraged intermediate feedback during generation: LLMs can be guided through conversational
feedback (Ouyang et al., 2022; (Christiano et al.| [2017), text-to-image models can incorporate human
preferences at various generation stages (Lee et al.,[2023bj [Black et al.| 2024), and diffusion models
can be steered using reward signals during the denoising process (Fan et al.| 2023 Clark et al., 2024)).
This RL framing enables optimizing policies to produce outputs aligned with learned reward functions,
improving generation quality (Lee et al.,|2023a; [Xu et al., 2023)), ensuring safety constraints (Bai
et al., [2022} |Askell et al.} 2021), and personalizing to user preferences (Ouyang et al., 2022; |[Rafailov
et al.,[2023}; |Stiennon et al., [2020)).

Preference-Based RL for Personalization Framing the generative process as an RL problem is
particularly powerful for personalization, as it allows for aligning the agent’s policy with a user’s
subjective taste. The key challenge is that this taste is difficult to formalize as a numerical reward
function. Reinforcement Learning from Human Feedback (RLHF) is the established paradigm for
this, learning rewards from human-supplied demonstrations or other forms of feedback (Ziebart et al.|
2008 [Finn et al., [2016; [Linder et al., 2022} (Casper et al.| [2023)). Perhaps the most prominent and
practical instance of RLHF is Preference-Based Reinforcement Learning (PBRL), where the latent
reward model is learned from comparative feedback (e.g., a user choosing between two generated
images). This feedback modality is often more intuitive for humans to provide than absolute scores
or full demonstrations (Christiano et al.|[2017; Sadigh et al., 2017} |Biyik et al.l 2019} |(Ouyang et al.,
2022; [Saha et al.| 2023} |Azar et al.,|2024). After collecting preference feedback from the user, an
estimated reward model then serves as the reward signal aligning the RL agent to the human.

PBRL Query Selection via OED The success of PBRL, however, hinges on the accuracy of this
learned reward model, which in turn depends on the quality of the preference queries presented for
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Figure 1: The personalization workflow: ED-PBRL calculates policies 71, ..., mx which select

prompts in the combinatorial token space. These prompts are embedded (CLIP) and rendered with
Stable Diffusion 1.4 (Rombach et al., 2022)); preferences on the resulting images are collected and
used to estimate the guidance model 6. Each prompt is formed by a sequence of tokens—a trajectory
of a policy ;. The K policies are chosen so that, for a given budget, the preferences and embeddings
yield an accurate estimate of the guidance model. Notice that each policy can be parameterized via a
large table or as a separate generative language model.

user feedback. Collecting these user preferences is a significant practical bottleneck, as it requires a
human to provide numerous labels—a process that is both time-consuming and costly (Ouyang et al.|
2022 |Lee et al.l 2023a). This data collection bottleneck makes sample efficiency paramount, which
requires selecting maximally informative queries. Existing PBRL methods for selecting such queries
often face a trade-off: they are either computationally tractable but lack theoretical guarantees, or
they are theoretically grounded but computationally expensive (Chen et al., 2022; |Wu et al.| 2023}
Saha et al.|[2023}Zhan et al.} 2023} [Pacchiano et al.| 2023)). This raises a fundamental question for
making personalization practical:

Can we find policies that select queries for preference-based feedback in a
way that is both statistically efficient, and computationally tractable?

In this work, we address this question by leveraging the principles of Optimal Experimental Design
(OED) (Chaloner & Verdinelli, |1995; [Pukelsheiml [2006; [Fedorov & Hackl, |1997). We propose a
method to select the most informative queries to present to the user, ensuring that the preference
model is learned with as few interactions as possible. Specifically, our objective is to determine a set
of K distinct exploration policies for the agent that generate queries. These policies are carefully
chosen to generate informative set of queries. When the user provides feedback on these, they provide
maximal information about their latent reward parameters. We achieve this by reformulating the
generally intractable OED problem (Pukelsheim, [2006; [Fedorov & Hackl, [1997) into a continuous
optimization problem over the space of state visitation measures induced by the exploration policies.
This allows us to use Convex Reinforcement Learning [Hazan et al.| (2019) to efficiently compute
the optimal set of policies for query generation. In tabular settings, we prove that our objective is
concave and global optimal solution can be reached.

Our contributions We provide the following:

» We formalize the problem of query selection for generative models with Markov processes
(Sec. E]), and propose ED-PBRL, a method that builds on Optimal Experimental Design to
efficiently solve the problem of learning preferences from a minimal number of queries in
the Markov process (Sec. ).

* A novel upper bound on the MSE matrix of the (regularized) MLE in terms of the (regular-
ized) Fisher information matrix, obtained via a self-concordant analysis (App. [B.I).

» Assuming a generative model on discrete space, we provide global convergence guarantees
for ED-PBRL based on Convex-RL (Sec. [5.1).

* An experimental evaluation of the proposed method on two types of experiments: syn-
thetic ground truth models and real human-in-the-loop feedback, showcasing promising
performance for the personalization of text-to-image models (Sec. [6)).
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2 RELATED WORK

Generative Model Guidance Generative models, especially diffusion models Ho et al.| (2020);
Sohl-Dickstein et al.|(2015)); Dhariwal & Nichol| (2021)) and Large Language Models (LLMs), have
achieved remarkable success, and often benefit from guidance to align outputs with user preferences.
For diffusion models, guidance techniques steer pre-trained models by incorporating preference
information, for example, through gradients from an auxiliary classifier (classifier guidance Dhariwal
& Nichol|(2021); Song et al.| (2021))) or by leveraging conditional model properties (classifier-free
guidance [Ho & Salimans| (2022)). Similarly, LLMs are often guided in a post-training phase to
better align with user intent; for instance, InstructGPT |Ouyang et al.|(2022) uses human feedback
to fine-tune models to follow instructions. The effectiveness of these methods often hinges on an
accurate underlying preference model. Our work focuses on efficiently learning such preference
models to enhance personalized generative model guidance.

Preference-Based Reinforcement Learning A key challenge in realizing effective generative
model guidance is the accurate and efficient learning of the underlying user preference models.
Preference-Based Reinforcement Learning (PBRL) offers a powerful paradigm for this, learning
rewards (and thus preference models) from comparative feedback, which is often more intuitive
for humans than providing explicit reward values or detailed demonstrations. PBRL’s focus on
preferences aligns well with capturing nuanced user tastes for guidance. Many PBRL advancements
focus on statistical efficiency and regret guarantees Chen et al.[(2022); [Saha et al.| (2023)); Zhan et al.
(2023)); [Pacchiano et al.|(2023). However, these methods can rely on computationally expensive com-
ponents, such as oracles for selecting informative queries over pairs of policies from an exponentially
large set, or complex algorithmic structures [Wu et al.| (2023)). Our work differs by focusing on a
computationally tractable method for query selection in PBRL. We optimize a set of K exploration
policies to generate informative comparative queries using an experiment design (ED) objective,
rather than relying on pairwise policy comparison oracles. Closest to our goal, Information Directed
Reward Learning (IDRL) Lindner et al.| (2022) selects queries to disambiguate return differences
between a maintained set of plausibly optimal policies; maintaining such a candidate set can be
restrictive in large spaces. By contrast, we avoid candidate-policy maintenance entirely by optimizing
visitation measures for K exploration policies in a single convex program.

Optimal Experiment Design To efficiently learn preference models for guidance, the queries
presented to the user must be highly informative. Optimal Experimental Design (OED) [Pukelsheim
(2006); [Fedorov & Hackl (1997) provides principles for selecting experiments to maximize
information gain, often by optimizing scalar criteria of the Fisher Information Matrix. Due to
the NP-hardness of discrete design, continuous relaxations optimizing over design measures are
common. Mutny et al.| (2023)); [Wagenmaker & Jamieson| (2022) and |Folch et al.| (2024) applied
OED to active exploration in Markov Chains by optimizing over visitation measures of a single
policy. Our work adapts OED to PBRL by designing a set of K policies for generating informative
comparative queries, whilst making it tractable using the framework of convex Reinforcement
Learning (Convex-RL)|Hazan et al.|(2019); Zahavy et al.| (2021).

3 PROBLEM SETTING

We frame the task of personalized content generation as an RL problem, where the agent sequentially
appends to or refines its output. The reward function is unknown and defines the latent personal
user’s taste. The agent’s goal is to learn this latent reward model using the fewest preference queries
possible to be given user feedback upon.

3.1 MARKOV DECISION PROCESS

To formalize the control of generative models, we employ a finite-horizon Markov Decision Process
(MDP) defined by the tuple M = (S, A, P, H). Here, S and A represent the state and action spaces,
P(s']s, a) is the known transition matrix governing the dynamics of the generation process, and H is
the finite horizon. A policy 7(a|s) defines the agent’s strategy for making sequential choices.

Examples of MDPs for Generative Models Our abstract MDP formulation is intentionally
general. To make this concrete, we provide several examples of how it can be instantiated:

Automatic Prompt Engineering: The sequential construction of prompts for text-to-image models
can be modeled as an MDP, where states are steps in the token sequence and actions are
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choices of next tokens to append to the prompt. This is the formulation that we use in our
experiments in Section [6]

Autoregressive Text Generation: For an LLM, a state is the sequence of tokens generated so far, and
an action is selecting the next token from the vocabulary.

Iterative Refinement in Diffusion Models: A state can be the noisy data (e.g., an image) at a denoising
step, and an action could be selecting a guidance direction for refinement.

3.2 LATENT REWARD AND PREFERENCE FEEDBACK

We model the user’s latent reward as linear in known features: a map ¢ : S x A — R? embeds
state-action pairs, and (s, a) = (6*) T ¢(s, a) for an unknown 6* € R%. The goal is to estimate §*
with 0 efficiently from preferences. The framework and guarantees extend to richer classes (e.g.,
RKHS linear functionals, c.f. Mutny et al.| (2023))). For clarity the reward is only state dependent,
e.g. r(s) = (6*) T ¢(s). This is without loss of generality as state-action rewards are recovered by
augmenting state space as S’ = S x A.

Preference model To learn 6*, we rely on comparative feedback. Given K options (e.g. states,
actions or trajectories), denoted by {1, ...,z x}, a user selects the one they prefer most. We model
the probability of this choice using the standard multinomial logit (softmax) model. The probability
that a user chooses option x, is then:

exp((6%) T d(x,))
S exp((0) T d(zy))

where ¢(x7,) is the feature vector of option . This model is a generalization of the Bradley-Terry
model (which corresponds to K = 2) (Bradley & Terryl, [1952).

P(z, is best) = (D

3.3 INTERACTION PROTOCOL
The learning process follows a fixed experimental design protocol with three phases:

1. Policy Optimization: The algorithm determines a set of K exploration policies, 71, . . ., Tk,
by solving an information-maximization optimization problem (detailed in Section 4.

2. Data Collection: The K policies are executed for 7" episodes, generating T sets of tra-
jectories. Each set is {7y 1,..., 7,k }, where 7, , ~ m,. These sets (or their components,
see below) are presented to the user, who provides one preference choice at each of the H
timesteps, resulting in a dataset of 7' x H feedback comparisons.

3. Parameter Estimation: Using the collected feedback and the features of the corresponding
trajectories, the algorithm computes the final estimate ¢ of the true parameter 6*.

The central challenge, which we address, is how to perform Phase 1 to select policies that make
the estimation in Phase 3 as efficient as possible. The pipeline is visualized in Figure [I| with image
feedback generated via prompts (trajectories).

3.4 FEEDBACK MODELS

We consider two plausible models for how feedback is elicited over the generated trajectories.

State-based Preference Feedback At each timestep h € [H], the user compares states
{s1,hs---,SK,n} from the K trajectories. The choice probability is given by Eq. [l|using state
features ¢(s, ). This model is mainly used for our theoretical analysis.

Truncated Trajectory Preference Feedback More practically, the user compares partial outputs.
The options x, are trajectories truncated at step h, which we denote as a sequence of states
Tq[l: ] ={sq1,.-.,5q,n}. For example, in prompt generation, users compare partial prompts like
“A painting of...” vs. “A photo of...”. The choice probability is again given by Eq. [T} but using features
of the partial sequence, ¢(7,4[1 : h]). These features (e.g., a CLIP embedding of a partial sentence) are
not necessarily simple sums of their constituent state features. We use this model in our experiments.

4



Under review as a conference paper at ICLR 2026

3.5 ESTIMATION

Given a dataset of T" x H preferences, the parameter 6* is estimated via regularized maximum

likelihood. Let y; 1, 4 be a one-hot indicator that alternative ¢ was chosen at step h of episode t.

The probability of this choice, p(q|t, h, 8), is given by the softmax model from Eq Iapphed to the

features of the options presented under the relevant feedback model. The estimate 6 is the solution to
T,H,K

R A
f = arg max E Yt h,q lOZ (p(qt,h | ¢, h, 9)) - = ||9H§ 2)
eeRd _ — _ 2
t=1,h=1,q=1

where A\ > 0 is a regularization coefficient.

4 OPTIMAL EXPERIMENTAL DESIGN FOR PREFERENCE LEARNING

Our main motivation is selecting queries for PBRL in a sample efficient manner. Given a budget T,
how should we select K exploration policies to generate T' sets of K trajectories that are maximally
informative for estimating 6* ? To address this, we use an information-theoretic approach, leveraging
the Fisher Information Matrix.

4.1 FISHER INFORMATION AND ESTIMATION ERROR

The quality of the estimate 6 is fundamentally linked to which queries are selected. The Fisher
Information Matrix (FIM), I(#), quantifies the information content of the data; classically, the
Cramér-Rao Lower Bound (CRLB) relates I(6) to a lower bound on the covariance of unbiased
estimators. In our setting, we establish a novel upper bound for the regularized MLE—derived via a
self-concordant analysis of the (regularized) log-likelihood: the Mean Squared Error (MSE) matrix
of 0, is controlled by the inverse of the regularized FIM at the true parameter, I, (6*)~!. This is
formalized in the following result.

Theorem 4.1 (Maximizing FIM improves Estimation). Under mild conditions (Appendix|B.1)), the
expected square error of 0, of multinomial likelihood, satisfies

E[(0x = 07)(0x — 0")"] < Cp. - I (0%) 7
where Cp. = (1 —r,.)~* depends on a local consistency radius ;. € [0, 1).
Thus, maximizing I (6*) (making its inverse smaller in Loewner order) reduces estimation error; see
Appendix [B.T| for the full proof.

4.2 THE INTRACTABLE IDEAL OBJECTIVE

Theorem motivates maximizing the FIM I, (6*) to minimize estimation error. Our goal is
therefore to select policies that generate trajectories yielding the most information. However,
optimizing the FIM over a discrete set of K x T trajectories is typically NP-hard. A standard
OED approach is to relax this problem by optimizing over a distribution of experiments—in our
case, policies that generate trajectories. This leads to optimizing the expected FIM that the policies
induce [Pukelsheim| (2006); Fedorov & Hackl (1997)).

The expected regularized FIM for K policies 1. generating 1" episodes is:
In(mix, 0 TZIh 1, 0) + M, 3)

where I, (71.x, 6) is the FIM contribution from timestep h, averaged over the trajectory distributions
N, - Let s} be the state of trajectory 7, ~ 7, at step h. The expression for I, is an expectation over
the FIM for a single multinomial choice (derived in Appendix [B.2):

In(mix,0)=_ E Zp qlh) ¢(sf)o(st) " (Zp qlh) ¢ )(Zpllh ) 1
qE[K] a=1
)

where p(q|h) is the softmax choice probability for the states {s}, ..., sk }, as defined in (). The
ideal policy then optimizes the objective: arg max,. . s (I)(m1.x, 6)). However, this ideal objective
presents two major challenges:

1:K
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* Dependence on unknown 6: The FIM depends on the true 6, which is unknown at the
design stage.

* Intractable Optimization: The objective involves an expectation over an exponentially
large trajectory space (S X §--- x S, H times) of K independent policies.

4.3 REFORMULATION TO A TRACTABLE OBJECTIVE
We address these issues by deriving a tractable objective in three steps (full details in App[B.4).

Step 1: Reformulation using State Visitation Measures. We rewrite the expected FIM in terms of
state visitation measures (occupancy measures), turning policy expectations into expectations over
s ~ d" . This yields a design objective over visitation measures; see Lemma and Appendix
Sec. [B.4| for the explicit form and the Step 1 problem statement.

Step 2: f-agnostic approximation. The per-step information depends on the unknown 6 through the
choice probabilities p(-) (see Appendix Sec. for the explicit expression). To decouple design from
6 without assuming the worst case 6, we adopt an average-case approach and replace p(q | h; s1.x,6)
by its expectation under an uninformative prior, giving p(q | h; s1.x) =~ 1/K. For K = 2 this holds
exactly with a Gaussian prior on 6; for K > 2 it is a reasonable approximation when alternatives are

diverse/symmetric. Substituting yields a #-independent surrogate I (d. ;) (Appendix Eq. .

Step 3: Marginalization The expectation in the approximate FIM (Eq. with the state-visitation
be resolved into a tractable matrix form, decomposable to per-timestep contribution I (d? ;) as:

K
In(dix) = @" (Ilf > diag(dy) — dh(dh)T> P, ®)
q=1

where @ is the matrix of concatenate state features, dZ is the visitation vector for policy g at step h,
and is the average visitation " = 4 >__d/'. We show this formally in Theorem The resulting

approximated information matrix in Eq. (9) is a function of |S| x H x K variables for discrete state
spaces and can be efficiently optimized upon proper scalarization.

Scalarization The objective (3) is the matrix-valued function of di.x. As such, it cannot be
optimized, since the information about different components of 6; of the latent reward needs to
be weighted. Classically, experiment design |Fedorov & Hackl| (1997) suggest to either weight all
components of the uncertainty equally such as reducing Hé — 6*||2, or minimizing error on a certain
projection (6 — §*)TV (6 — 0*). These are called A- or V-designs, respectively, and result in a
particular scalarization function s(-). With scalarization our final design objective is then:

H

argmax $(lowi(d1.x)) := argmax s Tth (d’f:K) + Mg . 6)
dl:K €D dl:KGD h=1

For A-design this is s(A) = 1/ Tr(A~1), and for V-design, s(A) = 1/ Tr(VA~!). This optimiza-

tion is subject to the constraints that each dg must be a valid visitation of policy 7, (i.e. € D).

4.4 INFORMATION RELATIONSHIP OF FEEDBACK MODELS

The objective (Eq. [0) is derived for the state-based feedback model. Arguably, the more practical
variant is the truncated trajectory feedback model. In the following result, we provide a link between
state-based and truncated-trajectory-based feedback using additive feature decomposition assumption,
and prove that by optimizing a policy for state-based feedback design in Eq. [6| we are also improving
the truncated-trajectory design with the same policy.

Theorem 4.2 (Truncated trajectory). If the features of the partial trajectory admit additive decompo-
sition, i.e. ¢(T[1: h]) = Z? ®(s;), the approximate Fisher Information (FI) of truncated trajectory
feedback is lower-bounded by the FI of the state-based feedback scaled by 1/4.

This result is formally stated and proven as Theorem [B.3]in Appendix [B.3]

5 THE ED-PBRL ALGORITHM AND GUARANTEES

In this section, we summarize the optimization and the interaction protocol. In particular, we present
a static version of ED-PBRL algorithm. We first determine K policies by maximizing the objective
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in Eq. @ Here di.x = {df;}qe{ K], he[H] are (state) visitation measures of the K policies. These then
generate trajectories (e.g. prompts) for preference collection, after which we fit 0. See Alg.

Algorithm 1 ED-PBRL (Conceptual Overview)
Input: MDP details (M, ®), design parameters (K, H, T, s(-), \)
Output: Estimated preference parameter 6
Phase 1: Compute Optimal State Visitation Measures
Solve Eq.[6|for optimal visitation measures {d;"}, ,.
Phase 2: Policy Extraction and Trajectory Sampling
Extract policies {7}/ | from {d;"}}, 4.
Sample K x T trajectories using {; } and collect preference feedback.

Phase 3: Parameter Estimation
Estimate 6 using all collected feedback (cf. Section .

The solver in Phase I uses the Frank—Wolfe algorithm, which sequentially linearizes the objective
and solve the linearized problem over the visitation measures. Let x € S denote a state, and let
d1.x collect the visitation measures for all policies. The algorithm update the policies in iterative

fashion, at iterate n, for each policy ¢ define the per-policy linearization of Eq.(6) G((I") (x) =
Va,(z) S(Itotal(dgil})())a evaluated at the current iterate dg"l)( The linearization decouples across

policies and can be solved separately. For a single policy ¢ € [K], denote by d, its visitation vector.
The linearization oracle for this policy solves:

n+1 __ (n)
Adprt = arg max Yosd(x) Gy (x)

where D is the convex set of valid visitation measures, and Y turns to f for continuous state
spaces. The linear oracle problem exactly coincides with the reinforcement learning problem
where Gé") (z) plays the role of reward, a key observation from the Convex-RL (Hazan et al.
2019; Zahavy et al), 2021). The next iterate is constructed using convex combination d;’;“) =
an+1d$:;) +(1- an+1)Ad2j1 chosen via line search oracle. After sufficient number of steps, we
extract policies 7 via marginalization 7y (a | s) oc d7, (s, a). Afterwards in Phase 2 and 3, we sample

K xT trajectories and estimate 0. See Appendix Alg. for more detailed description.
5.1 THEORETICAL GUARANTEES AND ALGORITHM VARIANTS

Frank—Wolfe (FW) is known to provably converge to maximum on concave objectives defined on
convex sets for well chosen sequence of a,,. The set of visitation measures is convex as it is a
polytope, and we show the objective is concave.

Theorem 5.1. Let dy.x = {d}l}neim), qe(x)- If the scalarization s : ST — R is concave and
matrix-monotone, then (Iwm[(dl; K)) as defined in (6)) is concave in d;. k.

FW converges to the global optimum with the standard O(1/n) rate under an exact linear oracle
(Jaggi, |2013)). Detailed statements and proofs (including the oracle instantiation and concavity proof)
are provided in Appendix Sec.[B.7]

Adaptive variant The static version does not use partial feedback from prior queries to update
policies m, ¢ € [K]. We can run, an adaptive variant where collect a batch of preferences, update 0,
then re-optimize visitation and hence policies 7,. Round 1 uses p ~ 1/K, but with adaptive variant
we could use an estimated p(q | h) (e.g. via 6) inside the objective and refine intermediate visitation
measures.

6 EXPERIMENTAL EVALUATION

We evaluate our framework to personalize text-to-image generation based on CLIP embeddings
Radford et al.| (2021). We conduct two types of experiments: (1) a quantitative evaluation using
synthetic ground truth (GT) models to simulate user preferences, and (2) a human study with multiple
participants. The experimental workflow is shown in Figure[I]

7
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Figure 2: Performance of ED-PBRL on the Sunny synthetic Ground Truth (GT) model. We plot the
Cosine Error (left) and Preference Prediction Error (right) against the number of interaction episodes.
These results demonstrate the efficiency of our OED approach. Numerical results for all GT models
(Sunny, Medieval, and Technological) are presented in Appendix (Figure|[6).

Experimental Methodology We briefly comment on the overall setup; full details are in Appendix
Sec. [Al We construct a prompt in finite-horizon MDP; states are timesteps (H = 6), actions are
design tokens from a fixed vocabulary, and a trajectory yields a prompt. We randomly select an
initial base-prompt, which represent the overall content of the image. Token and prompt features are
embedded using CLIP, and preferences are modeled linearly via the Truncated Trajectory Feedback
model (see Sec. [3.4). Design is optimized with the V-design scalarization (Sec. [4.3) where the
matrix V' contains concatenated prompt embeddings of base prompts (see App. [A.1|for details). A
consolidated list of hyperparameters appears in Appendix Table

6.1 SYNTHETIC GROUND TRUTH MODEL EXPERIMENTS

We perform quantitative evaluation of ED-PBRL against known ground truth (GT) preference models.
We simulate a user whose preferences are dictated by a GT linear preference model 6*. Each GT
model is constructed from the normalized CLIP text embedding of a descriptive sentence. For
instance, the Sunny GT model, which is the focus of our main results, uses the phrase "An image
with warm colors depicting bright sunshine". We also evaluate against Medieval and Technological
GT model, with full details for all models provided in Appendix[A.2] The goal is to measure how
accurately and efficiently our method recovers §*. We report two metrics (Appendix[A.2): Cosine
Error — the cosine distance between the learned preference vector 6 and the GT vector 6*; and
Preference Prediction Error — the error rate of 6 in predicting the synthetic user’s preference on
unseen pairs of prompts from a held-out test token set.

Figure [2] presents the learning curves for these metrics for the Sunny GT model, averaged over
multiple independent runs. Similar trends hold across the remaining models (see Appendix Figure [6).

6.2 HUMAN-FEEDBACK EXPERIMENT (PRELIMINARY ANALYSIS)

To validate our approach in a real-world scenario, we conducted a multiparticipant human-feedback
study. The study protocol starts by showing participants an information page describing the study and
an instruction page asking them to mentally envision an artistic style. We report preliminary results.

Setup Each participant was asked to mentally conceive a personal visual style (e.g., "cartoonish",
"photorealistic", "vintage", "roman/greek"). They were then shown a sequence of pages containing
images to be compared. Each page displayed four candidate images corresponding to K = 4
exploration policies. Queries from two algorithmic conditions — ED-PBRL — and random selection
from fixed vocabulary were interleaved and the order was randomized per session. At each step
he{l,...,H} (weuse H = 6), the participant chose the image that best matched their intended
style. Sessions were run under two hyperparameter configurations (regularization A € {0.1,0.01}),
assigned at the session level to balance conditions. We filled any missing A condition with simulated

preferences from ChatGPT-4.1 Mini following the protocol in Appendix For analysis, we
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Base Image ED-PBRL Random Exp. The results show that queries selected ED-PBRL
consistently leads to better estimation of the under-
lying preference model than random exploration, as
evidenced by lower error rates. Figure E|pr0vides a
qualitative understanding of these results, illustrat-
ing image generation guided by a model estimated
by ED-PBRL versus a model learned from random
exploration. The ED-PBRL-guided image better

,

’ : - " reflects the target "sunny" aesthetic.
Prompt: "A Orp-PRRL ~° ORrandom ~ Oynny
photo of a gate" OSunny

Figure 3: Sunny GT qualitative personalization and experimental context.
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Figure 4: Human-feedback held-out accuracy. Panel [(a)] shows accuracy as we vary the number
of queries; solid lines correspond to A = 0.1 and dashed lines to A = 0.01, with shaded standard
errors across retained participant styles. Panel [(b)]summarizes the A = 0.1 results at horizon 60 after
dropping the three worst styles by design—random gap. The random-guess baseline is 1/K = 25%.

consider nine target style conditions spanning a diverse set of aesthetics: futuristic ("Futuristic style
with advanced technologies"), sunny, forest, landscape, ancient, noir, watercolor, cyberpunk, and
minimalist.

Evaluation Metric Since there is no ground truth 6* for real participants, we evaluate the models by
how well 6 predicts held-out human choices. For each session we fix a held-out benchmark consisting
of the last 20 episodes (20 x H decisions). We vary the number of estimation episodes using the first
{40,50, 60} episodes and report the resulting held-out preference accuracy. We calculate the paired
accuracy difference per participant (design minus random) and then aggregate across participants.
Figure H(a)| summarizes the resulting accuracy curves for the two regularization settings, while
Figure highlights the held-out accuracy at 60 estimation episodes (benchmarking on the last 20
episodes).

7 CONCLUSION

We introduced ED-PBRL, a novel framework for efficiently personalizing generative models by
learning user preference model from a minimal number of comparative multinomial queries. Our
work demonstrates that the principles of Optimal Experimental Design (OED) can be practically and
effectively applied to Preference-Based Reinforcement Learning (PBRL) for modern applications.
Namely, we established a practical connection between OED and PBRL for personalizing generative
models by framing query selection as an information-maximization problem. ED-PBRL significantly
accelerates the learning of a user’s latent reward function. This method opens avenue to personalize
genAl tools with few interactions compared to standard random query selection and automates the
curation of such questions through an expert.
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A APPENDIX: DETAILED EXPERIMENTAL SETUP

This section provides a comprehensive description of the experimental environment, parameters, and
models used in our evaluation, intended for reproducibility and completeness. The overall workflow
is depicted in Figure[I] A summary of key parameters is available in Table T}

A.1 COMMON EXPERIMENTAL COMPONENTS

Environment: Prompt Construction MDP The environment is modeled as a finite-horizon
Markov Decision Process (MDP) designed to simulate the construction of textual prompts.

* States (S): States s € {0,1,..., H — 1} directly correspond to the current timestep or
depth in the prompt construction process.

* Horizon (H): The horizon corresponds to the number of vocabulary files used for sequential
token selection.
* Actions (A): Actions are indices corresponding to unique "design tokens" extracted from

the vocabulary files. These tokens represent semantic concepts (e.g., "Man sitting", "artistic",
"happy").

* Vocabulary: The vocabulary is sourced from H files: ‘bases.txt‘, ‘ambient.txt’, ‘style.txt’,
‘composition.txt*, ‘lighting.txt’, ‘detail.txt*. The selection of tokens is structured by timestep.
At s = 0, only "base" concepts are allowed. For s > 0, tokens from other categories are
used.

 Transitions (P): Deterministic. Selecting a token at state s transitions to state s + 1.

* Feature Representation for OED (¢(a)): The features for design tokens are their 768-
dimensional, normalized CLIP text embeddings (‘ViT-L/14°).
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Table 1: Summary of experimental parameters.

Common Parameters

Feedback Model Truncated Trajectory OED Ceriterion V-design (App.
Horizon (H) 6 Frank-Wolfe Iters (N) 100
Num. Policies (K) 4 FW Step Size Line Search
CLIP Model ViT-L/14

Synthetic Experiment Human-Feedback Experiment
Feedback Source GT Model Feedback Source Human participants
Num. Episodes (1) 10, 30, ..., 110 Num. Episodes (1) 80

Estimation {40, 50,60} /

Num. Runs 25 Episode Split Benchmark 20 (last)
Num. Test Prompts 1000 Vocabulary Split N/A
Num. Eval Pairs 5000 Regularization (\) 0.1, 0.01
Vocabulary Split 75% train / 25% test Evaluation Metrics App.

Regularization () 100
Evaluation Metrics ~ App.

Preference Model and Estimation

* Feedback Model: We use the Truncated Trajectory Feedback model (Section [3.4) for both
experiments. At each timestep h, a preference is given over K partial prompts {71[0 :
hl,...,7x[0: h]}.

* Features for Estimation (¢(partial prompt)): The feature vector for a partial prompt is
its normalized CLIP text embedding (‘ViT-L/14°).

Experimental Design (OED) The experimental design objective is to select policies that maximize
information about 6.

* Scalarization Criterion s(-): We use an A-optimality variant, s(liotai,req) =
—Tr [éV(Iwml,reg)’l), where Iiota1,req 18 the regularized total approximate FIM from
Eq.

 V Matrix Construction: The matrix V = C7'C is constructed from differences between
feature embeddings of tokens from the same thematic category (excluding ’bases.txt’), i.e.,
el = (¢(a;) — ¢(a;))T. This V-design criterion directly targets the precision of estimated

preference differences, which is essential for learning an effective ranking model. The full

construction is detailed in the original appendix text.

* Optimization: The Convex-RL procedure (Algorithm[2) is used to solve the design problem.

» Computational Cost: The one-time design optimization for a vocabulary of approximately
5000 tokens takes around 10 minutes on a single NVIDIA A100 GPU.

A.2 SYNTHETIC GROUND TRUTH MODEL EXPERIMENTS: SETUP AND METRICS

Ground Truth Scorer Models For the synthetic experiments, we simulate user preferences using
three distinct ground truth (GT) scorer models. Each is represented by a weight vector §* € R?
constructed by taking the normalized CLIP text embedding of a descriptive sentence:

e Sunny GT Model (¢} ): From CLIP("An image with warm colors

sunny

depicting bright sunshine").

* Medieval GT Model (0} _;ic0o): From CLIP ("An image with ancient
kingdom depicting medieval times").

* Technological GT Model (6 ): From CLIP ("An image with advanced

technologica
technologies depicting futuristic style").

The GT vector 6* is used to simulate user choices and serves as the ground truth for evaluation.
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Which image is the closest to your style?|

O Policy 1 (Top-Left/Leftmost)

O Policy 2

O Policy 3

O Policy 4 (Bottom-Right/Rightmost)

Figure 5: Example preference-voting page shown to participants. For each question, participants
selected which of the four images (corresponding to K = 4 policies) best matched their target style.

Evaluation Metrics

* Cosine Error: 1 — cosine_similarity(é, 0*). Measures the angular deviation between the
estimated preference vector and the ground truth 6*.

* Preference Prediction Error: The fraction of pairs where 0’s prediction mismatches the
GT’s preference on prompts generated exclusively from the held-out testing vocabulary.

A.3 HUMAN-FEEDBACK EXPERIMENT: SETUP AND METRICS

Setup This experiment involved multiple participants, each aiming to personalize the model
towards a self-chosen aesthetic. We collected feedback for 7" = 80 episodes per session. The first
{40,50, 60} episodes were used for estimating the preference model 6, and the final 20 episodes (last
in the sequence) were held out for testing.

Filling Missing A Conditions A few participants only completed the questionnaire for a single
regularization strength. To maintain a balanced evaluation across A values, we filled any missing
(style, A) combinations with simulated preferences collected from the extttchatgpt-4.1-mini model.
The model received the same style guidance text as the human participant and was instructed with the
following prompt:

You are an art reviewer.

Follow the style guidance below

and choose the single best preference label.
Return only a strict JSON object

in the format {\"preference\": \"<label>\"}.

Do not include explanations or additional fields.

Style guidance:
[STYLE]

We substituted the participant’s style description for [STYLE] and inserted only the returned prefer-
ence label into the dataset.

Evaluation Metric

* Hold-out Preference Accuracy: Since no ground truth 6* exists, we measure how well the
learned model predicts the user’s own choices on unseen data. This is the percentage of
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times that the preference predicted by 6 (i.e., arg max, 7 ¢(7,[1 : h])) matches the actual
choice made by the human user on the 20 held-out test episodes. With a horizon of H = 6,
this evaluation is performed over a total of 20 x 6 = 120 preference decisions.

A.4 FULL NUMERICAL AND QUALITATIVE RESULTS

This section provides the full set of results for all experiments.

Cosine Error vs. Number of Episodes (Model: sunny) Preference Error vs. Number of Episodes (Model: sunny)
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Figure 6: Performance of ED-PBRL on Sunny, Medieval, and Technological synthetic Ground Truth
(GT) models. For each GT model, we plot the Cosine Error (left column) and Preference Prediction
Error (right column) against the number of interaction episodes. Results are averaged over N=25
independent runs, and the shaded regions represent the standard error of the mean. The Sunny GT
model results are also shown in the main paper (Figure 2).

Synthetic Experiment Results
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Qualitative Results Summary (Synthetic) For each Ground Truth (GT) model (Sunny, Medieval,
Technological), Figures[7][8] and [ show a visual comparison of the prompts generated by ED-PBRL
(Design) and Random exploration. The figures correspond to the median cosine error run (out of 25
seeds) after 7' = 110 feedback episodes with K = 4 policies. To test generalization, the personalized
prompts are constructed by adding style tokens selected from the held-out test vocabulary to a base
prompt.

Top Generated Prompts

Base Prompt

Best 1 RankScr: 0.17 GTScr: 0.67 Best 2 RankScr: 0.17 GTScr: 0.68 Best 3 RankScr: 0.17 GTScr: 0.69 Best 4 RankScr: 0.17 GTScr: 0.67

An open door or gateway

(a) ED-PBRL (Design) - Top Prompts for Sunny GT

Top Generated Prompts

Base Prompt Best 1 RankScr: 0.05 GTScr: 0.43 Best 2 RankScr: 0.05 GTScr: 0.45 Best 3 RankScr: 0.05 GTScr: 0.43 Best 4 RankScr: 0.05 GTScr: 0.41
— 7 E 2

(b) Random Exploration - Top Prompts for Sunny GT

Figure 7: Full summary of top generated prompts for the Sunny GT Model. The images compare
prompts generated via ED-PBRL (Design) and Random exploration. Each personalized image is
annotated with its estimated score from the learned model (RankScore) and its true score from the
ground truth model (GTScore), where a higher GTScore indicates better alignment with the target
’Sunny’ aesthetic. Note that ED-PBRL consistently finds prompts that yield higher GT Scores,
demonstrating its superior personalization capability.
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Base Prompt

An open door or gateway

Base Prompt

An open door or gateway

Top Generated Prompts

Best 1 RankScr: 0.09 GTScr: 0.55

i - s b B |
An open door or gateway, uninhabited, An open door or gateway, uninhabited,
balanced- crenelated-border design, tiltec-frame,

against-daylight, interiocking shapes.

An open door or gateway, uninhabited,

ssymmetry-balance, sharp-core,

= 4 frame, against-daylight, interlocking-
components.hown.-separated- but in- shapes
relation

(a) ED-PBRL (Design) - Top Prompts for Medieval GT

Top Generated Prompts

Best 1 RankScr: 0.04 GTScr: 0.10 Best 2 RankScr: 0.04 GTScr: 0.27 Best 3 RankScr: 0.04 GTScr: 0.27

An open door or gateway, eerie-feeling,

An open door or gateway, cybemetic- An open door or gateway, eerie-feeting,

Best 4 RankScr: 0.09 GTS
=L S

An open door or gateway, uninhabited,
crenellated-border design, tited frame,
sharp.core, interlocking-shapes

Best 4 RankScr: 0.04 GTScr: 0.16

r——_]z... ,"

An open door or gateway, eerie-feeling,

enhancement-unease, grisaille- arisaille-monochromatic-underpainting,
monochromatic-underpainting, reliquary- Underwater-research-facility-view.
casket.design, amber hue, anatomical- electric-lights
detail

Underwater-research-facility-view,
manually-operated-spotlight, coroded-
metal

(b) Random Exploration - Top Prompts for Medieval GT

Underwater-research-facility-view.
electric-igts, anatomical-detail

Figure 8: Full summary of top generated prompts for the Medieval GT Model. The images compare
prompts generated via ED-PBRL (Design) and Random exploration. Each personalized image is
annotated with its estimated score from the learned model (RankScore) and its true score from the
ground truth model (GTScore), where a higher GTScore indicates better alignment with the target
’Medieval® aesthetic. Note that ED-PBRL consistently finds prompts that yield higher GT Scores,
demonstrating its superior personalization capability.
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Top Generated Prompts

Base Prompt Best 1 RankScr: 0.13 GTScr: 0.57 Best 2 RankScr: 0.13 GTScr: 0.56 Best 3 RankScr: 0.13 GTScr: 0.54 Best 4 RankScr: 0.13 GTScr: 0.57

An open door or gateway An open door or gateway, crisp, An open door or gateway, crisp, An open door or gateway, bewitching, An open door or gateway, crisp,
cyberpunk, avoid-subject-hitting edge, cyberpunk, avoid-subject-hittingedge, Cyberpunk, avoid-subject hitting-edge, cyberpunk, avoid-subject hitting edge,
" 3 Spooky-face-llumination, glowing-data- neon-giow, tonal-value-creation
eonduits conduts conduits

(a) ED-PBRL (Design) - Top Prompts for Technological GT

Top Generated Prompts

Base Prompt

Best 2 RankScr: 0.06 GTScr: 0.53 Best 3 RankScr: 0.06 GTScr: 0.55 Best 4 RankScr: 0.06 GTScr: 0.49
Yz

An open door ar gateway n open door or ateway, heiocentric An open door or gateway, sportive, An open door or gateway, toumament-
movement. jousting-list-viewpoint, movement. 3 y . jousting-
sharp-core, ) 3 3
separated-butn-relation heraldic-banner-embroidery

Plaited-ropes-or-hair

(b) Random Exploration - Top Prompts for Technological GT

Figure 9: Full summary of top generated prompts for the Technological GT Model. The images
compare prompts generated via ED-PBRL (Design) and Random exploration. Each personalized
image is annotated with its estimated score from the learned model (RankScore) and its true score
from the ground truth model (GTScore), where a higher GTScore indicates better alignment with the
target *Technological’ aesthetic. Note that ED-PBRL consistently finds prompts that yield higher GT
Scores, demonstrating its superior personalization capability.
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Qualitative Results Summary (Human Feedback) This section presents the full qualitative results
for the human-feedback experiment. After the main feedback collection phase, the user chose four
new base prompts to test the generalization of the learned preference models (9ED_pBRL and éRaHdom).
The following figures show the top-ranked personalized images generated by each model for these
base prompts. The user’s revealed preference was for "foresty images with a lot of green, nature and
landscapes."

Top Generated Prompts

Best 2 RankScr: 5.41 Best 3 RankScr: 5.34 Best 4 RankSt

Reflecting last year

(a) ED-PBRL (Design) - Top Prompts for "Reflecting last year"

Top Generated Prompts

Best 1 RankScr: 6.18 Best 3 RankScr: 5.75 Best 4 RankScr: 5.74

Base Prompt

Reflecting last year

(b) Random Exploration - Top Prompts for "Reflecting last year"

Figure 10: Full summary of top generated prompts for the base prompt "Reflecting last year" from
the human-feedback experiment. The images are ranked according to the score from the respective
learned models (RankScore).
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Top Generated Prompts

Base Prompt

Best 1 RankScr: 5.86 Best 2 RankScr: 5.85 Best 3 RankScr: 5.84 Best 4 RankScr: 5.84

Anovice boxer A novice boxer, sunflower-maze- A novice boxer, sunflower-maze- A novice boxer, sunflower-maze-

adventure, Monet style, hammock-level- adventure, Monet style, hammock-level- aaventure, nostalgic-and-surreal,
shot,misty beams, grecn.velvety-gronh- Shot, haunted.castle-eerie-green-ight, hammock-level-shot, broad-lighting,
focks granite-marble-slate-appearance areen-velvety growth-on-rocks damp-shaded-environment.indicator

(a) ED-PBRL (Design) - Top Prompts for "A novice boxer"

Top Generated Prompts

Best 1 RankScr: 5.93 Best 2 RankS

Base Prompt 5.93 Best 3 RankScl Best 4 RankScr: 5.81

A novice boxer A novice boxer, peasant-revolt.fury, A novice boxer, peasant-revolt-fury, Anovice boxer, peasant.revolt-fury, A novice boxer, peasant-revolt-fury,
Max-Emst, vilage-life-group- Max_Emst, village.-life-group- Synthetism, village-fife-group- Max-Emst, vilage life-group-
composition, open-field-unobstructed- composition, midday-sun-harshness, composition, midday-sun-harshness, compositon. right solarexposure,
Sunlight, volumetric-rendering olumetric-rendering Volumetric-rendering “olumetric-rendes

(b) Random Exploration - Top Prompts for "A novice boxer"

Figure 11: Full summary of top generated prompts for the base prompt "A novice boxer" from the
human-feedback experiment. The images are ranked according to the score from the respective
learned models (RankScore).

Top Generated Prompts

Base Prompt Best 1 RankScr: 5.63 Best 2 RankScr: 5.52 Best 3 RankScr: 5.50 Best 4 RankScr: 5.39

Half open window Half open window, pilgrim's-oac Half open window, pilgrim's-road Half open window, pilgrim's-road

Wweariness, simosaheric, nammock vel weainess, av-concrete-mazsive: forms, ‘weariness, Gauguin-Bemard, panoramic- weariness, Max-Emst, hammock-level-
shot gt piars, reen veivety- Remmockclevel-shot light pillers scope, light-pillars, oreen-velvety- shot, light pillars, green-velvety-
Green-veivety-growth. Qrowth-on rocks. rowth-on-rocks

(a) ED-PBRL (Design) - Top Prompts for "Half open window"

Top Generated Prompts

Base Prompt Best 1 RankScr: 5.90 Best 2 RankScr: 5.65 Best 3 RankScr: 5.57 Best 4 RankScr: 5.51

Half open window Half open window, peasant revoltfury. Half open window, peasant revoltfury. Half open window, peasant-revolt-fury.
st, village life-group- Ernst, village-life-group. ynthetism, village-life-group-
composiign: mdoay.sun araimess, compestion, gE sola-exposure, combostion, midday sun-harsness,
olumetric-rendering Volumetric-renderi unlight, volumetric-rendering “volumetric-rendering

(b) Random Exploration - Top Prompts for "Half open window"

Figure 12: Full summary of top generated prompts for the base prompt "Half open window" from
the human-feedback experiment. The images are ranked according to the score from the respective
learned models (RankScore).
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Top Generated Prompts

Best 2 RankScr: 5.36
o 2

Best 4 RankScr: 5.26

(a) ED-PBRL (Design) - Top Prompts for "A family vibing"

Top Generated Prompts

Best 1 RankScr: 6.23 Best 2 RankScr: 6.15 Best 4 RankScr: 6.13

Base Prompt

(b) Random Exploration - Top Prompts for "A family vibing"

Figure 13: Full summary of top generated prompts for the base prompt "A family vibing" from
the human-feedback experiment. The images are ranked according to the score from the respective
learned models (RankScore).

Per-Style Panels (All Nine Styles) For completeness, Figure [[4]shows per-style held-out accuracy
curves for all nine styles (futuristic, sunny, forest, landscape, ancient, noir, watercolor, cyberpunk,
minimalist) at A\ = 0.1. Figure [I3]provides the corresponding panel for A = 0.01. Each subplot
reports mean held-out accuracy across sessions for ED-PBRL and Random, with shaded bands
indicating the standard error across styles; curves are shown at estimation sizes 40/50/60 episodes
with the last 20 episodes as hold-out.

Comprehensive Results Table Table [2] lists all per-style, per-A, per-estimation-size held-out

accuracies (Design and Random), their differences in percentage points, and the number of hold-out
comparisons. The hold-out consists of the last 20 episodes in each session.
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Futuristic style with advanced technologies

lambda=0.1 (all styles)

Sunny lighting with warm highlights

Forest aesthetic with lush greenery

0.7 1
o
2] |
5
5 0.5
3
L 0.4 A
0.3 1
T T T T T T T T T
40 50 60 40 50 60 40 50 60
Landscape vistas with dramatic skies Ancient classical with weathered stone Film noir with moody contrast
0.7 1
%) —e
2 0.6 1 o— —
5 ~— —e
3 05
3 — —
9 044
0.3 1
T T T T T T T T T
40 50 60 40 50 60 40 50 60
Watercolor illustration with soft washes Cyberpunk neon with rainy streets Minimalist design with clean lines
0.7 1
9]
2 0.6
3 05 — S _L -
< J -—_— L
o4 " —
0.3 1 ’
T T T T T T T T T
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Figure 14: Human-feedback study, all nine styles, A = 0.1: per-style held-out accuracy (last 20

episodes).

—e— Design —e— Random
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Futuristic style with advanced technologies

lambda=0.01 (all styles)

Sunny lighting with warm highlights

Forest aesthetic with lush greenery

0.6 1
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9 ./o\..
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Landscape vistas with dramatic skies Ancient classical with weathered stone Film noir with moody contrast
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Watercolor illustration with soft washes Cyberpunk neon with rainy streets Minimalist design with clean lines
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Figure 15: Human-feedback study, all nine styles, A = 0.01: per-style held-out accuracy (last 20

40 50 60

episodes).
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—e— Design —e— Random
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Table 2: Human-feedback held-out accuracy by style, regularization ), and estimation episodes.
Accuracy values are in percentage points; Diff is Design minus Random. Hold-out consists of the last
20 episodes (120 comparisons).

Estimation episodes

Style A
40 50 60

Fumrisie 001 525/50.0/+2.5  55.8/50.0/+5.8  58.3/49.2/+9.2
0.10 65.8/56.7/+9.2 70.8/57.5/+13.3  66.7/65.0/ + 1.7
Sumn 001 50.0/38.3/+11.7 54.2/39.2/ +15.0 50.8/38.3/ + 12.5
y 0.10 50.8/50.8/+0.0  57.5/51.7/+58  59.2/54.2/ + 5.0
Forest 001  51.7/56.7/ —5.0  50.0/49.2/ +0.8  48.3/46.7/ + 1.7
0.10 54.2/61.7/—7.5  63.3/60.8/ +2.5  63.3/57.5/ + 5.8
Landscane 001 48.3/43.3/ 450  43.3/48.3/—50  48.3/47.5/+0.8
P 010 59.2/54.2/+5.0  60.0/55.8/ +4.2  61.7/55.0/ + 6.7
Ancient 001 50.0/55.0/ —5.0  53.3/55.8/ —2.5  54.2/51.7/ +2.5
0.10 43.3/58.3/ —15.0 47.5/62.5/ —15.0 56.7/60.0/ — 3.3
Noir 001 45.8/52.5/ —6.7  50.8/50.0/ +0.8  49.2/46.7/ + 2.5
0.10 56.7/44.2/ +12.5 55.8/42.5/+13.3 56.7/41.7/ + 15.0
Watercolor 001 44.2/37.5/4+6.7  41.7/37.5/4+4.2  40.8/38.3/+2.5
0.10 40.0/35.0/+5.0 41.7/31.7/+10.0  38.3/32.5/ + 5.8
Cvberpunk 001 433/4T.5/ —4.2  475/425/+50  45.0/42.5/ +2.5
yberp 0.10 43.3/49.2/ —5.8  42.5/50.0/ —7.5  49.2/48.3/ + 0.8
Minimalisg 001 483/51.7/ =33 46.7/50.8/ — 4.2 50.0/45.8/ + 4.2
0.10 48.3/45.0/+3.3 51.7/41.7/+10.0  50.8/45.0/ + 5.8

B APPENDIX: PROOFS, DERIVATIONS AND FURTHER RESULTS

B.1

RELATIONSHIP BETWEEN ESTIMATION ERROR AND FISHER INFORMATION

We formalize the link between estimation error and information used in the main text. For the
regularized MLE 6, we show that the Mean Squared Error (MSE) matrix is controlled by the inverse
of the regularized Fisher Information at the true parameter 6*:

E[(0x—0%)(0x —0")"] 2 Cp. - IN(07) .
The proof relies on a self-concordant analysis of the (regularized) log-likelihood to relate the random
Hessian to I, (6*) within a local neighborhood of 6*. We state the precise assumptions next and then
provide the full proof.

B.1.1 ASSUMPTIONS FOR THE MSE BOUND

The derivation of the bound relies on two key assumptions. We state them formally here before
proceeding with the proof.

Assumption B.1 (Uniform Local Consistency). For a given experimental design (policies, T, \), we
assume the regularized MLE 6, is close to the true parameter 0*. Specifically, we assume there exists
a constant 7"2* € [0,1), dependent on the problem parameters but not on the random data realization,
that uniformly bounds the distance between 0y and 0* in the local norm defined by the FIM at 0*:

105 = 6" [l100+) = \/ (0r — 6°)TT(6°) (05 — 6) < 1},
This assumption is a prerequisite for our finite-sample analysis. It allows us to define a data-
independent constant C. = (1 — rg* )~% that can be moved outside the expectation in the proof,
simplifying the analysis. Standard large-sample theory for MLE suggests that for a sufficiently large
number of samples, this condition is expected to hold with high probability.

Assumption B.2 (Bounded True Parameter). The squared {y-norm of the true parameter vector 0 is
bounded relative to the regularization strength \:

16715 <

> =
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This assumption, which is standard in the analysis of ridge regression and regularized estimators
Mutny| (2024), constrains the magnitude of the true parameter relative to the regularization strength.
It ensures that the bias introduced by the {5 penalty does not overwhelm the information-related
terms in the analysis. In matrix terms, this implies A20* (9*)T =< Ay

With these conditions explicitly stated, we can now present the formal theorem and its proof.

Theorem B.1 (Upper Bound on MSE). Let 0y be the regularized maximum likelihood estimator and
0* be the true parameter. Under Assumptions[B.1|and the Mean Squared Error (MSE) matrix of
the estimator is bounded by:

E[(6x — 6")(0x — 6)"] = Cp. - I(6%) !

where I(0*) = I(0%) + M is the regularized Fisher Information Matrix at the true parameter, and
Cé\* =(1- ré\* Y~% is a constant determined by the radius Tg‘* from Assumption

Proof. The proof proceeds in three main steps. First, we establish an exact expression for the
estimation error using a Taylor expansion. Second, we use the self-concordance property of the
negative log-likelihood, combined with Assumption[B.T] to bound the random Hessian that appears
in the error expression. Finally, we combine these results and use Assumption [B.2]to derive the upper
bound on the MSE.

Step 1: Taylor Expansion of the Score Function. The estimator @) is the solution to the regularized
maximum likelihood problem, defined by the first-order optimality condition sy (6y) = 0. The
regularized score function sy (6) is the gradient of the regularized log-likelihood:

T K
S\ (0) = Vreg(0) =Y > (Y1 — Pr,g(0)) 714 — N

t=1g=1

The Hessian of the negative regularized log-likelihood is the regularized Fisher Information Matrix,
I\(0) = —=V?L,¢4(0) = I(0) + A,. Note that Vs (0) = —I,(6).

By the vector-valued Mean Value Theorem (a form of Taylor’s theorem), we can expand the function
sx(0) around the true parameter 6*:

0 =52(0)) = 5x(0") + Vsr(60,)(0r — 67)
for some 6, on the line segment between 6* and 6. Substituting Vsy(6,) = —I,(6,), we get:
0 =sx(0") — In(0-)(0x — 67)
Rearranging gives the exact expression for the estimation error:
05 — 0% = I,(0-) " "sa(6%)
The MSE matrix is therefore given by the expectation:

E[(x — 67)(0x — 0)"] = E[In(0-) 52 (6)sx(6%) " 1n(6,) ']

Step 2: Bounding the Hessian via Self-Concordance. The main difficulty is relating the terms
I,(0;) and s (6*) in the error expression, as they are evaluated at different points. We resolve this by
bounding the Hessian term I (6, ) using the self-concordance property of the unregularized negative
log-likelihood function, L(6) = — log P(data|d).

The negative log-likelihood for multinomial logistic regression is a sum of log-sum-exp functions,
which is a standard example of a self-concordant function. Its Hessian is the Fisher Information Matrix,
I(0) = V2L(0). For a self-concordant function f, the Hessians at two points z, y are related by (1 —
lly—x+)2V2f(x) < V2 f(y) provided that the local norm ||y — x|, = \/(y — 2)TV2f(z)(y — )
is less than 1.

We now invoke Assumption [B.1| which states that ||y — 6*|| ;o) < 7. < 1 for all data realizations.
Since 6, lies on the line segment between 6* and 6, it is necessarily closer to 6* in any norm,
including the local norm defined by 1(6*). Thus, [|6- — 6% || ;(o-) < |6z — 6% [l 1(6+) < 7

26



Under review as a conference paper at ICLR 2026

Applying the self-concordance property with f(6) = L(0), x = 0*, and y = 6,, we get a lower
bound on the unregularized FIM:

10:) = (1= [10- = 0%[l10-))*1(0%) = (1 = 19-)*1(6")

This inequality holds deterministically for any realization of the data due to our assumption. We use
this to bound the regularized FIM:

IN(0-) = 1(0-) + A\lg
= (1 —rp)*1(6") + Mg
= (1 —rp)2I(0%) + (1 —rp.)>Mg  (since 0 < (1 —7).)? < 1and Al is pos. semidef.)
= (1 —75.)°(1(6") + Ala) = (1 —15-)*Ln(67)

Inverting this matrix inequality (using the property that if A = B = 0, then B~ = A~! = 0) yields
an upper bound on the inverse Hessian:

L0;) P < (1 —rp) 20 (%) !

Step 3: Deriving the Final MSE Bound. We substitute the bound on the inverse Hessian back into
the MSE expression. Since the bound holds deterministically for a constant 7. , the term (1 — 7. ) ™2
is a constant and can be manipulated outside the expectation.

E[(6x — 0°)(6x — 6%)7] = E[Ly(6,)"sx(67)52(0") T1r(6,) "]
SE[((1=rg)2In(07) 1) sa(0)sa(6%) T (1 —rge) 210(07)71)]
= (1= rg) T A (O7) T Elsa(07)sA(07) T1In(07) 7
Next, we analyze the expectation of the outer product of the regularized score at the true param-
eter, E[sx(0%)sx(6%)T]. Let s(6*) be the unregularized score. We know that E[s(6*)] = 0 and
E[s(6*)s(6*)"] = I(6*) (by the Information Matrix Equality).
E[sx(0")5x(0")"] = E[(s(6") — A0")(s(0") — A0") "]
E[s(67)s(6 ) ] = AE[s(0"))(0%)" = A0*E[s(6") "]+ X*0*(6")
I(0") — 0 — 0+ \20%(0") T
(0%) + \20%(6")7

Now, we invoke Assumption [B.2] which states ||0*[|3 < 1/X. This implies that A\?6* (6*)T < .
Using this, we can bound the expected score term:

Elsx(6%)sx(6%)T] = 1(6%) + X267(6")T < I(6%) + Mg = 1 (6°)
Finally, substituting this back into the MSE expression gives the result:

E[(6x — 0%)(0x — 6)T] =2 (L= 75 ) "IN (0%) ™" (E[sA(67)sA(6%) T]) In(6%) "
< (1= 1) TN T N0 IA(0) !

1
= —al NCa s
(1—rp)?
This establishes the bound with constant Cj. = (1 — 7. )™, concluding the proof. 0

B.2 DERIVATION OF THE FISHER INFORMATION MATRIX FOR MULTINOMIAL LOGISTIC
REGRESSION

The Fisher Information Matrix (FIM) quantifies the amount of information that an observable random
variable carries about an unknown parameter 6 upon which the probability of the random variable
depends. Here, we derive the FIM for a single preference observation within a multinomial logistic
regression model.
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Consider a single observation where an expert chooses one item from a set of K items. Let x, € RY
be the feature vector associated with item ¢ € {1, ..., K}. The probability of the expert choosing
item g, given the parameter vector § € R, is modeled by the softmax function:

exp(Gqu)
25:1 exp(07xy)

Let y, be an indicator variable such that y, = 1 if item g is chosen, and g, = 0 otherwise. Note that

pq(0) = P(item g is chosen|xy, . ..,Xk,0) =

Z;il yq = 1. The log-likelihood for this single observation is:

K
0) = yqlogpy(0)
q=1
The score vector, which is the gradient of the log-likelihood with respect to 0, is:

S(0) = VoL(0 qu Vepq()

The gradient of p,(6) is Vep,(8) = pe(0)(xq — X(0)), where x(6) = Zlepq/(ﬁ)xq/ is the
expected feature vector under the current model. Substituting this into the score function:

K K
= qu(xq —x(0)) = <Z yqxq> —x(0)

This can also be written as S(0) = Zéil(yq — pqg(0))x4.

The Hessian matrix H (#) is the matrix of second derivatives of the log-likelihood: H () = V4S(6)T.

K X T T
Z YgXq — Z Py (0)xy =—Vy Z Py (0)x4
g=1 q'=1 ¢'=1
Calculating the derivative:
T
K K
d_peOxg | =3 ((Vopy (0)x] + 1y (0)Voxy)
q'=1 q'=1

K
— Z Py (0)(xq — X(G))x;r/ (since VQX(—;/ =0)

q'=1
-
K K K
= E Py ( Xq’x E: Xq' E pg (0)x
=1 r—1 q’=1

K
=3 py (O)xyx) — x(O)%(0)T
So, the Hessian is:
Z Py (0)xgx, —X(0)%(0) "

The Fisher Information Matrix I(6) for thls single observation is defined as the negative expectation
of the Hessian: 1(0) = —E[H (0)]. Since the Hessian H (6) as derived here does not depend on the
random outcome variables y, (after simplification using properties of p,(6)), the expectation does

not change it. Thus:
K

1(0) = Z Py’ (Q)Xq’xz—;r’ - )_((9))_((9)T

q'=1
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Expanding )‘((9) = Z;il Pq(0)xq, the term  x(0)x(0)T  becomes
T
( g=1Pq(0 ( g/=1Pq (0)Xq ) zzqu,pq(O)pq/(Q)qu;.Thus, we get the form:
qu )xqx qu )Py ( qu /
q,q'

This expression represents the FIM for one multinomial preference choice. If there are N independent
such choices, the total FIM is the sum of the FIMs from each choice. This derivation provides the
basis for the FIM expressions used in the subsequent experimental design.

B.3 EXPECTED FISHER INFORMATION OBJECTIVE FOR PBRL

Our goal is to select K policies, m1.x = (71, ..., 7Tk ), to maximize information about the unknown
parameter 6. A classical challenge in Optimal Experimental Design (OED) is that directly optimizing
a discrete set of experiments (trajectories in our case) is often intractable |Pukelsheim|(2006); |[Fedorov
& Hackl (1997). A standard approach in OED is to instead optimize a design measure, which in our
policy-based setting corresponds to optimizing over policies and considering the expected Fisher
Information Matrix (FIM) they induce.

The total expected regularized FIM, I,..4(71.x,6), for K policies 1.k generating T episodes of H
steps each is:

Leg(m:c. 0 TZIh i, 0) + M
h=1
Here, I (m1.x,0) is the expected FIM contribution from timestep h of a single episode, aver-
aged over the trajectory distributions 7, induced by each policy m,. Let s} be the state of tra-
jectory 7, ~ 0, at step h, and p(g|h; T1..x) be the softmax probability of preferring state s
from the set of K states {sj, ..., shK} presented at that step. Then I}, (71.x,0) is: Iy (71.x,0) =
K ’
Ewﬂ;]q Do Plalhi k) d(sh)o(si) T — 32, o plalhs T ac)p(d [hs 71k ) d(s7) (51, )T}
qe
The detailed FIM derivation for a single multinomial choice is in Appendix [B.2]

The ideal experimental design objective is to choose policies 7.5 to optimize a scalar criterion s(-)
of this expected FIM (e.g., D- or A-optimality):

argmax s (Ireq(m1.x,0)) @)

T K

The challenges associated with this ideal objective are discussed in Section ] and are addressed by
the reformulation and approximation techniques detailed in the main text (Section[4.3) and expanded
upon in Section [B.4]below.

B.4 REFORMULATION TO A TRACTABLE OBJECTIVE

This section provides the full derivation of the tractable experimental design objective discussed in
Section[4.3] following the three main steps outlined there.

Step 1: Reformulation using State Visitation Measures. We begin with the expected regularized

FIM from Eq. (7} defined as I,.cq(m1.x,60) =T 2’1;1:1 I (1., 0) + A 4. The core of the derivation
is to reformulate the per-timestep FIM contribution, I (7.5, 6), in terms of state visitation measures.
This reformulation is formalized by the following lemma.

Lemma B.2. Let 7y, ..., 7k be policies with corresponding trajectory distributions Ny, , ..., Mry
and state visitation measures dﬁl ey dﬁK Let f(s1,...,8K) be any function of a tuple of K
states. Assume trajectories T1, . .., Tx are drawn independently, Tq ~ Nr,- Let sZ denote the state at
timestep h of trajectory 7,. Then for any fixed h:

Tq@:;]ﬂq [f(s}lquhK)] = E [f(slwua‘SK)]

q€[K]
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where the expectation on the right is taken with respect to states si, . . ., Sk drawn independently
from the respective state visitation measures at timestep h. The notation Sq ~ dﬁq for q € [K] implies
the joint draw (s1, . .., Sk ) is from the product distribution Hq 1 ,rq

Proof of Lemma[B.2] For a fixed h, we have:

K
Z (H 7777q(7—q)> f(Sflw"'vS}lL()
q=1

Tqg™~Nrq

q€[K] T1,e. 0, TKET
K K
= Z (H N, (Tq)> Z f(s1y...,8K) H I(s,=s73 (Introduce indicators)
T1,..,TKET \g=1 S$1,..,8SKES q=1
K
= Z f(s1,...y8K) Z (H N, (Tq)ﬂ{sq_sg}> (Rearrange sums)
81,--,SKES T1,--,TKET \g=1

K
= Z f(s1y...,8K) H Z Mg (Tg) L (s, =s2 (Factorize sum over 7)

S81,.-,SKES q=1T7,€T
K
= Z fls1y...y8K) (H dfrq (sq)> (Definition of d,’iq)
S1,.--,SKES q=1
= E . [f(s1,...,8K)] (Definition of expectation w.r.t. product measure)
cje{K]
This completes the proof. O

Using this lemma, the per-timestep expected FIM I}, (71.x, 8) can be equivalently expressed in terms
of state visitation measures. Let d? ;- = (d” dy,.). The equality I (1., 0) = In(df 1, 0)

oo oy
signifies that the problem is now over the space of visitation measures. However, this expression is

still dependent on the unknown 6. In particular, invoking Lemma [B.2] with the choice

f(s1, 58K qulh&m 0) ¢( (qulhax, 0) (s ))(ip(q/|h§51:K:6)¢(5q’))Ta

q'=1

we obtain the exphc1t per-step form

K
In(dh g, 0) = E [f(s1,...,sK)] = . ~d [Zp q | h;sik,0) B(s¢)p(54) "

s Ndh’
a~%r, g=1
q€[K] q€[K] 8)
K K -
— (Yo p(alhisiac.0) 6(50) ) (D p(a | hisrc.0) 6lsy)) ]
g=1 q'=1
Consequently, defining ) (dy.x,0) =T Zle Ij(d" -, 0) + A4, the Step 1 design problem reads
argmax s(Iy(d1.x,0)), 9)
d1.x €Dsy

where D, denotes the set of valid collections of visitation measures. This formulation (still) carries
the K-tuple coupling through p(- | h; s1.x,6) and depends on the unknown 6, hence it remains
computationally challenging and motivates the subsequent steps.

Step 2: f-agnostic approximation. The per-step information I}, (d? ,-, §) depends on 6 only through
the softmax probabilities p(-). To design queries without a reliable prior—and avoid brittleness to
misspecification—we adopt a symmetric average-case surrogate that is standard in fixed-design OED:
replace p(q | h; s1.x, 6) by its expectation under a symmetric, uninformative prior. This yields

1

p(q | SI:K) ~ E
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For K = 2, this equality holds for any symmetric prior; for K > 2, it is a common and reasonable
#-agnostic approximation when the K alternatives are constructed to be diverse/symmetric. It can also
be viewed as a homoscedasticity assumption on choice uncertainty when the parameter-dependent
heteroscedasticity is unknown Pukelsheim|(2006). A fully Bayesian alternative—computing Ey[p(q |
h; s1.x,0)] for every tuple s1.x—is computationally prohibitive at design time.

Substituting the uniform surrogate into I, (d? ,-, ) yields the approximate expected FIM contribution
at timestep h, denoted I, (d”. ), which is now independent of 6:

_ 1 K
Iy(dig) = dh e Z¢ sq)0(s¢) " — el Z $(5¢)0(sq) " (10)
qE[K] vt

We denote this per-timestep quantity by I (d%. ;) throughout, consistent with the main text (cf. Eq. .
While now 6-independent, computing this expectation naively still involves a sum over |S|¥ terms.

Step 3: Marginalization for Tractability. The expectation in Eq. [L0|can be marginalized to yield a
tractable closed-form expression, as established by the following theorem.

Theorem B.3. Let dg be the state visitation measure for policy 7, at step h, for ¢ € [K|. Under the
uniform preference approximation, the expected FIM contribution I h(d’f: ) can be rewritten as:

K
) = 3T aotet” - s 3 (Siento) (3 i)
q 1seS q,9'=1 \seS s'eS

Furthermore, in matrix notalion where & € RISI*D jg the feature matrix, df; e RISl is the state

visitation vector;, and d" = % Z =19 h'is the average visitation vector:
I (dh < Zdlag dr) dh(dh)T> ® (11)

Proof of Theorem|[B.3] We start with the definition of I,(d" ;) under the uniform approximation

from Eq. [10] Let A, = E [% Y, Qﬁ(sq)qﬁ(gq)T} and By, = E [% S 8(sg)(s4)T|. By

linearity of expectation:

= = D E(s)6(s0) T = 22 D0 dh(9)6()6(s) "

q=1seS

For By, since s, and s, are independent for ¢ # ¢’

1 & R
By, = K2 Z E[d)(sq)gb(sq/)T] -~ K2 Z E[¢(sq)]E[¢(5q’)]T

a,q'=1 q,q'=1
K
- % 2. (Zd3<8>¢<3>> (Z di}/(s’w(s'f).
q,9'=1 \s€S s'eS

This yields the first result. For the matrix form, we use the fact that Y dl(s)¢(s)¢(s)T =
T diag(d))® and Y, dl (s)¢p(s) = @Td}.

K
Ay, Z o diag(dh)® = @7 ( Zdlag (dh) )

T
K
1 1 o
T jh T jh T h h _ &T(h h\T
Z oTdly(@Td))" <K2dq> Equ/ = oT(d")(d")T®.
q q

Combining A;, — By, gives the second result. This completes the proof. [
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This final expression for /| h(cl1 ) 1s independent of 6 and computationally tractable. Therefore,
our practical experimental design objective becomes optimizing a scalar criterion s(-) over the state
visitation measures d1.x = {d}sc(x] nelm):

H
argmaxs (T In(d}.x) + Ma (12)
sk h=1

The optimization is subject to the constraints that these visitation measures are valid in the given
MDP.

B.4.1 INFORMATION DECOMPOSITION AND POLICY DIVERSITY

The tractable objective derived from Theorem [B.3| provides valuable insight into what constitutes an
informative experiment in the context of preference-based RL. Let’s examine the core matrix term
within the approximate FIM at timestep h:

K
L 1 : ] Jh( Jh
My (d ) = e Zdlag(df;) —d"(d")"

This expression can be interpreted in terms of the statistics of the state visitation distributions. The
first term, 7 Zle diag(d’ql), represents the average of the per-policy state variances (since diag(dg)
captures the variance if states were one-hot encoded). The second term, Jh(cfh)T, represents the
outer product of the average state visitation vector. The structure resembles a covariance matrix:
E[zzT] — E[z] E[z]7. Maximizing a scalar function of I, (d" ) = ®T M, (d}.,-)® encourages
policies whose average state visitation behavior exhibits high spread in feature space, after accounting
for the variance of the average distribution.

This suggests that the objective implicitly favors diversity among the chosen policies 7y, ..., T K. It
all policies induce very similar state visitation distributions (dg’ ~ d" for all q), the term M h(d %)
might be small. Conversely, if the policies explore distinct regions of the state space, leadlng to
d.iverse dg‘ vectors, the.: resulting M, (.d’f: %) is. 1ikely to be larger (in a matrix sense, e.g., larger
eigenvalues), contributing more to the information gain.

This intuition is made precise by Lemma [B.4] which provides an alternative decomposition of
I, (d%. ;). Invoking this lemma, we can rewrite the approximate FIM contribution as:

1
Z diag(d})) dg(dZ)T) t 2 Z (7 — d?)(d? - d?)T ®

1<i<j<K
Average Per-Policy Average Pairwise Difference
State Covariance (Diversity Term)

This decomposition separates the information contribution into two components:

Average Per-Policy State Covariance. The first term represents the average of the covariance
matrices associated with each policy’s state visitation distribution df;. It captures the spread within
each policy’s behavior at timestep h; maximizing it encourages policies that individually explore
diverse states within their own trajectories.

Average Pairwise Difference (Diversity Term). The second term directly quantifies diversity
between policies. It is the sum of outer products of differences between the visitation vectors of all
pairs (4, 7). This term is maximized when the distributions d* and d;? are distinct, promoting policies
that explore complementary regions of the state space.

Therefore, optimizing the approximate FIM objective naturally balances exploring broadly within
each policy and ensuring that the set of policies collectively covers different aspects of the state space,
maximizing the potential for informative comparisons.

Lemma B.4. Ler I, h(d?: i) be the approximate expected Fisher Information Matrix contribution at
timestep h under the uniform preference assumption as given in Theorem|B.3}

I (dh < Zdlag dr) dh(dh)T> ®
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where dh E RISI is the state visitation vector for policy 7y at step h, ® € RISIX? is the feature matrix,

Th _
and d e Z =1 q This can be rewritten in terms of pairwise differences between state visitation
vectors as:

1 K

- , 1 3
I(di) =07 | 2> (diag(dg) — dg(dg)T) + 25 > (d —dj)(di —dj)"| @
g=1 1<i<j<K

Proof. We begin with the definition from Theorem Let M}, (d} ) denote the matrix expression
within ®7(...)®:

K
1 . o
=% > diag(dlt) — d"(d")"

Expand the outer product of the average state visitation vector:

LE N EE
Fer = (o) [k 3n) - r @
j=1 i=1 j=1
Substitute this into the expression for Mp, (d . ):
1 XK | KX
My (d} i) = ?Zdiag(di}) ?ZZd @’
qg=1 =1 j=1

We split the double summation based on whether the indices are equal (i = j) or distinct (i # j):

K K K
SN db@yT =N dk T+ Y di T

i=1 j=1 a=1 oy
Substituting this yields:
My (df ) = e Z diag(d})) — 7z Z (a7 — e Z db (@
= a=1 i#

By adding and subtracting the term (K — 1) 7% SE dh(dm)T:

K K
1 _ 1
My (d? 1) == > diag(d)) - Zdh )’ K—1)7 pACHY
q=1 qg=1
1 & 1
+(EK-1)75 PILACHEE 2 PCACHN
q=1 i#j
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Combine the terms containing 32 g1 o (di)T:
My (d} g Zdlagdh 1+K—1K2Zdh (dn”

q=1

K-1 h( ih\T 1 h( ih\T
+ K2 qu(dq) 7ﬁzdi(dj)
q

=1 i#]
K K K
== diag(d}) - e > dhdn”
q=1 qg=1
K-1& 1
h ¢ jh\T h ¢ jh\T
+ KQ qu(dq) 7ﬁzdv(dj)
a=1 i#j
K 1 K
= < > diag(d)) — % > df;(dg)T>
q=1 q=1
K-1& 1
h( gh\T h( h\T
+ K2 qu(dq) _ﬁzdz(d_;)
q= i#£]

Consider the sum of outer products of pairwise differences over unique pairs {7, j} such that 1 < i <
J<K:

Yo (dl —d(dy —d)T =) (dd)T — di )T — (@) + dj(d)T)

1<i<j<K i<j
K
= (K —=1) Y didn)" =" (drd)" +dj@ah")
=1 i<j
The second term Y-, . (d} (d})" + d(d}*)™) sums over all distinct pairs {i,j}, equivalent to the
summation » -, ; df(dh) . Thus,

Z (dil _ d;b)(dh dh _ 1 Zdh dh Zdh dh

1<i<j<K i£]

Dividing by K? yields:

1 1
o Y-y = zdh ()7 o Sy

1<i<j<K i£]

This exactly matches the second grouped term derived for M, (d}. ;). Substituting this structure back
gives:

K K
1 1 : 3 1 1 1 1 13 1 3
Ml ) = (K SRS ST KR D LRI
— p 1<i<j<K

K

1
(diag(d?) — d(d)™) + el > (d} —dh)(d) —dn)"

q=1 1<i<j<K

= \

Finally, reintroducing the outer feature matrix multiplication provides the desired result:

K

- 1 .
Iy(di ) = T My (di )@ = T | 2= > (diag(dy) — dg(dg)T) + 55 > (di —dj)(d} —dj)T

q=1 1<i<j<K
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B.5 FORMAL: RELATIONSHIP BETWEEN THE STATE-BASED FEEDBACK MODEL AND THE
TRUNCATED FEEDBACK MODEL

We now formally analyze the relationship between the information content of the State-based feedback
model and the Truncated Trajectory feedback model. This analysis is performed under the perfect
decomposition condition, where the features of a truncated trajectory are assumed to be the sum of
the features of its constituent states. Additionally, we utilize the uniform preference approximation
(p(g|s1..x) ~ 1/K) introduced in Step 2 of Section [4.3| (Eq. [10), which yields the following 6-
independent structure for the approximated Fisher Information matrix component, I, derived from
comparing K feature vectors {xq} * , at a given step h:

1 & 1 &
Ih(xl""’XK):EZXqX;_ﬁ Z quqT
q=1

4,9'=1
The following theorem compares the approximated FIMs of the two models under these conditions.

Theorem B.5 (Comparison of Approximated FIMs under Perfect Decomposition). Let TH =
{(r}, ..., )L, be aset of T x K trajectories. For the standard (state-based) feedback model,
let qb(sg ,) be the feature vector for the state sg, n- The approximated Fisher Information Matrix is

pstate (K Y\ _ L i q q T_L = q ' \T
e (T™) ZZ Kz(b(st,h)d)(st,h) K2 Z ¢(St,h)¢(st,h)

For the truncated trajectory feedback model, assume the perfect decomposition condition holds,
such that the feature representation of the q-th trajectory in episode t truncated at timestep h is

¢Z h = ZZ,:l (;5(3?" w)- The corresponding approximated Fisher Information Matrix is
H 1K 1 K
run K T "NT
() =303 | e 2ol =5 Do vl
t=1 h=1 q=1 q,9'=1

Then, under the perfect decomposition condition,

frrunc (TK ) - fsmte (TK )

el

Proof of Theorem[B3} Let TX = {(7},...,7/5)}]_, be the set of trajectories. We define two
approximated Fisher Information Matrices based on the uniform preference assumption (p ~ 1/K).

First, the FIM for the state-based feedback model, denoted I3t (77), uses features ¢(s{ , ) from
individual states:

K
re (T =05 [ S ottt Zqﬁsth o(s0,)T

t=1 h=1 q=1 q,q9'=

Next, the FIM for the truncated trajectory feedback model, 7" (7)), under the perfect decompo-

’ approx

sition condition, uses the sum-decomposed features 1/}3 = Z hi=1 qﬁ(st W)

trunc K il - 1 . q ¢ \T
Iapprox 7- Z Z Z wt h djt h ﬁ Z wt,h(wt,h)
t=1 h=1 q=1

q,9'=1

Let ®; , € R7*4 be the matrix whose h-th row is (b(sgh)T. That is,
¢(3?I,1)1
B, — ¢(3t.,2)
S )T
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The sum of outer products over the horizon H for the state-based model is 31, o(s{ 1) o(s] DT =

<I’T Iy ®, 4, where Iy is the H x H identity matrix. Similarly, the sum of cross-products is
Zh L P57 ) B(s], h) =®/ In®; . Thus, [(TK) can be rewritten as:

T

Istate(TK Z Z‘I’ IH‘I’t,q Z ‘I’ IH‘I’t’q,

t=1 q,q'=1

For the truncated trajectory model (under perfect decomposition), let ¥, , € R >4 be the matrix

bt
whose h-th row is (Q/th)T = (ZZ/=1 P(s] h,)) . Let S € R*H be the lower triangular matrix of
ones, i.e., S;; = 1ifi > jand S;; = 0if ¢ < j. For example, if H = 3:

100
S=(1 1 0].
1 11
The cumulative sum structure means ¥, , = S®; ,. The sum of outer products over the horizon
H for the truncated model is 35, &7, (¢ )T = ¥ W, ;= (S8 )T (SByq) = B[, ST, .

Similarly, the sum of cross-products is Zle P h(q/)f'h)T =0 U, =® STS®, . Let
M = STS. Thisis an H x H symmetric positive definite matrix. For H = 3, M = STS =

11 100 3 2 1 _
(O 1 1) <1 1 0) = (2 2 1). Thus, (7K can be expressed in terms of ®; , and

00 1/\1 11 111
M:
T 1 K 1 K
IlrunC TK = Z ? Z (I)ZqM(I)tyq - ﬁ Z @IqM@t’q/
t=1 q=1 q,q9'=1
Let X, = (8], ... &) € REDXA Let Ji = L1,1] be the K x K matrix of all

1/K. Let I be the K x K identity matrix. The FIM expressions can be written compactly using
Kronecker products ®:

Istdte TK ZXT ( IK _ JK) ®IH> Xt

Jrrune(TKYy — ZXT( IK—JK)®M)Xt

Since M = ST S is positive definite (as S is invertible), its eigenvalues are positive. Let Ay, (M) be
the smallest eigenvalue of M. Then M = \,;, (M)Ig. The matrix I — Jx is positive semidefinite
(it’s proportional to a projection matrix). Therefore, using properties of Kronecker products and
Loewner order:

Ik —Jg) @M = (Ix — Jr) @ Amin(M)Ig) = Apin(M)(Ix — Jr) @ Iy
Multiplying by 1/K and summing over # after pre- and post-multiplying by X," and X;:

ZXT( IK—JK)®M>Xt>)\mm ZXT( (Ix — JK)®IH>Xt

This shows [ m’“C(TK ) = Amin (M ) T s““6(7'}( ). The eigenvalues of M = STS are known to be

Ap(M) = m fork =1,..., H. Since sin(z) < 1 for any z, the minimum eigenvalue
SN\ 22H+1)

Amin (M) is lower-bounded by 1/4. Therefore, we can state the result using this constant lower

bound:

1 =
Itrunc (TK ) Z Islale (TK )

This completes the proof. O
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B.6 DETAILED ALGORITHM DESCRIPTION

Our Experimental Design for Preference-Based Reinforcement Learning (ED-PBRL) algorithm,
detailed in Algorithm[2] consists of two main phases. The first phase optimizes a set of K policies
using Convex-RL according to our objective derived in Section[d.3] The second phase plays these
optimized policies to collect K sets of trajectories for obtaining preferences.

Algorithm 2 ED-PBRL using Convex-RL (Detailed Version of Algorithm|T)

Input: Known MDP components M = (S, A, P, H, p), number of policies K, number of episodes
T, feature map P, scalar criterion s(-), number of optimization iterations NV, regularization constant
A(A>0) .
Output: Estimated preference parameter

Phase 1: Compute Optimal State Visitation Measures {Solve Eq. [0}

Initialize (1)dim’(';]" Y 0 for q=1,..., K {Initialize visitation measures }
for n = ltoN—ldo
Let I(Ot)al = Tzh LI (¢ )dmlx i) + A {Objective using ) dpyiy }
for g =1to K do
Compute gradient reward: rgraq (h, 8, a) < Van (Sya)s(lt(ot)al)

(n)

Find policy maximizing linear objective: 7 + value_iteration(M, Tgradq)

grad,
Compute corresponding visitation vector dgg{q{l"”’H} from ﬂég)dq
end for
Determine step size o, via line search: For g = 1,..., K, letd" , 4o o) =(1—a)mgh gt

/dé’r:)dq Find o, < argmax, ¢ 1 (T Zh 1 ( eand. 1.5 (@) + )\Id) (see Eq.for 1)

for g = 1to K do
n+1)d{1 } (1 _ n) . n)d{l LH} T d(”) {L,....H}

‘mix, q grad,
end for
end for H
Let {dz Ynq { Ydil . 11,4 be the final optimal visitation measures.

Phase 2: Policy Extraction and Trajectory Sampling

forg=1to K do
Extract policy m; from final visitation measure d:h
Ty« 0 {Imtlahze trajectory set for policy 7, }
end for
fort =1toT do
for g =1to K do
Sample trajectory 7 ~ 7}
Tg < T, U{n'}
end for
end for
Let Dyeedback = {771}5(:1 be the collected trajectories.

Phase 3: Parameter Estimation

mix, q

Collect preference feedback for trajectories in D teedpack-
Estimate 6 using all collected feedback (cf. Sectionfor estimation equation).
return ¢

Phase 1: Compute Optimal State Visitation Measures This phase adapts the Frank-Wolfe
algorithm [Frank & Wolfe| (1956) to maximize the objective s(liotar(m1.x)). Here, Iiotai(m1.5)
represents the total approximate expected regularized FIM (the matrix argument of s(-) in Eq. @),
expressed in terms of policy- induced visitation measures. This is achieved by iteratively building state-
action visitation measures {(" } corresponding to conceptual mixture policies. The process

starts with (1 )dmlx,q =0.

le
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Each iteration n of this phase involves these main steps:

1. Gradient Computation: The gradient of $(I;st;) (using the current (")dmix,q) defines a
reward function Tgrad, for each policy q.
(n)

2. Policy Search Oracle: For each ¢, a new base policy 7, is found by maximizing the

(n)

expected cumulative reward Terad, (e.g., via value iteration). Its visitation measure algr ad, is

computed.

3. Line Search for Step Size: The optimal step size «,, is determined by maximizing s(-) for

d(")

the candidate mixture (1 — an)(”)dmix,q + ap erad,

4. Mixture Update: The next mixture’s visitation measure is constructed: (n+1)dmix7q —

(1 _ an)(n)dmix,q + and(”)

arad, This efficiently computes the visitation measure of the new

(n)

conceptual mixture policy ;. .

This iterative process converges to the globally optimal visitation measures {d;ﬁ; q} due to the
concavity of s(-) and the convexity of the feasible set of visitation measures.

Phase 2: Policy Extraction and Trajectory Sampling Upon convergence of Phase 1 after N — 1

iterations, the final policies {7 K| are extracted from the resulting state-action visitation measures
{dzh q K ;. These policies are then executed to generate the K X T trajectories, which form the

dataset D feedback for collecting user preference feedback.

Phase 3: Parameter Estimation After the trajectories are generated and collected into D ¢cedpack
in Phase 2, preference feedback is obtained from the user for these trajectories. This accumulated

feedback is then used to compute the final estimate 6 of the true reward parameter 6, as detailed in
Section[3l

B.7 DETAILED THEORETICAL GUARANTEES

The Convex-RL optimization phase (Algorithm 2] lines 13-24) employs the Frank-Wolfe algorithm
(also known as the conditional gradient method) over the convex polytope of valid state-action
visitation measures [Puterman| (2014); Frank & Wolfe (1956); Jaggi| (2013). The inclusion of an exact
line search for the step size «, is a standard variant of the Frank-Wolfe algorithm.

The key to guaranteeing global optimality for this procedure is the concavity of the objective
function. Let D = {dg}he[ H],q¢ (K] represent the collection of all state visitation vectors, where each

dg € AlSI=1 (the probability simplex over states). The domain of D is a convex set. The objective
function is f(D) = $(Liotar (D)), Where I;oq(D) is precisely the matrix argument of s(-) in Eq. |6}

K

H T
Tiotat(D) = Thzzl i Zdlag (d)) - (K Zdh> (;Zdi}) O + Mg

With the concavity of the objective function established (Theorem[5.T), we can state the convergence
guarantee for Algorithm [2](Theorem B.6), which implements the Frank-Wolfe method.

B.7.1 PROOF OF OBJECTIVE FUNCTION CONCAVITY (THEOREM[5.1))

Theorem 5.1. Let di.x = {dg}he[HLqe[K]' If the scalarization s : Si — R is concave and
matrix-monotone, then (I,O,al(dl; K)) as defined in (6)) is concave in d;. k.

Proof. Let D = {dg}he[H],qe[K] be the collection of state visitation vectors, where each dflI €
AlSI=1 (the probability simplex in RIS!). The domain of D, denoted D,,, is a Cartesian product of
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simplices, which is a convex set. The objective function is f(D) = s(Iipta1(D)), where

H
Tiota1(D) =T In(D") + A4,
h=1
which coincides with the definition inside Eq. E] in the main text. and D" = (d¥,...,d"%) are the
visitation vectors for timestep h. The term Ij,(D") is given by:

K K K T
I,(D") = ®" M, (D")®, with M,(D") = %Zdiag(dﬁ;) - (Il( Zd’;) (;Z&;) .
q=1 qg=1 qg=1

We will prove the concavity of f(D) by showing that I;,:q; (D) is a concave matrix-valued function
of D, and then using the properties of s(-).

1. Concavity of M, (D"): Let L,(D") = & Zéil diag(d%). The function diag(v) is a linear

mapping from a vector v to a diagonal matrix. Thus, L (D") is a linear function of the collection of

vectors D" = (d”, ..., d"). Linear functions are both concave and convex.

Let d"(D") = & Zle d%. This is also a linear function of D". Consider the function Q(v) =
T

—vv?'. The function v — v is convex. To see this, for vy, ve and « € [0, 1]:

owlvip +(1- a)vgvg — (v 4+ (1 — a)vs) (avy + (1 — a)vg)T

= avv] + (1 = a)vpvd — (@Pviv! + a1 — @) (v1vd + veul) + (1 — a)?vy0l)
= (a—a®)v! +((1—a) = (1 —a)>)vvl —a(l —a)(vvl +vevl)

a(l — a)viv! + a(l — a)vevd — a(l — a)(vvd + vpol)

a(l —a)(vy — vo)(vy — v2) 7.

Since a(1 — ) > 0 and (v; — va)(v; —v2)T = 0 (it’s an outer product, hence positive semidefinite),
the expression is =~ 0. Thus, v — vvT is convex. Therefore, QW) = —vvT is concave. The
composition of a concave function with a linear function is concave. Since Q(v) is concave and
d"(D") is linear, the function D" s Q(d"(D")) = —d"(D")(d"(D"))7 is concave.

M, (D) = Ly(D") + Q(d"(D")) is the sum of a linear function (which is concave) and a concave

function. Thus, M}, (D") is a concave matrix-valued function of D".

2. Concavity of I;,(D"): The function I, (D") = ®7 M;,(D")® is a congruence transformation of
M,,(D"). Since Mj,(D") is concave in D", and congruence transformations preserve concavity (i.e.,

if A(x) is concave, then CT A(x)C is concave for any constant matrix C), I, (D") is concave in D",

3. Concavity of I;,;,;(D): The total approximate FIM before regularization is Zthl I n(D™). Since
each Iy, (D") is concave with respect to its arguments D" (and thus with respect to the full D, as
it doesn’t depend on D" for W = h), their sum is concave with respect to D. Multiplying by a
non-negative scalar 1" preserves concavity. So, T’ Zthl I »(D™) is concave in D. Adding a constant

matrix A\l also preserves concavity. Therefore, I;o1q;(D) = T Zthl I n(D") 4+ X1 is a concave
matrix-valued function of D.

4. Concavity of s(I;oq(D)): We are given that the scalar criterion s : S‘j_ — R is concave
and matrix-monotone non-decreasing. If g(z) is a matrix-valued concave function and s(A) is a
scalar-valued concave and non-decreasing function of matrix A (in the Loewner order), then the
composition s(g(x)) is concave (see Boyd & Vandenberghe, Convex Optimization, Section 3.2.4). In
our case, §(D) = Liotai (D) is concave in D. Thus, f(D) = s(Itotai(D)) is concave with respect to
D = {d}re(m),q¢ (k) Over the convex domain D, O

B.7.2 PROOF OF CONVERGENCE GUARANTEE (THEOREM[B.0)

Theorem B.6. [Convergence Guarantee of Algorithm 2| (Detailed)] Let D™ be the sequence of
collections of state visitation measures generated by Algorithm where DY) is the initialization and
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D) s the iterate after n Frank-Wolfe steps. Let f(D) = s(I1o1a1(D)) be the objective function
defined in Theorem and let D* € Dy, be an optimal solution, D* = argmaxpcp_ (D). The
domain Dy, of valid collections of state visitation measures is compact and convex. If Algorithm
E] performs Ny, iterations of the Frank-Wolfe update (i.e., the loop from n = 1 to Njie, in the
algorithm’s notation, resulting in the final iterate DWNitert1)) ysing exact line search for o, at each
iteration, then the suboptimality of the final iterate DWiter+1) i bounded by:

QCf

D) — f(DWiter+1)y <
H(D) - o) < 20

where C’ is the curvature constant of f over Ds,,.

Theorem B.6. [Convergence Guarantee of Algorithm [2] (Detailed)] Let D™ be the sequence of
collections of state visitation measures generated by Algorithm where DY) is the initialization and
DY) s the iterate after n Frank-Wolfe steps. Let f(D) = s(Lioia1(D)) be the objective function
defined in Theorem and let D* € Dy, be an optimal solution, D* = argmaxpcp_ f(D). The
domain Dy, of valid collections of state visitation measures is compact and convex. If Algorithm
performs N, iterations of the Frank-Wolfe update (i.e., the loop fromn = 1 to N, in the
algorithm’s notation, resulting in the final iterate DWNitert1)) ysing exact line search for o, at each
iteration, then the suboptimality of the final iterate DNiter+1) is bounded by:

2Cy
D*) — f(DWiter+1)) < f
fFD) = f( ) < Nijer + 2

where CY is the curvature constant of f over Ds,,.

Proof. The convergence of Algorithm [2] relies on standard results for the Frank-Wolfe algorithm
when maximizing a concave function over a compact convex set. We verify the conditions required
for these guarantees.

1. Objective Function and Domain:

* Concavity: The objective function f(D) = s(ltotai(D)) is concave with respect to the
collection of state visitation vectors D = {dg} h,q» @S proven in Theorem

e Domain D,,: The domain D,, is the set of all valid collections of state visitation measures
{df;} h,q- Each dg is a probability distribution over the finite state space S, so it belongs to

the probability simplex AlSI=1. The full domain Dy, is a Cartesian product of K x H such
simplices. Each simplex is compact and convex, and thus their Cartesian product Dy, is
also compact and convex.

2. Frank-Wolfe Algorithm Steps: Algorithm [2]implements the Frank-Wolfe algorithm:

+ Initialization (Line 13): Vd,;, , < 0. This initializes the iterate D(*) within Dy, (the
zero vector is on the boundary of the simplex if non-negativity is the only constraint, or can
be seen as a valid (degenerate) visitation measure).

* Gradient Computation (Line 16): The algorithm computes the gradient V f (D(")) (im-
plicitly, by computing Tgrad, which is derived from this gradient).

* Linear Maximization Oracle (LMQ) (Lines 17-18): For each ¢, the step wéz‘zq —
value_iteration(M,req,) finds a policy that maximizes the linear objective
dea dh (s, @)Terad, (h, s, a) over all policies 7. This is equivalent to finding a vertex Sén)
of the polytope of visitation measures for policy ¢ that maximizes <Vdg f(DM), Sén)>.

The collection of these SS") for all ¢ forms the S(™) in the standard Frank-Wolfe update

S™M = argmaxgep_ (VF(D™),S). The computation of dé:;)d from ﬂé:;zl yields this
S,
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* Step Size (Line 20): o, is determined by exact line search: o, < argmax,co,1) f((1 —

« Update (Line 22): D"t « (1 — a,,) D™ + o, S,

The algorithm performs Nj;., = N — 1 such iterations, producing iterates D(?), ... D) (Note:
DWW is the initialization).

3. Convergence Rate: For a concave function f maximized over a compact convex set D using
the Frank-Wolfe algorithm with exact line search for the step size, the suboptimality gap hy =
f(D*) — f(D¥+1D) after k iterations (where D) is the initial point and D**1) is the iterate after
k Frank-Wolfe steps) is bounded by (Jaggi, 2013, Theorem 1 and discussion for line search):

2C
D*) — #(D*TDY < f
§(D7) = (D) < =L
where C'y is the curvature constant of f over D, defined as
2
Cr= sup = (f(X) +2(VF(X), 5= X) = f(Y)).

2
X,5eD,ye(0,1] Y
Y=(1-7)X+~S

In our case, Algorithminitializes with D) and performs N4, iterations of the Frank-Wolfe update
(corresponding to the loop variable n from 1 to Ny, in the algorithm’s notation as per Algorithm
Where the loop runs N — 1 times; here we use N, to denote this count of iterations). The final
iterate is D(Niter+1) The standard bound 2C r/(k + 2) applies after k iterations. Here, k = N,
So, the suboptimality of the final iterate D(Viter+1) is bounded by:

2C
D* DWiter+1)y < f

This holds for Ny, > 1. The constant C'y depends on the objective function f and the domain D,.
Since D, is compact, C'y is well-defined and finite, provided f is continuously differentiable (which
it is, assuming s(-) is, and I;,¢q; (D) is differentiable).

Thus, Algorithmconverges to the global optimum with a rate of O(1/Njer ). O
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