
Vision encoders should be
image size agnostic and task driven

Anonymous Author(s)
Affiliation
Address
email

Abstract

This position paper argues that the next generation of vision encoders should be1

image size agnostic and task driven. The source of our inspiration is biological.2

Not a structural aspect of biological vision, but a behavioral trait – efficiency. We3

focus on a couple of ways in which vision in nature is efficient, but modern vision4

encoders not. We – humans and animals – deal with vast quantities of visual data,5

and need to be smart where we focus our limited energy – it depends on the task.6

It is our belief that vision encoders should be dynamic and the computational7

complexity should depend on the task at hand rather than the size of the image. We,8

also, provide concrete first steps towards our vision – a proof-of-concept solution9

for image classification. Despite classification being not very representative for10

what we are trying to achieve, it shows that our approach is feasible and promising.11

1 Introduction12

With this position paper we aim to spark a refreshed biological inspiration for computer vision models,13

and more specifically vision encoders. The source of our inspiration is not structural. Instead we14

are interested in a behavioral trait of vision in nature – efficiency. Why efficiency? As it is pointed15

out [22] a four year old child has processed more bytes of visual data than what is contained in the16

largest text corpora used to train modern large language models (LLMs). Reading through so much17

text would take a human hundreds of thousands of years. This shows that the amount of visual data18

we are faced with in our daily lives is enormous. We need to be very selective and smart on which19

parts of it to use our processing energy. A leading principle we follow in the proposal of this work20

is that the goal of vision is not to process and understand every detail of what we are seeing, but to21

extract biologically relevant information.22

Many inventions in human history are inspired by nature, yet this often remains a point of departure.23

The final design being overwhelmingly shaped by engineering trade-offs and mathematical principles.24

This is why inspired by birds we built planes, but their wings do not flap. Convolutional neural25

networks (CNNs) [23] are such example. They draw inspiration from human vision, e.g. weight26

sharing, and hierarchical feature extraction observed in the visual cortex. Yet they perform bottom-27

up computation that is unlike how we process visual information in the brain. With the advent28

of the transformer [41], the ViT [12] architecture has become the most popular choice for visual29

encoders. It adds benefits like global receptive fields and the ability to quickly attend to any part30

of the image. However, these models are less computationally efficient – working at constant low31

resolution without spatially hierarchical features, with quadratic dependence on the image size due to32

the global self-attention between all patches.33

As we think that efficiency is a crucial aspect of vision in nature, we would like to inspire future34

research on vision encoders that are built from the ground with efficiency in mind. In our opinion a35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

path towards better and more efficient vision encoders, is one that focuses on models that are36

task-driven and image size agnostic. Let us address these statements individually.37

2 Why image size agnostic?38

This is a common problem shared with LLMs. The amount of compute required by a model to solve39

a problem is much more dependent on the length of the context than on how difficult is the problem40

itself. We believe it is self-evident that it would be better if this dependency is flipped.41

Despite significant improvement of accelerator hardware in the last years, the image sizes on which42

vision encoders work have not kept with the capabilities of modern cameras. A major culprit for this43

is that the compute in ViTs is quadratic on the number of patches / tokens. As we saw earlier the44

amount of visual data we are faced with is really large. Modern cameras are capable of producing45

images with many millions of pixels. Even linear dependence on the size of the image might not be46

efficient enough.47

One important limitation of how we train vision encoders today, is that we process the visual data in48

a bottom-up fashion treating all pixels of the image equally. This is true for ViT with its fixed sized49

patches, but also true for CNNs applying the same filters throughout the area of the image. Image50

data being vast, it is also highly redundant and compressible. Compressible means that not all parts51

of the image bring equal value. Consider an image where the top half contains only cloudless sky.52

With ViT half of the patches will contain pixels from the sky. Perhaps the amount of information this53

part of the image brings could be contained in a single patch, or even less. This is task dependent. If54

you are a painter that tries to draw the scene, maybe you are interested even in minute variations of55

color and tone.56

Our visual system is inherently selective, focusing with high resolution on only a small region of57

the scene. The fovea – a roughly 1–2° circle around the center of gaze – is densely packed with58

photoreceptors and delivers our sharpest vision. Outside this circle, visual acuity declines quickly and59

significantly. To construct a detailed internal representation of our surroundings, we must continually60

shift our gaze and refocus on successive regions of interest. We believe this contains valuable hints61

on how to make computer vision encoders image size agnostic. We have to extract features in a62

top-down manner at resolution determined by the system’s eye, not by the size of the image. If the63

resolution of the image is lower than the resolution of our system, then we do not see enough detail.64

If the resolution of the image is higher, then it only gives us an ability to zoom. It is also important65

that the resolution of our system is variable – only see in high resolution small parts of the image at66

a time. A major contribution of this work is a complete method for extracting patches in top-down67

manner, independently of the image size. It is introduced in Section 5.1.68

There is another consequence from how we extract patches for ViT models – a potential distribution69

shift of what the patches "see" when changing the size of the images after training. Let us say that70

for a given ViT model the patch size is 16, i.e. each patch is a 16 × 16 crop of the image. Now,71

imagine we see the same image in two different sizes 2000× 2000 and 200× 200. A patch in the72

smaller image will contain much larger portion of the image and will contain larger shapes and details.73

Changing the image size too much between training and testing can cause significant distribution74

shift for the patch tokenizer, which is usually very shallow. This is why when training ViTs it is very75

important to use random resized crop augmentation [40]. This is problem that exists for CNNs as76

well. This distribution shift happens because we extract features in a bottom-up fashion, starting77

from the pixels. If the image gets resized, the types of detail each layer of ViT or CNN networks sees78

changes accordingly. See a visual example of this distribution shift in Figure 4.79

3 Why task driven?80

Now, to our second point – why vision encoders should be task driven as opposed to task-agnostic.81

Faced with vast amounts of visual data what we do to extract the biologically relevant information is82

basically compression. Different tasks require compressing the data in different ways. We cannot83

2

Transformer

Policy Policy

Task Head Task Head

Transformer

Figure 1: Overall system architecture. We evolve an initial state (prompt) through iteratively calling
the same transformer model with different patches. The patches to extract are selected by the policy
based on the current state. The task head produces task-specific output given an internal state. We
have a task output after each iteration.

expect to classify an image and find Waldo 1 with the same computation. The two tasks require vastly84

different approaches and computational resources.85

In our opinion, using task agnostic encoders is not only a case of inefficiency, but a fundamental86

limitation on how we use vision models today. Imagine playing a game where you are given an87

image for a second, then the image is hidden and you are asked questions about its content. What88

was the image of? Were there people? How many? What is the color of the clothes of the leftmost89

person? What about their shoes? This game is very difficult. Asked about a small detail after the90

picture is hidden would make one struggle a lot. It might be impossible if attention was not paid91

to this particular detail. But if the question came before looking at the image, it becomes trivial.92

Handling our daily lives this way seems unimaginable, yet this is what we expect from computer93

vision encoders. Typically, when we use a vision encoder in a system, say a vision language model94

(VLM), we run the input image through the encoder, extract features from it and use that features95

downstream. We always extract the same features, no matter what the downstream tasks is. This is a96

lot like playing the game above. What if we process the text prompt first and use it to guide us how to97

look at the image.98

Since we already want our encoders to be image size agnostic, it provides an opportunity to make99

the encoder task driven as well. If an encoder is going to be image size agnostic it will have to work100

with limited data. If it works with limited data, then this naturally calls for an iterative process. An101

iterative process can be guided in a task-aware way.102

4 Proof-of-concept solution103

With this paper we do not limit ourselves to just advocating that vision encoders should be task driven104

and image size agnostic. We are going to propose a concrete system (combination of models) that105

can act as such an encoder. We also provide a concrete implementation which we test on the image106

classification task on Imagenet-1K [10]. While this task alone is not enough to showcase task driven107

abilities, it is an established benchmark to show that our ideas are feasible.108

Similarly to other biologically inspired works in computer vision, we are also trying to emulate the109

benefits of fovean vision in our eyes and brains. We are not trying to structurally copy this model.110

Our goal is to propose a computational paradigm in which the efficiency benefits of fovean vision are111

easily achievable. We are using a transformer [41] as our main building block.112

Since we have to work with small contexts, the main idea is to use a transformer iteratively. At each113

step the transformer processes a small set of image patches, while evolving an internal state that114

could also be referred to as memory. The input patches are extracted from the image in a top-down115

manner, allowing us to be image size agnostic. The final component of our proposal is a policy which116

given the internal state of the transformer decides which patches to extract next, i.e. where to look.117

Note, that this computational system is not new. Previous works like [34, 29, 1] have attempted to118

1“Where’s Waldo?” is a children’s puzzle book by Martin Handford, Little, Brown and Company, 1987.
“Where’s Waldo?” is a registered trademark of Candlewick Press.

3

Figure 2: Extracting multi-zoom patches –
patches with the same center but varying sizes.
Notice that the area of the crop outside the
image is padded with 0s.

Figure 3: Example multi-zoom patches over-
layed over each other after being resized to
their original size. The center here is sharp
from the patches with significant zoom. The
top level patch covers the whole image, but it
is of very low acuity.

build computer vision models in a similar way. In fact a major goal of this paper is to revive interest119

in these works with modern architectural components.120

Figure 1 shows the schematic view of the system. The main building blocks are a transformer, a policy,121

and a task head. In the context of this paper the task head is a simple MLP module that produces122

logits for the classification task. We start with a learned initial state s1. In a task-driven system this123

initial state could be treated as a task prompt. The policy module takes the state s1 and selects the124

patches p1 to extract. The transformer is given the state and the patches, and returns an updated state125

s2. Now we can run the task head on s2 and potentially end the computation. Alternatively, we can126

use the policy on s2 to get new patches p2. The transformer takes the new patches and updates the127

state to s3. This process repeats and can continue as long as the task requires.128

5 Implementation for image classification129

In this section we provide concrete implementation for all the building blocks of our proposed system.130

All components are built within the context of image classification, but are applicable beyond this131

task. We show three things132

• how to extract patches in top-down manner,133

• how to train an iterative transformer with evolving internal state,134

• how to train a policy to tell us where to look next.135

The first two are valuable contributions of this paper, the last one requires further work.136

5.1 Top-down patch extraction137

The transformer is a general computational block. It does not have to work only with patches of fixed138

size. The only requirement is that all tokens are of the same dimension. We allow any square crop139

of an image to be a patch. It only needs to be resized to a predefined fixed size that a tokenizer (or140

PatchEmbed module) accepts. In our experiments this size is 16× 16. This matches well our fovean141

vision. If the crop is a small square in the image, then the change to the resized 16× 16 version will142

be minimal, i.e. the patch is of high resolution, but cover small portion of the image. If the crop is a143

large square, then the resized version will be significantly different (a lot of detail will be lost), i.e.144

the patch is of low resolution, but covers large portion of the image.145

Multi-zoom patches. The definition above gives us a very flexible notion of what a patch is. However,146

in order to be computationally efficient we want to extract patches from images in a systematic way147

4

which is scalable on modern highly parallel computer architectures. As mentioned a patch can be148

any square crop. Let us say the size of the crop is C × C. We define a patch using three coordinates149

(x, y, z). (x, y) ∈ [0− 1]2 are the coordinates of the center of the crop. This is in relative coordinates,150

i.e. both values are between 0 and 1. z is a non-negative number that represents the zoom level of the151

crop. If z = 0, then the size of the crop C = min(H,W). When z > 0, then the size of the crop is152

C = min(H,W)/2z . Here, H and W are the height and width of the image respectively. This is the153

essence of our top-down approach. The size of the patch is relative of the image size. If the image154

size changes a patch remains a crop of the same part of the image, but its size is pixels will differ.155

To make extracting patches more efficient and parallelizable on modern hardware, we always extract156

a fixed sequence of patches from a given center (x, y). In other words given a patch center (x, y) we157

extract M patches, one for each value of z = jnp.linspace(0,maxz,M). This way, for a given gaze158

location (x, y) we get a series of patches of decreasing resolution and increasing image coverage.159

See extracted patches in this manner in Figure 2. This is similar to how our eyes work. We see160

only a small circle around the center of gaze sharply. Our field of view is large but of low acuity.161

Figure 3 shows multi-zoom patches overlayed over each other. The patches are first resized to their162

original size from 16× 16. This is why the largest patch is very blurry. Note that this is not what the163

transformer see. This is only drawn for us to appreciate the idea. The patches that the transformer164

sees are the ones in Figure 2. In Appendix A.1 we provide implementation for efficient multi-zoom165

patch extraction in Jax. Our multi-zoom patches are similar to the ones used in [29]. They also extract166

series of patches from the same center each twice the dimensions of the previous. However, a crucial167

difference is that there the approach is bottom-up. We extract the patches in top-down manner and168

hence we are image size agnostic.169

5.2 Iterative transformer with internal state170

Multi-zoom patches gives us a size agnostic way to extract patches from an image, but there is one171

problem – there are infinitely many such patches, especially when x and y are floating numbers.172

With ViT we have a fixed set of patches that go through the transformer. The idea of the multi-zoom173

patches is to use them iteratively, similarly to how our vision works. Instead of taking all the image174

contents at once, we iteratively gaze at different parts of the image and build our understanding of175

what we are seeing.176

How can a transformer evolve an internal state? The most popular vision transformer ViT [12]177

is based on BERT [11]. There a sequence of input tokens (patches) and a learned CLS token get178

transformed with full self-attention between them. The CLS token can be treated as an internal state.179

Inspired by the success of the DETR [4] transformer decoder with learned N object queries, we try180

to expand the internal state from a single vector (the CLS token) to a set of N embeddings.181

The transformer we use is basically the same as ViT with registers [9]. However, instead of keeping the182

transformed patches and discarding the registers, we do the opposite. The input to the transformer is a183

set of patches and N learned state vectors. After we run the transformer, we discard the transformed184

patches, and keep the evolved state, which we then use as input for the next iteration with different185

patches.186

Figure 5 shows the application of the transformer. It is important to note that while the output state187

is input for the next iteration, we do not train our model as a recurrent neural network (RNN). We188

do not allow gradients to backpropagate between different iterations. Our solution is similar to the189

Recurrent Memory Transformer [2]. The main difference is that we do not perform backpropagation190

through time [33, 30, 43].191

5.3 Learned policy for where to look192

The last part remaining is figuring out where to look. In this prototyping stage, we use reinforcement193

learning through gradient based policy optimization [44]. More specifically we use the Group Relative194

Policy Optimization [36] (GRPO) algorithm. With multi-zoom patches we extract series of patches195

with the same center (x, y). This means that we can model our policy with continuous actions.196

Concretely, the internal state of the main transformer is used as observation input to the policy, which197

selects the next gaze location (x, y).198

5

Original Image Extracted Patch

Figure 4: Example of distribution shift with
ViT patches when changing the image size.
The original size of this image is 2880×2880.
On the right we see two patches (of size 32)
extracted from a resized image (288 × 288)
and from the original image. You can see how
much types of details visible change due to
resizing.

Image Patches State

Transformer Stop Gradient

New StateDiscard

Figure 5: Schematic view of how we keep an
evolving internal state with the transformer.
It processes patch tokens together with the
previous state as input. After multiple self-
attention layers between the input we get up-
dated state together with updates patches than
are discarded. In the following iteration they
will be replaced by different ones.

With this approach one of main challenges is how to train the transformer and the policy end-to-end.199

The internal state of the transformer is the visible observation for the policy. If it changes during200

training it is very difficult to keep the policy relevant. Additionally, the training loops and dynamics201

for training the transformer and the policy using policy optimization are quite different. At this202

proof-of-concept stage we train the system in two stages. First, we pretrain the transformer and the203

task head using random policy, i.e. at each iteration choose a gaze center uniformly at random. In204

the second stage freeze the transformer and optimize the policy using GRPO. More details on our205

approach can be found in Appendix A.2.206

6 Classification results207

Image classification might not be the most suitable benchmark for task-driven vision encoders.208

However it provides a good reference for testing our solution as a proof-of-concept. With it we are209

able to validate the feasibility of our build blocks. The main aspects we want to test are the following:210

• Multi-zoom patches are suitable input for vision transformers.211

• It is possible to train iterative transformers that see only part of the content in each run and212

evolve an internal state.213

• It is possible to teach a policy where to look in order to solve the image classification214

problem.215

All experiments we performed are on the ImageNet-1K [10] datasets. We skipped training on datasets216

with smaller images like MNIST [23] and CIFAR [20] because with very small images it is hard to217

test the image size agnostic part of the encoder. All patches will contain significant portion of the218

image. Implementation details and training setup for the experiments can be found in Appendix A.3.219

6.1 Iterative transformer with ViT patches220

First, let us test the ability of iteratively running a transformer with an evolving state. As a baseline221

we train a ViT-Base model with patch size 16. The size of the input images is 256×256, so with each222

patch being 16× 16 we end with a total number of patches 256. After that we shuffle the patches223

and split them into 4 random groups, each containing 64 patches. Then we train our transformer224

with episode length of 4 – in each episode it sees one of the groups of patches. The internal state225

contains N = 32 vectors. You can see the results of this experiment in Table 1. Note, that while we226

are training with multiple iterations there is no gradient back propagation between steps. At each step227

6

Table 1: Results from iteratively training a transformer with shuffled groups of ViT patches.

Metric Shuffled Step 1 Shuffled Step 2 Shuffled Step 3 Shuffled Step 4 ViT

Acc @ Top 1 0.66 0.69 0.71 0.72 0.78
Acc @ Top 5 0.86 0.88 0.89 0.90 0.93

the input state is detached from the previous. These results are very promising. We do not expect this228

approach to match the performance of ViT in terms of accuracy. We work with the same overall data229

(the same patches), but do not allow full self-attention between all patches. Only randomly selected230

patches are allowed to self attend to each other. Then the result of this self-attention needs to be231

stored in shared free-form internal state. These results show that this state works well as a form of232

memory. Note that in all epochs during training the validation accuracy at step i is always higher233

than the validation accuracy at step j, when i > j.234

6.2 GRPO policy with multi-zoom patches235

The results from Section 6.1 are promising, but what we are really interested in is combining the236

iterative transformer with the multi-zoom patches and a learned policy to tell us where to look. We237

use the following setup. At each step the transformer sees M = 16 multi-zoom patches centered at a238

particular point (x, y). The internal state of the transformer is N = 16 vectors, i.e. the total number239

of input tokens to the transformer is 32. We train with episode length of 8. First, we pretrain the240

transformer and the task head using a random policy, i.e. for each episode we choose the patch center241

coordinates uniformly at random between 0 and 1. Then we freeze the transformer and task head, and242

train a policy with GRPO. See the performance in Table 2. The policy does helps us to perform well.243

However, the results with the random policy show why image classification might not be the best task244

for this test. Even a random policy has reasonable performance. Note that with multi-zoom patches245

we see large portion of the image in low resolution at each step. Often this is enough to get a good246

sense of what might be in the image. While these results are quite satisfactory as a proof-of-concept,247

we believe future research in this area could improve the performance significantly. A lot of questions248

related to how to train a good policy in a general sense remain open as discussed in Section 7.249

Table 2: Performance of GRPO policy with multi-zoom patches.

Model Variant Acc @ Top 1 Acc @ Top 5

Pretrain Rand Policy - Step 1 0.36 0.58
Pretrain Rand Policy - Step 4 0.55 0.78
Pretrain Rand Policy - Step 8 0.60 0.82

With Policy - Step 1 0.51 0.74
With Policy - Step 4 0.62 0.83
With Policy - Step 8 0.65 0.85

7 Open questions250

Our experiments show that the multi-zoom patches are easy to handle by the shallow patch tokenizers251

used in modern ViTs. This is despite the fact that they represent image data in varying scale, from252

tiny crops to almost the whole image. Additionally, we saw that training a transformer iteratively with253

an evolving internal state is quite manageable. The part that contains open questions is the policy, i.e.254

learning where to look.255

End-to-end training of the whole system. With this work we use a two stage approach for training256

our system on image classification. First, we trained the transformer using random selection of257

multi-zoom patches. Then with a fixed transformer we trained the policy with GRPO [36]. This258

approach works because for image classification training the transformer with randomly selected259

patches is reasonable. For other more complex tasks this might not be the case. As far as we are260

aware it is an open question how to train the transformer and the policy that uses the transformer’s261

state as observation in a single training loop. While the transformer is training, the distribution of the262

7

state vectors will be changing. With this the input observations for the policy will be changing as well.263

On top of that, the training dynamics and the training loop for reinforcement learning algorithms like264

PPO [35] and GRPO [36] are very different from the ones for training a transformer with supervised265

or self-supervised learning.266

Large scale self-supervised pretraining. We strongly believe that powerful and general vision267

encoders should be pretrained in a self-supervised manner or large amounts of data. The question268

about end-to-end training of the transformer and policy is still valid. However, there are additional269

open questions. For example, what is the goal of the policy while pretraining. Let us say we are270

training a vision model in self-supervised way, e.g. training with the DINO [5] objective, but given271

multiple steps to look at different locations. What is the goal of the policy in this case? How should we272

compute the rewards for individual actions. Additionally, we want to train a task-driven encoder, but273

we are pretraining on a single self-supervised task which will not be encountered after the pretraining274

stage.275

Should the policy be trained with reinforcement learning? This is another interesting question. If276

there is a way to make training the policy differentiable we might be able to train the system end-to-277

end. A promising approach here might be based on implicit neural representation of images [28, 46].278

We are not aware of successful attempts to use reinforcement learning during large scale pretraining.279

Large scale pretraining only for the transformer. Another option might be to pretrain only the280

transformer with a fixed or random policy. Then add the policy aspect only when finetuning for281

particular tasks. Such solution might be in conflict with the task driven property we desire.282

8 Related work283

8.1 Transformers with hierarchical spatial features284

Before the advent of the transformer based architectures, vision encoders were primarily based on285

convolutional neural networks [23, 21, 37, 38, 16]. The models work with spatial features of varying286

resolution. Perhaps the most popular transformer based architecture at the moment is ViT [12]. It287

is a pure transformer backbone that splits the image into equal sized patches (e.g. 16 × 16) and288

treats them as tokens. It does not work with hierarchical spatial information, but at a constant low289

resolution. It also scales quadratically with the number of pixels in the image due to the self attention290

mechanism between all tokens. DeiT [39] introduces data efficient training, but keeps the architecture291

unchanged. PVT [42] uses a transformer backbone for dense prediction tasks with hierarchical292

features inheriting advantages from both CNNs and ViT. Swin [25, 24] takes a different approach by293

keeping the same sized patches from ViT by limiting the self-attention with local windows. MViT [13]294

proposes transformers with multi-scale feature pyramid. PiT [17] introduces pooling-based vision295

transformer. Hybrids between convolutional and transformer based architectures exist as well, like296

LeViT [14]. Cross-ViT [6] introduces a transformer that handles different resolutions with separate297

parallel branches. Twin-transformers [7] utilize spatially separable attention mechanisms which298

consists of two types of attention – local self-attention and global subsampled attention. Focal299

transformers [47] introduce self-attention for local-global interactions. All these methods improve300

the efficiency of the ViT architecture, however in our opinion these improvements can go further.301

Even linear dependence on the image size is expensive, since images generated from modern cameras302

contain many millions of pixels. Additionally all of them still extract features in a bottom-up fashion,303

being prone to distribution shift when changing the image size drastically. Changing the size of the304

same image will lead to all layers of the networks to deal with different level of detail, even CNN305

architectures.306

8.2 Methods inspired by fovean vision307

The fovea is a small part of the retina of our eye where the concentration of light receptors is very308

high. A 1− 2◦ circle around the direction of the gaze where the resolution is highest. As we go away309

from the center of gaze the resolution drops quickly. We have to constantly move our eyes, a process310

called saccades, to gather details from various parts of the scene. This process is highly efficient311

and flexible. It has been a source of inspiration within the computer vision community for a long312

time. [34] is a seminal work on fovean inspired vision models. It also uses a learned policy, however313

through a learned world model. [29, 1] propose a method for vision models that is very similar to314

8

ours. They also use reinforcement learning to train a policy to direct the next glimpse. They also315

use multi-resolution patches that are similar to ours. A few key difference to our approach is that316

their multi-resolution patches are bottom-up instead of top-down, and that their model is trained as317

a recurrent neural network (specifically LSTM [18]). One of the main goals of our position paper318

is to inspire us to revisit these older works with modern architectural components. [27] proposes a319

more direct approach to transform or sample the input image in a way that mimics the retina. Then320

the transformer image is sent to a CNN. [19] combines a CNN backbone with foveation pooling321

mechanism and a transformer. [3] proposes a combination between bottom-up saliency detection and322

top-down attention using unsupervised learning for object detection.323

8.3 Iterative transformers with evolving internal state324

A key component of the method we want to propose is using a transformer iteratively with limited325

context while it evolves an internal state. In essence treating the transformer like RNN, but without326

propagated gradients between iterations. The internal state can be considered memory of what the327

transformer has seen so far. Transformer-XL [8] introduces segment-level recurrence for transformers.328

Effectively caching the hidden states from the previous segment, allowing to double the length of the329

context without backpropagating gradients into it. The Compressive Transformer [32] builds on top330

Transformer-XL. Instead of discarding old cached hidden states it compresses them. GMAT [15] adds331

dedicated learned memory tokens. It still uses long context by applying sparse self-attention within332

the context, and dense attention is performed by the memory tokens only. Memformer [45] adds an333

external dynamic memory to encode and retrieve past information. They also do backpropagation334

through time over very long sequences. The Recurrent Memory Transformer [2] add memory as335

learnable tokens appended to the input context. Their solution is similar to the one we propose. A336

crucial difference is that they do backpropagation through time [33, 30, 43].337

9 Alternative view338

It is our view that having vision encoders to be image size agnostic is self-evidently desirable. Note339

that this does not mean that the model is completely independent of the image size. Strictly following340

this might be impossible. The main idea behind this statement is that the computational requirements341

of a vision encoder should not be increased by increasing the size of the image, unless the task itself342

gets more difficult with the increase of resolution. Such examples may include camouflaged object343

detection, or trying to retrieve all the text in an image. Increasing the resolution might make a lot344

more text available to parse. As such we do not provide alternative view for the desired property of345

being image size agnostic.346

Things are a bit more nuanced with the task driven property. In our opinion the game where the image347

is hidden before asking question about it, is a good example why task driven encoders are desirable.348

However, there is merit in encoders being task agnostic. Modern models like DINOv2 [31] are349

task-agnostic and perform very well on multitude of tasks. Their strong advantage is that they are very350

easy to use. One can easily use DINO as a backbone in any system that requires visual perception. In351

our view task driven encoders are going to be eventually better and more efficient than task-agnostic352

ones. However, reaching this point is going to be challenging. Similarly to self-supervised and353

supervised models. For a long time it was believed that self-supervised models are better, but their354

performance did not match that of supervised ones. Today models pretrained in self-supervised355

manner outperform supervised ones on most of the benchmarks.356

10 Conclusion357

In this paper we argued that the future of vision encoders should be focused on models that are image358

size agnostic and task driven. We made multiple biological references to support our position. We359

also showed a proof-of-concept system that can be used as such an encoder. We also showed that this360

line of research is not new [34, 29, 1]. It is our hope to inspire us to revisit these ideas with modern361

architectural components. We also provided valuable research contributions to this cause – top-down362

manner of extracting multi-zoom patch in image size agnostic way, and iterative transformer capable363

of evolving internal state without backpropagation through time.364

9

References365

[1] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition with visual366

attention. arXiv preprint arXiv:1412.7755, 2014.367

[2] Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. Advances368

in Neural Information Processing Systems, 35:11079–11091, 2022.369

[3] Ryan Burt, Nina N Thigpen, Andreas Keil, and Jose C Principe. Unsupervised foveal vision370

neural networks with top-down attention. arXiv preprint arXiv:2010.09103, 2020.371

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and372

Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on373

computer vision, pages 213–229. Springer, 2020.374

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,375

and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings376

of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.377

[6] Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-378

scale vision transformer for image classification. In Proceedings of the IEEE/CVF international379

conference on computer vision, pages 357–366, 2021.380

[7] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia,381

and Chunhua Shen. Twins: Revisiting the design of spatial attention in vision transformers.382

Advances in neural information processing systems, 34:9355–9366, 2021.383

[8] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.384

Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint385

arXiv:1901.02860, 2019.386

[9] Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers387

need registers. arXiv preprint arXiv:2309.16588, 2023.388

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-389

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern390

recognition, pages 248–255. Ieee, 2009.391

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep392

bidirectional transformers for language understanding. In Proceedings of the 2019 conference of393

the North American chapter of the association for computational linguistics: human language394

technologies, volume 1 (long and short papers), pages 4171–4186, 2019.395

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,396

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,397

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image398

recognition at scale. In International Conference on Learning Representations, 2021.399

[13] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and400

Christoph Feichtenhofer. Multiscale vision transformers. In Proceedings of the IEEE/CVF401

international conference on computer vision, pages 6824–6835, 2021.402

[14] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé403

Jégou, and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference.404

In Proceedings of the IEEE/CVF international conference on computer vision, pages 12259–405

12269, 2021.406

[15] Ankit Gupta and Jonathan Berant. Gmat: Global memory augmentation for transformers. arXiv407

preprint arXiv:2006.03274, 2020.408

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image409

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,410

pages 770–778, 2016.411

10

[17] Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon412

Oh. Rethinking spatial dimensions of vision transformers. In Proceedings of the IEEE/CVF413

international conference on computer vision, pages 11936–11945, 2021.414

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,415

9(8):1735–1780, 1997.416

[19] Aditya Jonnalagadda, William Yang Wang, BS Manjunath, and Miguel P Eckstein. Foveater:417

Foveated transformer for image classification. arXiv preprint arXiv:2105.14173, 2021.418

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.419

2009.420

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep421

convolutional neural networks. Advances in neural information processing systems, 25, 2012.422

[22] Yann LeCun. The shape of ai to come! Talk presented at the AI Action Summit 2025, February423

2025. Retrieved from https://www.youtube.com/watch?v=xnFmnU0Pp-8.424

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning425

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.426

[24] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng427

Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings428

of the IEEE/CVF conference on computer vision and pattern recognition, pages 12009–12019,429

2022.430

[25] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining431

Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings432

of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.433

[26] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International434

Conference on Learning Representations, 2019.435

[27] Hristofor Lukanov, Peter König, and Gordon Pipa. Biologically inspired deep learning model436

for efficient foveal-peripheral vision. Frontiers in Computational Neuroscience, 15:746204,437

2021.438

[28] Qi Ma, Danda Pani Paudel, Ender Konukoglu, and Luc Van Gool. Implicit-zoo: A large-scale439

dataset of neural implicit functions for 2d images and 3d scenes, 2024.440

[29] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recurrent models of441

visual attention. Advances in neural information processing systems, 27, 2014.442

[30] Michael C Mozer. A focused backpropagation algorithm for temporal pattern recognition. In443

Backpropagation, pages 137–169. Psychology Press, 2013.444

[31] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,445

Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning446

robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.447

[32] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive448

transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.449

[33] Anthony J Robinson and Frank Fallside. The utility driven dynamic error propagation network,450

volume 11. University of Cambridge Department of Engineering Cambridge, 1987.451

[34] Juergen Schmidhuber and Rudolf Huber. Learning to generate artificial fovea trajectories for452

target detection. International Journal of Neural Systems, 2(01n02):125–134, 1991.453

[35] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal454

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.455

11

https://www.youtube.com/watch?v=xnFmnU0Pp-8

[36] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,456

Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical457

reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.458

[37] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale459

image recognition. arXiv preprint arXiv:1409.1556, 2014.460

[38] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,461

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.462

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9,463

2015.464

[39] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and465

Hervé Jégou. Training data-efficient image transformers & distillation through attention. In466

International conference on machine learning, pages 10347–10357. PMLR, 2021.467

[40] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-test468

resolution discrepancy. Advances in neural information processing systems, 32, 2019.469

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,470

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information471

processing systems, 30, 2017.472

[42] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping473

Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction474

without convolutions. In Proceedings of the IEEE/CVF international conference on computer475

vision, pages 568–578, 2021.476

[43] Paul J Werbos. Generalization of backpropagation with application to a recurrent gas market477

model. Neural networks, 1(4):339–356, 1988.478

[44] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-479

ment learning. Machine learning, 8:229–256, 1992.480

[45] Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Alborz Geramifard, and Zhou Yu.481

Memformer: A memory-augmented transformer for sequence modeling. arXiv preprint482

arXiv:2010.06891, 2020.483

[46] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico484

Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual485

computing and beyond. In Computer Graphics Forum, volume 41, pages 641–676. Wiley486

Online Library, 2022.487

[47] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and Jianfeng488

Gao. Focal self-attention for local-global interactions in vision transformers. arXiv preprint489

arXiv:2107.00641, 2021.490

[48] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond491

empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.492

12

A Technical Appendices and Supplementary Material493

The supplementary material is organized in the followin way. Appendix A.1 provides efficient code494

in Jax to extract multi-zoom patches. Appendix A.2 contains details on how we use GRPO to train a495

policy where to look. Finally, Appendix A.3 contains implementation details for our proof-of-concept496

solution for image classification.497

A.1 Extracting multi-zoom patches498

For completeness we provide efficient code in Jax for extracting the multi-zoom patches in a top-down499

manner. Since we extract patches of consistent sizes the extraction process can be easily parallelized.500

See Algorithm 1. The function itself can be used with jax.vmap to parallelize the computation for a501

whole batch of images.502

Algorithm 1 Function to extract multi-zoom patches for an image.

def extract_patches(image, center, patch_size, num_patches, max_z):
height, width = image.shape[:2]
Get the zoom levels
zs = jnp.linspace(0, max_z, num_patches)

Center of each patch in pixels
center_y = center[1] * height
center_x = center[0] * width

def extract_single_patch(z):
"""Extract for a given zoom level."""
Patch size in the image space
patch_img_size = min(width, height) / 2**z
scale_factor = patch_size / patch_img_size
translate_x = patch_size / 2 - scale_factor * center_x
translate_y = patch_size / 2 - scale_factor * center_y
return jax.image.scale_and_translate(

image,
shape=(patch_size, patch_size, 3),
spatial_dims=(0, 1),
scale=jnp.array([scale_factor, scale_factor]),
translation=jnp.array([translate_y, translate_x]),
method="bilinear",

)

Batch extract for all zoom levels
return jax.vmap(extract_single_patch)(zs)

A.2 Details on learning where to look with GRPO503

Once we have trained the transformer and the task head with random gaze locations it is time to teach504

a policy where to look. We use the group relative policy optimization algorithm (GRPO) [36]. The505

internal state from the transformer is the state observation visible to the policy. The rewards comes506

from how quickly we decrease the cross entropy loss (since we only work with classification here).507

Given an input image i, we use an old version of the policy πθold to collect G traces {o1, ..., oG}. A508

trace oi consists of n actions oi = (s1, a1, s2, ..., an, sn+1). We optimize the following objective:509

L(θ) = E[i ∼ P (I), o ∼ πθold(O|i)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πθ(ai,t|si,t)
πθold(ai,t|si,t)

Âi,t, clip
(

πθ(ai,t|si,t)
πθold(ai,t|si,t)

1− ϵ, 1 + ϵ

)
Âi,t

]}
.

(1)

Âi,t are the group normalized advantages. To understand how they are computed, we first need to510

define how to get the rewards. We employ two types of rewards. The first one is an end of the episode511

reward shared across all actions. It is based on the loss after the end of the episode. The second one is512

an immediate reward for each action defined by the reduction of the task loss. With the first approach513

the unnormalized advantages αi,t are defined as,514

αi,t = logP (τ(si,n+1) = y) . (2)

13

τ(s) is the output of the task head and y is the ground truth label. In essence, the reward for each515

action is the negative cross entropy loss, computed at the end of the trace, i.e. with the task head516

output from the last state sn+1.517

With the second approach the un-normalized advantage αi,t is defined as,518

αi,t =
li,t − li,t+1

li,t + li,t+1
, (3)

where li,t is the classification loss after applying the task head to state si,t, i.e. li,t =519

− logP(τ(si,t) = y). This is basically the improvement ratio of the loss based on the current520

action. We have both the current and the next loss in the denominator to keep the reward symmetric521

around 0. The final group normalize advantages are defined as,522

Âi,t =
αi,t − ᾱt

σ̂(αt)
. (4)

Here ᾱt is the mean and σ̂(αt) is the standard deviation of α.,t. Note, that we normalize across the523

traces in the group, but separately for each time step. This is particularly important for the second524

approach for the advantages using only the immediate reward. The reward during the early steps is525

typically much higher then that for the latter steps. This is because we start with very low confidence526

about what is the class of the image, but once it is high it is much harder to increase further. This is527

why we need to normalize separately for each time step.528

Both ways of defining the reward have their pros and cons. With an end of episode reward shared529

across all actions we attribute the same reward for each action. However, some actions are good and530

some actions are not good in the same trace. There are specific challenges with image classification.531

It is a task where a random policy performs very well, and bad actions along the way (looking at532

uninformative place) does not hurt the performance. This is also the reason we use GRPO instead533

of Proximal Policy Optimization (PPO) [35]. It is challenging to train a good critic when from any534

state a couple of good actions will lead to a low loss. The second approach for computing the loss is535

more direct – rewarding actions based on their immediate contribution to decreasing the loss. The536

challenge here is normalizing the advantages. The starting point for each action is different and thus537

it is hard to fairly normalize the advantages.538

A.3 Training setup and implemenation details539

All our experiments are performed on the ImageNet-1k [10] dataset on TPU v4-32 machines.540

A.3.1 Transformer541

For the main transformer we use implementation similar to the ViT implementation of DINOv2 [31].542

The model we use is compatible in size with the ViT-Base models. It consists of 12 layers. The543

embedding dimension of each token is 768 (spread across 12 heads). The input to the transformer544

contains M patch tokens and N state query vectors. If it is the first iteration, the N state query545

vectors are the learned task prompt. In subsequent runs the N state query vectors are the output state546

from the previous run. Similarly to DETR [4] the state query vectors are added to each layer of the547

transformer as skip connections [16]. The M token inputs are the tokenized multi-zoom patches548

centered at a single location, summed with their respective positional embeddings. The position549

embeddings are defined on a three dimensional input (x, y, z), where all values lie in the interval550

[0− 1]. The positional embeddings are computed with a small MLP network with 3 inputs and 768551

outputs. Note that the zoom level z is also a value between 0 and 1. The actual values when extracting552

the patches are between 0 and Zmax, but they are scaled to be in the interval [0− 1] so that the input553

to the positional embedding module is normalized. All of the M tokens are centered around a fixed554

center (x, y).555

A.3.2 Task head556

Since the only task we use in our experiments is classification we have a simple head that combines557

the N states vectors through a learned linear combination. Then a simple MLP module is used to558

output K logits, where K is the number of classes.559

14

A.3.3 Policy560

Since we extract MZ patches with the same fixed center, the policy’s action can be described only561

with the (x, y) coordinates. Hence, we use continuous actions, returning a tuple of values between 0562

and 1. We use a DETR-like transformer to parametrize the action distribution which is a mixture of563

K Gaussians. The transformer contains K + 1 learned query vectors (one for each mixture and one564

for the categorical distribution to select which Gaussian to sample from) and does cross-attention to565

the N state vectors. Then with a simple head we extract the mean coordinates for each Gaussian of566

the mixture. The standard deviation is a fixed parameter during training. We use deterministic actions567

during inference. We opted against representing the action with a single Gaussian, because this568

assumes there is a single good action from each state. This is clearly not true with the classification569

task.570

A.3.4 Training stages571

As mentioned we train the whole system in two distinct stages. In stage 1 we only train the transformer572

with the task head using a random policy. Each episode contains 8 steps and in each step we select573

the center (x, y) uniformly at random. Training is done for 300 epochs with batch size of 1024. The574

learning rate is 5× 10−4 decayed with cosine schedule [26], after a linear warmup. In this stage we575

also use MixUp [48] augmentation.576

In stage 2, the trained transformer and task head are frozen. And we only train the policy. We do 4577

epochs over the whole ImageNet dataset with batch size 4096. For each batch we collect G = 16578

traces of length 8. This is the data for the inner epochs for GRPO. We optimize the GRPO objective579

for 8 inner epochs for each batch.580

15

	Introduction
	Why image size agnostic?
	Why task driven?
	Proof-of-concept solution
	Implementation for image classification
	Top-down patch extraction
	Iterative transformer with internal state
	Learned policy for where to look

	Classification results
	Iterative transformer with ViT patches
	GRPO policy with multi-zoom patches

	Open questions
	Related work
	Transformers with hierarchical spatial features
	Methods inspired by fovean vision
	Iterative transformers with evolving internal state

	Alternative view
	Conclusion
	Technical Appendices and Supplementary Material
	Extracting multi-zoom patches
	Details on learning where to look with GRPO
	Training setup and implemenation details
	Transformer
	Task head
	Policy
	Training stages

